1
|
Ma Z, Yuan P, Li L, Tang X, Li X, Zhang S, Yu L, Jiang Y, Song X, Xia C. Optoelectronic Reconfigurable Logic Gates Based on Two-Dimensional Vertical Field-Effect Transistors. NANO LETTERS 2024; 24:14058-14065. [PMID: 39466673 DOI: 10.1021/acs.nanolett.4c04034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Optoelectronic reconfigurable logic gates are promising candidates to meet the multifunctional and energy-efficient requirements of integrated circuits. However, complex device architectures need more power and hinder multifunctional device applications. Here, we design vertical field-effect transistors (VFET) based on the two-dimensional (2D) graphene/MoS2/WSe2/graphene van der Waals heterojunction forming ohmic and Schottky contact. The modulation of the Schottky barrier via gate bias enables the device to switch between positive and negative photocurrents, which can effectively achieve optoelectronic reconfigurable logic gates (XNOR, NOR, NAND, AND, OR, and Inhibit) in a single device. Particularly, the transistor number is reduced by 75% for ("XNOR", "NOR", "NAND") and 83% for ("AND", "OR") gates compared to traditional logic circuits. This work provides a promising route for using a single device to realize optoelectronic reconfigurable logic gates, which can advance the development of high-speed, high-throughput, and intricate data processing in future optical computing applications.
Collapse
Affiliation(s)
- Zinan Ma
- Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Peize Yuan
- Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Li
- School of Physics and Optoelectronic Engineering, Zhengzhou Key Laboratory of Low-dimensional Quantum Materials and Devices, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Xiaojie Tang
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xueping Li
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Suicai Zhang
- Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Leiming Yu
- Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yurong Jiang
- Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaohui Song
- Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| | - Congxin Xia
- Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
3
|
Yang C, Wang H, Zhou G, Zhao H, Hou W, Zhu S, Zhao Y, Sun B. A Multimodal Perception-Enabled Flexible Memristor with Combined Sensing-Storage-Memory Functions for Enhanced Artificial Injury Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402588. [PMID: 39058216 DOI: 10.1002/smll.202402588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/07/2024] [Indexed: 07/28/2024]
Abstract
With the continuous advancement of wearable technology and advanced medical monitoring, there is an increasing demand for electronic devices that can adapt to complex environments and have high perceptual sensitivity. Here, a novel artificial injury perception device based on an Ag/HfOx/ITO/PET flexible memristor is designed to address the limitations of current technologies in multimodal perception and environmental adaptability. The memristor exhibits excellent resistive switching (RS) performance and mechanical flexibility under different bending angles (BAs), temperatures, humid environment, and repetitive folding conditions. Further, the device demonstrates the multimodal perception and conversion capabilities toward voltage, mechanical, and thermal stimuli through current response tests under different conditions, enabling not only the simulation of artificial injury perception but also holds promise for monitoring and controlling the movement of robotic arms. Moreover, the logical operation capability of the memristor-based reconfigurable logic (MRL) gates is also demonstrated, proving the device has great potential applications with sensing, storage, and memory functions. Overall, this study not only provides a direction for the development of the next-generation flexible multimodal sensors, but also has significant implications for technological advancements in many fields such as robotic arms, electronic skin (e-skin), and medical monitoring.
Collapse
Affiliation(s)
- Chuan Yang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Hongyan Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-Inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing, 400715, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Wentao Hou
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shouhui Zhu
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-Technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
4
|
Deng S, Akram W, Ye X, Zhang L, Yang Y, Cheng S, Fang J. Comprehensive Insights on MXene-Based TENGs: from Structures, Functions to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404872. [PMID: 39358944 DOI: 10.1002/smll.202404872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Indexed: 10/04/2024]
Abstract
The rapid advancement of triboelectric nanogenerators (TENGs) has introduced a transformative approach to energy harvesting and self-powered sensing in recent years. Nonetheless, the untapped potential of TENGs in practical scenarios necessitates multiple strategies like material selections and structure designs to enhance their output performance. Given the various superior properties, MXenes, a kind of novel 2D materials, have demonstrated great promise in enhancing TENG functionality. Here, this review comprehensively delineates the advantages of incorporating MXenes into TENGs, majoring in six pivotal aspects. First, an overview of TENGs is provided, stating their theoretical foundations, working modes, material considerations, and prevailing challenges. Additionally, the structural characteristics, fabrication methodologies, and family of MXenes, charting their developmental trajectory are highlighted. The selection of MXenes as various functional layers (negative and positive triboelectric layer, electrode layer) while designing TENGs is briefed. Furthermore, the distinctive advantages of MXene-based TENGs and their applications are emphasized. Last, the existing challenges are highlighted, and the future developing directions of MXene-based TENGs are forecasted.
