1
|
Shi XD, Guo RT, Cui HF, Liu C, Pan WG. Electrocatalytic reduction of CO 2 to produce the C 2+ products: from selectivity to rational catalyst design. NANOSCALE 2025. [PMID: 39868488 DOI: 10.1039/d4nr04159c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electrocatalytic reduction of CO2 (eCO2RR) into valuable multi-carbon (C2+) products is an effective strategy for combating climate change and mitigating energy crises. The high-energy density and diverse applications of C2+ products have attracted considerable interest. However, the complexity of the reaction pathways and the high energy barriers to C-C coupling lead to lower selectivity and faradaic efficiency for C2+ products than for C1 products. Therefore, a thorough understanding of the underlying mechanisms and identification of reaction conditions that influence selectivity, followed by the rational design of catalysts, are considered promising methods for the efficient and selective synthesis of multi-carbon products. This review first introduces the critical steps involved in forming multi-carbon products. Then, we discuss the reaction conditions that influence the selectivity of C2+ products and explore different catalyst design strategies to enhance the selective production of C2+ products. Finally, we summarize the significant challenges currently facing the eCO2RR field and suggest future research directions to address these challenges.
Collapse
Affiliation(s)
- Xu-Dong Shi
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| | - Heng-Fei Cui
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Cong Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| |
Collapse
|
2
|
Li L, Li Y, Li K, Zou W, Li H, Li Y, Li L, Zhang Q, Zhang C, Zhang X, Tian D, Jiang L. Overcoming Gas Mass Transfer Limitations Using Gas-Conducting Electrodes for Efficient Nitrogen Reduction. ACS NANO 2025; 19:1080-1089. [PMID: 39704291 DOI: 10.1021/acsnano.4c12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is a very attractive strategy for ammonia synthesis due to its energy savings and sustainability. However, the ammonia yield and Faraday efficiency of electrocatalytic nitrogen reduction have been challenges due to low nitrogen solubility and competitive hydrogen evolution reaction (HER) in electrolyte solution. Herein, inspired by the asymmetric wetting behavior, i.e., superhydrophobicity/hydrophilicity, of floating lotus leaves, we demonstrated a gas-conduction electrode with asymmetric gas wetting behavior on the opposite surface, i.e., Janus-Ni/MoO2@NF, for efficient nitrogen reduction. It can provide an abundant three-phase interface (TPI) at interfaces of Janus-Ni/MoO2@NF in electrolyte solution to enhance the contact among N2, electrolyte, and electrode. Ascribed to this advantage, the hydrophobic side of the Janus electrode not only can repel water molecules to suppress the HER process but also can increase the concentration of N2 on the interface microenvironment. Consequently, the well-designed gas-conducting electrode breaks gas mass transfer limitation. Furthermore, Janus-Ni/MoO2@NF delivers a record-high NH3 yield rate of 5.865 μg·h-1·cm-2 and a Faradaic efficiency of 36.14% at an extremely low potential of 0 V vs RHE in 0.1 M Na2SO4 under ambient conditions, which are 22 and 18 times higher than those of the conventional electrode, respectively. Therefore, the gas-conducting electrodes can dramatically improve the activity and selectivity in electrocatalytic NRR. Additionally, the unique interface design provides inspiration for other sustainable electrochemical reactions involving gas electrocatalytic correlation.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Wentao Zou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Honghao Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Linyang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Chunyu Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Wang Y, Cheng Y, Liu S, Yin Y, Yang J, Wang H, Li K, Zhou M, Jiao J, Zhang P, Qian Q, Zhu Q, Sun X, Xu Y, Luo M, Kang X, Han B. Enhancing CO 2 Electroreduction to Multicarbon Products by Modulating the Surface Microenvironment of Electrode with Polyethylene Glycol. Angew Chem Int Ed Engl 2025:e202420661. [PMID: 39776034 DOI: 10.1002/anie.202420661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Modulating the surface microenvironment of electrodes stands as a pivotal aspect in enhancing the electrocatalytic performance for CO2 electroreduction. Herein, we propose an innovative approach by incorporating a small amount of linear oligomer, polyethylene glycol (PEG), into Cu2O catalysts during the preparation of the CuPEG electrode. The Faradaic efficiency (FE) toward multicarbon products (C2+) increases from 69.3 % over Cu electrode without PEG to 90.3 % over CuPEG electrode at 500 mA cm-2 in 1 M KOH in a flow cell. In situ investigations and theoretical calculations reveal that PEG molecules significantly modify the microenvironment on the Cu surface through hydrogen bond interactions. This modification leads to the relaxation of Nafion, increasing the availability of active sites and enhancing the adsorption of *CO and *OH, which in turn promotes C-C coupling. Concurrently, the reconstructed hydrogen bond network reduces the presence of active hydrogen species, thereby inhibiting the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Yiyong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
4
|
Gholizadeh R, Pavlin M, Huš M, Likozar B. Multiscale Modeling of CO 2 Electrochemical Reduction on Copper Electrocatalysts: A Review of Advancements, Challenges, and Future Directions. CHEMSUSCHEM 2025; 18:e202400898. [PMID: 39022871 PMCID: PMC11696222 DOI: 10.1002/cssc.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Although CO2 contributes significantly to global warming, it also offers potential as a raw material for the production of hydrocarbons such as CH4, C2H4 and CH3OH. Electrochemical CO2 reduction reaction (eCO2RR) is an emerging technology that utilizes renewable energy to convert CO2 into valuable fuels, solving environmental and energy problems simultaneously. Insights gained at any individual scale can only provide a limited view of that specific scale. Multiscale modeling, which involves coupling atomistic-level insights (density functional theory, DFT) and (Molecular Dynamics, MD), with mesoscale (kinetic Monte Carlo, KMC, and microkinetics, MK) and macroscale (computational fluid dynamics, CFD) simulations, has received significant attention recently. While multiscale modeling of eCO2RR on electrocatalysts across all scales is limited due to its complexity, this review offers an overview of recent works on single scales and the coupling of two and three scales, such as "DFT+MD", "DFT+KMC", "DFT+MK", "KMC/MK+CFD" and "DFT+MK/KMC+CFD", focusing particularly on Cu-based electrocatalysts as copper is known to be an excellent electrocatalyst for eCO2RR. This sets it apart from other reviews that solely focus exclusively on a single scale or only on a combination of DFT and MK/KMC scales. Furthermore, this review offers a concise overview of machine learning (ML) applications for eCO2RR, an emerging approach that has not yet been reviewed. Finally, this review highlights the key challenges, research gaps and perspectives of multiscale modeling for eCO2RR.
Collapse
Affiliation(s)
- Reza Gholizadeh
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matej Huš
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
- Association for Technical Culture of SloveniaZaloška 65LjubljanaSI-1001Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia, Conservation Centre, Research InstitutePoljanska 40LjubljanaSI-1000Slovenia
- University of Nova GoricaVipavska 13Nova Gorica, LjubljanaSI-5000Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| |
Collapse
|
5
|
Li Z, Sun B, Xiao D, Liu H, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Huang B, Cheng H. Mesostructure-Specific Configuration of *CO Adsorption for Selective CO 2 Electroreduction to C 2+ Products. Angew Chem Int Ed Engl 2025; 64:e202413832. [PMID: 39221719 DOI: 10.1002/anie.202413832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The multi-carbon (C2+) alcohols produced by electrochemical CO2 reduction, such as ethanol and n-propanol, are considered as indispensable liquid energy carriers. In most C-C coupling cases, however, the concomitant gaseous C2H4 product results in the low selectivity of C2+ alcohols. Here, we report rational construction of mesostructured CuO electrocatalysts, specifically mesoporous CuO (m-CuO) and cylindrical CuO (c-CuO), enables selective distribution of C2+ products. The m-CuO and c-CuO show similar selectivity towards total C2+ products (≥76 %), but the corresponding predominant products are C2+ alcohols (55 %) and C2H4 (52 %), respectively. The ordered mesostructure not only induces the surface hydrophobicity, but selectively tailors the adsorption configuration of *CO intermediate: m-CuO prefers bridged adsorption, whereas c-CuO favors top adsorption as revealed by in situ spectroscopies. Computational calculations unravel that bridged *CO adsorbate is prone to deep protonation into *OCH3 intermediate, thus accelerating the coupling of *CO and *OCH3 intermediates to generate C2+ alcohols; by contrast, top *CO adsorbate is apt to undergo conventional C-C coupling process to produce C2H4. This work illustrates selective C2+ products distribution via mesostructure manipulation, and paves a new path into the design of efficient electrocatalysts with tunable adsorption configuration of key intermediates for targeted products.
Collapse
Affiliation(s)
- Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Hongli Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Ying Dai
- School of Physics, Shandong University, 250100, Jinan, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, 250100, Jinan, China
| |
Collapse
|
6
|
Tong X, Zhang P, Chen P, He Z, Kang X, Yin Y, Cheng Y, Zhou M, Jing L, Wang C, Xu B, Zheng L, Xing X, Wu Z, Han B. Switching CO 2 Electroreduction Pathways between Ethylene and Ethanol via Tuning Microenvironment of the Coating on Copper Nanofibers. Angew Chem Int Ed Engl 2025; 64:e202413005. [PMID: 39302152 DOI: 10.1002/anie.202413005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Engineering the microenvironment of electrode surface is one of the effective means to tune the reaction pathways in CO2RR. In this work, we prepared copper nanofibers with conductive polypyrrole coating by polymerization of pyrrole using polyvinyl pyrrolidone (PVP) as template. As a result, the obtained copper nanofibers Cu/Cu2+1O/SHNC, exhibited a superhydrophobic surface, which demonstrated very high selectivity for ethanol with a Faraday efficiency (FE) of 66.5 % at -1.1 V vs reversible hydrogen electrode (RHE) in flow cell. However, the catalyst Cu/Cu2+1O/NC, which was prepared under the same conditions but without PVP, possessed a hydrophobic surface and exhibited high selectivity towards ethylene at the given potentials. The mechanism for switch of reaction pathways from ethylene to ethanol in CO2RR was studied. Incorporating pyrrolidone groups into the polymer coating results in the formation of a superhydrophobic surface. This surface weakens the hydrogen bonding interaction between interfacial water molecules and facilitates the transfer of CO2, thereby enhancing the local CO2/H2O ratio. The high coverage of *CO promotes the coupling of *CO and *CHO to form C2 intermediates, and reduces the reaction energy for the formation of *CHCHOH (ethanol path) at the interface. This ensures that the reaction pathway is directed towards ethanol.
