1
|
Jamil M, Margueritte O, Yonli D, Wang JY, Navangi L, Mudavadi P, Patil RH, Bhoge SE, Traore H, Runo S, Al-Babili S. Evaluation of granular formulated strigolactone analogs for Striga suicidal germination. PEST MANAGEMENT SCIENCE 2024; 80:4314-4321. [PMID: 38634513 DOI: 10.1002/ps.8136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Striga hermonthica, an obligate root parasitic weed, poses a significant threat to cereal production in sub-Saharan Africa. Lowering Striga seed bank in infested soils is a promising strategy to mitigate infestation levels. The dependency of Striga seed germination on strigolactones opens up the possibility of a 'suicidal germination' approach, where synthetic germination stimulants induce lethal germination in the absence of a host. Implementing this approach requires active germination stimulants with a suitable formulation for field application. Here, we describe the development of slow-releasing granular formulation of two potent germination stimulants 'Methyl Phenlactonoate 3' and 'Nijmegen-1' and the assessment of their activity under Laboratory, greenhouse, mini-field, and field conditions. RESULTS Under laboratory conditions, the granular formulation of either of the two germination stimulants (1.25 mg per plate, corresponding to 0.09 mg a.i.) induced Striga seed germination at a rate of up to 43%. With 10 mg granular product (0.75 mg a.i.) per pot, we observed 77-83% reduction in Striga emergence under greenhouse pot conditions. Application of the formulated stimulants under artificially or naturally infested fields resulted in approximately 56%, 60%, and 72% reduction in Striga emergence in maize, sorghum, and millet fields in Kenya and Burkina Faso, respectively. CONCLUSION Our findings on the newly designed granular formulation of Methyl Phenlactonoate 3 and Nijmegen-1 reveal encouraging prospects for addressing the Striga problem in Africa. These findings underscore several significant advantages of the formulated stimulants, including suitability for the African agricultural context, and, most importantly, their effectiveness in reducing Striga infection. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Jamil
- The BioActives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ouedraogo Margueritte
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Djibril Yonli
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Jian You Wang
- The BioActives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lynet Navangi
- Kenya Agricultural and Livestock Research Organization, Alupe Center, Busia, Kenya
| | - Patrick Mudavadi
- Kenya Agricultural and Livestock Research Organization, Alupe Center, Busia, Kenya
| | - Rohit H Patil
- UPL House, Express Highway, Bandra-East, Mumbai, India
| | | | - Hamidou Traore
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Salim Al-Babili
- The BioActives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Mwangangi IM, Büchi L, Haefele SM, Rodenburg J. Macronutrient application rescues performance of tolerant sorghum genotypes when infected by the parasitic plant striga. ANNALS OF BOTANY 2024; 134:59-70. [PMID: 38428944 PMCID: PMC11161562 DOI: 10.1093/aob/mcae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Infection by the hemi-parasitic plant Striga hermonthica causes severe host plant damage and seed production losses. Increased availability of essential plant nutrients reduces infection. Whether, how and to what extent it also reduces striga-induced host plant damage has not been well studied. METHODS The effects of improved macro- and micronutrient supply on host plant performance under striga-free and infected conditions were investigated in glasshouse pot assays. One striga-sensitive and two striga-tolerant genotypes were compared. Plants growing in impoverished soils were supplied with (1) 25 % of optimal macro- and micronutrient quantities, (2) 25 % macro- and 100 % micronutrients, (3) 100 % macro- and 25 % micronutrients, or (4) 100 % macro- and micronutrients. KEY RESULTS Photosynthesis rates of striga-infected plants of the sensitive genotype increased with improved nutrition (from 12.2 to 22.1 μmol m-2 s-1) but remained below striga-free levels (34.9-38.8 μmol m-2 s-1). For the tolerant genotypes, increased macronutrient supply offset striga-induced photosynthesis losses. Striga-induced relative grain losses of 100 % for the sensitive genotype were reduced to 74 % by increased macronutrients. Grain losses of 80 % in the tolerant Ochuti genotype, incurred at low nutrient supply, were reduced to 5 % by improved nutrient supply. CONCLUSIONS Increasing macronutrient supply reduces the impact of striga on host plants but can only restore losses when applied to genotypes with a tolerant background.
