1
|
Du Y, Hu Y, Sheng Y, Zhu T, Liu S, Ding H, Guan Y. Primary ovarian insufficiency consequence of autoimmune diseases: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1417896. [PMID: 39717103 PMCID: PMC11663653 DOI: 10.3389/fendo.2024.1417896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Background Observational studies suggest the risk of primary ovarian insufficiency (POI) is increased in autoimmune disorders (AIDs), but it is unclear whether there is a causal relationship. Therefore, we aimed to investigate the bidirectional causality between 20 AIDs and POI using Mendelian randomization (MR) analysis. Methods A bidirectional two-sample MR investigation was designed by using publicly accessible summary-level data from genome-wide association studies (GWAS). The inverse variance weighted (IVW) method was performed as the main analysis, supplemented by several sensitivity analyses. Cochran Q test was used to evaluate SNP estimate heterogeneity. MR-Egger and MR-PRESSO methods were utilized to detect horizontal pleiotropy. Results The MR analyses revealed that genetically determined coeliac disease (CeD) (OR = 1.124, 95% CI 1.033-1.224, P = 0.007), vitiligo (OR = 1.092, 95% CI 1.003-1.188; P = 0.042), systemic lupus erythematosus (SLE) (OR = 1.122, 95% CI 1.030-1.223, P = 0.008), and selective immunoglobulin A deficiency (SIgAD) (OR = 0.866, 95% CI: 0.776-0.967, P = 0.011) exhibited significant causal relationships with POI. We also found suggestive evidence of positive effect of Addison's disease (AD) towards POI (OR5e-6 = 1.076, 95% CI 1.002-1.154, P = 0.043). Conclusion This comprehensive MR analysis indicated that SLE, CeD, vitiligo, and AD caused an increased risk of POI, SIgAD was associated with a decreased risk of POI. These insights carry profound clinical implications, particularly emphasizing the early intervention for women with AIDs/POI who wish to preserve their reproductive potential or plan for future pregnancies.
Collapse
Affiliation(s)
- Yongming Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yichao Hu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuehua Sheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Tianhong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shenping Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yutao Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Nishigaki K. Discoveries by the genome profiling, symbolic powers of non-next generation sequencing methods. Brief Funct Genomics 2024; 23:775-797. [PMID: 39602495 DOI: 10.1093/bfgp/elae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Next-generation sequencing and other sequencing approaches have made significant progress in DNA analysis. However, there are indispensable advantages in the nonsequencing methods. They have their justifications such as being speedy, cost-effective, multi-applicable, and straightforward. Among the nonsequencing methods, the genome profiling method is worthy of reviewing because of its high potential. This article first reviews its basic properties, highlights the key concept of species identification dots (spiddos), and then summarizes its various applications.
Collapse
Affiliation(s)
- Koichi Nishigaki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama 338-8570, Japan
| |
Collapse
|
3
|
Perricone C, Bruno L, Cafaro G, Latini A, Ceccarelli F, Borgiani P, Ciccacci C, Bogdanos D, Novelli G, Gerli R, Bartoloni E. Sjogren's syndrome: Everything you always wanted to know about genetic and epigenetic factors. Autoimmun Rev 2024; 23:103673. [PMID: 39490751 DOI: 10.1016/j.autrev.2024.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease characterized by a wide spectrum of glandular and extra-glandular features. Genetic and epigenetic factors play an important role in the disease susceptibility and phenotype. There are a multitude of genes that have been identified as implicated in the pathogenesis of pSS, both in HLA and extra-HLA regions with a strong contribution given by genes in interferon signalling pathways. Among the HLA alleles, the most consistent associations have been found with DR2 and DR3 alleles at the DRB1 locus. Moreover, several gene variants outside the MHC locus are in genes involved in NF-κB signalling, B- and T-cell function and methylation processes possibly responsible for lymphomagenesis. There is still a lack of knowledge on precise genetic patterns and prediction models of diseases, and data on pharmacogenetics is scarce. A comprehensive summary of the common genetic factors and an extensive analysis of novel epigenetic aspects is provided, together with a view on the relationships between novel therapeutic agents for pSS and genetic targets in signalling pathways, aiming at improving tailored treatment strategies in the view of a more personalized medicine.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy.
| | - Lorenza Bruno
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Fulvia Ceccarelli
- Division of Rheumatology, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University, 00133 Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Thessaly, Greece.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129 Perugia, Italy
| |
Collapse
|
4
|
Liu TY, Lin MR, Lu HF, Chen YC, Lin HJ, Chou WH, Wei CY, Palupi PD, Liao CC, Chang YT, Chang WC, Tsai FJ. Characterization of primary Sjögren's syndrome in the Taiwan Han population through a genome-wide association study and polygenic risk score analysis. Clin Immunol 2024; 269:110381. [PMID: 39437979 DOI: 10.1016/j.clim.2024.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Sjögren's syndrome (SS) is an autoimmune disorder that primarily affects the exocrine glands, leading to dryness of mucous membranes and systemic manifestations. This study aimed to identify genetic markers associated with primary SS (pSS) in the Taiwan Han population through a hospital-based genome-wide association study (GWAS) and polygenic risk score (PRS) analysis, addressing the lack of genetic research. RESULTS This study included 11,390 patients diagnosed with pSS and 113,900 controls. GWAS identified one known locus and eight novel loci. Known HLA alleles, including HLA-DRB1*15:01 and HLA-DQA1*03:01, were successfully replicated in a consistent effect direction. PRS analysis revealed that several autoimmune diseases share similar genetic backgrounds with pSS, including rheumatoid arthritis and systemic lupus erythematosus. CONCLUSION This study represents the largest cohort to date on the genetics of pSS in the Taiwan Han population. Our findings provide valuable insights into the pathogenesis of pSS and emphasize the comorbidities associated with it as an autoimmune disease.
Collapse
Affiliation(s)
- Ting-Yuan Liu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Hsing-Fang Lu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| | - Yu-Chia Chen
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, Eye Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Yu Wei
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Poppy Diah Palupi
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Chou Liao
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| | - Yen-Ting Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Core Laboratory of Neoantigen Analysis for Personalized Cancer Vaccine, Office of R&D, Taipei Medical University, Taipei 110, Taiwan; Integrative Research Center in Critical Care, Wanfang Hospital, Taipei Medical University, Taipei 116, Taiwan; Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei 110, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Division of Pediatric Medical Genetics, Children's Hospital of China Medical University, Taichung 40447, Taiwan; Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
5
|
Su C, Zhu X, Wang Q, Jiang F, Zhang J. Causal associations of Sjögren's syndrome with cardiovascular disease: A two-sample Mendelian randomization study. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 47:100482. [PMID: 39554979 PMCID: PMC11566712 DOI: 10.1016/j.ahjo.2024.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Study objectives Observational and cohort studies have associated Sjögren's syndrome (SS) with various types of cardiovascular disease (CVD), yet causal relationships have not been established. We employed Mendelian randomization (MR) to investigate potential causal links between SS and CVD in the general population. Methods We conducted a two-sample MR analysis using data from four distinct sources for 11 genome-wide significant single nucleotide polymorphisms (SNPs) associated with SS and data for 13 types of CVD sourced from FinnGen, IEU OpenGWAS, and GWAS catalog. The inverse variance weighted method was selected as the primary analytical approach, complemented by various sensitivity analyses. Results MR analyses provide evidence of a significantly increased risk of ischemic stroke associated with genetically predicted SS (odds ratio [OR], 1.0237; 95 % CI, 1.0096 to 1.0379; p = 0.0009), as well as suggestive evidence of a potential causal relationship between SS and an increased risk of chronic heart failure (OR, 1.0302; 95 % CI, 1.0020 to 1.0592; p = 0.0355). Sensitivity analyses reinforced these associations, demonstrating robustness and consistency across multiple statistical methods. The secondary analysis, conducted after outlier correction using MR-PRESSO and RadialMR methods, reaffirmed these associations and also indicated a suggestive causal link between SS and non-rheumatic valvular heart disease (OR, 1.0251; 95 % CI, 1.0021 to 1.0486; p = 0.0323). Conclusions This study demonstrates that genetically predicted SS is a potential causative risk factor for ischemic stroke, chronic heart failure, and non-rheumatic valvular heart disease on a large-scale population. However, further research incorporating ancestral diversity is required to confirm a causal relationship between SS and CVD.