Collapse
Affiliation(s)
- Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuosen He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Ce Wang
- Beijing Technology and Business University, School of Light Industry Science and Engineering, Beijing, 100048, China
| | - Baocai Xu
- Beijing Technology and Business University, School of Light Industry Science and Engineering, Beijing, 100048, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062, China
| |
Collapse
|
7
|
Zhang X, Ling C, Ren S, Xi H, Ji L, Wang J, Zhu J. Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413111. [PMID: 39463129 DOI: 10.1002/adma.202413111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/06/2024] [Indexed: 10/29/2024]
Abstract
Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO2/CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C2 intermediate (*CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C2 product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm-2 with a full cell voltage of ≈2.7 V and operates stably for over 300 h.
Collapse
Affiliation(s)
- Xing Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Siyun Ren
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hanchen Xi
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Liyao Ji
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
8
|
Cui L, Chen B, Chen D, He C, Liu Y, Zhang H, Qiu J, Liu L, Jing W, Zhang Z. Species mass transfer governs the selectivity of gas diffusion electrodes toward H 2O 2 electrosynthesis. Nat Commun 2024; 15:10632. [PMID: 39639001 PMCID: PMC11621356 DOI: 10.1038/s41467-024-55091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
The meticulous design of advanced electrocatalysts and their integration into gas diffusion electrode (GDE) architectures is emerging as a prominent research paradigm in the H2O2 electrosynthesis community. However, it remains perplexing that electrocatalysts and assembled GDE frequently exhibit substantial discrepancies in H2O2 selectivity during bulk electrolysis. Here, we elucidate the pivotal role of mass transfer behavior of key species (including reactants and products) beyond the intrinsic properties of the electrocatalyst in dictating electrode-scale H2O2 selectivity. This tendency becomes more pronounced in high reaction rate (current density) regimes where transport limitations are intensified. By utilizing diffusion-related parameters (DRP) of GDEs (i.e., wettability and catalyst layer thickness) as probe factors, we employ both short- and long-term electrolysis in conjunction with in-situ electrochemical reflection-absorption imaging and theoretical calculations to thoroughly investigate the impact of DRP and DRP-controlled local microenvironments on O2 and H2O2 mass transfer. The mechanistic origins of diffusion-dependent conversion selectivity at the electrode scale are unveiled accordingly. The fundamental insights gained from this study underscore the necessity of architectural innovations for mainstream hydrophobic GDEs that can synchronously optimize mass transfer of reactants and products, paving the way for next-generation GDEs in gas-consuming electroreduction scenarios.
Collapse
Affiliation(s)
- Lele Cui
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Bin Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Shuangliang Environmental Technology Co.Ltd, Jiangyin, China
| | - Dongxu Chen
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Chen He
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Yi Liu
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Hongyi Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Jian Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Shuangliang Environmental Technology Co.Ltd, Jiangyin, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wenheng Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.
- Quzhou Membrane Material Innovation Institute, Quzhou, China.
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- School of Environment, Tsinghua University, Beijing, China.
- Australian Research Council (ARC) Centre of Excellence for Carbon Science and Innovation (ARC-CoE), Queensland Node, School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Wu Y, Chen C, Liu S, Qian Q, Zhu Q, Feng R, Jing L, Kang X, Sun X, Han B. Highly Selective CO 2 Electroreduction to Multi-Carbon Alcohols via Amine Modified Copper Nanoparticles at Acidic Conditions. Angew Chem Int Ed Engl 2024; 63:e202410659. [PMID: 39136316 DOI: 10.1002/anie.202410659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 11/01/2024]
Abstract
Electroreduction of CO2 into multi-carbon (C2+) products (e.g. C2+ alcohols) offers a promising way for CO2 utilization. Use of strong alkaline electrolytes is favorable to producing C2+ products. However, CO2 can react with hydroxide to form carbonate/bicarbonate, which results in low carbon utilization efficiency and poor stability. Using acidic electrolyte is an efficient way to solve the problems, but it is a challenge to achieve high selectivity of C2+ products. Here we report that the amine modified copper nanoparticles exhibit high selectivity of C2+ products and carbon utilization at acidic condition. The Faradaic efficiency (FE) of C2+ products reach up to 81.8 % at acidic media (pH=2) with a total current density of 410 mA cm-2 over n-butylamine modified Cu. Especially the FE of C2+ alcohols is 52.6 %, which is higher than those reported for CO2 electroreduction at acidic condition. In addition, the single-pass carbon efficiency towards C2+ production reach up to 60 %. Detailed studies demonstrate that the amine molecule on the surface of Cu cannot only enhance the formation, adsorption and coverage of *CO, but also provide a hydrophobic environment, which result in the high selectivity of C2+ alcohols at acidic condition.
Collapse
Affiliation(s)
- Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
10
|
Zhou J, He B, Huang P, Wang D, Zhuang Z, Xu J, Pan C, Dong Y, Wang D, Wang Y, Huang H, Zhang J, Zhu Y. Regulating Interfacial Hydrogen-Bonding Networks by Implanting Cu Sites with Perfluorooctane to Accelerate CO 2 Electroreduction to Ethanol. Angew Chem Int Ed Engl 2024:e202418459. [PMID: 39623792 DOI: 10.1002/anie.202418459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 12/14/2024]
Abstract
Efficient CO2 electroreduction (CO2RR) to ethanol holds promise to generate value-added chemicals and harness renewable energy simultaneously. Yet, it remains an ongoing challenge due to the competition with thermodynamically more preferred ethylene production. Herein, we presented a CO2 reduction predilection switch from ethylene to ethanol (ethanol-to-ethylene ratio of ~5.4) by inherently implanting Cu sites with perfluorooctane to create interfacial noncovalent interactions. The 1.83 %F-Cu2O organic-inorganic hybrids (OIHs) exhibited an extraordinary ethanol faradaic efficiency (FEethanol) of ∼55.2 %, with an impressive ethanol partial current density of 166 mA cm-2 and excellent robustness over 60 hours of continuous operation. This exceptional performance ranks our 1.83 %F-Cu2O OIHs among the best-performing ethanol-oriented CO2RR electrocatalysts. Our findings identified that C8F18 could strengthen the interfacial hydrogen bonding connectivity, which consequently promotes the generation of active hydrogen species and preferentially favors the hydrogenation of *CHCOH to *CHCHOH, thus switching the reaction from ethylene-preferred to ethanol-oriented. The presented investigations highlight opportunities for using noncovalent interactions to tune the selectivity of CO2 electroreduction to ethanol, bringing it closer to practical implementation requirements.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Bingling He
- School of Electronic Engineering, Chaohu University, Hefei, 238000, P. R. China
| | - Pu Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Dongge Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Columbia University, New York, NY-10027, USA
| | - Jing Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chengsi Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Hongwen Huang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiawei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Yu F, Shu M, Zhang G, Yu Q, Wang H. Enhancing CO 2 Electroreduction Precision to Ethylene and Ethanol: The Role of Additional Boron Catalytic Sites in Cu-Based Tandem Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410118. [PMID: 39429207 PMCID: PMC11633483 DOI: 10.1002/advs.202410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/22/2024]
Abstract
The electrocatalytic conversion of carbon dioxide (CO2) into valuable multicarbon (C2+) compounds offers a promising approach to mitigate CO2 emissions and harness renewable energy. However, achieving precise selectivity for specific C2+ products, such as ethylene and ethanol, remains a formidable challenge. This study shows that incorporating elemental boron (B) into copper (Cu) catalysts provides additional adsorption sites for *CO intermediates, enhancing the selectivity of desirable C2+ products. Additionally, using a nickel single-atom catalyst (Ni-SAC) as a *CO source increases local *CO concentration and reduces the hydrogen evolution reaction. In situ experiments and density functional theory (DFT) calculations reveal that surface-bound boron units adsorb and convert *CO more efficiently, promoting ethylene production, while boron within the bulk phase of copper influences charge transfer, facilitating ethanol generation. In a neutral electrolyte, the bias current density for ethylene production using the B-O-Cu2@Ni-SAC0.05 hybrid catalyst exceeded 300 mA cm-2, and that for ethanol production with B-O-Cu5@Ni-SAC0.2 surpassed 250 mA cm-2. This study underscores that elemental doping in Cu-based catalysts not only alters charge and crystalline phase arrangements at Cu sites but also provides additional reduction sites for coupling reactions, enabling the efficient synthesis of distinct C2+ products.