Collapse
Affiliation(s)
- Shengwu Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Xiaorui Ye
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Lizi Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, China
| |
Collapse
|
5
|
Qi Y, Tang J, Fan S, An C, Wu E, Liu J. Dual Interactive Mode Human-Machine Interfaces Based on Triboelectric Nanogenerator and IGZO/In 2O 3 Heterojunction Synaptic Transistor. SMALL METHODS 2024; 8:e2301698. [PMID: 38607954 DOI: 10.1002/smtd.202301698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Imitating human neural networks via bio-inspired electronics advances human-machine interfaces (HMI), overcoming von Neumann limitations and enabling efficient, low-energy data processing in the big data era. However, single-contact mode HMIs have inherent limitations in terms of their capabilities and performances, such as constrained adaptability to dynamic environments, and reduced cognitive processing capabilities. Here, a dual-interactive-mode HMI system based on a triboelectric nanogenerator (TENG) and heterojunction synaptic transistor (HJST) is proposed for both contact and non-contact applications. The TENG incorporates a poly-methyl meth-acrylate (PMMA)-NiCo2S4/S film, in which the NiCo2S4/S composite traps and blocks electrons to optimize charge generation and storage. The heterojunction structure, mitigates the Debye screening effect, thereby improving transistor characteristics and reliability. The integrated TENG-HJST system exhibits synaptic functions, including excitatory/inhibitory postsynaptic current (EPSC/IPSC), paired-pulse facilitation/depression (PPF/PPD), and synaptic plasticity, enabling emulation of neural behavior and advanced information processing. Moreover, neural morphology manipulation is demonstrated in practical tasks, such as controlling international chess games. By integrating the TENG-HJST device with a robotic hand, conscious artificial responses are generated, enhancing event accuracy. This breakthrough in dual-interactive-mode interfacing holds promise for HMI systems and neural prostheses.
Collapse
Affiliation(s)
- Yashuai Qi
- College of Electronics & Information, Qingdao University, Qingdao, 266071, China
| | - Jing Tang
- China National Chemical Communications Construction Group Second Engineering Co., Ltd, Qingdao, 266555, China
| | - Shuangqing Fan
- College of Electronics & Information, Qingdao University, Qingdao, 266071, China
| | - Chunhua An
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Enxiu Wu
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Jing Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
6
|
Wang L, Wang H, Liu J, Wang Y, Shao H, Li W, Yi M, Ling H, Xie L, Huang W. Negative Photoconductivity Transistors for Visuomorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403538. [PMID: 39040000 DOI: 10.1002/adma.202403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Visuomorphic computing aims to simulate and potentially surpass the human retina by mimicking biological visual perception with an artificial retina. Despite significant progress, challenges persist in perceiving complex interactive environments. Negative photoconductivity transistors (NPTs) mimic synaptic behavior by achieving adjustable positive photoconductivity (PPC) and negative photoconductivity (NPC), simulating "excitation" and "inhibition" akin to sensory cell signals. In complex interactive environments, NPTs are desired for visuomorphic computing that can achieve a better sense of information, lower power consumption, and reduce hardware complexity. In this review, it is started by introducing the development process of NPTs, while placing a strong emphasis on the device structures, working mechanisms, and key performance parameters. The common material systems employed in NPTs based on their functions are then summarized. Moreover, it is proceeded to summarize the noteworthy applications of NPTs in optoelectronic devices, including advanced multibit nonvolatile memory, optoelectronic logic gates, optical encryption, and visual perception. Finally, the challenges and prospects that lie ahead in the ongoing development of NPTs are addressed, offering valuable insights into their applications in optoelectronics and a comprehensive understanding of their significance.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Haotian Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Jing Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - He Shao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Wen Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Mingdong Yi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KloFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
7
|
Liu X, Sun C, Ye X, Zhu X, Hu C, Tan H, He S, Shao M, Li RW. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311472. [PMID: 38421081 DOI: 10.1002/adma.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.
Collapse
Affiliation(s)
- Xuerong Liu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Shang He
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mengjie Shao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
8
|
Li Y, He G, Wang W, Fu C, Jiang S, Fortunato E, Martins R. A high-performance organic lithium salt-doped OFET with the optical radical effect for photoelectric pulse synaptic simulation and neuromorphic memory learning. MATERIALS HORIZONS 2024; 11:3867-3877. [PMID: 38787754 DOI: 10.1039/d4mh00297k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Simulation of synaptic characteristics is essential for the application of organic field effect transistors (OFETs) in neural morphology. Although excellent performance, including bias stability and mobility, as well as photoelectric pulse synaptic simulation, has been achieved in SiO2-gated OFETs with PDVT-10 as an organic channel, there are relatively few studies on photoelectric pulse synaptic simulation of electrolyte-gated OFETs based on environmentally friendly and low-voltage operation. Herein, synaptic transistors based on organic semiconductors are reported to simulate the photoelectric pulse response by developing solution-based organic semiconductor PDVT-10, and polyvinyl alcohol (PVA) with an electric double layer (EDL) effect to act as a channel and gate dielectric layer, respectively, and organic lithium salt-doped PVA is used to enhance the EDL effect. The presence of electrical pulses in doped devices not only achieves basic electrical synaptic characteristics, but also significantly realizes the long-term characteristics, pain perception, memory and sensitization applications. Furthermore, the introduction of photoinitiator molecules into the channel layer leads to improved photosynaptic performances by using light-induced free radicals, and the photoelectric synergistic effect has been actualized by introducing heterojunction architecture. This work provides promising prospects for achieving photoelectric pulse modulation based on organic synaptic devices, which shows great potential for the development of artificial intelligence.