Collapse
Affiliation(s)
| | | | - Qiang Wang
- Department of Cardiothoracic Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Cardiothoracic Surgery, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Feng Jiang
- Department of Cardiothoracic Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu Province, China
- Department of Cardiothoracic Surgery, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu Province, China
| | - Junjie Zhang
- Corresponding author at: No. 2 North Yongning Road, Changzhou, Jiangsu Province 213000, China.
| |
Collapse
|
6
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
7
|
Bhattacharyya S, Ay F. Identifying genetic variants associated with chromatin looping and genome function. Nat Commun 2024; 15:8174. [PMID: 39289357 PMCID: PMC11408621 DOI: 10.1038/s41467-024-52296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Here we present a comprehensive HiChIP dataset on naïve CD4 T cells (nCD4) from 30 donors and identify QTLs that associate with genotype-dependent and/or allele-specific variation of HiChIP contacts defining loops between active regulatory regions (iQTLs). We observe a substantial overlap between iQTLs and previously defined eQTLs and histone QTLs, and an enrichment for fine-mapped QTLs and GWAS variants. Furthermore, we describe a distinct subset of nCD4 iQTLs, for which the significant variation of chromatin contacts in nCD4 are translated into significant eQTL trends in CD4 T cell memory subsets. Finally, we define connectivity-QTLs as iQTLs that are significantly associated with concordant genotype-dependent changes in chromatin contacts over a broad genomic region (e.g., GWAS SNP in the RNASET2 locus). Our results demonstrate the importance of chromatin contacts as a complementary modality for QTL mapping and their power in identifying previously uncharacterized QTLs linked to cell-specific gene expression and connectivity.
Collapse
Affiliation(s)
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Dabravolski SA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov NA. Vitamin D in Primary Sjogren's Syndrome (pSS) and the Identification of Novel Single-Nucleotide Polymorphisms Involved in the Development of pSS-Associated Diseases. Diagnostics (Basel) 2024; 14:2035. [PMID: 39335717 PMCID: PMC11431467 DOI: 10.3390/diagnostics14182035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS's development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Alexey V. Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A. Starodubtseva
- Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia;
| | - Dmitry F. Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia;
| | - Tatiana I. Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| | - Nikolay A. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| |
Collapse
|
9
|
Qian Q, Wu Y, Cui N, Li Y, Zhou Y, Li Y, Lian M, Xiao X, Miao Q, You Z, Wang Q, Shi Y, Cordell HJ, Timilsina S, Gershwin ME, Li Z, Ma X, Ruqi Tang. Epidemiologic and genetic associations between primary biliary cholangitis and extrahepatic rheumatic diseases. J Autoimmun 2024; 148:103289. [PMID: 39059058 DOI: 10.1016/j.jaut.2024.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Patients with primary biliary cholangitis (PBC) commonly experience extrahepatic rheumatic diseases. However, the epidemiologic and genetic associations as well as causal relationship between PBC and these extrahepatic conditions remain undetermined. In this study, we first conducted systematic review and meta-analyses by analyzing 73 studies comprising 334,963 participants across 17 countries and found strong phenotypic associations between PBC and rheumatic diseases. Next, we utilized large-scale genome-wide association study summary data to define the shared genetic architecture between PBC and rheumatic diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and Sjögren's syndrome (SS). We observed significant genetic correlations between PBC and each of the four rheumatic diseases. Pleiotropy and heritability enrichment analysis suggested the involvement of humoral immunity and interferon-associated processes for the comorbidity. Of note, we identified four variants shared between PBC and RA (rs80200208), SLE (rs9843053), and SSc (rs27524, rs3873182) using cross-trait meta-analysis. Additionally, several pleotropic loci for PBC and rheumatic diseases were found to share causal variants with gut microbes possessing immunoregulatory functions. Finally, Mendelian randomization revealed consistent evidence for a causal effect of PBC on RA, SLE, SSc, and SS, but no or inconsistent evidence for a causal effect of extrahepatic rheumatic diseases on PBC. Our study reveals a profound genetic overlap and causal relationships between PBC and extrahepatic rheumatic diseases, thus providing insights into shared biological mechanisms and novel therapeutic interventions.
Collapse
Affiliation(s)
- Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yujie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suraj Timilsina
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
10
|
Schultheiß C, Paschold L, Mohebiany AN, Escher M, Kattimani YM, Müller M, Schmidt-Barbo P, Mensa-Vilaró A, Aróstegui JI, Boursier G, de Moreuil C, Hautala T, Willscher E, Jonas H, Chinchuluun N, Grosser B, Märkl B, Klapper W, Oommen PT, Gössling K, Hoffmann K, Tiegs G, Czernilofsky F, Dietrich S, Freeman A, Schwartz DM, Waisman A, Aksentijevich I, Binder M. A20 haploinsufficiency disturbs immune homeostasis and drives the transformation of lymphocytes with permissive antigen receptors. SCIENCE ADVANCES 2024; 10:eadl3975. [PMID: 39167656 PMCID: PMC11338232 DOI: 10.1126/sciadv.adl3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Genetic TNFAIP3 (A20) inactivation is a classical somatic lymphoma lesion and the genomic trait in haploinsufficiency of A20 (HA20). In a cohort of 34 patients with HA20, we show that heterozygous TNFAIP3 loss skews immune repertoires toward lymphocytes with classical self-reactive antigen receptors typically found in B and T cell lymphomas. This skewing was mediated by a feed-forward tumor necrosis factor (TNF)/A20/nuclear factor κB (NF-κB) loop that shaped pre-lymphoma transcriptome signatures in clonally expanded B (CD81, BACH2, and NEAT1) or T (GATA3, TOX, and PDCD1) cells. The skewing was reversed by anti-TNF treatment but could also progress to overt lymphoma. Analysis of conditional TNFAIP3 knock-out mice reproduced the wiring of the TNF/A20/NF-κB signaling axis with permissive antigen receptors and suggested a distinct regulation in B and T cells. Together, patients with the genetic disorder HA20 provide an exceptional window into A20/TNF/NF-κB-mediated control of immune homeostasis and early steps of lymphomagenesis that remain clinically unrecognized.
Collapse
Affiliation(s)
- Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alma Nazlie Mohebiany
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Moritz Escher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Yogita Mallu Kattimani
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie Müller
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Paul Schmidt-Barbo
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Anna Mensa-Vilaró
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Juan Ignacio Aróstegui
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Guilaine Boursier
- Department of molecular and cytogenomics, Rare and Autoinflammatory Diseases Laboratory, CHU Montpellier, IRMB, University of Montpellier, INSERM, CEREMAIA, Montpellier, France
| | - Claire de Moreuil
- Department of Internal Medicine, CHU Brest, Université de Bretagne Occidentale, Brest, France
| | - Timo Hautala
- Research Unit of Biomedicine, University of Oulu and Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hanna Jonas
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Namuun Chinchuluun
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Bianca Grosser
- Institute for Pathology, University Medical Center Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Institute for Pathology, University Medical Center Augsburg, Augsburg, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section, and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Prasad Thomas Oommen
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Gössling
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katrin Hoffmann
- Institute for Human Genetics and Molecular Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematolgy, Oncology, and Immunolgy, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Alexandra Freeman
- Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Daniella M. Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| |
Collapse
|
11
|
Pranzatelli TJ, Perez P, Ku A, Matuck B, Huynh K, Sakai S, Abed M, Jang SI, Yamada E, Dominick K, Ahmed Z, Oliver A, Wasikowski R, Easter QT, Baer AN, Pelayo E, Khavandgar Z, Kleiner DE, Magone MT, Gupta S, Lessard C, Farris AD, Burbelo PD, Martin D, Morell RJ, Zheng C, Rachmaninoff N, Maldonado-Ortiz J, Qu X, Aure M, Dezfulian MH, Lake R, Teichmann S, Barber DL, Tsoi LC, Sowalsky AG, Tyc KM, Liu J, Gudjonsson J, Byrd KM, Johnson PL, Chiorini JA, Warner BM. GZMK+CD8+ T cells Target A Specific Acinar Cell Type in Sjögren's Disease. RESEARCH SQUARE 2024:rs.3.rs-3601404. [PMID: 38196575 PMCID: PMC10775371 DOI: 10.21203/rs.3.rs-3601404/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Sjögren's Disease (SjD) is a systemic autoimmune disease without a clear etiology or effective therapy. Utilizing unbiased single-cell and spatial transcriptomics to analyze human minor salivary glands in health and disease we developed a comprehensive understanding of the cellular landscape of healthy salivary glands and how that landscape changes in SjD patients. We identified novel seromucous acinar cell types and identified a population of PRR4+CST3+WFDC2- seromucous acinar cells that are particularly targeted in SjD. Notably, GZMK+CD8 T cells, enriched in SjD, exhibited a cytotoxic phenotype and were physically associated with immune-engaged epithelial cells in disease. These findings shed light on the immune response's impact on transitioning acinar cells with high levels of secretion and explain the loss of this specific cell population in SjD. This study explores the complex interplay of varied cell types in the salivary glands and their role in the pathology of Sjögren's Disease.