Collapse
Affiliation(s)
- Fuqing Yu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Minxing Shu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Guangyao Zhang
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Qiming Yu
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
| | - Hongming Wang
- College of Chemistry and Chemical EngineeringNanchang UniversityNanchang330031China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials ChemistryNanchang UniversityNanchang330031China
| |
Collapse
|
12
|
Wang S, Li F, Zhao J, Zeng Y, Li Y, Lin ZY, Lee TJ, Liu S, Ren X, Wang W, Chen Y, Hung SF, Lu YR, Cui Y, Yang X, Li X, Huang Y, Liu B. Manipulating C-C coupling pathway in electrochemical CO 2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst. Nat Commun 2024; 15:10247. [PMID: 39592645 PMCID: PMC11599749 DOI: 10.1038/s41467-024-54636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Manipulation C-C coupling pathway is of great importance for selective CO2 electroreduction but remain challenging. Herein, two model Cu-based catalysts, by modifying Cu nanowires with Ag nanoparticles (AgCu NW) and Ag single atoms (Ag1Cu NW), respectively, are rationally designed for exploring the C-C coupling mechanisms in electrochemical CO2 reduction reaction (CO2RR). Compared to AgCu NW, the Ag1Cu NW exhibits a more than 10-fold increase of C2 selectivity in CO2 reduction to ethanol, with ethanol-to-ethylene ratio increased from 0.41 over AgCu NW to 4.26 over Ag1Cu NW. Via a variety of operando/in-situ techniques and theoretical calculation, the enhanced ethanol selectivity over Ag1Cu NW is attributed to the promoted H2O dissociation over the atomically dispersed Ag sites, which effectively accelerated *CO hydrogenation to form *CHO intermediate and facilitated asymmetric *CO-*CHO coupling over paired Cu atoms adjacent to single Ag atoms. Results of this work provide deep insight into the C-C coupling pathways towards target C2+ product and shed light on the rational design of efficient CO2RR catalysts with paired active sites.
Collapse
Affiliation(s)
- Shifu Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Fuhua Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yaqiong Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yifan Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zih-Yi Lin
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shuhui Liu
- School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, 116028, P. R. China
| | - Xinyi Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Weijue Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yusen Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xiaofeng Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| | - Yanqiang Huang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| |
Collapse
|
13
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2024:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
14
|
Zhang C, Gu Y, Jiang Q, Sheng Z, Feng R, Wang S, Zhang H, Xu Q, Yuan Z, Song F. Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu 2O for Electrochemical CO 2 Conversion to Multi-Carbon Products. NANO-MICRO LETTERS 2024; 17:66. [PMID: 39557705 PMCID: PMC11573952 DOI: 10.1007/s40820-024-01568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO2 reduction reaction (CO2RR), whereas the behavior is by far superficially understood. Here, we report that CO2 accessibility results in a universal self-adaptive structural reconstruction from Cu2O to Cu@CuxO composites, ending with feeding gas-dependent microstructures and catalytic performances. The CO2-rich atmosphere favors reconstruction for CO2RR, whereas the CO2-deficient one prefers that for hydrogen evolution reaction. With the assistance of spectroscopic analysis and theoretical calculations, we uncover a CO2-induced passivation behavior by identifying a reduction-resistant but catalytic active Cu(I)-rich amorphous layer stabilized by *CO intermediates. Additionally, we find extra CO production is indispensable for the robust production of C2H4. An inverse correlation between durability and FECO/FEC2H4 is disclosed, suggesting that the self-stabilization process involving the absorption of *CO intermediates on Cu(I) sites is essential for durable electrolysis. Guided by this insight, we design hollow Cu2O nanospheres for durable and selective CO2RR electrolysis in producing C2H4. Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.
Collapse
Affiliation(s)
- Chaoran Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yichuan Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qu Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ziyang Sheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ruohan Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sihong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Haoyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qianqing Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zijian Yuan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Fang Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
15
|
Yang Y, Zhang J, Tan Z, Yang J, Wang S, Li M, Su Z. Highly Selective Production of C 2+ Oxygenates from CO 2 in Strongly Acidic Condition by Rough Ag-Cu Electrocatalyst. Angew Chem Int Ed Engl 2024; 63:e202408873. [PMID: 39113072 DOI: 10.1002/anie.202408873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 10/18/2024]
Abstract
The acidic electrocatalytic conversion of CO2 to multi-carbon (C2+) oxygenates is of great importance in view of enhancing carbon utilization efficiency and generating products with high energy densities, but suffering from low selectivity and activity. Herein, we synthesized Ag-Cu alloy catalyst with highly rough surface, by which the selectivity to C2+ oxygenates can be greatly improved. In a strongly acidic condition (pH=0.75), the maximum C2+ products Faradaic efficiency (FE) and C2+ oxygenates FE reach 80.4 % and 56.5 % at -1.9 V versus reversible hydrogen electrode, respectively, with a ratio of FEC2+ oxygenates to FEethylene up to 2.36. At this condition, the C2+ oxygenates partial current density is as high as 480 mA cm-2. The in situ spectra, control experiments and theoretical calculations indicate that the high generation of C2+ oxygenates over the catalyst originates from its large surface roughness and Ag alloying.
Collapse
Affiliation(s)
- Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhonghao Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jie Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Sha Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Meiling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
16
|
Fu W, Li Y, Chen J, Chen J, Xi S, Zhang J, Wang L. Preserving Molecular Tuning for Enhanced Electrocatalytic CO 2-to-Ethanol Conversion. Angew Chem Int Ed Engl 2024; 63:e202407992. [PMID: 39140436 DOI: 10.1002/anie.202407992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Modifying catalyst surface with small molecular-additives presents a promising avenue for enhancing electrocatalytic performance. However, challenges arise in preserving the molecular-additives and maximizing their tuning effect, particularly at high current densities. Herein, we develop an effective strategy to preserve the molecular-additives on electrode surface by applying a thin protective layer. Taking 4-dimethylaminopyridine (DMAP) as an example of a molecular-additive, the hydrophobic protection layer on top of the DMAP-functionalized Cu-catalyst effectively prevents its leaching during CO2 electroreduction (CO2R). Consequently, the confined DMAP molecules substantially promote the CO2-to-multicarbon conversion at low overpotentials. For instance, at a potential as low as -0.47 V vs. reversible hydrogen electrode, the DMAP-functionalized Cu exhibits over 80 % selectivity towards multi-carbon products, while the pristine Cu shows only ~35 % selectivity for multi-carbon products. Notably, ethanol appears as the primary product on DMAP-functionalized Cu, with selectivity approaching 50 % at a high current density of 400 mA cm-2. Detailed kinetic analysis, in situ spectroscopies, and theoretical calculations indicate that DMAP-induced electron accumulations on surface Cu-sites decrease the reaction energy for C-C coupling. Additionally, the interactions between DMAP and oxygenated intermediates facilitate the ethanol formation pathway in CO2R. Overall, this study showcases an effective strategy to guide future endeavors involving molecular tuning effects.
Collapse
Affiliation(s)
- Weiwei Fu
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yuke Li
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, 138632, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Jingyi Chen
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Jia Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, 138632, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
- Centre for Hydrogen Innovations, National University of, Singapore, 1 Engineering Drive 3, Singapore
| |
Collapse
|
17
|
Yao Z, Cheng H, Xu Y, Zhan X, Hong S, Tan X, Wu TS, Xiong P, Soo YL, Li MMJ, Hao L, Xu L, Robertson AW, Xu B, Yang M, Sun Z. Hydrogen radical-boosted electrocatalytic CO 2 reduction using Ni-partnered heteroatomic pairs. Nat Commun 2024; 15:9881. [PMID: 39543091 PMCID: PMC11564623 DOI: 10.1038/s41467-024-53529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
The electrocatalytic reduction of CO2 to CO is slowed by the energy cost of the hydrogenation step that yields adsorbed *COOH intermediate. Here, we report a hydrogen radical (H•)-transfer mechanism that aids this hydrogenation step, enabled by constructing Ni-partnered hetero-diatomic pairs, and thereby greatly enhancing CO2-to-CO conversion kinetics. The partner metal to the Ni (denoted as M) catalyzes the Volmer step of the water/proton reduction to generate adsorbed *H, turning to H•, which reduces CO2 to carboxyl radicals (•COOH). The Ni partner then subsequently adsorbs the •COOH in an exothermic reaction, negating the usual high energy-penalty for the electrochemical hydrogenation of CO2. Tuning the H adsorption strength of the M site (with Cd, Pt, or Pd) allows for the optimization of H• formation, culminating in a markedly improved CO2 reduction rate toward CO production, offering 97.1% faradaic efficiency (FE) in aqueous electrolyte and up to 100.0% FE in an ionic liquid solution.
Collapse
Affiliation(s)
- Zhibo Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Hao Cheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Yifei Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China
| | - Xinyu Zhan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Song Hong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Xinyi Tan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing, PR China.
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Pei Xiong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
| | - Molly Meng-Jung Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Leiduan Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | - Liang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China
| | | | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, PR China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China.
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
18
|
Kuzume A, Kume S. Spectrometric monitoring of CO 2 electrolysis on a molecularly modified copper surface. Chem Commun (Camb) 2024; 60:12662-12676. [PMID: 39308315 DOI: 10.1039/d4cc03973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Since copper has been extensively studied due to its unique ability to reduce carbon dioxide to hydrocarbons and alcohols, it tends to yield a mixture of products. Among various efforts to improve the selectivity and efficiency of this catalysis, the introduction of organic molecules and polymers on the copper/electrolyte interface has proven to be an effective and promising way to improve surface activity, considering the variation and precise designability of organic structures. The role of surface molecular modifiers, however, is not as simple as that in homogeneous catalysts, and an understanding of a wide scale of interactions from the atomic scale to the whole electrode structure is required. This feature article classifies those different scale interactions caused by organic modifiers on copper catalysts, together with the experimental support by in situ vibrational spectroscopy which directly observes surface species and events. Based on these recent understandings, novel fabrication methods of organic structures on copper catalysts are also discussed.