Collapse
Affiliation(s)
- Yujiao Li
- Field Effect Device & Flexible Display Lab, School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Gang He
- Field Effect Device & Flexible Display Lab, School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Wenhao Wang
- Field Effect Device & Flexible Display Lab, School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Can Fu
- Field Effect Device & Flexible Display Lab, School of Materials Science and Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Shanshan Jiang
- School of Integrated Circuits, Anhui University, Hefei 230601, P. R. China
| | - Elvira Fortunato
- Department of Materials Science/CENIMAT-I3N, Faculty of Sciences and Technology, New University of Lisbon and CEMOP-UNINOVA Campus de Caparica 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- Department of Materials Science/CENIMAT-I3N, Faculty of Sciences and Technology, New University of Lisbon and CEMOP-UNINOVA Campus de Caparica 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Lv Z, Zhu S, Wang Y, Ren Y, Luo M, Wang H, Zhang G, Zhai Y, Zhao S, Zhou Y, Jiang M, Leng YB, Han ST. Development of Bio-Voltage Operated Humidity-Sensory Neurons Comprising Self-Assembled Peptide Memristors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405145. [PMID: 38877385 DOI: 10.1002/adma.202405145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Biomimetic humidity sensors offer a low-power approach for respiratory monitoring in early lung-disease diagnosis. However, balancing miniaturization and energy efficiency remains challenging. This study addresses this issue by introducing a bioinspired humidity-sensing neuron comprising a self-assembled peptide nanowire (NW) memristor with unique proton-coupled ion transport. The proposed neuron shows a low Ag+ activation energy owing to the NW and redox activity of the tyrosine (Tyr)-rich peptide in the system, facilitating ultralow electric-field-driven threshold switching and a high energy efficiency. Additionally, Ag+ migration in the system can be controlled by a proton source owing to the hydrophilic nature of the phenolic hydroxyl group in Tyr, enabling the humidity-based control of the conductance state of the memristor. Furthermore, a memristor-based neuromorphic perception neuron that can encode humidity signals into spikes is proposed. The spiking characteristics of this neuron can be modulated to emulate the strength-modulated spike-frequency characteristics of biological neurons. A three-layer spiking neural network with input neurons comprising these highly tunable humidity perception neurons shows an accuracy of 92.68% in lung-disease diagnosis. This study paves the way for developing bioinspired self-assembly strategies to construct neuromorphic perception systems, bridging the gap between artificial and biological sensing and processing paradigms.
Collapse
Affiliation(s)
- Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shirui Zhu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yanyun Ren
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingtao Luo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hanning Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guohua Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilong Zhao
- School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Minghao Jiang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yan-Bing Leng
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
10
|
Wang Y, Nie S, Liu S, Hu Y, Fu J, Ming J, Liu J, Li Y, He X, Wang L, Li W, Yi M, Ling H, Xie L, Huang W. Dual-Adaptive Heterojunction Synaptic Transistors for Efficient Machine Vision in Harsh Lighting Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404160. [PMID: 38815276 DOI: 10.1002/adma.202404160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Photoadaptive synaptic devices enable in-sensor processing of complex illumination scenes, while second-order adaptive synaptic plasticity improves learning efficiency by modifying the learning rate in a given environment. The integration of above adaptations in one phototransistor device will provide opportunities for developing high-efficient machine vision system. Here, a dually adaptable organic heterojunction transistor as a working unit in the system, which facilitates precise contrast enhancement and improves convergence rate under harsh lighting conditions, is reported. The photoadaptive threshold sliding originates from the bidirectional photoconductivity caused by the light intensity-dependent photogating effect. Metaplasticity is successfully implemented owing to the combination of ambipolar behavior and charge trapping effect. By utilizing the transistor array in a machine vision system, the details and edges can be highlighted in the 0.4% low-contrast images, and a high recognition accuracy of 93.8% with a significantly promoted convergence rate by about 5 times are also achieved. These results open a strategy to fully implement metaplasticity in optoelectronic devices and suggest their vision processing applications in complex lighting scenes.