Collapse
Affiliation(s)
- Thomas J.F. Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, University of Maryland College Park, MD, USA
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Anson Ku
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Bethesda, MD, USA
| | - Bruno Matuck
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Khoa Huynh
- Department of Biostatistics, Virginia Commonwealth University, VA, USA
| | - Shunsuke Sakai
- T-lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Abed
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shyh-Ing Jang
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Eiko Yamada
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kalie Dominick
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Zara Ahmed
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Amanda Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rachael Wasikowski
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Quinn T. Easter
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Alan N. Baer
- Sjögren’s Clinical Investigations Team, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Eileen Pelayo
- Sjögren’s Clinical Investigations Team, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Zohreh Khavandgar
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Sjögren’s Clinical Investigations Team, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - David E. Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD, USA
| | - M. Teresa Magone
- Consult Services Section, National Eye Institute, National Institutes of Health, Bethesda MD, USA
| | - Sarthak Gupta
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin, Diseases, National Institutes of Health, Bethesda MD, USA
| | - Christopher Lessard
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - A. Darise Farris
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Peter D. Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Changyu Zheng
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Jose Maldonado-Ortiz
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Sjögren’s Clinical Investigations Team, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Xufeng Qu
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Marit Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis (LCGP) Microscopy Core Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Bethesda, MD, USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel L. Barber
- T-lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Bethesda, MD, USA
| | - Katarzyna M. Tyc
- Department of Biostatistics, Virginia Commonwealth University, VA, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, VA, USA
| | - Johann Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kevin M. Byrd
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | | | - John A. Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Blake M. Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Sjögren’s Clinical Investigations Team, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Gueiros LA, Ottaviani G, Jessri M, Shiboski C, Farag A, Sollecito TP, Warnakulasuriya S, Kerr AR. World Workshop on Oral Medicine VIII: barriers to research in oral medicine: lessons learned from a bibliometric analysis of the oral potentially malignant disorders literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:46-65. [PMID: 38653605 DOI: 10.1016/j.oooo.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE This study aimed to assess the impact of oral medicine (OM) practitioners on the literature regarding oral potentially malignant disorders (OPMDs), focusing on oral leukoplakia. STUDY DESIGN Using a bibliometric approach on the Scopus database until September 1, 2022, the top 100 cited articles were analyzed for article type, subtopic, specialty contributions, author metrics, and keywords. The Bibliometrix package for R and VOSviewer were used to evaluate interactions and generate science maps. RESULTS OM practitioners, comprising 39% of contributors, played a significant role in studies related to nomenclature and screening of OPMDs. Notably, 4 OM specialists ranked among the most prolific authors, demonstrating denser collaboration with OM co-authors compared to other cancer specialists. However, there was a scarcity of OPMD management studies authored by OM practitioners. CONCLUSIONS Despite the paucity of OM practitioners, the findings underscored the substantial contribution of OM practitioners in developing OPMD nomenclature and classification, emphasizing the need for increased collaboration with cancer specialists to conduct comprehensive clinical trials for OPMD management. The study highlights the importance of standardized criteria in OPMDs research for better data comparison and encourages further efforts from the OM scientific community.
Collapse
Affiliation(s)
- Luiz Alcino Gueiros
- Department of Clinic and Preventive Dentistry & Oral Medicine Unit, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil.
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Maryam Jessri
- Oral Medicine Department, Metro North Oral Health Services, Herston, QLD, Australia; Oral Medicine Department, School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Arwa Farag
- Division of Oral Medicine, Department of Oral Diagnostic Sciences, King AbdulAziz University Faculty of Dentistry, Jeddah, Saudi Arabia
| | - Thomas P Sollecito
- Department of Oral Medicine, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral & Craniofacial Sciences, Department of Oral Medicine, King's College London, London, UK
| | - Alexander Ross Kerr
- Department of Oral & Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
13
|
Kurien BT, Ice JA, Wood R, Pharaoh G, Cavett J, Lewis V, Bhaskaran S, Rasmussen A, Lessard CJ, Farris AD, Sivils KL, Koelsch KA, Van Remmen H, Scofield RH. Mitochondrial Dysfunction and Fatigue in Sjögren's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598269. [PMID: 38948768 PMCID: PMC11212898 DOI: 10.1101/2024.06.17.598269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objectives Sjögren's disease (SjD) is a common exocrine disorder typified by chronic inflammation and dryness, but also profound fatigue, suggesting a pathological basis in cellular bioenergetics. In healthy states, damaged or dysfunctional mitochondrial components are broken down and recycled by mitophagy, a specialized form of autophagy. In many autoimmune disorders, however, evidence suggests that dysfunctional mitophagy allows poorly functioning mitochondria to persist and contribute to a cellular milieu with elevated reactive oxygen species. We hypothesized that mitophagic processes are dysregulated in SjD and that dysfunctional mitochondria contribute to overall fatigue. We sought to link fatigue with mitochondrial dysfunction directly in SjD, heretofore unexamined, and further sought to assess the pathogenic extent and implications of dysregulated mitophagy in SjD. Methods We isolated pan T cells via negative selection from the peripheral blood mononuclear cells of 17 SjD and 8 age-matched healthy subjects, all of whom completed fatigue questionnaires prior to phlebotomy. Isolated T cells were analyzed for mitochondrial oxygen consumption rate (OCR) and glycolysis using Seahorse, and linear correlations with fatigue measures were assessed. A mitophagy transcriptional signature in SjD was identified by reanalysis of whole-blood microarray data from 190 SjD and 32 healthy subjects. Differential expression analyses were performed by case/control and subgroup analyses comparing SjD patients by mitophagy transcriptional cluster against healthy subjects followed by bioinformatic interpretation using gene set enrichment analysis. Results Basal OCR, ATP-linked respiration, maximal respiration, and reserve capacity were significantly lower in SjD compared to healthy subjects with no observed differences in non-mitochondrial respiration, basal glycolysis, or glycolytic stress. SjD lymphocytic mitochondria show structural alterations compared to healthy subjects. Fatigue scores related to pain/discomfort in SjD correlated with the altered OCR. Results from subgroup analyses by mitophagic SjD clusters revealed highly variable inter-cluster differentially expressed genes (DEGs) and expanded the number of SjD-associated gene targets by tenfold within the same dataset. Conclusion Mitochondrial dysfunction, associated with fatigue, is a significant problem in SjD and warrants further investigation.
Collapse
|
14
|
Bai Y, Wang J, Feng X, Xie L, Qin S, Ma G, Zhang F. Identification of drug targets for Sjögren's syndrome: multi-omics Mendelian randomization and colocalization analyses. Front Immunol 2024; 15:1419363. [PMID: 38933282 PMCID: PMC11199405 DOI: 10.3389/fimmu.2024.1419363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background Targeted therapy for Sjögren's syndrome (SS) has become an important focus for clinicians. Multi-omics-wide Mendelian randomization (MR) analyses have provided new ideas for identifying potential drug targets. Methods We conducted summary-data-based Mendelian randomization (SMR) analysis to evaluate therapeutic targets associated with SS by integrating DNA methylation, gene expression and protein quantitative trait loci (mQTL, eQTL, and pQTL, respectively). Genetic associations with SS were derived from the FinnGen study (discovery) and the GWAS catalog (replication). Colocalization analyses were employed to determine whether two potentially relevant phenotypes share the same genetic factors in a given region. Moreover, to delve deeper into potential regulation among DNA methylation, gene expression, and protein abundance, we conducted MR analysis to explore the causal relationship between candidate gene methylation and expression, as well as between gene expression and protein abundance. Drug prediction and molecular docking were further employed to validate the pharmacological activity of the candidate drug targets. Results Upon integrating the multi-omics data, we identified three genes associated with SS risk: TNFAIP3, BTN3A1, and PLAU. The methylation of cg22068371 in BTN3A1 was positively associated with protein levels, consistent with the negative effect of cg22068371 methylation on the risk of SS. Additionally, positive correlations were observed between the gene methylation of PLAU (cg04939496) and expression, as well as between expression and protein levels. This consistency elucidates the promotional effects of PLAU on SS risk at the DNA methylation, gene expression, and protein levels. At the protein level, genetically predicted TNFAIP3 (OR 2.47, 95% CI 1.56-3.92) was positively associated with SS risk, while BTN3A1 (OR 2.96E-03, 95% CI 2.63E-04-3.33E-02) was negatively associated with SS risk. Molecular docking showed stable binding for candidate drugs and target proteins. Conclusion Our study reveals promising therapeutic targets for the treatment of SS, providing valuable insights into targeted therapy for SS. However, further validation through future experiments is warranted.