Collapse
Affiliation(s)
- Akiyoshi Kuzume
- Clean Energy Research Center, Yamanashi University, Kofu, 400-8510, Japan.
| | - Shoko Kume
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| |
Collapse
|
19
|
Wen G, Ren B, Zhang X, Liu S, Li X, Lu H, Xu Y, Akinoglu EM, Tao L, Luo D, Ma Q, Wang X, Feng R, Wang S, Yu A, Chen Z. Cu-In Dual Sites with Sulfur Defects toward Superior Ethanol Electrosynthesis from CO 2 Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310822. [PMID: 38044876 DOI: 10.1002/adma.202310822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Indexed: 12/05/2023]
Abstract
The electrosynthesis of multi-carbon chemicals from excess carbon dioxide (CO2) is an area of great interest for research and commercial applications. However, improving both the yield of CO2-to-ethanol conversion and the stability of the catalyst at the same time is proving to be a challenging issue. Here it is proposed to stabilize active Cu(I) and In dual sites with sulfur defects through an electro-driven intercalation strategy, which leads to the delocalization of electron density that enhances orbital hybridizations between the Cu-C and In-H bonds. Hence, the energy barrier for the rate-limiting *CHO formation step is reduced toward the key *OCHCHO* formation during ethanol production, which is also facilitated by the combined Cu site enabling C-C coupling and In site with a higher oxygen affinity based on both thermodynamic and kinetic calculations. Accordingly, such dual-site catalyst achieves a high partial current density toward ethanol of 409 ± 15 mA cm⁻2 for over 120 h. Furthermore, a scaled-up flow cell is assembled with an industrial-relevant current of 5.7 A for over 36 h, in which the carbon loss is less than 2.5% and single-pass carbon efficiency is ≈19%.
Collapse
Affiliation(s)
- Guobin Wen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Bohua Ren
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Xiaowen Zhang
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Shuxuan Liu
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Xu Li
- CSSC Systems Engineering Research Institute, 1 Fengxian East Road, Beijing, 100094, China
| | - Han Lu
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Yuanmei Xu
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Eser Metin Akinoglu
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Li Tao
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Qianyi Ma
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Xin Wang
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Renfei Feng
- Canadian light source, Saskatoon, S7N 2V3, Canada
| | - Shuangyin Wang
- South China Academy of Advanced Optoelectronics, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong, 510006, China
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
20
|
Zhang Y, Gao C, Ren H, Luo P, Wan Q, Zhou H, Chen B, Zhang X. Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO 2 Using a Solar Energy Conversion Device. Int J Mol Sci 2024; 25:10608. [PMID: 39408936 PMCID: PMC11476564 DOI: 10.3390/ijms251910608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Solar-driven CO2 conversion into high-value-added chemicals, powered by photovoltaics, is a promising technology for alleviating the global energy crisis and achieving carbon neutrality. However, most of these endeavors focus on CO2 electroreduction to small-molecule fuels such as CO and ethanol. In this paper, inspired by the photosynthesis of green plants and artificial photosynthesis for the electroreduction of CO2 into value-added fuel, CO2 artificial photosynthesis for the electrocarboxylation of bromobenzene (BB) with CO2 to generate the value-added carboxylation product methyl benzoate (MB) is demonstrated. Using two series-connected dye-sensitized photovoltaics and high-performance catalyst Ag electrodes, our artificial photosynthesis system achieves a 61.1% Faraday efficiency (FE) for carboxylation product MB and stability of the whole artificial photosynthesis for up to 4 h. In addition, this work provides a promising approach for the artificial photosynthesis of CO2 electrocarboxylation into high-value chemicals using renewable energy sources.
Collapse
Affiliation(s)
| | | | | | | | | | - Huawei Zhou
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | - Baoli Chen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.Z.); (C.G.); (H.R.); (P.L.); (Q.W.); (X.Z.)
| | | |
Collapse
|
21
|
Zhang M, Zhou D, Mu X, Wang D, Liu S, Dai Z. Regulating the Critical Intermediates of Dual-Atom Catalysts for CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402050. [PMID: 38801298 DOI: 10.1002/smll.202402050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Electrocatalysis is a very attractive way to achieve a sustainable carbon cycle by converting CO2 into organic fuels and feedstocks. Therefore, it is crucial to design advanced electrocatalysts by understanding the reaction mechanism of electrochemical CO2 reduction reaction (eCO2RR) with multiple electron transfers. Among electrocatalysts, dual-atom catalysts (DACs) are promising candidates due to their distinct electronic structures and extremely high atomic utilization efficiency. Herein, the eCO2RR mechanism and the identification of intermediates using advanced characterization techniques, with a particular focus on regulating the critical intermediates are systematically summarized. Further, the insightful understanding of the functionality of DACs originates from the variable metrics of electronic structures including orbital structure, charge distribution, and electron spin state, which influences the active sites and critical intermediates in eCO2RR processes. Based on the intrinsic relationship between variable metrics and critical intermediates, the optimized strategies of DACs are summarized containing the participation of synergistic atoms, engineering of the atomic coordination environment, regulation of the diversity of central metal atoms, and modulation of metal-support interaction. Finally, the challenges and future opportunities of atomically dispersed catalysts for eCO2RR processes are discussed.
Collapse
Affiliation(s)
- Mengyang Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dingyang Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xueqin Mu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Suli Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhihui Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
22
|
Fan Q, Yan P, Liu F, Xu Z, Liang P, Cao X, Ye C, Liu M, Zhao L, Ren S, Miao H, Zhang X, Yang Z, Ding X, Yang J, Kong C, Wu Y. Compressive strain in Cu catalysts: Enhancing generation of C 2+ products in electrochemical CO 2 reduction. Sci Bull (Beijing) 2024; 69:2881-2891. [PMID: 38987090 DOI: 10.1016/j.scib.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Elastic strain in Cu catalysts enhances their selectivity for the electrochemical CO2 reduction reaction (eCO2RR), particularly toward the formation of multicarbon (C2+) products. However, the reasons for this selectivity and the effect of catalyst precursors have not yet been clarified. Hence, we employed a redox strategy to induce strain on the surface of Cu nanocrystals. Oxidative transformation was employed to convert Cu nanocrystals to CuxO nanocrystals; these were subsequently electrochemically reduced to form Cu catalysts, while maintaining their compressive strain. Using a flow cell configuration, a current density of 1 A/cm2 and Faradaic efficiency exceeding 80% were realized for the C2+ products. The selectivity ratio of C2+/C1 was also remarkable at 9.9, surpassing that observed for the Cu catalyst under tensile strain by approximately 7.6 times. In-situ Raman and infrared spectroscopy revealed a decrease in the coverage of K+ ion-hydrated water (K·H2O) on the compressively strained Cu catalysts, consistent with molecular dynamics simulations and density functional theory calculations. Finite element method simulations confirmed that reducing the coverage of coordinated K·H2O water increased the probability of intermediate reactants interacting with the surface, thereby promoting efficient C-C coupling and enhancing the yield of C2+ products. These findings provide valuable insights into targeted design strategies for Cu catalysts used in the eCO2RR.
Collapse
Affiliation(s)
- Qikui Fan
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengxu Yan
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongshuang Xu
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Liang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi Cao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Beijing 102206, China
| | - Moxuan Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lingyi Zhao
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shan Ren
- Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huanran Miao
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiai Zhang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhimao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Chuncai Kong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yuen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Tang YF, Liu LB, Yu M, Liu S, Sui PF, Sun W, Fu XZ, Luo JL, Liu S. Strong effect-correlated electrochemical CO 2 reduction. Chem Soc Rev 2024; 53:9344-9377. [PMID: 39162094 DOI: 10.1039/d4cs00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction (ECR) holds great potential to alleviate the greenhouse effect and our dependence on fossil fuels by integrating renewable energy for the electrosynthesis of high-value fuels from CO2. However, the high thermodynamic energy barrier, sluggish reaction kinetics, inadequate CO2 conversion rate, poor selectivity for the target product, and rapid electrocatalyst degradation severely limit its further industrial-scale application. Although numerous strategies have been proposed to enhance ECR performances from various perspectives, scattered studies fail to comprehensively elucidate the underlying effect-performance relationships toward ECR. Thus, this review presents a comparative summary and a deep discussion with respect to the effects strongly-correlated with ECR, including intrinsic effects of materials caused by various sizes, shapes, compositions, defects, interfaces, and ligands; structure-induced effects derived from diverse confinements, strains, and fields; electrolyte effects introduced by different solutes, solvents, cations, and anions; and environment effects induced by distinct ionomers, pressures, temperatures, gas impurities, and flow rates, with an emphasis on elaborating how these effects shape ECR electrocatalytic activities and selectivity and the underlying mechanisms. In addition, the challenges and prospects behind different effects resulting from various factors are suggested to inspire more attention towards high-throughput theoretical calculations and in situ/operando techniques to unlock the essence of enhanced ECR performance and realize its ultimate application.
Collapse
Affiliation(s)
- Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Shuo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Peng-Fei Sui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jing-Li Luo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
24
|
Wang X, Pan J, Wei H, Li W, Zhao J, Hu Z. H-assisted CO 2 dissociation on Pd nPt (4-n)/In 2O 3 catalysts: a density functional theory study. Phys Chem Chem Phys 2024; 26:23116-23124. [PMID: 39188237 DOI: 10.1039/d4cp02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
CO2 hydrogenation into valuable chemical compounds can effectively address the issues of greenhouse gas emissions and energy scarcity. The activation and dissociation processes of CO2 are crucial for its reduction reactions, but the effects of *H adatoms on the C-O cleavage are still confusing. This study investigates the H-assisted CO2 dissociation pathways on the PdnPt(4-n)/In2O3 (n = 0-4) catalysts via DFT calculation. Initially, the adsorption properties of *H2, *COOH, and *HCOO species are calculated. Then, two H-assisted CO2 dissociation channels, i.e., *CO2 + *H → *COOH → *CO + *OH and *CO2 + *H → *HCOO → *CHO + *O, are studied. Results show that Pt and Pd promote the CO2 hydrogenation and C-O bond cleavage reactions, respectively. In comparison to CO2 direct dissociation, the COOH-mediated and HCOO-mediated channels facilitate and impede the C-O bond cleavage, respectively. Overall, the Pd3Pt/In2O3 constituent is suggested for the H-assisted CO2 dissociation reaction. The electronic effects of the PdnPt(4-n) bimetals adjust the stabilities of the intermediates and barriers of the elementary steps, and the interactions between PdnPt(4-n) and In2O3 provide extra sites for the adsorbates and reaction steps. This study reveals the effects of *H on the C-O bond dissociation processes and provides useful insight into designing PdPt/In2O3 catalysts for CO2 hydrogenation reactions.