Collapse
Affiliation(s)
- Immaculate M Mwangangi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Lucie Büchi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Stephan M Haefele
- Sustainable Soils and Crops Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Jonne Rodenburg
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
3
|
Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H, Reiter RJ, Shi H. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res 2022; 73:e12804. [PMID: 35488179 DOI: 10.1111/jpi.12804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Melatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed. In this study, a genome-wide association study using cassava natural population of 298 genetic resources identified melatonin accumulation 1 (MA1), which regulates the natural variation of melatonin levels in cassava. We found that MA1 encodes type 2C protein phosphatase 1 (PP2C1), which serves as a negative regulator of melatonin levels in cassava. MePP2C1 physically interacts with MeRAV1/2 and MeWRKY20 and dephosphorylates them at serine (S) 35 residue, S34 residue, and S176 residue, respectively, thereby hindering their transcriptional activation on downstream melatonin biosynthetic genes. Notably, MePP2C1 interacts with phytomelatonin receptor MePMTR1 and dephosphorylates it at S11 residue, repressing its binding to melatonin. In summary, this study demonstrates that MePP2C1 as MA1 plays dual roles in negatively regulating both melatonin accumulation and signaling, extending the understanding of the molecular mechanism underlying melatonin accumulation and signaling through forward genetics in plants.
Collapse
Affiliation(s)
- Yujing Bai
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan province, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Jingru Guo
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yabin Dong
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Liyan Zheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| |
Collapse
|
4
|
Xu Y, Zhang J, Ma C, Lei Y, Shen G, Jin J, Eaton DAR, Wu J. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. MOLECULAR PLANT 2022; 15:1384-1399. [PMID: 35854658 DOI: 10.1016/j.molp.2022.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Orobanchaceae is the largest family of parasitic plants, containing autotrophic and parasitic plants with all degrees of parasitism. This makes it by far the best family for studying the origin and evolution of plant parasitism. Here we provide three high-quality genomes of orobanchaceous plants, the autotrophic Lindenbergia luchunensis and the holoparasitic plants Phelipanche aegyptiaca and Orobanche cumana. Phylogenomic analysis of these three genomes together with those previously published and the transcriptomes of other orobanchaceous species created a robust phylogenetic framework for Orobanchaceae. We found that an ancient whole-genome duplication (WGD; about 73.48 million years ago), which occurred earlier than the origin of Orobanchaceae, might have contributed to the emergence of parasitism. However, no WGD events occurred in any lineage of orobanchaceous parasites except for Striga after divergence from their autotrophic common ancestor, suggesting that, in contrast with previous speculations, WGD is not associated with the emergence of holoparasitism. We detected evident convergent gene loss in all parasites within Orobanchaceae and between Orobanchaceae and dodder Cuscuta australis. The gene families in the orobanchaceous parasites showed a clear pattern of recent gains and expansions. The expanded gene families are enriched in functions related to the development of the haustorium, suggesting that recent gene family expansions may have facilitated the adaptation of orobanchaceous parasites to different hosts. This study illustrates a stepwise pattern in the evolution of parasitism in the orobanchaceous parasites and will facilitate future studies on parasitism and the control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianjun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Nitrogen represses haustoria formation through abscisic acid in the parasitic plant Phtheirospermum japonicum. Nat Commun 2022; 13:2976. [PMID: 35624089 PMCID: PMC9142502 DOI: 10.1038/s41467-022-30550-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
Parasitic plants are globally prevalent pathogens that withdraw nutrients from their host plants using an organ known as the haustorium. The external environment including nutrient availability affects the extent of parasitism and to understand this phenomenon, we investigated the role of nutrients and found that nitrogen is sufficient to repress haustoria formation in the root parasite Phtheirospermum japonicum. Nitrogen increases levels of abscisic acid (ABA) in P. japonicum and prevents the activation of hundreds of genes including cell cycle and xylem development genes. Blocking ABA signaling overcomes nitrogen’s inhibitory effects indicating that nitrogen represses haustoria formation by increasing ABA. The effect of nitrogen appears more widespread since nitrogen also inhibits haustoria in the obligate root parasite Striga hermonthica. Together, our data show that nitrogen acts as a haustoria repressing factor and suggests a mechanism whereby parasitic plants use nitrogen availability in the external environment to regulate the extent of parasitism. Parasitic plants obtain nutrients from their hosts. Here the authors show that nitrogen sufficiency suppresses parasitism in the root parasite Phtheirospermum japonicum by increasing levels of the phytohormone ABA suggesting that the degree of parasitism is regulated by nutrient availability.
