1
|
Gibb R, Redding DW, Friant S, Jones KE. Towards a 'people and nature' paradigm for biodiversity and infectious disease. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230259. [PMID: 39780600 PMCID: PMC11712283 DOI: 10.1098/rstb.2023.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Zoonotic and vector-borne infectious diseases are among the most direct human health consequences of biodiversity change. The COVID-19 pandemic increased health policymakers' attention on the links between ecological degradation and disease, and sparked discussions around nature-based interventions to mitigate zoonotic emergence and epidemics. Yet, although disease ecology provides an increasingly granular knowledge of wildlife disease in changing ecosystems, we still have a poor understanding of the net consequences for human disease. Here, we argue that a renewed focus on wildlife-borne diseases as complex socio-ecological systems-a 'people and nature' paradigm-is needed to identify local interventions and transformative system-wide changes that could reduce human disease burden. We discuss longstanding scientific narratives of human involvement in zoonotic disease systems, which have largely framed people as ecological disruptors, and discuss three emerging research areas that provide wider system perspectives: how anthropogenic ecosystems construct new niches for infectious disease, feedbacks between disease, biodiversity and social vulnerability and the role of human-to-animal pathogen transmission ('spillback') in zoonotic disease systems. We conclude by discussing new opportunities to better understand the predictability of human disease outcomes from biodiversity change and to integrate ecological drivers of disease into health intervention design and evaluation.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
- Rory Gibb
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment,, University College London, LondonWC1E 6BT, UK
| | | | - Sagan Friant
- Department of Anthropology, Pennsylvania State University, University Park, PA16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment,, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
2
|
Loy DS, Birn R, Poonsuk K, Tegomoh B, Bartling A, Wiley MR, Loy JD. SARS-CoV-2 surveillance and detection in wild, captive, and domesticated animals in Nebraska: 2021-2023. Front Vet Sci 2025; 11:1496207. [PMID: 39830165 PMCID: PMC11739072 DOI: 10.3389/fvets.2024.1496207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Widespread surveillance for SARS-CoV-2 was conducted across wildlife, captive animals in zoological collections, and domestic cats in Nebraska from 2021 to 2023. The goal of this effort was to determine the prevalence, phylogenetic and spatial distribution characteristics of circulating SARS-CoV-2 variants using various diagnostic methodologies that can utilize both antemortem and postmortem samples, which may be required for wildlife such as white-tailed deer. Statewide surveillance testing revealed high variation in SARS-CoV-2 prevalence among species, with white-tailed deer identified as the primary reservoir. In 2021, seroprevalence in white-tailed deer was 63.73% (n = 91) and 39.66% (n = 237) in 2022, while virus detection in retropharyngeal lymph nodes (RLN) was 16.35% (n = 483) in 2021 and 3.61% (n = 277) in 2022. Phylogenetic analysis was conducted on 11 positive samples from 2021. This analysis revealed the presence of four lineages of the Delta variant: AY.100, AY.119, AY.3, and AY.46.4. Conversely, other species showed no virus detection, except domestic cats, which had a low seroprevalence of 2.38% (n = 628) in 2022, indicating minimal exposure. The detection of SARS-CoV-2 in white-tailed deer and the identification of multiple Delta lineages underscores the need for ongoing surveillance and the importance of using different diagnostic methodologies. These efforts are critical for understanding virus circulation and evolution in wildlife and domestic animals, informing public health strategies, and mitigating the risks of zoonotic transmission of SARS-CoV-2 and other emerging infectious diseases.
Collapse
Affiliation(s)
- Duan Sriyotee Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rachael Birn
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Korakrit Poonsuk
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
- Washington Animal Disease Diagnostic Laboratory, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Bryan Tegomoh
- Division of Public Health, Nebraska Department of Health and Human Services, Lincoln, NE, United States
| | - Amanda Bartling
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael R. Wiley
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Naderi S, Sagan SM, Shapiro BJ. Within-host genetic diversity of SARS-CoV-2 across animal species. Virus Evol 2024; 11:veae117. [PMID: 39830312 PMCID: PMC11739616 DOI: 10.1093/ve/veae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Infectious disease transmission to different host species makes eradication very challenging and expands the diversity of evolutionary trajectories taken by the pathogen. Since the beginning of the ongoing COVID-19 pandemic, SARS-CoV-2 has been transmitted from humans to many different animal species, in which viral variants of concern could potentially evolve. Previously, using available whole genome consensus sequences of SARS-CoV-2 from four commonly sampled animals (mink, deer, cat, and dog), we inferred similar numbers of transmission events from humans to each animal species. Using a genome-wide association study, we identified 26 single nucleotide variants (SNVs) that tend to occur in deer-more than any other animal-suggesting a high rate of viral adaptation to deer. The reasons for this rapid adaptive evolution remain unclear, but within-host evolution-the ultimate source of the viral diversity that transmits globally-could provide clues. Here, we quantify intra-host SARS-CoV-2 genetic diversity across animal species and show that deer harbor more intra-host SNVs (iSNVs) than other animals, providing a larger pool of genetic diversity for natural selection to act upon. Mixed infections involving more than one viral lineage are unlikely to explain the higher diversity within deer. Rather, a combination of higher mutation rates, longer infections, and species-specific selective pressures are likely explanations. Combined with extensive deer-to-deer transmission, the high levels of within-deer viral diversity help explain the apparent rapid adaptation of SARS-CoV-2 to deer.
