1
|
Liu D, Luo C, Dai R, Huang X, Chen X, He L, Mao H, Li J, Zhang L, Yang QY, Mei Z. AMIR: a multi-omics data platform for Asteraceae plants genetics and breeding research. Nucleic Acids Res 2025; 53:D1563-D1575. [PMID: 39377391 PMCID: PMC11701549 DOI: 10.1093/nar/gkae833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
As the largest family of dicotyledon, the Asteraceae family comprises a variety of economically important crops, ornamental plants and numerous medicinal herbs. Advancements in genomics and transcriptomic have revolutionized research in Asteraceae species, generating extensive omics data that necessitate an efficient platform for data integration and analysis. However, existing databases face challenges in mining genes with specific functions and supporting cross-species studies. To address these gaps, we introduce the Asteraceae Multi-omics Information Resource (AMIR; https://yanglab.hzau.edu.cn/AMIR/), a multi-omics hub for the Asteraceae plant community. AMIR integrates diverse omics data from 74 species, encompassing 132 genomes, 4 408 432 genes annotated across seven different perspectives, 3897 transcriptome sequencing samples spanning 131 organs, tissues and stimuli, 42 765 290 unique variants and 15 662 metabolites genes. Leveraging these data, AMIR establishes the first pan-genome, comparative genomics and transcriptome system for the Asteraceae family. Furthermore, AMIR offers user-friendly tools designed to facilitate extensive customized bioinformatics analyses. Two case studies demonstrate AMIR's capability to provide rapid, reproducible and reliable analysis results. In summary, by integrating multi-omics data of Asteraceae species and developing powerful analytical tools, AMIR significantly advances functional genomics research and contributes to breeding practices of Asteraceae.
Collapse
Affiliation(s)
- Dongxu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxia Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Linna Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Zhinan Mei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
López-Tubau JM, Laibach N, Burciaga-Monge A, Alseekh S, Deng C, Fernie AR, Altabella T, Ferrer A. Differential impact of impaired steryl ester biosynthesis on the metabolome of tomato fruits and seeds. PHYSIOLOGIA PLANTARUM 2025; 177:e70022. [PMID: 39710490 DOI: 10.1111/ppl.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Steryl esters (SE) are a storage pool of sterols that accumulates in cytoplasmic lipid droplets and helps to maintain plasma membrane sterol homeostasis throughout plant growth and development. Ester formation in plant SE is catalyzed by phospholipid:sterol acyltransferase (PSAT) and acyl-CoA:sterol acyltransferase (ASAT), which transfer long-chain fatty acid groups to free sterols from phospholipids and acyl-CoA, respectively. Comparative mass spectrometry-based metabolomic analysis between ripe fruits and seeds of a tomato (Solanum lycopersicum cv Micro-Tom) mutant lacking functional PSAT and ASAT enzymes (slasat1xslpsat1) shows that disruption of SE biosynthesis has a differential impact on the metabolome of these organs, including changes in the composition of free and glycosylated sterols. Significant perturbations were observed in the fruit lipidome in contrast to the mild effect detected in the lipidome of seeds. A contrasting response was also observed in phenylpropanoid metabolism, which is down-regulated in fruits and appears to be stimulated in seeds. Comparison of global metabolic changes using volcano plot analysis suggests that disruption of SE biosynthesis favours a general state of metabolic activation that is more evident in seeds than fruits. Interestingly, there is an induction of autophagy in both tissues, which may contribute along with other metabolic changes to the phenotypes of early seed germination and enhanced fruit tolerance to Botrytis cinerea displayed by the slasat1xslpsat1 mutant. The results of this study reveal unreported connections between SE metabolism and the metabolic status of plant cells and lay the basis for further studies aimed at elucidating the mechanisms underlying the observed effects.