Collapse
|
6
|
Pantelić A, Stevanović S, Komić SM, Kilibarda N, Vidović M. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc. Int J Mol Sci 2022; 23:3547. [PMID: 35408906 PMCID: PMC8998581 DOI: 10.3390/ijms23073547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Ana Pantelić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Strahinja Stevanović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Sonja Milić Komić
- Department of Life Science, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia;
| | - Nataša Kilibarda
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| | - Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| |
Collapse
|
7
|
Guo J, Bai Y, Wei Y, Dong Y, Zeng H, Reiter RJ, Shi H. Fine-tuning of pathogenesis-related protein 1 (PR1) activity by the melatonin biosynthetic enzyme ASMT2 in defense response to cassava bacterial blight. J Pineal Res 2022; 72:e12784. [PMID: 34936113 DOI: 10.1111/jpi.12784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
Melatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants. In this study, we found that N-acetylserotonin O-methyltransferase 2 (MeASMT2) physically interacted with MePR1 in vitro and in vivo, thereby promoting the anti-bacterial activity of MePR1 against Xanthomonas axonopodis pv. manihotis (Xam). Consistently, MeASMT2 improved the effect of MePR1 on positively regulating cassava disease resistance. In addition, we found that type 2C protein phosphatase 1 (MePP2C1) interacted with MeASMT2 to interfere with MePR1-MeASMT2 interaction, so as to inhibiting the effect of MeASMT2 and MePR1 on positively regulating cassava disease resistance. In contrast to the increased transcripts of MeASMT2 and MePR1 in response to Xam infection, the transcript of MePP2C1 was decreased upon Xam infection. Therefore, disease activated MeASMT2 was released from disease inhibited MePP2C1, so as to improving the anti-bacterial activity of MePR1, resulting in improved immune response. In summary, this study illustrates the dynamic modulation of the MePP2C1-MeASMT2-MePR1 module on cassava defense response against cassava bacterial blight (CBB), extending the understanding of the correlation between melatonin biosynthetic enzyme and PR in plants.
Collapse
Affiliation(s)
- Jingru Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, Texas, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| |
Collapse
|
8
|
Furuta KM, Xiang L, Cui S, Yoshida S. Molecular dissection of haustorium development in Orobanchaceae parasitic plants. PLANT PHYSIOLOGY 2021; 186:1424-1434. [PMID: 33783524 PMCID: PMC8260117 DOI: 10.1093/plphys/kiab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Characterizing molecular aspects of haustorium development by parasitic plants in the Orobanchaceae family has identified hormone signaling/transport and specific genes as major players.