Collapse
Affiliation(s)
- Sana Naderi
- Department of Microbiology and Immunology, McGill University, 3775 University Street Montreal, QC H3A 2B4, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, 3775 University Street Montreal, QC H3A 2B4, Canada
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall #1365 Vancouver, BC V6T 1Z3, Canada
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, 3775 University Street Montreal, QC H3A 2B4, Canada
- McGill Genome Centre, 740 avenue Dr Penfield Montreal, QC H3A 0G1, Canada
| |
Collapse
|
4
|
Lu J, Tan S, Gu H, Liu K, Huang W, Yu Z, Lu G, Wu Z, Gao X, Zhao J, Yao Z, Yi F, Yang Y, Wang H, Hu X, Lu M, Li W, Zhou H, Yu H, Shan C, Lin J. Effectiveness of a broad-spectrum bivalent mRNA vaccine against SARS-CoV-2 variants in preclinical studies. Emerg Microbes Infect 2024; 13:2321994. [PMID: 38377136 PMCID: PMC10906132 DOI: 10.1080/22221751.2024.2321994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Vaccines utilizing modified messenger RNA (mRNA) technology have shown robust protective efficacy against SARS-CoV-2 in humans. As the virus continues to evolve in both human and non-human hosts, risk remains that the performance of the vaccines can be compromised by new variants with strong immune escape abilities. Here we present preclinical characterizations of a novel bivalent mRNA vaccine RQ3025 for its safety and effectiveness in animal models. The mRNA sequence of the vaccine is designed to incorporate common mutations on the SARS-CoV-2 spike protein that have been discovered along the evolutionary paths of different variants. Broad-spectrum, high-titer neutralizing antibodies against multiple variants were induced in mice (BALB/c and K18-hACE2), hamsters and rats upon injections of RQ3025, demonstrating advantages over the monovalent mRNA vaccines. Effectiveness in protection against several newly emerged variants is also evident in RQ3025-vaccinated rats. Analysis of splenocytes derived cytokines in BALB/c mice suggested that a Th1-biased cellular immune response was induced by RQ3025. Histological analysis of multiple organs in rats following injection of a high dose of RQ3025 showed no evidence of pathological changes. This study proves the safety and effectiveness of RQ3025 as a broad-spectrum vaccine against SARS-CoV-2 variants in animal models and lays the foundation for its potential clinical application in the future.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Shudan Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Hao Gu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Kunpeng Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wei Huang
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Zhaoli Yu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Guoliang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| | - Zihan Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| | - Xiaobo Gao
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Zongting Yao
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Feng Yi
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Yantao Yang
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Hu Wang
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Xue Hu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wei Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| | - Hui Zhou
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Hang Yu
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, People’s Republic of China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, People’s Republic of China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Center for mRNA Translational Research, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Kulkarni PM, Basagoudanavar SH, Gopinath S, Patangia H, Gupta PK, Sreenivasa BP, Senthilkumar D, Sharma R, Bhatia S, Sharma GK, Bhanuprakash V, Saikumar G, Yadav P, Singh RK, Sanyal A, Hosamani M. Characterization of monoclonal antibodies targeting SARS-CoV-2 spike glycoprotein: Reactivity against Delta and Omicron BA.1 variants. J Virol Methods 2024; 330:115027. [PMID: 39216601 DOI: 10.1016/j.jviromet.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The cross-species transmissibility of SARS-CoV-2 infection has necessitated development of specific reagents for detecting infection in various animal species. The spike glycoprotein of SARS-CoV-2, which is involved in viral entry, is a highly immunogenic protein. To develop assays targeting this protein, we generated eight monoclonal antibodies (mAbs) against the S1 and seven against the S1/S2 protein (ectodomain) of SARS CoV-2. Based on neutralization capability and reactivity profile observed in ELISA, the mAbs generated against the S1/S2 antigen exhibited a broader spectrum of epitope specificity than those produced against the S1 domain alone. The full-length ectodomain induced antibodies that could neutralize the two most important variants of the virus encountered during the pandemic, namely Delta and Omicron. The availability of these reagents could greatly enhance the development of precise diagnostics for detecting COVID-19 infections in various host species and contribute to the advancement of mAb-based therapeutics.