Collapse
Affiliation(s)
- Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Shimiao Nie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Shanshuo Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Yunfei Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Jingwei Fu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Jianyu Ming
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Jing Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Yueqing Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Xiang He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Le Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wen Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Mingdong Yi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
11
|
Xie X, Wang Q, Zhao C, Sun Q, Gu H, Li J, Tu X, Nie B, Sun X, Liu Y, Lim EG, Wen Z, Wang ZL. Neuromorphic Computing-Assisted Triboelectric Capacitive-Coupled Tactile Sensor Array for Wireless Mixed Reality Interaction. ACS NANO 2024; 18:17041-17052. [PMID: 38904995 PMCID: PMC11223466 DOI: 10.1021/acsnano.4c03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Flexible tactile sensors show promise for artificial intelligence applications due to their biological adaptability and rapid signal perception. Triboelectric sensors enable active dynamic tactile sensing, while integrating static pressure sensing and real-time multichannel signal transmission is key for further development. Here, we propose an integrated structure combining a capacitive sensor for static spatiotemporal mapping and a triboelectric sensor for dynamic tactile recognition. A liquid metal-based flexible dual-mode triboelectric-capacitive-coupled tactile sensor (TCTS) array of 4 × 4 pixels achieves a spatial resolution of 7 mm, exhibiting a pressure detection limit of 0.8 Pa and a fast response of 6 ms. Furthermore, neuromorphic computing using the MXene-based synaptic transistor achieves 100% recognition accuracy of handwritten numbers/letters within 90 epochs based on dynamic triboelectric signals collected by the TCTS array, and cross-spatial information communication from the perceived multichannel tactile data is realized in the mixed reality space. The results illuminate considerable application possibilities of dual-mode tactile sensing technology in human-machine interfaces and advanced robotics.
Collapse
Affiliation(s)
- Xinkai Xie
- Institute
of Functional Nano and Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department
of Electrical and Electronic Engineering, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, P. R. China
- Department
of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693GJ, U.K.
- Joint
International Research Laboratory of Information Display and Visualization,
School of Electronic Science and Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Qinan Wang
- Department
of Electrical and Electronic Engineering, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, P. R. China
- Department
of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693GJ, U.K.
| | - Chun Zhao
- Department
of Electrical and Electronic Engineering, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, P. R. China
| | - Qilei Sun
- Department
of Electrical and Electronic Engineering, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, P. R. China
| | - Haicheng Gu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Junyan Li
- Department
of Electrical and Electronic Engineering, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, P. R. China
- Department
of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693GJ, U.K.
| | - Xin Tu
- Department
of Electrical and Electronic Engineering, University of Liverpool, Liverpool L693GJ, U.K.
| | - Baoqing Nie
- School
of Electronic and Information Engineering, Soochow University, Suzhou 215006, P. R. China
| | - Xuhui Sun
- Institute
of Functional Nano and Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Yina Liu
- Department
of Applied Mathematics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, P. R. China
| | - Eng Gee Lim
- Department
of Electrical and Electronic Engineering, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, P. R. China
| | - Zhen Wen
- Institute
of Functional Nano and Soft Materials (FUNSOM), Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute
of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 101400, P. R. China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
12
|
Merces L, Ferro LMM, Nawaz A, Sonar P. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305611. [PMID: 38757653 PMCID: PMC11251569 DOI: 10.1002/advs.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 05/18/2024]
Abstract
Bioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi-modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion-gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain-like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting-edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low-voltage multi-sensing IGVTs for artificial-synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi-stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi-modal flexible sensor technologies and presents a roadmap for future high-end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Letícia Mariê Minatogau Ferro
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Ali Nawaz
- Center for Sensors and DevicesBruno Kessler Foundation (FBK)Trento38123Italy
| | - Prashant Sonar
- School of Chemistry and PhysicsQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
13
|
Do TD, Trung TQ, Le Mong A, Huynh HQ, Lee D, Hong SJ, Vu DT, Kim M, Lee NE. Utilizing a High-Performance Piezoelectric Nanocomposite as a Self-Activating Component in Piezotronic Artificial Mechanoreceptors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604985 DOI: 10.1021/acsami.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Challenges such as poor dispersion and insufficient polarization of BaTiO3 (BTO) nanoparticles (NPs) within poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) composites have hindered their piezoelectricity, limiting their uses in pressure sensors, nanogenerators, and artificial sensory synapses. Here, we introduce a high-performance piezoelectric nanocomposite material consisting of P(VDF-TrFE)/modified-BTO (mBTO) NPs for use as a self-activating component in a piezotronic artificial mechanoreceptor. To generate high-performance piezoelectric nanocomposite materials, the surface of BTO is hydroxylated, followed by the covalent attachment of (3-aminopropyl)triethoxysilane to improve the dispersibility of mBTO NPs within the P(VDF-TrFE) matrix. We also aim to enhance the crystallization degree of P(VDF-TrFE), the efficiency characteristics of mBTO, and the poling efficiency, even when incorporating small amounts of mBTO NPs. The piezoelectric potential mechanically induced from the P(VDF-TrFE)/mBTO NPs nanocomposite was three times greater than that from P(VDF-TrFE) and twice as high as that from the P(VDF-TrFE)/BTO NPs nanocomposite. The piezoelectric potential generated by mechanical stimuli on the piezoelectric nanocomposite was utilized to activate the synaptic ionogel-gated field-effect transistor for the development of self-powered piezotronics artificial mechanoreceptors on a polyimide substrate. The device successfully emulated fast-adapting (FA) functions found in biological FA mechanoreceptors. This approach has great potential for applications to future intelligent tactile perception technology.