Collapse
Affiliation(s)
- Yingjie Bai
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jiayi Wang
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Xuefeng Feng
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Le Xie
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Implantology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, Dalian, China
| | - Fan Zhang
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Pastva O, Klein K. Long Non-Coding RNAs in Sjögren's Disease. Int J Mol Sci 2024; 25:5162. [PMID: 38791207 PMCID: PMC11121283 DOI: 10.3390/ijms25105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Sjögren's disease (SjD) is a heterogeneous autoimmune disease characterized by severe dryness of mucosal surfaces, particularly the mouth and eyes; fatigue; and chronic pain. Chronic inflammation of the salivary and lacrimal glands, auto-antibody formation, and extra-glandular manifestations occur in subsets of patients with SjD. An aberrant expression of long, non-coding RNAs (lncRNAs) has been described in many autoimmune diseases, including SjD. Here, we review the current literature on lncRNAs in SjD and their role in regulating X chromosome inactivation, immune modulatory functions, and their potential as biomarkers.
Collapse
Affiliation(s)
- Ondřej Pastva
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Kerstin Klein
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
16
|
Rathore T, Dattatri M. Exploring Sjögren's syndrome through interdisciplinary perspectives: a concise review. J Immunoassay Immunochem 2024; 45:153-177. [PMID: 38748045 DOI: 10.1080/15321819.2024.2353766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dr. Henrik Sjögren after whom Sjögren's Syndrome is named, was a Swedish ophthalmologist who identified the syndrome which had three main symptoms namely, dry eyes, dry mouth, and arthritis. His contributions also highlighted the systemic complications of the syndrome which made our understanding of this disease better. Since then, there have been several studies on Sjögren's Syndrome (SS) of which two of them have changed the perception of the disease's prevalence. The first was a British study in the late 1990s which indicated this syndrome was no more a rare condition. The second is a 2008 study in the US which placed the syndrome as the second most prevalent autoimmune disease after rheumatoid arthritis (RA). Being one of the most prevalent autoimmune disease, there is a pressing need for a more profound and comprehensive understanding of the syndrome. This review endeavors to offer a comprehensive overview of the disease, encompassing its prevalence, manifestations, mechanisms, genetic factors, diagnostic methods, and treatment options. This review additionally offers the āyurvedic viewpoint on SS and its symptoms. This supplementary insight has the potential to contribute to the development of an integrated and holistic approach to managing the condition.
Collapse
Affiliation(s)
- Tanisha Rathore
- Department of Chemistry and Biochemistry, M. S. Ramaiah College of Arts, Science and Commerce, Bengaluru, India
| | - Mayur Dattatri
- Department of Sanskrit, M. S. Ramaiah College of Arts, Science and Commerce, Bengaluru, India
| |
Collapse
|
17
|
Li Y, Lei H, Wen X, Cao H. A powerful approach to identify replicable variants in genome-wide association studies. Am J Hum Genet 2024; 111:966-978. [PMID: 38701746 PMCID: PMC11080610 DOI: 10.1016/j.ajhg.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Replicability is the cornerstone of modern scientific research. Reliable identifications of genotype-phenotype associations that are significant in multiple genome-wide association studies (GWASs) provide stronger evidence for the findings. Current replicability analysis relies on the independence assumption among single-nucleotide polymorphisms (SNPs) and ignores the linkage disequilibrium (LD) structure. We show that such a strategy may produce either overly liberal or overly conservative results in practice. We develop an efficient method, ReAD, to detect replicable SNPs associated with the phenotype from two GWASs accounting for the LD structure. The local dependence structure of SNPs across two heterogeneous studies is captured by a four-state hidden Markov model (HMM) built on two sequences of p values. By incorporating information from adjacent locations via the HMM, our approach provides more accurate SNP significance rankings. ReAD is scalable, platform independent, and more powerful than existing replicability analysis methods with effective false discovery rate control. Through analysis of datasets from two asthma GWASs and two ulcerative colitis GWASs, we show that ReAD can identify replicable genetic loci that existing methods might otherwise miss.
Collapse
Affiliation(s)
- Yan Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, Jilin 130022, China; School of Mathematics, Jilin University, Changchun, Jilin 130012, China
| | - Haochen Lei
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongyuan Cao
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
18
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
19
|
Hsu CC, Chuang HK, Hsiao YJ, Chiang PH, Chen SW, Luo WT, Yang YP, Tsai PH, Chen SJ, Hsieh AR, Chiou SH. Predicting Risks of Dry Eye Disease Development Using a Genome-Wide Polygenic Risk Score Model. Transl Vis Sci Technol 2024; 13:13. [PMID: 38767906 PMCID: PMC11114613 DOI: 10.1167/tvst.13.5.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose The purpose of this study was to conduct a large-scale genome-wide association study (GWAS) and construct a polygenic risk score (PRS) for risk stratification in patients with dry eye disease (DED) using the Taiwan Biobank (TWB) databases. Methods This retrospective case-control study involved 40,112 subjects of Han Chinese ancestry, sourced from the publicly available TWB. Cases were patients with DED (n = 14,185), and controls were individuals without DED (n = 25,927). The patients with DED were further divided into 8072 young (<60 years old) and 6113 old participants (≥60 years old). Using PLINK (version 1.9) software, quality control was carried out, followed by logistic regression analysis with adjustments for sex, age, body mass index, depression, and manic episodes as covariates. We also built PRS prediction models using the standard clumping and thresholding method and evaluated their performance (area under the curve [AUC]) through five-fold cross-validation. Results Eleven independent risk loci were identified for these patients with DED at the genome-wide significance levels, including DNAJB6, MAML3, LINC02267, DCHS1, SIRPB3P, HULC, MUC16, GAS2L3, and ZFPM2. Among these, MUC16 encodes mucin family protein. The PRS model incorporated 932 and 740 genetic loci for young and old populations, respectively. A higher PRS score indicated a greater DED risk, with the top 5% of PRS individuals having a 10-fold higher risk. After integrating these covariates into the PRS model, the area under the receiver operating curve (AUROC) increased from 0.509 and 0.537 to 0.600 and 0.648 for young and old populations, respectively, demonstrating the genetic-environmental interaction. Conclusions Our study prompts potential candidates for the mechanism of DED and paves the way for more personalized medication in the future. Translational Relevance Our study identified genes related to DED and constructed a PRS model to improve DED prediction.
Collapse
Affiliation(s)
- Chih-Chien Hsu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hao-Kai Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pin-Hsuan Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Wen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ting Luo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Chang L, Zheng Z, Xiao F, Zhou Y, Zhong B, Ni Q, Qian C, Chen C, Che T, Zhou Y, Zhao Z, Zou Q, Li J, Lu L, Zou L, Wu Y. Single-cell clonal tracing of glandular and circulating T cells identifies a population of CD9+ CD8+ T cells in primary Sjogren's syndrome. J Leukoc Biol 2024; 115:804-818. [PMID: 37395700 DOI: 10.1093/jleuko/qiad071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Primary Sjogren's syndrome (pSS) is a complex chronic autoimmune disease in which local tissue damage in exocrine glands is combined with broader systemic involvement across the body in tissues including the skin. These combined manifestations negatively impact patient health and quality of life. While studies have previously reported differences in immune cell composition in the peripheral blood of pSS patients relative to healthy control subjects, a detailed immune cell landscape of the damaged exocrine glands of these patients remains lacking. Through single-cell transcriptomics and repertoire sequencing of immune cells in paired peripheral blood samples and salivary gland biopsies, we present here a preliminary picture of adaptive immune response in pSS. We characterize a number of points of divergence between circulating and glandular immune responses that have been hitherto underappreciated, and identify a novel population of CD8+ CD9+ cells with tissue-residential properties that are highly enriched in the salivary glands of pSS patients. Through comparative analyses with other sequencing data, we also observe a potential connection between these cells and the tissue-resident memory cells found in cutaneous vasculitis lesions. Together, these results indicate a potential role for CD8+ CD9+ cells in mediating glandular and systemic effects associated with pSS and other autoimmune disorders.