Collapse
Affiliation(s)
- Kaori Miyashima Furuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Lei Xiang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Songkui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Mwangangi IM, Büchi L, Haefele SM, Bastiaans L, Runo S, Rodenburg J. Combining host plant defence with targeted nutrition: key to durable control of hemiparasitic Striga in cereals in sub-Saharan Africa? THE NEW PHYTOLOGIST 2021; 230:2164-2178. [PMID: 33577098 DOI: 10.1111/nph.17271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Host plant defence mechanisms (resistance and tolerance) and plant nutrition are two of the most widely proposed components for the control of hemiparasitic weeds of the genus Striga in tropical cereal production systems. Neither of the two components alone is effective enough to prevent parasitism and concomitant crop losses. This review explores the potential of improved plant nutrition, being the chemical constituent of soil fertility, to fortify the expression of plant inherent resistance and tolerance against Striga. Beyond reviewing advances in parasitic plant research, we assess relevant insights from phytopathology and plant physiology in the broader sense to identify opportunities and knowledge gaps and to develop the way forward regarding research and development of combining genetics and plant nutrition for the durable control of Striga.
Collapse
Affiliation(s)
- Immaculate M Mwangangi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Lucie Büchi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Stephan M Haefele
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Lammert Bastiaans
- Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6700 AK, the Netherlands
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, 43844-0100, Kenya
| | - Jonne Rodenburg
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
10
|
Ruiz-Partida R, Rosario SM, Lozano-Juste J. An Update on Crop ABA Receptors. PLANTS 2021; 10:plants10061087. [PMID: 34071543 PMCID: PMC8229007 DOI: 10.3390/plants10061087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
The hormone abscisic acid (ABA) orchestrates the plant stress response and regulates sophisticated metabolic and physiological mechanisms essential for survival in a changing environment. Plant ABA receptors were described more than 10 years ago, and a considerable amount of information is available for the model plant Arabidopsis thaliana. Unfortunately, this knowledge is still very limited in crops that hold the key to feeding a growing population. In this review, we summarize genomic, genetic and structural data obtained in crop ABA receptors. We also provide an update on ABA perception in major food crops, highlighting specific and common features of crop ABA receptors.
Collapse
Affiliation(s)
- Rafael Ruiz-Partida
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Calle Ingeniero Fausto Elio s/n, Edificio 8E, 46022 Valencia, Spain; (R.R.-P.); (S.M.R.)
| | - Sttefany M. Rosario
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Calle Ingeniero Fausto Elio s/n, Edificio 8E, 46022 Valencia, Spain; (R.R.-P.); (S.M.R.)
- Laboratorio de Biología Molecular, Facultad de Ciencias Agronómicas y Veterinarias, Universidad Autónoma de Santo Domingo (UASD), Camino de Engombe, Santo Domingo 10904, Dominican Republic
| | - Jorge Lozano-Juste
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV), Calle Ingeniero Fausto Elio s/n, Edificio 8E, 46022 Valencia, Spain; (R.R.-P.); (S.M.R.)
- Correspondence:
| |
Collapse
|
11
|
Brun G, Spallek T, Simier P, Delavault P. Molecular actors of seed germination and haustoriogenesis in parasitic weeds. PLANT PHYSIOLOGY 2021; 185:1270-1281. [PMID: 33793893 PMCID: PMC8133557 DOI: 10.1093/plphys/kiaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 05/06/2023]
Abstract
One-sentence summary Recent advances provide insight into the molecular mechanisms underlying host-dependent seed germination and haustorium formation in parasitic plants.