Collapse
Affiliation(s)
- Trung Dieu Do
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Anh Le Mong
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Hung Quang Huynh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Dongsu Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Seok Ju Hong
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Dong Thuc Vu
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Miso Kim
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Kyunggi-do 16419, Korea
| |
Collapse
|
14
|
Zhang X, Wang C, Sun Q, Wu J, Dai Y, Li E, Wu J, Chen H, Duan S, Hu W. Inorganic Halide Perovskite Nanowires/Conjugated Polymer Heterojunction-Based Optoelectronic Synaptic Transistors for Dynamic Machine Vision. NANO LETTERS 2024; 24:4132-4140. [PMID: 38534013 DOI: 10.1021/acs.nanolett.3c05092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Inspired by the retina, artificial optoelectronic synapses have groundbreaking potential for machine vision. The field-effect transistor is a crucial platform for optoelectronic synapses that is highly sensitive to external stimuli and can modulate conductivity. On the basis of the decent optical absorption, perovskite materials have been widely employed for constructing optoelectronic synaptic transistors. However, the reported optoelectronic synaptic transistors focus on the static processing of independent stimuli at different moments, while the natural visual information consists of temporal signals. Here, we report CsPbBrI2 nanowire-based optoelectronic synaptic transistors to study the dynamic responses of artificial synaptic transistors to time-varying visual information for the first time. Moreover, on the basis of the dynamic synaptic behavior, a hardware system with an accuracy of 85% is built to the trajectory of moving objects. This work offers a new way to develop artificial optoelectronic synapses for the construction of dynamic machine vision systems.
Collapse
Affiliation(s)
- Xianghong Zhang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Qisheng Sun
- China Electronics Technology Group Corp 46th Research Institute, 26 Dongting Road, Tianjin 300220, P. R. China
| | - Jianxin Wu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Yan Dai
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Enlong Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Shuming Duan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
15
|
Zhang Q, Li M, Li L, Geng D, Chen W, Hu W. Recent progress in emerging two-dimensional organic-inorganic van der Waals heterojunctions. Chem Soc Rev 2024; 53:3096-3133. [PMID: 38373059 DOI: 10.1039/d3cs00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two-dimensional (2D) materials have attracted significant attention in recent decades due to their exceptional optoelectronic properties. Among them, to meet the growing demand for multifunctional applications, 2D organic-inorganic van der Waals (vdW) heterojunctions have become increasingly popular in the development of optoelectronic devices. These heterojunctions demonstrate impressive capability to synergistically combine the favourable characteristics of organic and inorganic materials, thereby offering a wide range of advantages. Also, they enable the creation of innovative device structures and introduce novel functionalities in existing 2D materials, avoiding the need for lattice matching in different material systems. Presently, researchers are actively working on improving the performance of devices based on 2D organic-inorganic vdW heterojunctions by focusing on enhancing the quality of 2D materials, precise stacking methods, energy band regulation, and material selection. Therefore, this review presents a thorough examination of the emerging 2D organic-inorganic vdW heterojunctions, including their classification, fabrication, and corresponding devices. Additionally, this review offers profound and comprehensive insight into the challenges in this field to inspire future research directions. It is expected to propel researchers to harness the extraordinary capabilities of 2D organic-inorganic vdW heterojunctions for a wider range of applications by further advancing the understanding of their fundamental properties, expanding the range of available materials, and exploring novel device architectures. The ongoing research and development in this field hold potential to unlock captivating advancements and foster practical applications across diverse industries.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menghan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
16
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
17
|
Park Y, Ro YG, Shin Y, Park C, Na S, Chang Y, Ko H. Multi-Layered Triboelectric Nanogenerators with Controllable Multiple Spikes for Low-Power Artificial Synaptic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304598. [PMID: 37888859 PMCID: PMC10754122 DOI: 10.1002/advs.202304598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/20/2023] [Indexed: 10/28/2023]
Abstract
In the domains of wearable electronics, robotics, and the Internet of Things, there is a demand for devices with low power consumption and the capability of multiplex sensing, memory, and learning. Triboelectric nanogenerators (TENGs) offer remarkable versatility in this regard, particularly when integrated with synaptic transistors that mimic biological synapses. However, conventional TENGs, generating only two spikes per cycle, have limitations when used in synaptic devices requiring repetitive high-frequency gating signals to perform various synaptic plasticity functions. Herein, a multi-layered micropatterned TENG (M-TENG) consisting of a polydimethylsiloxane (PDMS) film and a composite film that includes 1H,1H,2H,2H-perfluorooctyltrichlorosilane/BaTiO3 /PDMS are proposed. The M-TENG generates multiple spikes from a single touch by utilizing separate triboelectric charges at the multiple friction layers, along with a contact/separation delay achieved by distinct spacers between layers. This configuration allows the maximum triboelectric output charge of M-TENG to reach up to 7.52 nC, compared to 3.69 nC for a single-layered TENG. Furthermore, by integrating M-TENGs with an organic electrochemical transistor, the spike number multiplication property of M-TENGs is leveraged to demonstrate an artificial synaptic device with low energy consumption. As a proof-of-concept application, a robotic hand is operated through continuous memory training under repeated stimulations, successfully emulating long-term plasticity.