Collapse
Affiliation(s)
- Ling Chang
- Institute of Immunology, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Zihan Zheng
- Institute of Immunology, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
- Biomedical Analysis Center, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
- Department of Autoimmune Diseases, Chongqing International Institute for Immunology, 13 Tianchi Avenue, Banan District, Chongqing, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Bing Zhong
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Can Qian
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Chengshun Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Tiantian Che
- Institute of Immunology, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Yiwen Zhou
- Institute of Immunology, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Zihua Zhao
- Institute of Immunology, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Jingyi Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Liyun Zou
- Institute of Immunology, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, China
| |
Collapse
|
21
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2024:1-21. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
22
|
Naito S, Tanaka H, Jiang JJ, Tarumi M, Hashimoto A, Tanaka Y, Murakami K, Kubota SI, Hojyo S, Hashimoto S, Murakami M. DDX6 is involved in the pathogenesis of inflammatory diseases via NF-κB activation. Biochem Biophys Res Commun 2024; 703:149666. [PMID: 38377944 DOI: 10.1016/j.bbrc.2024.149666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
The IL-6 amplifier was originally discovered as a mechanism for the enhanced activation of NF-κB in non-immune cells. In the IL-6 amplifier, IL-6-STAT3 and NF-κB stimulation is followed by an excessive production of IL-6, chemokines, and growth factors to develop chronic inflammation preceding the development of inflammatory diseases. Previously, using a shRNA-mediated genome-wide screening, we found that DEAD-Box Helicase 6 (DDX6) is a candidate positive regulator of the amplifier. Here, we investigate whether DDX6 is involved in the pathogenesis of inflammatory diseases via the IL-6 amplifier. We found that DDX6-silencing in non-immune cells suppressed the NF-κB pathway and inhibited activation of the IL-6 amplifier, while the forced expression of DDX6 enhanced NF-κB promoter activity independent of the RNA helicase activity of DDX6. The imiquimod-mediated dermatitis model was suppressed by the siRNA-mediated gene downregulation of DDX6. Furthermore, silencing DDX6 significantly reduced the TNF-α-induced phosphorylation of p65/RelA and IκBα, nuclear localization of p65, and the protein levels of IκBα. Mechanistically, DDX6 is strongly associated with p65 and IκBα, but not TRADD, RIP, or TRAF2, suggesting a novel function of DDX6 as an adaptor protein in the NF-κB pathway. Thus, our findings demonstrate a possible role of DDX6 beyond RNA metabolism and suggest DDX6 is a therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Seiichiro Naito
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Tarumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
23
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Mathian A, Felten R, Alarcon-Riquelme ME, Psarras A, Mertz P, Chasset F, Vital EM, Arnaud L. Type 1 interferons: A target for immune-mediated inflammatory diseases (IMIDs). Joint Bone Spine 2024; 91:105627. [PMID: 37640261 DOI: 10.1016/j.jbspin.2023.105627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The improved understanding of the molecular basis of innate immunity have led to the identification of type I interferons (IFNs), particularly IFN-α, as central mediators in the pathogenesis of several Immune-mediated inflammatory diseases (IMIDs) such as systemic lupus erythematosus (SLE), systemic sclerosis, inflammatory myositis and Sjögren's syndrome. Here, we review the main data regarding the opportunity to target type I IFNs for the treatment of IMIDs. Type I IFNs and their downstream pathways can be targeted pharmacologically in several manners. One approach is to use monoclonal antibodies against IFNs or the IFN-receptors (IFNARs, such as with anifrolumab). The downstream signaling pathways of type I IFNs also contain several targets of interest in IMIDs, such as JAK1 and Tyk2. Of these, anifrolumab is licensed and JAK1/Tyk2 inhibitors are in phase III trials in SLE. Targeting IFN-Is for the treatment of SLE is already a reality and in the near future may prove useful in other IMIDs. IFN assays will find a role in routine clinical practice for the care of IMIDs as further validation work is completed and a greater range of targeted therapies becomes available.
Collapse
Affiliation(s)
- Alexis Mathian
- Assistance publique-Hôpitaux de Paris (AP-HP), groupement hospitalier Pitié-Salpêtrière, centre de référence pour le Lupus, le syndrome des anti-phospholipides et autres maladies auto-immunes rares, service de médecine interne 2, institut E3M, Inserm, centre d'immunologie et des maladies infectieuses (CIMI-Paris), 47-83, boulevard de l'hôpital, 75651 Paris cedex 13, France
| | - Renaud Felten
- Centre d'investigation clinique, Inserm 1434, nouvel hôpital civil, quai Louis-Pasteur, 67000 Strasbourg, France; Département universitaire de pharmacologie-addictologie, toxicologie et thérapeutique, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Service de rhumatologie, centre national de référence maladies rares Est Sud-Ouest (RESO), hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - Marta E Alarcon-Riquelme
- GENYO, Center for Genomics and Oncological Research Pfizer - University of Granada-Andalusian Government, avenue de la Ilustración, 114, 18016 Granada, Spain; Institute for Environmental Medicine, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Antony Psarras
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, OX3 7DQ Oxford, United Kingdom
| | - Philippe Mertz
- Service de rhumatologie, centre national de référence maladies rares Est Sud-Ouest (RESO), hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - François Chasset
- Service de dermatologie et allergologie, hôpital Tenon, faculté de médecine Sorbonne Université, Sorbonne université, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Woodhouse, LS2 9JT Leeds, United Kingdom; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital Chape, Chapeltown Rd, Leeds LS7 4SA, United Kingdom
| | - Laurent Arnaud
- Service de rhumatologie, centre national de référence maladies rares Est Sud-Ouest (RESO), hôpitaux universitaires de Strasbourg, université de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France.
| |
Collapse
|
25
|
Punnanitinont A, Kasperek EM, Zhu C, Yu G, Miecznikowski JC, Kramer JM. TLR7 activation of age-associated B cells mediates disease in a mouse model of primary Sjögren's disease. J Leukoc Biol 2024; 115:497-510. [PMID: 37930711 PMCID: PMC10990110 DOI: 10.1093/jleuko/qiad135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Primary Sjögren's disease (pSD) (also referred to as Sjögren's syndrome) is an autoimmune disease that primarily occurs in women. In addition to exocrine gland dysfunction, pSD patients exhibit B cell hyperactivity. B cell-intrinsic TLR7 activation is integral to the pathogenesis of systemic lupus erythematosus, a disease that shares similarities with pSD. The role of TLR7-mediated B cell activation in pSD, however, remains poorly understood. We hypothesized that age-associated B cells (ABCs) were expanded in pSD and that TLR7-stimulated ABCs exhibited pathogenic features characteristic of disease. Our data revealed that ABC expansion and TLR7 expression were enhanced in a pSD mouse model in a Myd88-dependent manner. Splenocytes from pSD mice showed enhanced sensitivity to TLR7 agonism as compared with those derived from control animals. Sort-purified marginal zone B cells and ABCs from pSD mice showed enhanced inflammatory cytokine secretion and were enriched for antinuclear autoantibodies following TLR7 agonism. Finally, IgG from pSD patient sera showed elevated antinuclear autoantibodies, many of which were secreted preferentially by TLR7-stimulated murine marginal zone B cells and ABCs. These data indicate that pSD B cells are hyperresponsive to TLR7 agonism and that TLR7-activated B cells contribute to pSD through cytokine and autoantibody production. Thus, therapeutics that target TLR7 signaling cascades in B cells may have utility in pSD patients.
Collapse
Affiliation(s)
- Achamaporn Punnanitinont
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Jeffrey C. Miecznikowski
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY USA
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY USA
| |
Collapse
|
26
|
Maleki-Fischbach M, Kastsianok L, Koslow M, Chan ED. Manifestations and management of Sjögren's disease. Arthritis Res Ther 2024; 26:43. [PMID: 38331820 PMCID: PMC10851604 DOI: 10.1186/s13075-024-03262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Sjögren's disease is a heterogeneous autoimmune disorder that may be associated with systemic manifestations such as pulmonary or articular involvement. Systemic complications have prognostic implications and need to be identified and managed in a timely manner. Treatment should be tailored to the type and severity of organ involvement, ideally based on multidisciplinary evaluation.
Collapse
Affiliation(s)
- Mehrnaz Maleki-Fischbach
- Division of Rheumatology and Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.
| | - Liudmila Kastsianok
- Division of Rheumatology and Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Matthew Koslow
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Edward D Chan
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center Aurora, Aurora, CO, USA
| |
Collapse
|
27
|
Zhao SS, Burgess S. Vitamin D is associated with reduced risk of Sjögren's syndrome: a Mendelian randomization study. Rheumatology (Oxford) 2024; 63:e32-e33. [PMID: 37449898 PMCID: PMC10836976 DOI: 10.1093/rheumatology/kead356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Zervou MI, Tarlatzis BC, Grimbizis GF, Spandidos DA, Niewold TB, Goulielmos GN. Association of endometriosis with Sjögren's syndrome: Genetic insights (Review). Int J Mol Med 2024; 53:20. [PMID: 38186322 PMCID: PMC10781419 DOI: 10.3892/ijmm.2024.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Patients with a history of endometriosis have an increased risk of developing various autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis and celiac disease. There is a potential association between endometriosis and an increased susceptibility for Sjögren's syndrome (SS). SS is a common chronic, inflammatory, systemic, autoimmune, multifactorial disease of complex pathology, with genetic, epigenetic and environmental factors contributing to the development of this condition. It occurs in 0.5‑1% of the population, is characterized by the presence of ocular dryness, lymphocytic infiltrations and contributes to neurological, gastrointestinal, vascular and dermatological manifestations. Endometriosis is an inflammatory, estrogen‑dependent, multifactorial, heterogeneous gynecological disease, affecting ≤10% of reproductive‑age women. It is characterized by the occurrence of endometrial tissue outside the uterine cavity, mainly in the pelvic cavity, and is associated with pelvic pain, dysmenorrhea, deep dyspareunia and either subfertility or infertility. It is still unclear whether SS appears as a secondary response to endometriosis, or it is developed due to any potential shared mechanisms of these conditions. The aim of the present review was to explore further the biological basis only of the co‑occurrence of these disorders but not their association at clinical basis, focusing on the analysis of the partially shared genetic background between endometriosis and SS, and the clarification of the possible similarities in the underlying pathogenetic mechanisms and the relevant molecular pathways.