Collapse
Affiliation(s)
- Pratik M Kulkarni
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | | | - Shreya Gopinath
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - Harshita Patangia
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - P K Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - Dhanpal Senthilkumar
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Rahul Sharma
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Gaurav Kumar Sharma
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - V Bhanuprakash
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - G Saikumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Pragya Yadav
- ICMR-National Institute of Virology, 20/ A Dr. Ambedkar Road, Pune, Maharashtra 411001, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Aniket Sanyal
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - M Hosamani
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India.
| |
Collapse
|
6
|
Castillo AP, Miranda JVO, Fonseca PLC, Moreira RG, de Araújo E Santos LCG, Queiroz DC, Bonfim DM, Coelho CM, Lima PCS, Motta ROC, Tinoco HP, da Silveira JAG, Aguiar RS. SARS-CoV-2 surveillance in captive animals at the belo horizonte zoo, Minas Gerais, Brazil. Virol J 2024; 21:297. [PMID: 39563414 PMCID: PMC11575034 DOI: 10.1186/s12985-024-02505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The pandemic caused by SARS-CoV-2 has not only affected humans but also raised concerns about its transmission to wild animals, potentially creating natural reservoirs. Understanding these dynamics is critical for preventing future pandemics and developing control strategies. This study aims to investigate the presence of SARS-CoV-2 in wild mammals at the Belo Horizonte Zoo in Brazil, analyzing the virus's evolution and zoonotic potential. METHODS The study was conducted at the Belo Horizonte Zoo, Minas Gerais, Brazil, covering a diverse population of mammals. Oropharyngeal, rectal, and nasal swabs were collected from 47 captive animals between November 2021 and March 2023. SARS-CoV-2 presence was determined using RT-PCR, and positive samples were sequenced for phylogenetic analysis. Consensus genomes were classified using Pangolin and NextClade tools, and a maximum likelihood phylogeny was inferred using IQ-Tree. RESULTS Of the 47 animals tested, nine (19.1%) were positive for SARS-CoV-2. Positive samples included rectal, oropharyngeal, and nasal swabs, with the highest positivity in rectal samples. Three genomes were successfully sequenced, revealing two variants: VOC Alpha in a maned wolf (Chrysocyon brachyurus) and a fallow deer (Dama dama), and VOC Omicron in a western lowland gorilla (Gorilla gorilla gorilla). Phylogenetic analysis indicated potential human-to-animal transmission, with animal genomes clustering close to human samples from the same region. CONCLUSIONS This study highlights the presence of SARS-CoV-2 in various wild mammal species at the Belo Horizonte Zoo, emphasizing the virus's zoonotic potential and the complexity of interspecies transmission. The detection of different variants suggests ongoing viral evolution and adaptation in new hosts. Continuous monitoring and genomic surveillance of SARS-CoV-2 in wildlife are essential for understanding its transmission dynamics and preventing future zoonotic outbreaks. These findings underscore the need for integrated public health strategies that include wildlife monitoring to mitigate the risks posed by emerging infectious diseases.
Collapse
Affiliation(s)
- Anisleidy Pérez Castillo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Victor Oliveira Miranda
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Luize Camargos Fonseca
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rennan Garcias Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza Campos Guerra de Araújo E Santos
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Menezes Bonfim
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlyle Mendes Coelho
- Fundação de Parques Municipais E Zoobotânica - FPMZB, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Herlandes Penha Tinoco
- Fundação de Parques Municipais E Zoobotânica - FPMZB, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Angélica Gonçalves da Silveira
- Laboratório de PROTOVET, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Renato Santana Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia E Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Moatasim Y, Aboulhoda BE, Gomaa M, El Taweel A, Kutkat O, Kamel MN, El Sayes M, GabAllah M, Elkhrsawy A, AbdAllah H, Kandeil A, Ali MA, Kayali G, El-Shesheny R. Genetic and pathogenic potential of highly pathogenic avian influenza H5N8 viruses from live bird markets in Egypt in avian and mammalian models. PLoS One 2024; 19:e0312134. [PMID: 39471134 PMCID: PMC11521303 DOI: 10.1371/journal.pone.0312134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024] Open
Abstract
Since its first isolation from migratory birds in Egypt in 2016, highly pathogenic avian influenza (HPAI) H5N8 has caused several outbreaks among domestic poultry in various areas of the country affecting poultry health and production systems. However, the genetic and biological properties of the H5N8 HPAI viruses have not been fully elucidated yet. In this study, we aimed to monitor the evolution of circulating H5N8 viruses and identify the pathogenicity and mammalian adaptation in vitro and in vivo. Three H5N8 HPAI viruses were used in this study and were isolated in 2021-2022 from poultry and wild birds during our routine surveillance. RNA extracts were subjected to full genome sequencing. Genetic, phylogenetic, and antigenic analyses were performed to assess viral characteristics and similarities to previously isolated viruses. Phylogenetic analysis showed that the hemagglutinin genes of the three isolates belonged to clade 2.3.4.4b and grouped with the 2019 viruses from G3 with high similarity to Russian and European lineages. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, several mutations associated with increased virulence and polymerase activity in mammals were observed. Growth kinetics assays showed that the H5N8 isolate is capable of replicating efficiently in mammalian cells lines. In vivo studies were conducted in SPF chickens (White Leghorn), mice, and hamsters to compare the virological characteristics of the 2022 H5N8 isolates with previous H5N8 viruses isolated in 2016 from the first introduction. The H5N8 viruses caused lethal infection in all tested chickens and transmitted by direct contact. However, we showed that the 2016 H5N8 virus causes a higher mortality in chickens compared to 2022 H5N8 virus. Moreover, the 2022 virus can replicate efficiently in hamsters and mice without preadaptation causing systemic infection. These findings underscore the need for continued surveillance of H5 viruses to identify circulating strains, determine the commercial vaccine's effectiveness, and identify zoonotic potential.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mokhtar Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Amany Elkhrsawy
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Hend AbdAllah
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | | | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Bashor L, Gallichotte EN, Galvan M, Erbeck K, Croft L, Stache K, Stenglein M, Johnson JG, Pabilonia K, VandeWoude S. SARS-CoV-2 within-host population expansion, diversification and adaptation in zoo tigers, lions and hyenas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620075. [PMID: 39484504 PMCID: PMC11527109 DOI: 10.1101/2024.10.24.620075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
SARS-CoV-2 rapidly adapts to new hosts following cross-species transmission; this is highly relevant as novel within-host variants have emerged following infection of susceptible wild and domestic animal species. Furthermore, SARS-CoV-2 transmission from animals (e.g., white-tailed deer, mink, domestic cats, and others) back to humans has also been observed, documenting the potential of novel animal-derived variants to infect humans. We investigated SARS-CoV-2 evolution and host-specific adaptation during an outbreak in Amur tigers (Panthera tigris altaica), African lions (Panthera leo), and spotted hyenas (Crocuta crocuta) at Denver Zoo in late 2021. SARS-CoV-2 genomes from longitudinal samples collected from 16 individuals were evaluated for within-host variation and genomic signatures of selection. The outbreak was likely initiated by a single spillover of a rare Delta sublineage subsequently transmitted from tigers to lions to hyenas. Within-host virus populations rapidly expanded and diversified. We detected signatures of purifying and positive selection, including strong positive selection in hyenas and in the nucleocapsid (N) gene in all animals. Four candidate species-specific adaptive mutations were identified: N A254V in lions and hyenas, and ORF1a E1724D, spike T274I, and N P326L in hyenas. These results reveal accelerated SARS-CoV-2 adaptation following host shifts in three non-domestic species in daily contact with humans.
Collapse
Affiliation(s)
- Laura Bashor
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Michelle Galvan
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Colorado State University Veterinary Diagnostic Laboratories
| | | | | | - Mark Stenglein
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | | | - Sue VandeWoude
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
9
|
Li Y, Hu J, Hou J, Lu S, Xiong J, Wang Y, Sun Z, Chen W, Pan Y, Thilakavathy K, Feng Y, Jiang Q, Wang W, Xiong C. Study on sentinel hosts for surveillance of future COVID-19-like outbreaks. Sci Rep 2024; 14:24595. [PMID: 39427096 PMCID: PMC11490639 DOI: 10.1038/s41598-024-76506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
The spread of SARS-CoV-2 to animals has the potential to evolve independently. In this study, we distinguished several sentinel animal species and genera for monitoring the re-emergence of COVID-19 or the new outbreak of COVID-19-like disease. We analyzed SARS-CoV-2 genomic data from human and nonhuman mammals in the taxonomic hierarchies of species, genus, family and order of their host. We find that SARS-CoV-2 carried by domestic dog (Canis lupus familiaris), domestic cat (Felis catus), mink (Neovison vison), and white-tailed deer (Odocoileus virginianus) cluster closely to human-origin viruses and show no differences in the majority of amino acids, but have the most positively selected sites and should be monitored to prevent the re-emergence of COVID-19 caused by novel variants of SARS-CoV-2. Viruses from the genera Panthera (especially lion (Panthera leo)), Manis and Rhinolophus differ significantly from human-origin viruses, and long-term surveillance should be undertaken to prevent the future COVID-19-like outbreaks. Investigation of the variation dynamics of sites 142, 501, 655, 681 and 950 within the S protein may be necessary to predict the novel animal SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yanjiao Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Jingjing Hu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Jingjing Hou
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shuiping Lu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Jiasheng Xiong
- Division of Emergency Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Yuxi Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Zhong Sun
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Weijie Chen
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Yue Pan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Karuppiah Thilakavathy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingwu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China
| | - Weibing Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China.