Collapse
Affiliation(s)
- Xiaowen Wang
- State Key Laboratory of Engines, Tianjin University, Tianjin 300071, China.
| | - Jiaying Pan
- State Key Laboratory of Engines, Tianjin University, Tianjin 300071, China.
| | - Haiqiao Wei
- State Key Laboratory of Engines, Tianjin University, Tianjin 300071, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300072, China
| | - Wenjia Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Zhao
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300072, China
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin 300071, China
| | - Zhen Hu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300071, China.
| |
Collapse
|
25
|
Zhang Y, Li Y, Gao N, Delmo EP, Hou G, Luo A, Wang D, Chen K, Antonietti M, Liu T, Tian Z. Altering the CO 2 Electroreduction Pathways Towards C 1 or C 2+ Products via Engineering the Strength of Interfacial Cu-O Bond. Angew Chem Int Ed Engl 2024; 63:e202404676. [PMID: 38880900 DOI: 10.1002/anie.202404676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Copper (Cu)-based catalysts have established their unique capability for yielding wide value-added products from CO2. Herein, we demonstrate that the pathways of the electrocatalytic CO2 reduction reaction (CO2RR) can be rationally altered toward C1 or C2+ products by simply optimizing the coordination of Cu with O-containing organic species (squaric acid (H2C4O4) and cyclohexanehexaone (C6O6)). It is revealed that the strength of Cu-O bonds can significantly affect the morphologies and electronic structures of derived Cu catalysts, resulting in the distinct behaviors during CO2RR. Specifically, the C6O6-Cu catalysts made up from organized nanodomains shows a dominant C1 pathway with a total Faradaic efficiency (FE) of 63.7 % at -0.6 V (versus reversible hydrogen electrode, RHE). In comparison, the C4O4-Cu with an about perfect crystalline structure results in uniformly dispersed Cu-atoms, showing a notable FE of 65.8 % for C2+ products with enhanced capability of C-C coupling. The latter system also shows stable operation over at least 10 h with a high current density of 205.1 mA cm-2 at -1.0 VRHE, i.e., is already at the boarder of practical relevance. This study sheds light on the rational design of Cu-based catalysts for directing the CO2RR reaction pathway.
Collapse
Affiliation(s)
- Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Yicheng Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Nana Gao
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guoyu Hou
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Ali Luo
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Dongyang Wang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, 475004, Kaifeng, China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, 475004, Kaifeng, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| |
Collapse
|
26
|
Luo Q, Tapia J, Zhou L, Liu CH, Liaqat M, Duan H, Yang Z, Nieh MP, Emrick T, Bai P, He J. Fluorinated polymer zwitterions on gold nanoparticles: patterned catalyst surfaces guide interfacial transport and electrochemical CO 2 reduction. NANOSCALE 2024; 16:15558-15567. [PMID: 39101249 PMCID: PMC11340345 DOI: 10.1039/d4nr01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
We report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO2 electroreduction. The unique combination of hydrophilic phosphorylcholine and hydrophobic fluorinated moieties in these polymers creates a fractal structure with mixed branched cylinders on the surface of gold nanoparticles (AuNPs). In the presence of these polymers, the CO faradaic efficiency improves by 50-80% in the range of -0.7 V to -0.9 V. The fractal structures have a domain size of ∼3 nm, showing enhanced mass transfer kinetics of CO2 approaching the catalyst surfaces without limiting ion diffusion. The phase-separated hydrophilic and hydrophobic domains offer separated channeling to water and CO2, as confirmed by attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and molecule dynamic (MD) simulations. H2O molecules permeate extensively into the polymer layer that adsorbs on zwitterions, forming continuous chains, while CO2 molecules strongly associate with the fluorinated tails of fluorinated polyzwitterions, with oxygen facing the positively charged amine groups. Overall, this coupling of zwitterion and fluorocarbon in a polymer material creates new opportunities for defining microenvironments of metallic nanocatalysts in hybrid structures.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Joseph Tapia
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Le Zhou
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Maham Liaqat
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhefei Yang
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Peng Bai
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
27
|
Wang Z, Li Y, Ma Z, Wang D, Ren X. Strategies for overcoming challenges in selective electrochemical CO 2 conversion to ethanol. iScience 2024; 27:110437. [PMID: 39114499 PMCID: PMC11304069 DOI: 10.1016/j.isci.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The electrochemical conversion of carbon dioxide (CO2) to valuable chemicals is gaining significant attention as a pragmatic solution for achieving carbon neutrality and storing renewable energy in a usable form. Recent research increasingly focuses on designing electrocatalysts that specifically convert CO2 into ethanol, a desirable product due to its high-energy density, ease of storage, and portability. However, achieving high-efficiency ethanol production remains a challenge compared to ethylene (a competing product with a similar electron configuration). Existing electrocatalytic systems often suffer from limitations such as low energy efficiency, poor stability, and inadequate selectivity toward ethanol. Inspired by recent progress in the field, this review explores fundamental principles and material advancements in CO2 electroreduction, emphasizing strategies for ethanol production over ethylene. We discuss electrocatalyst design, reaction mechanisms, challenges, and future research directions. These advancements aim to bridge the gap between current research and industrialized applications of this technology.
Collapse
Affiliation(s)
- Zihong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Yecheng Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Zhihao Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Dazhuang Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Xiaodi Ren
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
28
|
Zhang T, Xu S, Chen DL, Luo T, Zhou J, Kong L, Feng J, Lu JQ, Weng X, Wang AJ, Li Z, Su Y, Yang F. Selective Increase in CO 2 Electroreduction to Ethanol Activity at Nanograin-Boundary-Rich Mixed Cu(I)/Cu(0) Sites via Enriching Co-Adsorbed CO and Hydroxyl Species. Angew Chem Int Ed Engl 2024; 63:e202407748. [PMID: 38818639 DOI: 10.1002/anie.202407748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Selective producing ethanol from CO2 electroreduction is highly demanded, yet the competing ethylene generation route is commonly more thermodynamically preferred. Herein, we reported an efficient CO2-to-ethanol conversion (53.5 % faradaic efficiency at -0.75 V versus reversible hydrogen electrode (vs. RHE)) over an oxide-derived nanocubic catalyst featured with abundant "embossment-like" structured grain-boundaries. The catalyst also attains a 23.2 % energy efficiency to ethanol within a flow cell reactor. In situ spectroscopy and electrochemical analysis identified that these dualphase Cu(I) and Cu(0) sites stabilized by grain-boundaries are very robust over the operating potential window, which maintains a high concentration of co-adsorbed *CO and hydroxyl (*OH) species. Theoretical calculations revealed that the presence of *OHad not only promote the easier dimerization of *CO to form *OCCO (ΔG~0.20 eV) at low overpotentials but also preferentially favor the key *CHCOH intermediate hydrogenation to *CHCHOH (ethanol pathway) while suppressing its dehydration to *CCH (ethylene pathway), which is believed to determine the remarkable ethanol selectivity. Such imperative intermediates associated with the bifurcation pathway were directly distinguished by isotope labelling in situ infrared spectroscopy. Our work promotes the understanding of bifurcating mechanism of CO2ER-to-hydrocarbons more deeply, providing a feasible strategy for the design of efficient ethanol-targeted catalysts.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Shenglin Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Ting Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Jinlei Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - JiuJu Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Ji-Qing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Xuexiang Weng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
- Zhejiang Institute of Photoelectronics, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Fa Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
- Zhejiang Institute of Photoelectronics, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| |
Collapse
|
29
|
Ma Y, Sun M, Xu H, Zhang Q, Lv J, Guo W, Hao F, Cui W, Wang Y, Yin J, Wen H, Lu P, Wang G, Zhou J, Yu J, Ye C, Gan L, Zhang D, Chu S, Gu L, Shao M, Huang B, Fan Z. Site-Selective Growth of fcc-2H-fcc Copper on Unconventional Phase Metal Nanomaterials for Highly Efficient Tandem CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402979. [PMID: 38811011 DOI: 10.1002/adma.202402979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.