Collapse
Affiliation(s)
- Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Basil C. Tarlatzis
- First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Grigoris F. Grimbizis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, 'Papageorgiou' General Hospital, Aristotle University Medical School, 56403 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Timothy B. Niewold
- Barbara Volcker Center for Women and Rheumatic Disease, New York, NY 10021, USA
- Hospital for Special Surgery, New York, NY 10021, USA
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
29
|
Tang Y, Zhou Y, Wang X, Che N, Tian J, Man K, Rui K, Peng N, Lu L. The role of epithelial cells in the immunopathogenesis of Sjögren's syndrome. J Leukoc Biol 2024; 115:57-67. [PMID: 37134025 DOI: 10.1093/jleuko/qiad049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Sjögren's syndrome is a systemic autoimmune disease characterized by dysfunction of the affected exocrine glands. Lymphocytic infiltration within the inflamed glands and aberrant B-cell hyperactivation are the two salient pathologic features in Sjögren's syndrome. Increasing evidence indicates that salivary gland epithelial cells act as a key regulator in the pathogenesis of Sjögren's syndrome, as revealed by the dysregulated innate immune signaling pathways in salivary gland epithelium and increased expression of various proinflammatory molecules as well as their interaction with immune cells. In addition, salivary gland epithelial cells can regulate adaptive immune responses as nonprofessional antigen-presenting cells and promote the activation and differentiation of infiltrated immune cells. Moreover, the local inflammatory milieu can modulate the survival of salivary gland epithelial cells, leading to enhanced apoptosis and pyroptosis with the release of intracellular autoantigens, which further contributes to SG autoimmune inflammation and tissue destruction in Sjögren's syndrome. Herein, we reviewed recent advances in elucidating the role of salivary gland epithelial cells in the pathogenesis of Sjögren's syndrome, which may provide rationales for potential therapeutic targeting of salivary gland epithelial cells to alleviate salivary gland dysfunction alongside treatments with immunosuppressive reagents in Sjögren's syndrome.
Collapse
Affiliation(s)
- Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Xiaoran Wang
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Nan Che
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, Gulou District, Nanjing, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Jiefang Road, Jingkou District, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology, The Second People's Hospital of Three Gorges University, College street, Xiling District, Yichang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
30
|
George CT, Kurien BT, Scofield RH. The Potential Utility of Salivary and Tear Proteomics to Discriminate Sjögren's Disease from Non-Sjögren's Sicca. Int J Mol Sci 2023; 24:17497. [PMID: 38139325 PMCID: PMC10744321 DOI: 10.3390/ijms242417497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Sjögren's Disease (SjD) is an autoimmune disorder associated with decreased saliva and/or tear secretions, resulting in patients reporting dryness in the mouth and eyes. Serum autoantibodies directed against the Ro60/SS-A and La/SS-B autoantigens are a distinctive feature of the disease. Analysis of the saliva and tear proteomes represents one promising alternative method of both classifying and monitoring the condition, and research into salivary and tear proteomics in patients with SjD, with and without sicca, has shown its efficacy and practicality in both clinical and research settings. Studies analyzing the saliva proteomics of SjD patients have generally shown an overexpression of proteins involved in T-cell activation, the immune response, β-2 microglobulin, and the recruitment of pro-inflammatory agents. These studies also show a decrease in or downregulation of proteins involved in salivary secretion. Studies analyzing the tear proteomics of patients with SjD have generally indicated an upregulation of proteins involved with TNF-α signaling, B-cell survival, and the recruitment of pro-inflammatory agents. Studies also note the differential expression of tear protein folding as a hallmark of ocular involvement in this condition. These findings help to elucidate the biochemical relationship between the proteomes of saliva/tear fluids and the general pathophysiology of the gland involved with the pathogenesis of this condition, giving further credence to the potential role of salivary and tear proteomics in the future of diagnosis and treatment for patients with SjD.
Collapse
Affiliation(s)
| | - Biji T. Kurien
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA;
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma City, OK 73104, USA
| | - R. Hal Scofield
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA;
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma City, OK 73104, USA
| |
Collapse
|
31
|
Dezfulian MH, Kula T, Pranzatelli T, Kamitaki N, Meng Q, Khatri B, Perez P, Xu Q, Chang A, Kohlgruber AC, Leng Y, Jupudi AA, Joachims ML, Chiorini JA, Lessard CJ, Farris AD, Muthuswamy SK, Warner BM, Elledge SJ. TScan-II: A genome-scale platform for the de novo identification of CD4 + T cell epitopes. Cell 2023; 186:5569-5586.e21. [PMID: 38016469 PMCID: PMC10841602 DOI: 10.1016/j.cell.2023.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/12/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.
Collapse
Affiliation(s)
- Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Qingda Meng
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bhuwan Khatri
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Qikai Xu
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aiquan Chang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ananth Aditya Jupudi
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle L Joachims
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J Lessard
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - Santiago Beltrán
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| |
Collapse
|
33
|
Wiley MM, Khatri B, Joachims ML, Tessneer KL, Stolarczyk AM, Rasmussen A, Anaya JM, Aqrawi LA, Bae SC, Baecklund E, Björk A, Brun JG, Bucher SM, Dand N, Eloranta ML, Engelke F, Forsblad-d’Elia H, Fugmann C, Glenn SB, Gong C, Gottenberg JE, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kelly JA, Khanam S, Kim K, Kvarnström M, Mandl T, Martín J, Morris DL, Nocturne G, Norheim KB, Olsson P, Palm Ø, Pers JO, Rhodus NL, Sjöwall C, Skarstein K, Taylor KE, Tombleson P, Thorlacius GE, Venuturupalli S, Vital EM, Wallace DJ, Grundahl KM, Radfar L, Brennan MT, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Appel S, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner BM, Rischmueller M, Witte T, Farris AD, Mariette X, Shiboski CH, Wahren-Herlenius M, Alarcón-Riquelme ME, Ng WF, Sivils KL, Guthridge JM, Adrianto I, Vyse TJ, Tsao BP, Nordmark G, Lessard CJ. Variants in the DDX6-CXCR5 autoimmune disease risk locus influence the regulatory network in immune cells and salivary gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561076. [PMID: 39071447 PMCID: PMC11275775 DOI: 10.1101/2023.10.05.561076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fine mapping and bioinformatic analysis of the DDX6-CXCR5 genetic risk association in Sjögren's Disease (SjD) and Systemic Lupus Erythematosus (SLE) identified five common SNPs with functional evidence in immune cell types: rs4938573, rs57494551, rs4938572, rs4936443, rs7117261. Functional interrogation of nuclear protein binding affinity, enhancer/promoter regulatory activity, and chromatin-chromatin interactions in immune, salivary gland epithelial, and kidney epithelial cells revealed cell type-specific allelic effects for all five SNPs that expanded regulation beyond effects on DDX6 and CXCR5 expression. Mapping the local chromatin regulatory network revealed several additional genes of interest, including lnc-PHLDB1-1. Collectively, functional characterization implicated the risk alleles of these SNPs as modulators of promoter and/or enhancer activities that regulate cell type-specific expression of DDX6, CXCR5, and lnc-PHLDB1-1, among others. Further, these findings emphasize the importance of exploring the functional significance of SNPs in the context of complex chromatin architecture in disease-relevant cell types and tissues.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Michelle L. Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Anna M. Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | | | - Lara A. Aqrawi
- Department of Health Sciences, Kristiania University College, Oslo, Norway
- University of Oslo, Norway
| | | | | | | | - Johan G. Brun
- University of Bergen, Bergen, Norway
- Haukeland University Hospital, Bergen, Norway
| | | | - Nick Dand
- King’s College London, London, United Kingdom
| | | | | | | | | | - Stuart B. Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Chen Gong
- King’s College London, London, United Kingdom
| | | | | | | | | | | | | | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Sharmily Khanam
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | | | | | | | - Javier Martín
- Instituto de Biomedicina y Parasitología López-Neyra, Granada, Spain
| | | | - Gaetane Nocturne
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kiely M. Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | | | - Judith A. James
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lindsey A. Criswell
- University of California San Francisco, San Francisco, California, USA
- National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Simon J. Bowman
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Roald Omdal
- University of Bergen, Bergen, Norway
- Stavanger University Hospital, Stavanger, Norway
| | | | - Blake M. Warner
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | | | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xavier Mariette
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | - Marta E. Alarcón-Riquelme
- Karolinska Institutet, Solna, Sweden
- Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Spain
| | | | - Wan-Fai Ng
- NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Betty P. Tsao
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Christopher J. Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
34
|
Yu J, Zhang Y, Xun Y, Tang H, Fu X, Zhang R, Zhu F, Zhang J. Methylation and expression quantitative trait loci rs1799971 in the OPRM1 gene and rs4654327 in the OPRD1 gene are associated with opioid use disorder. Neurosci Lett 2023; 814:137468. [PMID: 37660978 DOI: 10.1016/j.neulet.2023.137468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Opioid use disorder (OUD) is a chronic and relapsing brain disease that results in significant mortality worldwide. Genetic factors are estimated to contribute to 40%-60% of the liability, with polymorphisms of opioid receptor genes implicated in this disorder. However, the mechanisms underlying these associations are not yet fully understood. In the present study, we first examined the methylation levels in the promoter region of the OPRM1, OPRD1, and OPRK1 genes in 111 healthy controls (HCs) and 120 patients with OUD, and genotyped three tag SNPs in these genes. Correlations between these SNPs and the methylation levels of the CpG sites and expression levels of the genes were analyzed. After identifying the mQTLs and eQTLs, we determined the associations between the mQTLs/eQTLs and susceptibility to and characteristics of OUD in 930 HCs and 801 patients with OUD. Our results demonstrated that SNPs rs1799971 in the OPRM1 gene and rs4654327 in the OPRD1 gene were both mQTLs and eQTLs. We observed unique correlations between mQTLs and methylation levels of several CpG sites in the OUD group compared to the HC group. Interestingly, both the two mQTLs and eQTLs were associated with the susceptibility to OUD. In conclusion, we suppose that mQTLs and eQTLs in genes may underlie the associations between certain risk genetic polymorphisms and OUD. These mQTLs and eQTLs could potentially serve as promising biomarkers for better management of opioid misuse.