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Gallichotte EN, Bashor L, Erbeck K, Croft L, Stache K, Long J, VandeWoude S, Johnson JG, Pabilonia KL, Ebel GD. SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617443. [PMID: 39464021 PMCID: PMC11507794 DOI: 10.1101/2024.10.14.617443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In late 2019, SARS-CoV-2 spilled-over from an animal host into humans, where it efficiently spread, resulting in the COVID-19 pandemic. Through both natural and experimental infections, we learned that many animal species are susceptible to SARS-CoV-2. Importantly, animals in close proximity to humans, including companion, farmed, and those at zoos and aquariums, became infected, and many studies demonstrated transmission to/from humans in these settings. In this study, we first review the literature of SARS-CoV-2 infections in tigers and lions, and compare species, sex, age, virus and antibody detection assay, and types, frequency and length of clinical signs, demonstrating broad heterogeneity amongst infections. We then describe a SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo in late 2021. Animals were tested for viral RNA (vRNA) for four months. Lions had significantly more viral RNA in nasal swabs than both tigers and hyenas, and many individual lions experienced viral recrudescence after weeks of undetectable vRNA. Infectious virus was correlated with high levels of vRNA and was more likely to be detected earlier during infection. Four months post-infection, all tested animals generated robust neutralizing antibody titers. Animals were infected with Delta lineage AY.20 identical to a variant circulating at less than 1% in Colorado humans at that time, suggesting a single spillover event from an infected human spread within and between species housed at the zoo. Better understanding of epidemiology and susceptibility of SARS-CoV-2 infections in animals is critical to limit the current and future spread and protect animal and human health.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Laura Bashor
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Veterinary Diagnostic Laboratories, Colorado State University
| | | | | | | | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Kristy L Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University
- Veterinary Diagnostic Laboratories, Colorado State University
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
11
|
Li M, Lv F, Li Z, Zhao C, Wang X, Zhu P, Zhou X. Cross-Species Susceptibility of Emerging Variants of SARS-CoV-2 Spike. Genes (Basel) 2024; 15:1321. [PMID: 39457447 PMCID: PMC11507407 DOI: 10.3390/genes15101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The continuous evolution of SARS-CoV-2 and the emergence of novel variants with numerous mutations have heightened concerns surrounding the possibility of cross-species transmission and the establishment of natural animal reservoirs for the virus, but the host range of emerging SARS-CoV-2 variants has not been fully explored yet. METHODS We employed an in vitro model comprising VSV∆G* pseudotyped viruses bearing SARS-CoV-2 spike proteins to explore the plausible host range of SARS-CoV-2 emerging variants. RESULTS The overall host tropism of emerging SARS-CoV-2 variants are consistent with that of the SARS-CoV-2 wuhan-hu-1 strain with minor difference. Pseudotyped viruses bearing spike protein from RaTG13 and RmYN02 can enter cell cultures from a broad range of mammalian species, revealing that mink and hamsters may act as potential intermediate hosts. We further investigated 95 potential site-specific mutations in the SARS-CoV-2 spike protein that could impact viral infectivity across different species. The results showed that 13 of these mutations notably increased the transduction rates by more than two-fold when compared to the wild-type spike protein. Further examination of these 13 mutations within cell cultures from 31 different species revealed heightened sensitivity in cells derived from palm civets, minks, and Chinese horseshoe bats to the VSV∆G*-SARS2-S mutants. Specific mutations, such as L24F, R158G, and L212I, were seen to significantly enhance the capacity for SARS-CoV-2 of cross-species transmission. CONCLUSIONS This study offers critical insights for the ongoing surveillance and monitoring efforts of SARS-CoV-2 evolution, emphasizing the need for the vigilant monitoring of specific mutations in both human and animal populations.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Fei Lv
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyu Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| |
Collapse
|
12
|
Lunardi M, Martins FDC, Gustani-Buss E, Chideroli RT, de Oliveira IM, Peronni KC, Figueiredo DLA, Alfieri AF, Alfieri AA. Higher Frequency of SARS-CoV-2 RNA Shedding by Cats than Dogs in Households with Owners Recently Diagnosed with COVID-19. Viruses 2024; 16:1599. [PMID: 39459932 PMCID: PMC11512312 DOI: 10.3390/v16101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Studies have demonstrated the susceptibility of companion animals to natural infection with SARS-CoV-2. Using quantitative reverse transcription polymerase chain reaction and sequencing analyses, this study investigated SARS-CoV-2 RNA excretion in pets in households with infected owners. Oropharyngeal and rectal swabs were collected from dogs and cats in Parana, Southern Brazil, between October 2020 and April 2021. Viral RNA was detected in 25% of cats and 0.98% of dog oropharyngeal swabs; however, systemic, respiratory, and gastrointestinal signs were absent. Complete viral genomes belonged to the Gamma lineage. Phylogenetic analyses indicated that pet samples were probably derived from human-positive cases in Parana. Viral excretion in the oropharynx was more frequent in cats than in dogs. Mutations in the S protein characteristic of Gamma strains were present in all sequenced SARS-CoV-2 strains. The receptor-binding domain of these Brazilian strains did not show any additional mutations not reported in the Gamma strains. Mutations in NSP6, NSP12, and N proteins previously mapped to strains that infect deer or minks were detected. This study highlights the importance of actively monitoring the SARS-CoV-2 strains that infect pets with continued viral exposure. Monitoring genetic changes is crucial because new variants adapted to animals may pose human health risks.