Collapse
Affiliation(s)
- Guillaume Brun
- Department for Systematic Botany and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Philippstr. 13, D-10115 Berlin, Germany
| | - Thomas Spallek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Philippe Simier
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
| | - Philippe Delavault
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
- Author for communication:
| |
Collapse
|
12
|
Mutuku JM, Cui S, Yoshida S, Shirasu K. Orobanchaceae parasite-host interactions. THE NEW PHYTOLOGIST 2021; 230:46-59. [PMID: 33202061 DOI: 10.1111/nph.17083] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Parasitic plants in the family Orobanchaceae, such as Striga, Orobanche and Phelipanche, often cause significant damage to agricultural crops. The Orobanchaceae family comprises more than 2000 species in about 100 genera, providing an excellent system for studying the molecular basis of parasitism and its evolution. Notably, the establishment of model Orobanchaceae parasites, such as Triphysaria versicolor and Phtheirospermum japonicum, that can infect the model host Arabidopsis, has greatly facilitated transgenic analyses of genes important for parasitism. In addition, recent genomic and transcriptomic analyses of several Orobanchaceae parasites have revealed fascinating molecular insights into the evolution of parasitism and strategies for adaptation in this family. This review highlights recent progress in understanding how Orobanchaceae parasites attack their hosts and how the hosts mount a defense against the threats.
Collapse
Affiliation(s)
- J Musembi Mutuku
- The Central and West African Virus Epidemiology (WAVE). Pôle Scientifique et d'Innovation de Bingerville, Université Félix Houphouët-Boigny, BP V34, Abidjan, 01, Côte d'Ivoire
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
13
|
Garcia-Maquilon I, Coego A, Lozano-Juste J, Messerer M, de Ollas C, Julian J, Ruiz-Partida R, Pizzio G, Belda-Palazón B, Gomez-Cadenas A, Mayer KFX, Geiger D, Alquraishi SA, Alrefaei AF, Ache P, Hedrich R, Rodriguez PL. PYL8 ABA receptors of Phoenix dactylifera play a crucial role in response to abiotic stress and are stabilized by ABA. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:757-774. [PMID: 33529339 DOI: 10.1093/jxb/eraa476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant-environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.
Collapse
Affiliation(s)
- Irene Garcia-Maquilon
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Carlos de Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Jose Julian
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Rafael Ruiz-Partida
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Gaston Pizzio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Aurelio Gomez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Wuerzburg, Wuerzburg, Germany
| | - Saleh A Alquraishi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Wuerzburg, Wuerzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Wuerzburg, Wuerzburg, Germany
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
14
|
Abstract
Mutuku and Shirasu introduce the parasitic plant genus Striga.
Collapse
Affiliation(s)
- J Musembi Mutuku
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya; Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
15
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Förste F, Mantouvalou I, Kanngießer B, Stosnach H, Lachner LAM, Fischer K, Krause K. Selective mineral transport barriers at Cuscuta-host infection sites. PHYSIOLOGIA PLANTARUM 2020; 168:934-947. [PMID: 31605394 DOI: 10.1111/ppl.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 05/16/2023]
Abstract
The uptake of inorganic nutrients by rootless parasitic plants, which depend on host connections for all nutrient supplies, is largely uncharted. Using X-ray fluorescence spectroscopy (XRF), we analyzed the element composition of macro- and micronutrients at infection sites of the parasitic angiosperm Cuscuta reflexa growing on hosts of the genus Pelargonium. Imaging methods combining XRF with 2-D or 3-D (confocal) microscopy show that most of the measured elements are present at similar concentrations in the parasite compared to the host. However, calcium and strontium levels drop pronouncedly at the host/parasite interface, and manganese appears to accumulate in the host tissue surrounding the interface. Chlorine is present in the haustorium at similar levels as in the host tissue but is decreased in the stem of the parasite. Thus, our observations indicate a restricted uptake of calcium, strontium, manganese and chlorine by the parasite. Xylem-mobile dyes, which can probe for xylem connectivity between host and parasite, provided evidence for an interspecies xylem flow, which in theory would be expected to carry all of the elements indiscriminately. We thus conclude that inorganic nutrient uptake by the parasite Cuscuta is regulated by specific selective barriers whose existence has evaded detection until now.