Collapse
Affiliation(s)
- Jiao Yu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, China
| | - Yudan Zhang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Xun
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hua Tang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710061, China
| | - Xiaoyu Fu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Zhang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Feng Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jianbo Zhang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
35
|
Chau K, Raksadawan Y, Allison K, Ice JA, Scofield RH, Chepelev I, Harley ITW. Pervasive Sharing of Causal Genetic Risk Factors Contributes to Clinical and Molecular Overlap between Sjögren's Disease and Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:14449. [PMID: 37833897 PMCID: PMC10572278 DOI: 10.3390/ijms241914449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
SjD (Sjögren's Disease) and SLE (Systemic Lupus Erythematosus) are similar diseases. There is extensive overlap between the two in terms of both clinical features and pathobiologic mechanisms. Shared genetic risk is a potential explanation of this overlap. In this study, we evaluated whether these diseases share causal genetic risk factors. We compared the causal genetic risk for SLE and SjD using three complementary approaches. First, we examined the published GWAS results for these two diseases by analyzing the predicted causal gene protein-protein interaction networks of both diseases. Since this method does not account for overlapping risk intervals, we examined whether such intervals also overlap. Third, we used two-sample Mendelian randomization (two sample MR) using GWAS summary statistics to determine whether risk variants for SLE are causal for SjD and vice versa. We found that both the putative causal genes and the genomic risk intervals for SLE and SjD overlap 28- and 130-times more than expected by chance (p < 1.1 × 10-24 and p < 1.1 × 10-41, respectively). Further, two sample MR analysis confirmed that alone or in aggregate, SLE is likely causal for SjD and vice versa. [SjD variants predicting SLE: OR = 2.56; 95% CI (1.98-3.30); p < 1.4 × 10-13, inverse-variance weighted; SLE variants predicting SjD: OR = 1.36; 95% CI (1.26-1.47); p < 1.6 × 10-11, inverse-variance weighted]. Notably, some variants have disparate impact in terms of effect size across disease states. Overlapping causal genetic risk factors were found for both diseases using complementary approaches. These observations support the hypothesis that shared genetic factors drive the clinical and pathobiologic overlap between these diseases. Our study has implications for both differential diagnosis and future genetic studies of these two conditions.
Collapse
Affiliation(s)
- Karen Chau
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yanint Raksadawan
- Internal Medicine Residency Program, Louis A. Weiss Memorial Hospital, Chicago, IL 60640, USA
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John A. Ice
- Research Service, Oklahoma City US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Robert Hal Scofield
- Research Service, Oklahoma City US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Medicine Service, Oklahoma City US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Iouri Chepelev
- Research Service, Cincinnati US Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Rheumatology Section, Medicine Service, Eastern Colorado Healthcare System, US Department of Veterans Affairs Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Jia Y, Yao P, Li J, Wei X, Liu X, Wu H, Wang W, Feng C, Li C, Zhang Y, Cai Y, Zhang S, Ma X. Causal associations of Sjögren's syndrome with cancers: a two-sample Mendelian randomization study. Arthritis Res Ther 2023; 25:171. [PMID: 37715206 PMCID: PMC10503000 DOI: 10.1186/s13075-023-03157-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Several observational studies have explored the associations between Sjögren's syndrome (SS) and certain cancers. Nevertheless, the causal relationships remain unclear. Mendelian randomization (MR) method was used to investigate the causality between SS and different types of cancers. METHODS We conducted the two-sample Mendelian randomization with the public genome-wide association studies (GWASs) summary statistics in European population to evaluate the causality between SS and nine types of cancers. The sample size varies from 1080 to 372,373. The inverse variance weighted (IVW) method was used to estimate the causal effects. A Bonferroni-corrected threshold of P < 0.0031 was considered significant, and P value between 0.0031 and 0.05 was considered to be suggestive of an association. Sensitivity analysis was performed to validate the causality. Moreover, additional analysis was used to assess the associations between SS and well-accepted risk factors of cancers. RESULTS After correcting the heterogeneity and horizontal pleiotropy, the results indicated that patients with SS were significantly associated with an increased risk of lymphomas (odds ratio [OR] = 1.0010, 95% confidence interval [CI]: 1.0005-1.0015, P = 0.0002) and reduced risks of prostate cancer (OR = 0.9972, 95% CI: 0.9960-0.9985, P = 2.45 × 10-5) and endometrial cancer (OR = 0.9414, 95% CI: 0.9158-0.9676, P = 1.65 × 10-5). Suggestive associations were found in liver and bile duct cancer (OR = 0.9999, 95% CI: 0.9997-1.0000, P = 0.0291) and cancer of urinary tract (OR = 0.9996, 95% CI: 0.9992-1.0000, P = 0.0281). No causal effect of SS on other cancer types was detected. Additional MR analysis indicated that causal effects between SS and cancers were not mediated by the well-accepted risk factors of cancers. No evidence of the causal relationship was observed for cancers on SS. CONCLUSIONS SS had significant causal relationships with lymphomas, prostate cancer, and endometrial cancer, and suggestive evidence of association was found in liver and bile duct cancer and cancer of urinary tract, indicating that SS may play a vital role in the incidence of these malignancies.