Collapse
Affiliation(s)
- Michele Lunardi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (M.L.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, University Pitagoras Unopar, Arapongas 86702-670, Brazil
| | - Felippe Danyel Cardoso Martins
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Post Graduate Program in Animal Science, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Emanuele Gustani-Buss
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven—University of Leuven, Box 1030, 3000 Leuven, Belgium;
| | - Roberta Torres Chideroli
- Post Graduate Program in Animal Science, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | | | - Kamila Chagas Peronni
- Institute for Cancer Research, IPEC, Guarapuava 85100-000, Brazil; (I.M.d.O.); (K.C.P.); (D.L.A.F.)
| | - David Livingstone Alves Figueiredo
- Institute for Cancer Research, IPEC, Guarapuava 85100-000, Brazil; (I.M.d.O.); (K.C.P.); (D.L.A.F.)
- Department of Medicine, Midwestern Parana State University—UNICENTRO, Guarapuava 85040-167, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (M.L.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (M.L.); (A.F.A.)
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
13
|
Cook JD, Rosenblatt E, Direnzo GV, Campbell Grant EH, Mosher BA, Arce F, Christensen SA, Ghai RR, Runge MC. One Health collaboration is more effective than single-sector actions at mitigating SARS-CoV-2 in deer. Nat Commun 2024; 15:8677. [PMID: 39375325 PMCID: PMC11458903 DOI: 10.1038/s41467-024-52737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
One Health aims to achieve optimal health outcomes for people, animals, plants, and shared environments. We describe a multisector effort to understand and mitigate SARS-CoV-2 transmission risk to humans via the spread among and between captive and wild white-tailed deer. We first framed a One Health problem with three governance sectors that manage captive deer, wild deer populations, and public health. The problem framing included identifying fundamental objectives, causal chains for transmission, and management actions. We then developed a dynamic model that linked deer herds and simulated SARS-CoV-2. Next, we evaluated management alternatives for their ability to reduce SARS-CoV-2 spread in white-tailed deer. We found that single-sector alternatives reduced transmission, but that the best-performing alternative required collaborative actions among wildlife management, agricultural management, and public health agencies. Here, we show quantitative support that One Health actions outperform single-sector responses, but may depend on coordination to track changes in this evolving system.
Collapse
Affiliation(s)
- Jonathan D Cook
- U. S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA.
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Graziella V Direnzo
- U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, MA, USA
| | | | - Brittany A Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Fernando Arce
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sonja A Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Ria R Ghai
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael C Runge
- U. S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
| |
Collapse
|
14
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
15
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
16
|
Rosenblatt E, Cook JD, DiRenzo GV, Grant EHC, Arce F, Pepin KM, Rudolph FJ, Runge MC, Shriner S, Walsh DP, Mosher BA. Epidemiological modeling of SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) reveals conditions for introduction and widespread transmission. PLoS Comput Biol 2024; 20:e1012263. [PMID: 38995977 PMCID: PMC11268674 DOI: 10.1371/journal.pcbi.1012263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/24/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Emerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios. We found that captive scenarios pose a higher risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission among deer, compared to wild herds. However, even in wild herds, the transmission risk is often substantial enough to sustain infections. Furthermore, we demonstrate that the strength of introduction from humans influences outbreak characteristics only to a certain extent. Transmission among deer was frequently sufficient for widespread outbreaks in deer populations, regardless of the initial level of introduction. We also explore the potential for fence line interactions between captive and wild deer to elevate outbreak metrics in wild herds that have the lowest risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2 could be introduced and maintained in deer herds across a range of circumstances based on testing a range of introduction and transmission risks in various captive and wild scenarios. Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2 outbreaks in white-tailed deer populations and potential spillback to humans.