Collapse
Affiliation(s)
- Frank Förste
- Institute for Optics and Atomic Physics, Technical University of Berlin, Berlin, 10623, Germany
| | - Ioanna Mantouvalou
- Institute for Optics and Atomic Physics, Technical University of Berlin, Berlin, 10623, Germany
| | - Birgit Kanngießer
- Institute for Optics and Atomic Physics, Technical University of Berlin, Berlin, 10623, Germany
| | | | - Lena Anna-Maria Lachner
- Department of Arctic and Marine Biology, The Arctic University of Norway UiT, Tromsø, 9019, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, The Arctic University of Norway UiT, Tromsø, 9019, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, The Arctic University of Norway UiT, Tromsø, 9019, Norway
| |
Collapse
|
17
|
Sun Y, Pri-Tal O, Michaeli D, Mosquna A. Evolution of Abscisic Acid Signaling Module and Its Perception. FRONTIERS IN PLANT SCIENCE 2020; 11:934. [PMID: 32754170 PMCID: PMC7367143 DOI: 10.3389/fpls.2020.00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 05/18/2023]
Abstract
We hereby review the perception and responses to the stress hormone Abscisic acid (ABA), along the trajectory of 500M years of plant evolution, whose understanding may resolve how plants acquired this signaling pathway essential for the colonization of land. ABA levels rise in response to abiotic stresses, coordinating physiological and metabolic responses, helping plants survive stressful environments. In land plants, ABA signaling cascade leads to growth arrest and large-scale changes in transcript levels, required for coping with environmental stressors. This response is regulated by a PYRABACTIN RESISTANCE 1-like (PYL)-PROTEIN PHOSPHATASE 2C (PP2C)-SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module, that initiates phosphor-activation of transcription factors and ion channels. The enzymatic portions of this module (phosphatase and kinase) are functionally conserved from streptophyte algae to angiosperms, whereas the regulatory component -the PYL receptors, putatively evolved in the common ancestor of Zygnematophyceae and embryophyte as a constitutive, ABA-independent protein, further evolving into a ligand-activated receptor at the embryophyta. This evolutionary process peaked with the appearance of the strictly ABA-dependent subfamily III stress-triggered angiosperms' dimeric PYL receptors. The emerging picture is that the ancestor of land plants and its predecessors synthesized ABA, as its biosynthetic pathway is conserved between ancestral and current day algae. Despite this ability, it was only the common ancestor of land plants which acquired the hormonal-modulation of PYL activity by ABA. This raises several questions regarding both ABA's function in ABA-non-responsive organisms, and the evolutionary aspects of the ABA signal transduction pathway.
Collapse
Affiliation(s)
- Yufei Sun
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Pri-Tal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Assaf Mosquna,
| |
Collapse
|
18
|
Abstract
Land plants are considered monophyletic, descending from a single successful colonization of land by an aquatic algal ancestor. The ability to survive dehydration to the point of desiccation is a key adaptive trait enabling terrestrialization. In extant land plants, desiccation tolerance depends on the action of the hormone abscisic acid (ABA) that acts through a receptor-signal transduction pathway comprising a PYRABACTIN RESISTANCE 1-like (PYL)-PROTEIN PHOSPHATASE 2C (PP2C)-SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module. Early-diverging aeroterrestrial algae mount a dehydration response that is similar to that of land plants, but that does not depend on ABA: Although ABA synthesis is widespread among algal species, ABA-dependent responses are not detected, and algae lack an ABA-binding PYL homolog. This raises the key question of how ABA signaling arose in the earliest land plants. Here, we systematically characterized ABA receptor-like proteins from major land plant lineages, including a protein found in the algal sister lineage of land plants. We found that the algal PYL-homolog encoded by Zygnema circumcarinatum has basal, ligand-independent activity of PP2C repression, suggesting this to be an ancestral function. Similarly, a liverwort receptor possesses basal activity, but it is further activated by ABA. We propose that co-option of ABA to control a preexisting PP2C-SnRK2-dependent desiccation-tolerance pathway enabled transition from an all-or-nothing survival strategy to a hormone-modulated, competitive strategy by enabling continued growth of anatomically diversifying vascular plants in dehydrative conditions, enabling them to exploit their new environment more efficiently.