Collapse
Affiliation(s)
- Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hongming Xu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia Lv
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Weihua Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wenting Cui
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Haiyu Wen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Lin Gan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Daliang Zhang
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
30
|
Zhang W, Ge W, Qi Y, Sheng X, Jiang H, Li C. Surfactant Directionally Assembled at the Electrode-Electrolyte Interface for Facilitating Electrocatalytic Aldehyde Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202407121. [PMID: 38775229 DOI: 10.1002/anie.202407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 07/02/2024]
Abstract
Electrocatalytic hydrogenation of unsaturated aldehydes to unsaturated alcohols is a promising alternative to conventional thermal processes. Both the catalyst and electrolyte deeply impact the performance. Designing the electrode-electrolyte interface remains challenging due to its compositional and structural complexity. Here, we employ the electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) as a reaction model. The typical cationic surfactant, cetyltrimethylammonium bromide (CTAB), and its analogs are employed as electrolyte additives to tune the interfacial microenvironment, delivering high-efficiency hydrogenation of HMF and inhibition of the hydrogen evolution reaction (HER). The surfactants experience a conformational transformation from stochastic distribution to directional assembly under applied potential. This oriented arrangement hampers the transfer of water molecules to the interface and promotes the enrichment of reactants. In addition, near 100 % 2,5-bis(hydroxymethyl)furan (BHMF) selectivity is achieved, and the faradaic efficiency (FE) of the BHMF is improved from 61 % to 74 % at -100 mA cm-2. Notably, the microenvironmental modulation strategy applies to a range of electrocatalytic hydrogenation reactions involving aldehyde substrates. This work paves the way for engineering advanced electrode-electrolyte interfaces and boosting unsaturated alcohol electrosynthesis efficiency.
Collapse
Affiliation(s)
- Wenfei Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbin Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuedi Sheng
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongliang Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
31
|
Kong Y, Yang H, Jia X, Wan D, Zhang Y, Hu Q, He C. Constructing Favorable Microenvironment on Copper Grain Boundaries for CO 2 Electro-conversion to Multicarbon Products. NANO LETTERS 2024. [PMID: 39011983 DOI: 10.1021/acs.nanolett.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and in situ electroreduction. In-situ spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated in situ under high current conditions, exhibit excellent stability during the eCO2RR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm-2.
Collapse
Affiliation(s)
- Yan Kong
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xinmei Jia
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Da Wan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yilei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
32
|
Wang H, Tang Q, Liu Y, Meng R, Shi B, Pan Z, Jia Y, Zhang R, Wang H, Zhang C, Ling G, Yang QH. Enhanced Oxygen Accumulation for a Hydrophobic Cathode in Lean-Oxygen Seawater Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35208-35216. [PMID: 38936813 DOI: 10.1021/acsami.4c07279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The unsatisfactory oxygen reduction reaction (ORR) kinetics caused by the inherent lean-oxygen marine environment brings low power density for metal-dissolved oxygen seawater batteries (SWBs). In this study, we propose a seawater/electrode interfacial engineering strategy by constructing a hydrophobic coating to realize enhanced mass transfer of dissolved oxygen for the fully immersed cathode of SWBs. Accumulation of dissolved oxygen from seawater to the catalyst is particularly beneficial for improving the ORR performance under lean-oxygen conditions. As a result, SWB assembled with a hydrophobic cathode achieved a power density of up to 2.32 mW cm-2 and sustained discharge at 1.3 V for 250 h. Remarkably, even in environments with an oxygen concentration of 4 mg L-1, it can operate at a voltage approximately 100 mV higher than that of an unmodified SWB. The introduction of a hydrophobic interface enhances the discharge voltage and power of SWBs by improving interfacial oxygen mass transfer, providing new insights into improving the underwater ORR performance for practical SWBs.
Collapse
Affiliation(s)
- Huaiyuan Wang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Quanjun Tang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yingxin Liu
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Rongwei Meng
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Bowei Shi
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Ziyi Pan
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiran Jia
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ruotian Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huan Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Chen Zhang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Guowei Ling
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
33
|
Feng J, Zhang W, Shi D, Jia Y, Tang Y, Meng Y, Gao Q. Restructuring multi-phase interfaces from Cu-based metal-organic frameworks for selective electroreduction of CO 2 to C 2H 4. Chem Sci 2024; 15:9173-9182. [PMID: 38903213 PMCID: PMC11186311 DOI: 10.1039/d4sc00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Multi-phase interfaces are promising for surmounting the energy barriers of electrochemical CO2 reduction involving multiple electron transfer steps, but challenges still remain in constructing interfacial micro-structures and unraveling their dynamic changes and working mechanism. Herein, highly active Ag/Cu/Cu2O heterostructures are in situ electrochemically restructured from Ag-incorporating HKUST-1, a Cu-based metal-organic framework (MOF), and accomplish efficient CO2-to-C2H4 conversion with a high faradaic efficiency (57.2% at -1.3 V vs. RHE) and satisfactory stability in flow cells, performing among the best of recently reported MOFs and their derivatives. The combination of in/ex situ characterizations and theoretical calculations reveals that Ag plays a crucial role in stabilizing Cu(i) and increasing the CO surface coverage, while the active Cu/Cu2O interfaces significantly reduce the energy barrier of C-C coupling toward the boosted ethylene production. This work not only proves MOFs as feasible precursors to derive efficient electrocatalysts on site, but also provides in-depth understanding on the working interfaces at an atomic level.
Collapse
Affiliation(s)
- Jiye Feng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University Shanghai 200433 P. R. China
| | - Danni Shi
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Yingshuai Jia
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University Shanghai 200433 P. R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University Shanghai 200433 P. R. China
| | - Yuying Meng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
34
|
Zhang YC, Zhang XL, Wu ZZ, Niu ZZ, Chi LP, Gao FY, Yang PP, Wang YH, Yu PC, Duanmu JW, Sun SP, Gao MR. Facet-switching of rate-determining step on copper in CO 2-to-ethylene electroreduction. Proc Natl Acad Sci U S A 2024; 121:e2400546121. [PMID: 38857407 PMCID: PMC11194607 DOI: 10.1073/pnas.2400546121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024] Open
Abstract
Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.
Collapse
Affiliation(s)
- Yu-Cai Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zhi-Zheng Wu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Li-Ping Chi
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Ye-Hua Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Peng-Cheng Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Jing-Wen Duanmu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Min-Rui Gao
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
35
|
Wang M, Wang Z, Huang Z, Fang M, Zhu Y, Jiang L. Hydrophobic SiO 2 Armor: Stabilizing Cu δ+ to Enhance CO 2 Electroreduction toward C 2+ Products in Strong Acidic Environments. ACS NANO 2024; 18:15303-15311. [PMID: 38803281 DOI: 10.1021/acsnano.4c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Electroreduction of CO2 in highly acidic environments holds promise for enhancing CO2 utilization efficiency. Due to the HER interference and structural instability, however, challenges in improving the selectivity and stability toward multicarbon (C2+) products remain. In this study, we proposed an "armor protection" strategy involving the deposition of ultrathin, hydrophobic SiO2 onto the Cu surface (Cu/SiO2) through a simple one-step hydrolysis. Our results confirmed the effective inhibition of HER by a hydrophobic SiO2 layer, leading to a high Faradaic efficiency (FE) of up to 76.9% for C2+ products at a current density of 900 mA cm-2 under a strongly acidic condition with a pH of 1. The observed high performance surpassed the reported performance for most previously studied Cu-based catalysts in acidic CO2RR systems. Furthermore, the ultrathin hydrophobic SiO2 shell was demonstrated to effectively prevent the structural reconstruction of Cu and preserve the oxidation state of Cuδ+ active sites during CO2RR. Additionally, it hindered the accumulation of K+ ions on the catalyst surface and diffusion of in situ generated OH- ions away from the electrode, thereby favoring C2+ product generation. In situ Raman analyses coupled with DFT simulations further elucidated that the SiO2 shell proficiently modulated *CO adsorption behavior on the Cu/SiO2 catalyst by reducing *CO adsorption energy, facilitating the C-C coupling. This work offers a compelling strategy for rationally designing and exploiting highly stable and active Cu-based catalysts for CO2RR in highly acidic environments.
Collapse
Affiliation(s)
- Meiling Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Zewen Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Zihao Huang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Mingwei Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
36
|
Wang M, Chen C, Jia S, Han S, Dong X, Zhou D, Yao T, Fang M, He M, Xia W, Wu H, Han B. Enhancing C 2+ product selectivity in CO 2 electroreduction by enriching intermediates over carbon-based nanoreactors. Chem Sci 2024; 15:8451-8458. [PMID: 38846399 PMCID: PMC11151859 DOI: 10.1039/d4sc01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to multicarbon (C2+) products faces challenges of unsatisfactory selectivity and stability. Guided by finite element method (FEM) simulation, a nanoreactor with cavity structure can facilitate C-C coupling by enriching *CO intermediates, thus enhancing the selectivity of C2+ products. We designed a stable carbon-based nanoreactor with cavity structure and Cu active sites. The unique geometric structure endows the carbon-based nanoreactor with a remarkable C2+ product faradaic efficiency (80.5%) and C2+-to-C1 selectivity (8.1) during the CO2 electroreduction. Furthermore, it shows that the carbon shell could efficiently stabilize and highly disperse the Cu active sites for above 20 hours of testing. A remarkable C2+ partial current density of-323 mA cm-2 was also achieved in a flow cell device. In situ Raman spectra and density functional theory (DFT) calculation studies validated that the *COatop intermediates are concentrated in the nanoreactor, which reduces the free energy of C-C coupling. This work unveiled a simple catalyst design strategy that would be applied to improve C2+ product selectivity and stability by rationalizing the geometric structures and components of catalysts.
Collapse
Affiliation(s)
- Min Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Xue Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Dawei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Ting Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Minghui Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
37
|
Du J, Li K, Wu J, Shi H, Song C, Guo X. In Situ Etching-Hydrolysis Strategy To Construct an In-Plane ZnIn 2S 4/In(OH) 3 Heterojunction with Enhanced CO 2 Photoreduction Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27301-27310. [PMID: 38757947 DOI: 10.1021/acsami.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The in-plane heterojunctions with atomic-level thickness and chemical-bond-connected tight interfaces possess high carrier separation efficiency and fully exposed surface active sites, thus exhibiting exceptional photocatalytic performance. However, the construction of in-plane heterojunctions remains a significant challenge. Herein, we prepared an in-plane ZnIn2S4/In(OH)3 heterojunction (ZISOH) by partial conversion of ZnIn2S4 to In(OH)3 through the addition of H2O2. This in situ oxidation etching-hydrolysis approach enables the ZISOH heterojunction to not only preserve the original nanosheet morphology of ZnIn2S4 but also form an intimate interface. Moreover, generated In(OH)3 serves as an electron-accepting platform and also promotes the adsorption of CO2. As a result, the heterojunction exhibits a remarkably enhanced performance for photocatalytic CO2 reduction. The production rate and selectivity of CO reach 1760 μmol g-1 h-1 and 78%, respectively, significantly higher than those of ZnIn2S4 (842 μmol g-1 h-1 and 65%). This work puts forward a feasible and facile approach to construct in-plane heterojunctions to enhance the photocatalytic performance of two-dimensional metal sulfides.