Collapse
Affiliation(s)
- Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| | - Jonathan D. Cook
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Graziella V. DiRenzo
- U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Evan H. Campbell Grant
- U.S. Geological Survey, Eastern Ecological Science Center, Turner’s Falls, Massachusetts, United States of America
| | - Fernando Arce
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kim M. Pepin
- National Wildlife Research Center, USDA, APHIS, Fort Collins, Colorado, United States of America
| | - F. Javiera Rudolph
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
- Department of Ecosystem Sciences and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael C. Runge
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Susan Shriner
- National Wildlife Research Center, USDA, APHIS, Fort Collins, Colorado, United States of America
| | - Daniel P. Walsh
- U. S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana, United States of America
| | - Brittany A. Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
17
|
Milich KM, Morse SS. The reverse zoonotic potential of SARS-CoV-2. Heliyon 2024; 10:e33040. [PMID: 38988520 PMCID: PMC11234007 DOI: 10.1016/j.heliyon.2024.e33040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
There has been considerable emphasis recently on the zoonotic origins of emerging infectious diseases in humans, including the SARS-CoV-2 pandemic; however, reverse zoonoses (infections transmitted from humans to other animals) have received less attention despite their potential importance. The effects can be devastating for the infected species and can also result in transmission of the pathogen back to human populations or other animals either in the original form or as a variant. Humans have transmitted SARS-CoV-2 to other animals, and the virus is able to circulate and evolve in those species. As global travel resumes, the potential of SARS-CoV-2 as a reverse zoonosis threatens humans and endangered species. Nonhuman primates are of particular concern given their susceptibility to human respiratory infections. Enforcing safety measures for all people working in and visiting wildlife areas, especially those with nonhuman primates, and increasing access to safety measures for people living near protected areas that are home to nonhuman primates will help mitigate reverse zoonotic transmission.
Collapse
Affiliation(s)
- Krista M. Milich
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, United States
| | - Stephen S. Morse
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 West 168th St., NY, NY, 10032, United States
| |
Collapse
|
18
|
Teixeira AIP. The continuous surprises that SARS-CoV-2 presents to the scientific community - Correspondence about the Paper Fusco G, Cardillo L, Levante M, Brandi S, Picazio G, Napoletano M, Martucciello A, Fiorito F, De Carlo E, De Martinis C. First serological evidence of SARS-CoV-2 natural infection in small ruminants: brief report. Vet Res Commun. 2023 sep;47(3):1741-1748. Doi: 10.1007/s11259-022-10044-3. Vet Res Commun 2024; 48:1311-1312. [PMID: 38291149 DOI: 10.1007/s11259-024-10315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
|
19
|
Porter SM, Hartwig AE, Bielefeldt-Ohmann H, Marano JM, Root JJ, Bosco-Lauth AM. Experimental SARS-CoV-2 Infection of Elk and Mule Deer. Emerg Infect Dis 2024; 30:354-357. [PMID: 38270133 PMCID: PMC10826780 DOI: 10.3201/eid3002.231093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.
Collapse
|
20
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
21
|
Nuwer R. Chimpanzees are dying from our colds - these scientists are trying to save them. Nature 2024; 625:442-446. [PMID: 38228794 DOI: 10.1038/d41586-024-00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
|
22
|
Anderson TK, Medina RA, Nelson MI. The Evolution of SARS-CoV-2 and Influenza A Virus at the Human–Animal Interface. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:549-572. [DOI: 10.1016/b978-0-443-28818-0.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Kotwa JD, Lobb B, Massé A, Gagnier M, Aftanas P, Banerjee A, Banete A, Blais-Savoie J, Bowman J, Buchanan T, Chee HY, Kruczkiewicz P, Nirmalarajah K, Soos C, Vernygora O, Yip L, Lindsay LR, McGeer AJ, Maguire F, Lung O, Doxey AC, Pickering B, Mubareka S. Genomic and transcriptomic characterization of delta SARS-CoV-2 infection in free-ranging white-tailed deer ( Odocoileus virginianus). iScience 2023; 26:108319. [PMID: 38026171 PMCID: PMC10665813 DOI: 10.1016/j.isci.2023.108319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023] Open
Abstract
White-tailed deer (WTD) are susceptible to SARS-CoV-2 and represent an important species for surveillance. Samples from WTD (n = 258) collected in November 2021 from Québec, Canada were analyzed for SARS-CoV-2 RNA. We employed viral genomics and host transcriptomics to further characterize infection and investigate host response. We detected Delta SARS-CoV-2 (B.1.617.2) in WTD from the Estrie region; sequences clustered with human sequences from October 2021 from Vermont, USA, which borders this region. Mutations in the S-gene and a deletion in ORF8 were detected. Host expression patterns in SARS-CoV-2 infected WTD were associated with the innate immune response, including signaling pathways related to anti-viral, pro- and anti-inflammatory signaling, and host damage. We found limited correlation between genes associated with innate immune response from human and WTD nasal samples, suggesting differences in responses to SARS-CoV-2 infection. Our findings provide preliminary insights into host response to SARS-CoV-2 infection in naturally infected WTD.