Collapse
Affiliation(s)
- Yong‐Jin Park
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Young‐Eun Shin
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Cheolhong Park
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Sangyun Na
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Yoojin Chang
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)50, UNIST‐gilUlsan44919Republic of Korea
| |
Collapse
|
18
|
Li L, Yuan P, Ma Z, He M, Jiang Y, Wang T, Xia C, Li X. Two-dimensional HfS 2-ZrS 2 lateral heterojunction FETs with high rectification and photocurrent. NANOSCALE 2023; 15:17633-17641. [PMID: 37878025 DOI: 10.1039/d3nr03017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multifunctional devices are an indispensable choice to fulfil the increasing demand for miniaturized and integrated circuit systems. However, bulk material-based devices encounter the challenge of miniaturized all-in-one systems with multiple functions. In this study, we designed a field effect transistor (FET) based on a monolayer HfS2-ZrS2 lateral heterojunction. It possesses simultaneous and obvious rectifying behavior and photodetection characteristics in the visible light region, such as the rectification ratio of ∼1012, photocurrent density of 13.3 nA m-1, responsivity of 57 mA W-1, and extinction ratio of 108. Notably, the rectification ratio of the single-gate FET is larger than that of the dual-gate FET under the negative gate voltage. These results indicate that monolayer lateral heterojunction-based FETs can provide an effective route to integrate rectifying and photodetection functions in single optoelectronic nanodevices.
Collapse
Affiliation(s)
- Lin Li
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
- College of Physics and Optoelectronic Engineering, Zhengzhou Key Laboratory of Low-Dimensional Quantum Materials and Devices, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Peize Yuan
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zinan Ma
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Mengjie He
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yurong Jiang
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Tianxing Wang
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Congxin Xia
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xueping Li
- School of Physics, Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, Henan 453007, China.
- College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Liu L, Yang Y, Meskers SCJ, Wang Q, Zhang L, Yang C, Zhang J, Zhu L, Zhang Y, Wei Z. Fused-Ring Electron-Acceptor Single Crystals with Chiral 2D Supramolecular Organization for Anisotropic Chiral Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304627. [PMID: 37467489 DOI: 10.1002/adma.202304627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Supramolecular chiral organization gives π-conjugated molecules access to fascinating specific interactions with circularly polarized light (CPL). Such a feature enables the fabrication of high-performance chiral organic electronic devices that detect or emit CPL directly. Herein, it is shown that chiral fused-ring electron-acceptor BTP-4F single-crystal-based phototransistors demonstrate distinguished CPL discrimination capability with current dissymmetry factor exceeding 1.4, one of the highest values among state-of-the-art direct CPL detectors. Theoretical calculations prove that the chirality at the supramolecular level in these enantiomeric single crystals originates from chiral exciton coupling of a unique quasi-2D supramolecular organization consisting of interlaced molecules with opposite helical conformation. Impressively, such supramolecular organization produces a higher dissymmetry factor along the preferred growth direction of the chiral single crystals in comparison to that of the short axis direction. Furthermore, the amplified, inverted, and also anisotropic current dissymmetry compared to optical dissymmetry is studied by finite element simulations. Therefore, a unique chiral supramolecular organization that is responsible for the excellent chiroptical response and anisotropic electronic properties is developed, which not only enables the construction of high-performance CPL detection devices but also allows a better understanding of the structure-property relationships in chiral organic optoelectronics.