Collapse
Affiliation(s)
- Jun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Keyan Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiaming Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hainan Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, People's Republic of China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
38
|
Han J, Bai X, Xu X, Bai X, Husile A, Zhang S, Qi L, Guan J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem Sci 2024; 15:7870-7907. [PMID: 38817558 PMCID: PMC11134526 DOI: 10.1039/d4sc01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
39
|
Liu Z, Song L, Lv X, Liu M, Wen Q, Qian L, Wang H, Wang M, Han Q, Zheng G. Switching CO 2 Electroreduction toward Ethanol by Delocalization State-Tuned Bond Cleavage. J Am Chem Soc 2024; 146:14260-14266. [PMID: 38714344 DOI: 10.1021/jacs.4c03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The electrochemical CO2 reduction reaction by copper-based catalysts features a promising approach to generate value-added multicarbon (C2+) products. However, due to the unfavored formation of oxygenate intermediates on the catalyst surface, the selectivity of C2+ alcohols like ethanol remains unsatisfactory compared to that of ethylene. The bifurcation point (i.e., the CH2═CHO* intermediate adsorbed on Cu via a Cu-O-C linkage) is critical to the C2+ product selectivity, whereas the subsequent cleavage of the Cu-O or the O-C bond determines the ethanol or ethylene pathway. Inspired by the hard-soft acid-base theory, in this work, we demonstrate an electron delocalization tuning strategy of the Cu catalyst by a nitrene surface functionalization approach, which allows weakening and cleaving of the Cu-O bond of the adsorbed CH2═CHO*, as well as accelerating hydrogenation of the C═C bond along the ethanol pathway. As a result, the nitrene-functionalized Cu catalyst exhibited a much-enhanced ethanol Faradaic efficiency of 45% with a peak partial current density of 406 mA·cm-2, substantially exceeding that of unmodified Cu or amide-functionalized Cu. When assembled in a membrane electrode assembly electrolyzer, the catalyst presented a stable CO2-to-ethanol conversion for >300 h at an industrial current density of 400 mA·cm-2.
Collapse
Affiliation(s)
- Zhengzheng Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lu Song
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Mingtai Liu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Qianyou Wen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Linping Qian
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Haozhen Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Maoyin Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Qing Han
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
40
|
Li LJ, Mu WL, Tian YQ, Yu WD, Li LY, Yan J, Liu C. Ag 1+ incorporation via a Zr 4+-anchored metalloligand: fine-tuning catalytic Ag sites in Zr/Ag bimetallic clusters for enhanced eCO 2RR-to-CO activity. Chem Sci 2024; 15:7643-7650. [PMID: 38784741 PMCID: PMC11110141 DOI: 10.1039/d3sc07005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/24/2024] [Indexed: 05/25/2024] Open
Abstract
Attaining meticulous dominion over the binding milieu of catalytic metal sites remains an indispensable pursuit to tailor product selectivity and elevate catalytic activity. By harnessing the distinctive attributes of a Zr4+-anchored thiacalix[4]arene (TC4A) metalloligand, we have pioneered a methodology for incorporating catalytic Ag1+ sites, resulting in the first Zr-Ag bimetallic cluster, Zr2Ag7, which unveils a dualistic configuration embodying twin {ZrAg3(TC4A)2} substructures linked by an {AgSal} moiety. This cluster unveils a trinity of discrete Ag sites: a pair ensconced within {ZrAg3(TC4A)2} subunits and one located between two units. Expanding the purview, we have also crafted ZrAg3 and Zr2Ag2 clusters, meticulously mimicking the two Ag site environment inherent in the {ZrAg3(TC4A)2} monomer. The distinct structural profiles of Zr2Ag7, ZrAg3, and Zr2Ag provide an exquisite foundation for a precise comparative appraisal of catalytic prowess across three Ag sites intrinsic to Zr2Ag7. Remarkably, Zr2Ag7 eclipses its counterparts in the electroreduction of CO2, culminating in a CO faradaic efficiency (FECO) of 90.23% at -0.9 V. This achievement markedly surpasses the performance metrics of ZrAg3 (FECO: 55.45% at -1.0 V) and Zr2Ag2 (FECO: 13.09% at -1.0 V). Utilizing in situ ATR-FTIR, we can observe reaction intermediates on the Ag sites. To unveil underlying mechanisms, we employ density functional theory (DFT) calculations to determine changes in free energy accompanying each elementary step throughout the conversion of CO2 to CO. Our findings reveal the exceptional proficiency of the bridged-Ag site that interconnects paired {ZrAg3(TC4A)2} units, skillfully stabilizing *COOH intermediates, surpassing the stabilization efficacy of the other Ag sites located elsewhere. The invaluable insights gleaned from this pioneering endeavor lay a novel course for the design of exceptionally efficient catalysts tailored for CO2 reduction reactions, emphatically underscoring novel vistas this research unshrouds.
Collapse
Affiliation(s)
- Liang-Jun Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Lan-Yan Li
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
41
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
42
|
Zhang S, Zhao X, Qiu Y, Xiong Y, Meng G, Chen W, Liu Z, Zhang J. Electron Deficient Ir-O Bonds Promote Heterogeneous Ir-Catalyzed Anti-Markovnikov Hydroboration of Alkenes under Mild Neat Conditions. NANO LETTERS 2024; 24:5165-5173. [PMID: 38630980 DOI: 10.1021/acs.nanolett.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Tuning electronic characteristics of metal-ligand bonds based on reaction pathways to achieve efficient catalytic processes has been widely studied and proven to be feasible in homogeneous catalysis, but it is scarcely investigated in heterogeneous catalysis. Herein, we demonstrate the regulation of the electronic configuration of Ir-O bonds in an Ir single-atom catalyst according to the borane activation mechanism. Ir-O bonds in Ir1/Ni(OH)x are found to be more electron-poor than those in Ir1/NiOx. Despite the mild solvent-free conditions and ambient temperature, Ir1/Ni(OH)x exhibits outstanding performance for the hydroboration of alkenes, furnishing the desired alkylboronic esters with a turnover frequency value of ≤3060 h-1 and 99% anti-Markovnikov selectivity, which is significantly better than that of Ir1/NiOx (42 h-1). It is further proven that the more electron-poor Ir-O bonds as active centers are more oxidative and so benefit the activation of the H-B bond in the reductive pinacolborane.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xudong Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Yajun Qiu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
43
|
Liu Y, Zheng Y, Ren Y, Wang Y, You S, Liu M. Selective Nitrate Electroreduction to Ammonia on CNT Electrodes with Controllable Interfacial Wettability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7228-7236. [PMID: 38551367 DOI: 10.1021/acs.est.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
The development of electrocatalysts that can efficiently reduce nitrate (NO3-) to ammonia (NH3) has garnered increasing attention due to their potential to reduce carbon emissions and promote environmental protection. Intensive efforts have focused on catalyst development, but a thorough understanding of the effect of the microenvironment around the reactive sites of the catalyst is also crucial to maximize the performance of the electrocatalysts. This study explored an electrocatalytic system that utilized quaternary ammonium surfactants with a range of alkyl chain lengths to modify an electrode made of carbon nanotubes (CNT), with the goal of regulating interfacial wettability toward NO3- reduction. Trimethyltetradecylammonium bromide with a moderate alkyl chain length created a very hydrophobic interface, which led to a high selectivity in the production of NH3 (∼87%). Detailed mechanistic investigations that used operando Fourier-transform infrared (FTIR) spectroscopy and online differential electrochemical mass spectrometry (DEMS) revealed that the construction of a hydrophobic modified CNT played a synergistic role in suppressing a side reaction involving the generation of hydrogen, which would compete with the reduction of NO3-. This electrocatalytic system led to a favorable process for the reduction of NO3- to NH3 through a direct electron transfer pathway. Our findings underscore the significance of controlling the hydrophobic surface of electrocatalysts as an effective means to enhance electrochemical performance in aqueous media.
Collapse
Affiliation(s)
- Yanbiao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqing Zheng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
44
|
Wu J, Zhong H, Huang ZF, Zou JJ, Zhang X, Zhang YC, Pan L. Research progress of dual-atom site catalysts for photocatalysis. NANOSCALE 2024. [PMID: 38639199 DOI: 10.1039/d3nr06386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.