Collapse
|
19
|
Bhaskara GB, Wong MM, Verslues PE. The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs. PLANT, CELL & ENVIRONMENT 2019; 42:2913-2930. [PMID: 31314921 DOI: 10.1111/pce.13616] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 05/12/2023]
Abstract
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase-phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho-signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase-phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase-kinase relationships will be important for deeper understanding of phosphoproteome regulation.
Collapse
Affiliation(s)
| | - Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
20
|
Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim YM, Honaas L, Yang Z, Spallek T, Conn CE, Ichihashi Y, Cheong K, Cui S, Der JP, Gundlach H, Jiao Y, Hori C, Ishida JK, Kasahara H, Kiba T, Kim MS, Koo N, Laohavisit A, Lee YH, Lumba S, McCourt P, Mortimer JC, Mutuku JM, Nomura T, Sasaki-Sekimoto Y, Seto Y, Wang Y, Wakatake T, Sakakibara H, Demura T, Yamaguchi S, Yoneyama K, Manabe RI, Nelson DC, Schulman AH, Timko MP, dePamphilis CW, Choi D, Shirasu K. Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Curr Biol 2019; 29:3041-3052.e4. [PMID: 31522940 DOI: 10.1016/j.cub.2019.07.086] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.
Collapse
Affiliation(s)
- Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Seungill Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Eric K Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jaakko Tanskanen
- Production Systems, Luke Natural Resources Institute Finland, 00790 Helsinki, Finland; Luke/BI Plant Genomics Laboratory, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-806, Korea
| | - Loren Honaas
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; U.S.D.A. ARS, Wenatchee, WA, USA
| | - Zhenzhen Yang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas Spallek
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Institute of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - Caitlin E Conn
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Songkui Cui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Joshua P Der
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831, USA
| | - Heidrun Gundlach
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Yuannian Jiao
- Institute of Botany, The Chinese Academy of Sciences, Nanxincun, Xiangshan, Beijing, China
| | - Chiaki Hori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Research Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Juliane K Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Myung-Shin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-806, Korea
| | - Anuphon Laohavisit
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S-3B2, Canada
| | - Peter McCourt
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S-3B2, Canada
| | - Jenny C Mortimer
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - J Musembi Mutuku
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, 00100 Nairobi, Kenya
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 226-8501, Yokohama, Kanagawa, Japan
| | - Yoshiya Seto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Yu Wang
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shinjiro Yamaguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - David C Nelson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Alan H Schulman
- Production Systems, Luke Natural Resources Institute Finland, 00790 Helsinki, Finland; Luke/BI Plant Genomics Laboratory, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Doil Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
21
|
Brun G, Thoiron S, Braem L, Pouvreau JB, Montiel G, Lechat MM, Simier P, Gevaert K, Goormachtig S, Delavault P. CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants. PLANT, CELL & ENVIRONMENT 2019; 42:2612-2626. [PMID: 31134630 DOI: 10.1111/pce.13594] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 05/10/2023]
Abstract
Karrikins stimulate Arabidopsis thaliana germination, whereas parasitic weeds of the Orobanchaceae family have evolved to respond to host-exuded compounds such as strigolactones, dehydrocostus lactone, and 2-phenylethyl isothiocyanate. In Phelipanche ramosa, strigolactone-induced germination was shown to require one of the CYP707A proteins involved in abscisic acid catabolism. Here, germination and gene expression were analysed to investigate the role of CYP707As in germination of both parasitic plants and Arabidopsis upon perception of germination stimulants, after using pharmacological inhibitors and Arabidopsis mutants disrupting germination signals. CYP707A genes were up-regulated upon treatment with effective germination stimulants in both parasitic plants and Arabidopsis. Obligate parasitic plants exhibited both intensified up-regulation of CYP707A genes and increased sensitivity to the CYP707A inhibitor abscinazole-E2B, whereas Arabidopsis cyp707a mutants still positively responded to germination stimulation. In Arabidopsis, CYP707A regulation required the canonical karrikin signalling pathway KAI2/MAX2/SMAX1 and the transcription factor WRKY33. Finally, CYP707As and WRKY33 also modulated Arabidopsis root architecture in response to the synthetic strigolactone rac-GR24, and wrky33-1 exhibited a shoot hyperbranched phenotype. This study suggests that the lack of host-independent germination in obligate parasites is associated with an exacerbated CYP707A induction and that CYP707As and WRKY33 are new players involved in a variety of strigolactone/karrikin responses.