Collapse
Affiliation(s)
- Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Stefan C J Meskers
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. box 513, Eindhoven, NL, 5600 MB, The Netherlands
| | - Qingkai Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Liting Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| |
Collapse
|
20
|
Qian Y, Zhou P, Wang Y, Zheng Y, Luo Z, Chen L. A PEDOT:PSS/MXene-based actuator with self-powered sensing function by incorporating a photo-thermoelectric generator. RSC Adv 2023; 13:32722-32733. [PMID: 38022765 PMCID: PMC10630741 DOI: 10.1039/d3ra06290b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Actuators with sensing functions are becoming increasingly important in the field of soft robotics. However, most of the actuators are lack of self-powered sensing ability, which limits their applications. Here, we report a light-driven actuator with self-powered sensing function, which is designed to incorporate a photo-thermoelectric generator into the actuator based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/MXene composite and polyimide. The actuator shows a large bending curvature of 1.8 cm-1 under near-infrared light (800 mW cm-2) irradiation for 10 s, which is attribute to photothermal expansion mismatch between PEDOT:PSS/MXene composite and polyimide. Simultaneously, the actuator shows enhanced thermoelectric properties with Seebeck coefficient of 35.7 μV K-1, which are mainly attributed to a combination of energy filtering effects between the PEDOT:PSS and MXene interfaces as well as the synergistic effect of its charge carrier migration. The output voltage of the actuator changes in accordance with the bending curvature, so as to achieve the self-powered sensing function and monitor the operating state of the actuator. Moreover, a bionic flower is fabricated, which not only simulates the blooming and closing of the flower, but also perceives the real-time actuation status through the output voltage signal. Finally, a smart Braille system is elaborately designed, which can not only simulate Braille characters for tactile recognition of the blind people, but also automatically output the voltage signal of Braille for self-powered sensing, enabling multi-channel output and conversion of light energy. This research proposes a new idea for exploring multifunctional actuators, integrated devices and self-powered soft robots.
Collapse
Affiliation(s)
- Yongqiang Qian
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| | - Peidi Zhou
- Institute of Smart Marine and Engineering, Fujian University of Technology Fuzhou 350118 China
| | - Yi Wang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| | - Ying Zheng
- Department of Obstetrics, Fuzhou Second Hospital Fuzhou 350007 China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University Fuzhou 350117 China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering Fuzhou 350117 China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage Fuzhou 350117 China
| |
Collapse
|
21
|
Yuan J, Zhang Y, Wei C, Zhu R. A Fully Self-Powered Wearable Leg Movement Sensing System for Human Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303114. [PMID: 37590377 PMCID: PMC10582417 DOI: 10.1002/advs.202303114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Energy-autonomous wearable human activity monitoring is imperative for daily healthcare, benefiting from long-term sustainable uses. Herein, a fully self-powered wearable system, enabling real-time monitoring and assessments of human multimodal health parameters including knee joint movement, metabolic energy, locomotion speed, and skin temperature, which are fully self-powered by highly-efficient flexible thermoelectric generators (f-TEGs) is proposed and developed. The wearable system is composed of f-TEGs, fabric strain sensors, ultra-low-power edge computing, and Bluetooth. The f-TEGs worn on the leg not only harvest energy from body heat and supply power sustainably for the whole monitoring system, but also serve as zero-power motion sensors to detect limb movement and skin temperature. The fabric strain sensor made by printing PEDOT: PSS on pre-stretched nylon fiber-wrapped rubber band enables high-fidelity and ultralow-power measurements on highly-dynamic knee movements. Edge computing is elaborately designed to estimate multimodal health parameters including time-varying metabolic energy in real-time, which are wirelessly transmitted via Bluetooth. The whole monitoring system is operated automatically and intelligently, works sustainably in both static and dynamic states, and is fully self-powered by the f-TEGs.
Collapse
Affiliation(s)
- Jinfeng Yuan
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Yuzhong Zhang
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Caise Wei
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijing100084China
| |
Collapse
|
22
|
Zhu X, Gao C, Ren Y, Zhang X, Li E, Wang C, Yang F, Wu J, Hu W, Chen H. High-Contrast Bidirectional Optoelectronic Synapses based on 2D Molecular Crystal Heterojunctions for Motion Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301468. [PMID: 37014930 DOI: 10.1002/adma.202301468] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Indexed: 06/16/2023]
Abstract
Light-stimulated optoelectronic synaptic devices are fundamental compositions of the neuromorphic vision system. However, there are still huge challenges to achieving both bidirectional synaptic behaviors under light stimuli and high performance. Herein, a bilayer 2D molecular crystal (2DMC) p-n heterojunction is developed to achieve high-performance bidirectional synaptic behaviors. The 2DMC heterojunction-based field effect transistor (FET) devices exhibit typical ambipolar properties and remarkable responsivity (R) of 3.58×104 A W-1 under weak light as low as 0.008 mW cm-2 . Excitatory and inhibitory synaptic behaviors are successfully realized by the same light stimuli under different gate voltages. Moreover, a superior contrast ratio (CR) of 1.53×103 is demonstrated by the ultrathin and high-quality 2DMC heterojunction, which transcends previous optoelectronic synapses and enables application for the motion detection of the pendulum. Furthermore, a motion detection network based on the device is developed to detect and recognize classic motion vehicles in road traffic with an accuracy exceeding 90%. This work provides an effective strategy for developing high-contrast bidirectional optoelectronic synapses and shows great potential in the intelligent bionic device and future artificial vision.