Collapse
Affiliation(s)
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ariane Massé
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec City, QC G1S 4X4, Canada
| | - Marianne Gagnier
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec City, QC G1S 4X4, Canada
| | | | - Arinjay Banerjee
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andra Banete
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - Jeff Bowman
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON K9J 8M5, Canada
| | - Tore Buchanan
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON K9J 8M5, Canada
| | - Hsien-Yao Chee
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Global Health Research Center and Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu 215316, China
| | - Peter Kruczkiewicz
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | | | - Catherine Soos
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Oksana Vernygora
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - L. Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3L5, Canada
| | - Allison J. McGeer
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Finlay Maguire
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Shared Hospital Laboratory, Toronto, ON M4N 3M5, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bradley Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
24
|
Gomez-Romero N, Basurto-Alcantara FJ, Velazquez-Salinas L. Assessing the Potential Role of Cats ( Felis catus) as Generators of Relevant SARS-CoV-2 Lineages during the Pandemic. Pathogens 2023; 12:1361. [PMID: 38003825 PMCID: PMC10675002 DOI: 10.3390/pathogens12111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Several questions regarding the evolution of SARS-CoV-2 remain poorly elucidated. One of these questions is the possible evolutionary impact of SARS-CoV-2 after the infection in domestic animals. In this study, we aimed to evaluate the potential role of cats as generators of relevant SARS-CoV-2 lineages during the pandemic. A total of 105 full-length genome viral sequences obtained from naturally infected cats during the pandemic were evaluated by distinct evolutionary algorithms. Analyses were enhanced, including a set of highly related SARS-CoV-2 sequences recovered from human populations. Our results showed the apparent high susceptibility of cats to the infection SARS-CoV-2 compared with other animal species. Evolutionary analyses indicated that the phylogenomic characteristics displayed by cat populations were influenced by the dominance of specific SARS-CoV-2 genetic groups affecting human populations. However, disparate dN/dS rates at some genes between populations recovered from cats and humans suggested that infection in these two species may suggest a different evolutionary constraint for SARS-CoV-2. Interestingly, the branch selection analysis showed evidence of the potential role of natural selection in the emergence of five distinct cat lineages during the pandemic. Although these lineages were apparently irrelevant to public health during the pandemic, our results suggested that additional studies are needed to understand the role of other animal species in the evolution of SARS-CoV-2 during the pandemic.
Collapse
Affiliation(s)
- Ninnet Gomez-Romero
- Comisión México-Estados Unidos para la Prevención de Fiebre Aftosa y Otras Enfermedades Exóticas de los Animales, Carretera Mexico-Toluca Km 15.5 Piso 4 Col. Palo Alto, Cuajimalpa de Morelos, Mexico City 05110, Mexico;
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Francisco Javier Basurto-Alcantara
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
25
|
McBride DS, Garushyants SK, Franks J, Magee AF, Overend SH, Huey D, Williams AM, Faith SA, Kandeil A, Trifkovic S, Miller L, Jeevan T, Patel A, Nolting JM, Tonkovich MJ, Genders JT, Montoney AJ, Kasnyik K, Linder TJ, Bevins SN, Lenoch JB, Chandler JC, DeLiberto TJ, Koonin EV, Suchard MA, Lemey P, Webby RJ, Nelson MI, Bowman AS. Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer. Nat Commun 2023; 14:5105. [PMID: 37640694 PMCID: PMC10462754 DOI: 10.1038/s41467-023-40706-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.
Collapse
Affiliation(s)
- Dillon S McBride
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Sofya K Garushyants
- Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - John Franks
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven H Overend
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Devra Huey
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Amanda M Williams
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Seth A Faith
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Ahmed Kandeil
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Sanja Trifkovic
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lance Miller
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jacqueline M Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | | | - J Tyler Genders
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Columbus, OH, USA
| | - Andrew J Montoney
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Columbus, OH, USA
| | - Kevin Kasnyik
- Columbus and Franklin County Metro Parks, Westerville, OH, USA
| | - Timothy J Linder
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, USA
| | - Sarah N Bevins
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, USA
| | - Julianna B Lenoch
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program, Fort Collins, CO, USA
| | - Jeffrey C Chandler
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Wildlife Disease Diagnostic Laboratory, Fort Collins, CO, USA
| | - Thomas J DeLiberto
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, USA
| | - Eugene V Koonin
- Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Martha I Nelson
- Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Andrew S Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
| |
Collapse
|