Collapse
Affiliation(s)
- Guillaume Brun
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Séverine Thoiron
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Lukas Braem
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, 71, 9052, Zwijnaarde, Belgium
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai, 3, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Jean-Bernard Pouvreau
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Grégory Montiel
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Marc-Marie Lechat
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Philippe Simier
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai, 3, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Sofie Goormachtig
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, 71, 9052, Zwijnaarde, Belgium
| | - Philippe Delavault
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| |
Collapse
|
22
|
Wiseglass G, Pri-Tal O, Mosquna A. ABA signaling components in Phelipanche aegyptiaca. Sci Rep 2019; 9:6476. [PMID: 31019234 PMCID: PMC6482195 DOI: 10.1038/s41598-019-42976-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Obligate root holoparasite Phelipanche aegyptiaca is an agricultural pest, which infests its hosts and feeds on the sap, subsequently damaging crop yield and quality. Its notoriously viable seed bank may serve as an ideal pest control target. The phytohormone abscisic acid (ABA) was shown to regulate P. aegyptiaca seed dormancy following strigolactones germination stimulus. Transcription analysis of signaling components revealed five ABA receptors and two co-receptors (PP2C). Transcription of lower ABA-affinity subfamily III receptors was absent in all tested stages of P. aegyptiaca development and parasitism stages. P. aegyptiaca ABA receptors interacted with the PP2Cs, and inhibited their activity in an ABA-dependent manner. Moreover, sequence analysis revealed multiple alleles in two P. aegyptiaca ABA receptors, with many non-synonymous mutations. Functional analysis of selected receptor alleles identified a variant with substantially decreased inhibitory effect of PP2Cs activity in-vitro. These results provide evidence that P. aegyptiaca is capable of biochemically perceiving ABA. In light of the possible involvement of ABA in parasitic activities, the discovery of active ABA receptors and PP2Cs could provide a new biochemical target for the agricultural management of P. aegyptiaca. Furthermore, the potential genetic loss of subfamily III receptors in this species, could position P. aegyptiaca as a valuable model in the ABA perception research field.
Collapse
Affiliation(s)
- Gil Wiseglass
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Oded Pri-Tal
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, the Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| |
Collapse
|
23
|
Fujioka H, Samejima H, Mizutani M, Okamoto M, Sugimoto Y. How does Striga hermonthica Bewitch its hosts? PLANT SIGNALING & BEHAVIOR 2019; 14:1605810. [PMID: 30983489 PMCID: PMC6619978 DOI: 10.1080/15592324.2019.1605810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The common name witchweed synonymous with the Latin name Striga befits the bewitching effects, viz wilting and chlorosis, the parasite inflicts on its hosts long before it emerges and becomes visible above the ground. However, interactions in the rhizosphere between host roots and Striga seedlings are concealed and inscrutable. In vitro experiments revealed that abscisic acid was produced by S. hermonthica seedlings and a considerable portion of the phytohormone was exuded. The phytohormone in the rhizosphere could, at least in part, contribute to the bewitching effects, disrupt host immunity and promote commencement of parasitism.
Collapse
Affiliation(s)
- Hijiri Fujioka
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hiroaki Samejima
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- CONTACT Yukihiro Sugimoto Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|