Collapse
Affiliation(s)
- Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Changsong Gao
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yiwen Ren
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Xianghong Zhang
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Enlong Li
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Huipeng Chen
- National and Local United Engineering Lab of Flat Panel Display Technology, Institute of Optoelectronic Display, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
23
|
Shan L, Chen Q, Yu R, Gao C, Liu L, Guo T, Chen H. A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition. Nat Commun 2023; 14:2648. [PMID: 37156788 PMCID: PMC10167252 DOI: 10.1038/s41467-023-38396-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Realizing multi-modal information recognition tasks which can process external information efficiently and comprehensively is an urgent requirement in the field of artificial intelligence. However, it remains a challenge to achieve simple structure and high-performance multi-modal recognition demonstrations owing to the complex execution module and separation of memory processing based on the traditional complementary metal oxide semiconductor (CMOS) architecture. Here, we propose an efficient sensory memory processing system (SMPS), which can process sensory information and generate synapse-like and multi-wavelength light-emitting output, realizing diversified utilization of light in information processing and multi-modal information recognition. The SMPS exhibits strong robustness in information encoding/transmission and the capability of visible information display through the multi-level color responses, which can implement the multi-level pain warning process of organisms intuitively. Furthermore, different from the conventional multi-modal information processing system that requires independent and complex circuit modules, the proposed SMPS with unique optical multi-information parallel output can realize efficient multi-modal information recognition of dynamic step frequency and spatial positioning simultaneously with the accuracy of 99.5% and 98.2%, respectively. Therefore, the SMPS proposed in this work with simple component, flexible operation, strong robustness, and highly efficiency is promising for future sensory-neuromorphic photonic systems and interactive artificial intelligence.
Collapse
Affiliation(s)
- Liuting Shan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Qizhen Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Rengjian Yu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Changsong Gao
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Lujian Liu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China.
| |
Collapse
|
24
|
Wang X, Yang H, Li E, Cao C, Zheng W, Chen H, Li W. Stretchable Transistor-Structured Artificial Synapses for Neuromorphic Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205395. [PMID: 36748849 DOI: 10.1002/smll.202205395] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Stretchable synaptic transistors, a core technology in neuromorphic electronics, have functions and structures similar to biological synapses and can concurrently transmit signals and learn. Stretchable synaptic transistors are usually soft and stretchy and can accommodate various mechanical deformations, which presents significant prospects in soft machines, electronic skin, human-brain interfaces, and wearable electronics. Considerable efforts have been devoted to developing stretchable synaptic transistors to implement electronic device neuromorphic functions, and remarkable advances have been achieved. Here, this review introduces the basic concept of artificial synaptic transistors and summarizes the recent progress in device structures, functional-layer materials, and fabrication processes. Classical stretchable synaptic transistors, including electric double-layer synaptic transistors, electrochemical synaptic transistors, and optoelectronic synaptic transistors, as well as the applications of stretchable synaptic transistors in light-sensory systems, tactile-sensory systems, and multisensory artificial-nerves systems, are discussed. Finally, the current challenges and potential directions of stretchable synaptic transistors are analyzed. This review presents a detailed introduction to the recent progress in stretchable synaptic transistors from basic concept to applications, providing a reference for the development of stretchable synaptic transistors in the future.
Collapse
Affiliation(s)
- Xiumei Wang
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Huihuang Yang
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Enlong Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Chunbin Cao
- School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wen Zheng
- School of Science, Anhui Agricultural University, Hefei, 230036, China
- School of Information & Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, China
- National Key Laboratory of Integrated Circuit Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| |
Collapse
|
25
|
Rao TS, Kundu S, Bannur B, George SJ, Kulkarni GU. Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on 1D supramolecular nanofibres. NANOSCALE 2023; 15:7450-7459. [PMID: 37013963 DOI: 10.1039/d3nr00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mimicking synaptic functions in hardware devices is a crucial step in realizing brain-like computing beyond the von Neumann architecture. 1D nanomaterials with spatial extensions of a few μm, similar to biological neurons, gain significance given the ease of electrical transport as well as directionality. Herein, we report a two-terminal optically active device based on 1D supramolecular nanofibres consisting of CS (coronene tetracarboxylate) and DMV (dimethyl viologen) forming alternating D-A (donor-acceptor) pairs, emulating synaptic functions such as the STP (short-term potentiation), LTP (long-term potentiation), PPF (paired-pulse facilitation), STDP (spike-time dependent plasticity) and learning-relearning behaviors. In addition, an extensive study on the less explored Ebbinghaus forgetting curve has been carried out. The supramolecular nanofibres being light sensitive, the potential of the device as a visual system is demonstrated using a 3 × 3 pixel array.
Collapse
Affiliation(s)
- Tejaswini S Rao
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
| | - Suman Kundu
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bangalore-562162, India
| | - Bharath Bannur
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
| | - Subi J George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - Giridhar U Kulkarni
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore-560064, India.
| |
Collapse
|