Collapse
Affiliation(s)
- Jinting Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haoming Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yong-Chao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
45
|
Geng Q, Fan L, Chen H, Zhang C, Xu Z, Tian Y, Yu C, Kang L, Yamauchi Y, Li C, Jiang L. Revolutionizing CO 2 Electrolysis: Fluent Gas Transportation within Hydrophobic Porous Cu 2O. J Am Chem Soc 2024; 146:10599-10607. [PMID: 38567740 DOI: 10.1021/jacs.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The success of electrochemical CO2 reduction at high current densities hinges on precise interfacial transportation and the local concentration of gaseous CO2. However, the creation of efficient CO2 transportation channels remains an unexplored frontier. In this study, we design and synthesize hydrophobic porous Cu2O spheres with varying pore sizes to unveil the nanoporous channel's impact on gas transfer and triple-phase interfaces. The hydrophobic channels not only facilitate rapid CO2 transportation but also trap compressed CO2 bubbles to form abundant and stable triple-phase interfaces, which are crucial for high-current-density electrocatalysis. In CO2 electrolysis, in situ spectroscopy and density functional theory results reveal that atomic edges of concave surfaces promote C-C coupling via an energetically favorable OC-COH pathway, leading to overwhelming CO2-to-C2+ conversion. Leveraging optimal gas transportation and active site exposure, the hydrophobic porous Cu2O with a 240 nm pore size (P-Cu2O-240) stands out among all the samples and exhibits the best CO2-to-C2+ productivity with remarkable Faradaic efficiency and formation rate up to 75.3 ± 3.1% and 2518.2 ± 8.1 μmol h-1 cm-2, respectively. This study introduces a novel paradigm for efficient electrocatalysts that concurrently addresses active site design and gas-transfer challenges.
Collapse
Affiliation(s)
- Qinghong Geng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longlong Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huige Chen
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhe Xu
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cunming Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Kang
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane 4072, QLD, Australia
| | - Cuiling Li
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
46
|
Wang Y, Liu Y, Cao P, Chen S, Su Y, Quan X. Promoting CO 2 Electroreduction to Ethane by Iodide-Derived Copper with the Hydrophobic Surface. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604119 DOI: 10.1021/acsami.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Electrochemical reduction of CO2 to value-added products provides a feasible pathway for mitigating net carbon emissions and storing renewable energy. However, the low dimerization efficiency of the absorbed CO intermediate (*CO) and the competitive hydrogen evolution reaction hinder the selective electroreduction of CO2 to ethane (C2H6) with a high energy density. Here, we designed hydrophobic iodide-derived copper electrodes (I-Cu/Nafion) for reducing CO2 to C2H6. The Faradaic efficiency of C2H6 reached 23.37% at -0.7 V vs RHE over the I-Cu/Nafion electrode in an H-type cell, which was about 1.7 times higher than that of the I-Cu electrode. The hydrophobic properties of the I-Cu/Nafion electrodes led to an increase in the local CO2 concentration and stabilized the Cu+ species. In situ Raman characterizations and density functional theory calculations indicate that the enhanced performances could be ascribed to the strong *CO adsorption and decreased the formation energy of *COOH and *COCOH intermediates. This study highlights the effect of the hydrophobic surface on Cu-based catalysts in the electroreduction of CO2 and provides a promising way to adjust the selectivity of C2 products.
Collapse
Affiliation(s)
- Yaqi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
47
|
Hu S, Chen Y, Zhang Z, Li S, Liu H, Kang X, Liu J, Ge S, Wang J, Lv W, Zeng Z, Zou X, Yu Q, Liu B. Ampere-Level Current Density CO 2 Reduction with High C 2+ Selectivity on La(OH) 3-Modified Cu Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308226. [PMID: 37972269 DOI: 10.1002/smll.202308226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Indexed: 11/19/2023]
Abstract
The carbon dioxide reduction reaction (CO2RR) driven by electricity can transform CO2 into high-value multi-carbon (C2+) products. Copper (Cu)-based catalysts are efficient but suffer from low C2+ selectivity at high current densities. Here La(OH)3 in Cu catalyst is introduced to modify its electronic structure towards efficient CO2RR to C2+ products at ampere-level current densities. The La(OH)3/Cu catalyst has a remarkable C2+ Faradaic efficiency (FEC2+) of 71.2% which is 2.2 times that of the pure Cu catalyst at a current density of 1,000 mA cm-2 and keeps stable for 8 h. In situ spectroscopy and density functional theory calculations both show that La(OH)3 modifies the electronic structure of Cu. This modification favors *CO adsorption, subsequent hydrogenation, *CO─*COH coupling, and consequently increases C2+ selectivity. This work provides a guidance on facilitating C2+ product formation, and suppressing hydrogen evolution by La(OH)3 modification, enabling efficient CO2RR at ampere-level current densities.
Collapse
Affiliation(s)
- Shuqi Hu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yumo Chen
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhiyuan Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shaohai Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Heming Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xin Kang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jiarong Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shiyu Ge
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Wei Lv
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
48
|
Zhang Z, Li M, Gao R, Yang S, Ma Q, Feng R, Dou H, Dang J, Wen G, Bai Z, Liu D, Feng M, Chen Z. Selective and Scalable CO 2 Electrolysis Enabled by Conductive Zinc Ion-Implanted Zeolite-Supported Cadmium Oxide Nanoclusters. J Am Chem Soc 2024; 146:6397-6407. [PMID: 38394777 DOI: 10.1021/jacs.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Catalyst supports play an essential role in catalytic reactions, hinting at pronounced metal-support effects. Zeolites are a propitious support in heterogeneous catalysts, while their use in the electrocatalytic CO2 reduction reaction has been limited as yet because of their electrically insulating nature and serious competing hydrogen evolution reaction (HER). Enlightened by theoretical prediction, herein, we implant zinc ions into the structural skeleton of a zeolite Y to strategically tailor a favorable electrocatalytic platform with remarkably enhanced electronic conduction and strong HER inhibition capability, which incorporates ultrafine cadmium oxide nanoclusters as guest species into the supercages of the tailored 12-ring window framework. The metal d-bandwidth tuning of cadmium by skeletal zinc steers the extent of substrate-molecule orbital mixing, enhancing the stabilization of the key intermediate *COOH while weakening the CO poisoning effect. Furthermore, the strong cadmium-zinc interplay causes a considerable thermodynamic barrier for water dissociation in the conversion of H+ to *H, potently suppressing the competing HER. Therefore, we achieve an industrial-level partial current density of 335 mA cm-2 and remarkable Faradaic efficiency of 97.1% for CO production and stably maintain Faradaic efficiency above 90% at the industrially relevant current density for over 120 h. This work provides a proof of concept of tailored conductive zeolite as a favorable electrocatalytic support for industrial-level CO2 electrolysis and will significantly enhance the adaptability of conductive zeolite-based electrocatalysts in a variety of electrocatalysis and energy conversion applications.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Minzhe Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Shuwen Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Haozhen Dou
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianan Dang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guobin Wen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
49
|
Zhang Z, Lu Q, Sun J, Li G, Wu W, Xu Z, Xu L, Wang Y. Unravelling the carbonate issue through the regulation of mass transport and charge transfer in mild acid. Chem Sci 2024; 15:2786-2791. [PMID: 38404394 PMCID: PMC10882487 DOI: 10.1039/d3sc06583a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
The electrochemical CO2 reduction reaction (CO2RR) triggered by renewable electricity provides a promising route to produce chemical feedstocks and fuels with low-carbon footprints. The intrinsic challenge for the current CO2RR electrolyzer is the carbonate issue arising from the reaction between hydroxide and CO2. Acid CO2RR electrolyzers, in principle, can effectively solve the carbonate formation, but it remains inevitable practically. In this work, we thoroughly investigated the electrode processes of the CO2RR on the benchmark Ag catalyst in mild acid. The root of the carbonate issue arises from the imbalanced supply-consumption rate of protons-the electron transfer vs. mass transport. Regulating the hydrodynamics substantially reduces the proton diffusion length by 80%, increasing the single-pass carbon utilization efficiency of CO2-to-CO to 44% at -100 mA cm-2. The fundamental difference between mass transport and electron transfer on the spatial and temporal scale still leads to unavoidable carbonate formation. Future work to design intrinsically active catalysts in strong acid or metal-cation-free media is critical to solving the carbonate issue.
Collapse
Affiliation(s)
- Zhongshuo Zhang
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
| | - Qian Lu
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, UNIST-NUIST Environment and Energy Jointed Lab, School of Environmental Science and Technology, Nanjing University of Information Science and Technology Nanjing P. R. China
| | - Jiping Sun
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
- School of Metallurgy and Environment, Central South University Changsha P. R. China
| | - Guangchao Li
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
- School of Metallurgy and Environment, Central South University Changsha P. R. China
| | - Weixing Wu
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
| | - Zhanyou Xu
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
| | - Liangpang Xu
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong Hong Kong, S. A. R. China
| |
Collapse
|
50
|
Hua Y, Zhu C, Zhang L, Dong F. Designing Surface and Interface Structures of Copper-Based Catalysts for Enhanced Electrochemical Reduction of CO 2 to Alcohols. MATERIALS (BASEL, SWITZERLAND) 2024; 17:600. [PMID: 38592003 PMCID: PMC10856707 DOI: 10.3390/ma17030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Electrochemical CO2 reduction (ECR) has emerged as a promising solution to address both the greenhouse effect caused by CO2 emissions and the energy shortage resulting from the depletion of nonrenewable fossil fuels. The production of multicarbon (C2+) products via ECR, especially high-energy-density alcohols, is highly desirable for industrial applications. Copper (Cu) is the only metal that produces alcohols with appreciable efficiency and kinetic viability in aqueous solutions. However, poor product selectivity is the main technical problem for applying the ECR technology in alcohol production. Extensive research has resulted in the rational design of electrocatalyst architectures using various strategies. This design significantly affects the adsorption energetics of intermediates and the reaction pathways for alcohol production. In this review, we focus on the design of effective catalysts for ECR to alcohols, discussing fundamental principles, innovative strategies, and mechanism understanding. Furthermore, the challenges and prospects in utilizing Cu-based materials for alcohol production via ECR are discussed.
Collapse
Affiliation(s)
- Yanbo Hua
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University Shanghai, Shanghai 200438, China
| | - Chenyuan Zhu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Liming Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University Shanghai, Shanghai 200438, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|