Collapse
Affiliation(s)
- Yiwei Jia
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Peizhuo Yao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jia Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Xinyu Wei
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Xuanyu Liu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Huizi Wu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Weiwei Wang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Cong Feng
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Chaofan Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yu Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yifan Cai
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Shuqun Zhang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China.
| | - Xingcong Ma
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
37
|
Longobardi S, Lopez-Davis C, Khatri B, Georgescu C, Pritchett-Frazee C, Lawrence C, Rasmussen A, Radfar L, Scofield RH, Baer AN, Robinson SA, Darrah E, Axtell RC, Pardo G, Wren JD, Koelsch KA, Guthridge JM, James JA, Lessard CJ, Farris AD. Autoantibodies identify primary Sjögren's syndrome in patients lacking serum IgG specific for Ro/SS-A and La/SS-B. Ann Rheum Dis 2023; 82:1181-1190. [PMID: 37147113 PMCID: PMC10546962 DOI: 10.1136/ard-2022-223105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE Identify autoantibodies in anti-Ro/SS-A negative primary Sjögren's syndrome (SS). METHODS This is a proof-of-concept, case-control study of SS, healthy (HC) and other disease (OD) controls. A discovery dataset of plasma samples (n=30 SS, n=15 HC) was tested on human proteome arrays containing 19 500 proteins. A validation dataset of plasma and stimulated parotid saliva from additional SS cases (n=46 anti-Ro+, n=50 anti-Ro-), HC (n=42) and OD (n=54) was tested on custom arrays containing 74 proteins. For each protein, the mean+3 SD of the HC value defined the positivity threshold. Differences from HC were determined by Fisher's exact test and random forest machine learning using 2/3 of the validation dataset for training and 1/3 for testing. Applicability of the results was explored in an independent rheumatology practice cohort (n=38 Ro+, n=36 Ro-, n=10 HC). Relationships among antigens were explored using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) interactome analysis. RESULTS Ro+ SS parotid saliva contained autoantibodies binding to Ro60, Ro52, La/SS-B and muscarinic receptor 5. SS plasma contained 12 novel autoantibody specificities, 11 of which were detected in both the discovery and validation datasets. Binding to ≥1 of the novel antigens identified 54% of Ro- SS and 37% of Ro+ SS cases, with 100% specificity in both groups. Machine learning identified 30 novel specificities showing receiver operating characteristic area under the curve of 0.79 (95% CI 0.64 to 0.93) for identifying Ro- SS. Sera from Ro- cases of an independent cohort bound 17 of the non-canonical antigens. Antigenic targets in both Ro+ and Ro- SS were part of leukaemia cell, ubiquitin conjugation and antiviral defence pathways. CONCLUSION We identified antigenic targets of the autoantibody response in SS that may be useful for identifying up to half of Ro seronegative SS cases.
Collapse
Affiliation(s)
- Sherri Longobardi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Cherilyn Pritchett-Frazee
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- College of Dentistry, Department of Oral Diagnosis and Radiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Robert Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alan N Baer
- Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan A Robinson
- Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Darrah
- Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Gabriel Pardo
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kristi A Koelsch
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Amy Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
38
|
Zhao SS, Dyball S. Cholesteryl ester transfer protein inhibition is associated with reduced risk of Sjögren's syndrome. Rheumatology (Oxford) 2023; 62:e258-e259. [PMID: 36897029 PMCID: PMC10473269 DOI: 10.1093/rheumatology/kead115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Affiliation(s)
- Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Dyball
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biological Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
39
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Mihai A, Caruntu C, Jurcut C, Blajut FC, Casian M, Opris-Belinski D, Ionescu R, Caruntu A. The Spectrum of Extraglandular Manifestations in Primary Sjögren's Syndrome. J Pers Med 2023; 13:961. [PMID: 37373950 DOI: 10.3390/jpm13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Extraglandular manifestations (EGMs) in primary Sjogren's syndrome (pSS) represent the clinical expression of the systemic involvement in this disease. EGMs are characterized by a wide heterogeneity; virtually any organ or system can be affected, with various degrees of dysfunction. The existing gaps of knowledge in this complex domain of extraglandular extension in pSS need to be overcome in order to increase the diagnostic accuracy of EGMs in pSS. The timely identification of EGMs, as early as from subclinical stages, can be facilitated using highly specific biomarkers, thus preventing decompensated disease and severe complications. To date, there is no general consensus on the diagnostic criteria for the wide range of extraglandular involvement in pSS, which associates important underdiagnosing of EGMs, subsequent undertreatment and progression to severe organ dysfunction in these patients. This review article presents the most recent basic and clinical science research conducted to investigate pathogenic mechanisms leading to EGMs in pSS patients. In addition, it presents the current diagnostic and treatment recommendations and the trends for future therapeutic strategies based on personalized treatment, as well as the latest research in the field of diagnostic and prognostic biomarkers for extraglandular involvement in pSS.
Collapse
Affiliation(s)
- Ancuta Mihai
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Rheumatology, Faculty of General Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Florin Cristian Blajut
- Department of General Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Medical-Surgical Specialties, "Titu Maiorescu" University of Bucharest, 040441 Bucharest, Romania
| | - Mihnea Casian
- Emergency Institute for Cardiovascular Diseases Prof. Dr. C.C. Iliescu, 022328 Bucharest, Romania
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Opris-Belinski
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
- Internal Medicine and Rheumatology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ruxandra Ionescu
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
41
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
42
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Genome-wide association study for single nucleotide polymorphism associated with mural and cumulus granulosa cells of PCOS (polycystic ovary syndrome) and non-PCOS patients. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Abstract
Background
The genetic make-up of local granulosa cells and their function in the pathophysiology of polycystic ovary syndrome (PCOS) is crucial to a full comprehension of the disorder. The major purpose of this study was to compare the Single Nucleotide Polymorphism (SNP) of cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs) between healthy individuals and women with PCOS using genome-wide association analysis (GWA). A case–control study was conducted in a total of 24 women diagnosed with PCOS and 24 healthy non-PCOS women of reproductive age aggregated into 4 samples of 6 patients each. GWA studies entail several processes, such as cell separation, cellular DNA extraction, library preparation followed by interpretation using bioinformatics databases. SNP locations were identified by reference gene also involves the use of Matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) (MALDI-TOF-MS) for the first sorting. Hybridization with the gene chip was followed by reading the SNP genotypes according to the publications in the literature. TASSEL (Trait Analysis by aSSociation, Evolution and Linkage) program and methods were used for GWA studies.
Results
An aggregate of 21,039 SNP calls were obtained from our samples. Genes of autoimmune illnesses, obesity, inflammatory illnesses, nervous system diseases such as retinitis pigmentosa, autism, neural tube defects, and Alzheimer's disease; and various malignancies such as lung cancer, colorectal cancer, breast cancer were also identified in these cells. Gene ranking score reveals that granulosa cells carry key genes of neurological system and reproductive systems especially in brain and testis, respectively.
Conclusions
Mural and Cumulus Granulosa cells were shown to have the PCOS directly and indirectly related genes MMP9, PRKAA2, COMT and HP. We found that the expression of ARID4B, MUC5AC, NID2, CREBBP, GNB1, KIF2C, COL18A1, and HNRNPC by these cells may contribute to PCOS.
Graphical abstract
Collapse
|
43
|
Pasula S, Gopalakrishnan J, Fu Y, Tessneer KL, Wiley MM, Pelikan RC, Kelly JA, Gaffney PM. Systemic lupus erythematosus variants modulate the function of an enhancer upstream of TNFAIP3. Front Genet 2022; 13:1011965. [PMID: 36199584 PMCID: PMC9527318 DOI: 10.3389/fgene.2022.1011965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
TNFAIP3/A20 is a prominent autoimmune disease risk locus that is correlated with hypomorphic TNFAIP3 expression and exhibits complex chromatin architecture with over 30 predicted enhancers. This study aimed to functionally characterize an enhancer ∼55 kb upstream of the TNFAIP3 promoter marked by the systemic lupus erythematosus (SLE) risk haplotype index SNP, rs10499197. Allele effects of rs10499197, rs58905141, and rs9494868 were tested by EMSA and/or luciferase reporter assays in immune cell types. Co-immunoprecipitation, ChIP-qPCR, and 3C-qPCR were performed on patient-derived EBV B cells homozygous for the non-risk or SLE risk TNFAIP3 haplotype to assess haplotype-specific effects on transcription factor binding and chromatin regulation at the TNFAIP3 locus. This study found that the TNFAIP3 locus has a complex chromatin regulatory network that spans ∼1M bp from the promoter region of IL20RA to the 3' untranslated region of TNFAIP3. Functional dissection of the enhancer demonstrated co-dependency of the RelA/p65 and CEBPB binding motifs that, together, increase IL20RA and IFNGR1 expression and decreased TNFAIP3 expression in the context of the TNFAIP3 SLE risk haplotype through dynamic long-range interactions up- and downstream. Examination of SNPs in linkage disequilibrium (D' = 1.0) with rs10499197 identified rs9494868 as a functional SNP with risk allele-specific increase in nuclear factor binding and enhancer activation in vitro. In summary, this study demonstrates that SNPs carried on the ∼109 kb SLE risk haplotype facilitate hypermorphic IL20RA and IFNGR1 expression, while suppressing TNFAIP3 expression, adding to the mechanistic potency of this critically important locus in autoimmune disease pathology.
Collapse
Affiliation(s)
- Satish Pasula
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jaanam Gopalakrishnan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Richard C. Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Patrick M. Gaffney,
| |
Collapse
|
44
|
GWAS expands list of Sjögren syndrome risk loci. Nat Rev Rheumatol 2022; 18:552. [PMID: 35953560 DOI: 10.1038/s41584-022-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|