Collapse
Affiliation(s)
- Joan Manel López-Tubau
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Natalie Laibach
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Hochshule Rhein-Waal. Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Kleve, Germany
| | - Alma Burciaga-Monge
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Teresa Altabella
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Liu B, Xu C, He Q, Zhang K, Qi S, Jin Z, Cheng W, Ding Z, Chen D, Zhao X, Zhang W, Zhang K, Li K. Membralin is required for maize development and defines a branch of the endoplasmic reticulum-associated degradation pathway in plants. Proc Natl Acad Sci U S A 2024; 121:e2406090121. [PMID: 38865274 PMCID: PMC11194580 DOI: 10.1073/pnas.2406090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) plays key roles in controlling protein levels and quality in eukaryotes. The Ring Finger Protein 185 (RNF185)/membralin ubiquitin ligase complex was recently identified as a branch in mammals and is essential for neuronal function, but its function in plant development is unknown. Here, we report the map-based cloning and characterization of Narrow Leaf and Dwarfism 1 (NLD1), which encodes the ER membrane-localized protein membralin and specifically interacts with maize homologs of RNF185 and related components. The nld1 mutant shows defective leaf and root development due to reduced cell number. The defects of nld1 were largely restored by expressing membralin genes from Arabidopsis thaliana and mice, highlighting the conserved roles of membralin proteins in animals and plants. The excessive accumulation of β-hydroxy β-methylglutaryl-CoA reductase in nld1 indicates that the enzyme is a membralin-mediated ERAD target. The activation of bZIP60 mRNA splicing-related unfolded protein response signaling and marker gene expression in nld1, as well as DNA fragment and cell viability assays, indicate that membralin deficiency induces ER stress and cell death in maize, thereby affecting organogenesis. Our findings uncover the conserved, indispensable role of the membralin-mediated branch of the ERAD pathway in plants. In addition, ZmNLD1 contributes to plant architecture in a dose-dependent manner, which can serve as a potential target for genetic engineering to shape ideal plant architecture, thereby enhancing high-density maize yields.
Collapse
Affiliation(s)
- Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Changzheng Xu
- School of Life Sciences, Southwest University, Chongqing400715, China
| | - Qiuxia He
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan250103, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Shoumei Qi
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Zhe Jin
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Donghua Chen
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong271018, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| |
Collapse
|
4
|
Omata Y, Sato R, Mishiro-Sato E, Kano K, Ueda H, Hara-Nishimura I, Shimada TL. Lipid droplets in Arabidopsis thaliana leaves contain myosin-binding proteins and enzymes associated with furan-containing fatty acid biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1331479. [PMID: 38495375 PMCID: PMC10940516 DOI: 10.3389/fpls.2024.1331479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Lipid droplets (LDs) are lipid storage organelles in plant leaves and seeds. Seed LD proteins are well known, and their functions in lipid metabolism have been characterized; however, many leaf LD proteins remain to be identified. We therefore isolated LDs from leaves of the leaf LD-overaccumulating mutant high sterol ester 1 (hise1) of Arabidopsis thaliana by centrifugation or co-immunoprecipitation. We then performed LD proteomics by mass spectrometry and identified 3,206 candidate leaf LD proteins. In this study, we selected 31 candidate proteins for transient expression assays using a construct encoding the candidate protein fused with green fluorescent protein (GFP). Fluorescence microscopy showed that MYOSIN BINDING PROTEIN14 (MYOB14) and two uncharacterized proteins localized to LDs labeled with the LD marker. Subcellular localization analysis of MYOB family members revealed that MYOB1, MYOB2, MYOB3, and MYOB5 localized to LDs. LDs moved along actin filaments together with the endoplasmic reticulum. Co-immunoprecipitation of myosin XIK with MYOB2-GFP or MYOB14-GFP suggested that LD-localized MYOBs are involved in association with the myosin XIK-LDs. The two uncharacterized proteins were highly similar to enzymes for furan fatty acid biosynthesis in the photosynthetic bacterium Cereibacter sphaeroides, suggesting a relationship between LDs and furan fatty acid biosynthesis. Our findings thus reveal potential molecular functions of LDs and provide a valuable resource for further studies of the leaf LD proteome.
Collapse
Affiliation(s)
- Yuto Omata
- Faculty of Horticulture, Chiba University, Matsudo, Japan
| | - Reina Sato
- Faculty of Horticulture, Chiba University, Matsudo, Japan
| | - Emi Mishiro-Sato
- World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko Kano
- World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | | - Takashi L. Shimada
- Faculty of Horticulture, Chiba University, Matsudo, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
5
|
Hmidene AB, Ono H, Seo S. Phytosterols Are Involved in Sclareol-Induced Chlorophyll Reductions in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1282. [PMID: 36986970 PMCID: PMC10055023 DOI: 10.3390/plants12061282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Sclareol, a diterpene, has a wide range of physiological effects on plants, such as antimicrobial activity; disease resistance against pathogens; and the expression of genes encoding proteins involved in metabolism, transport, and phytohormone biosynthesis and signaling. Exogenous sclareol reduces the content of chlorophyll in Arabidopsis leaves. However, the endogenous compounds responsible for sclareol-induced chlorophyll reduction remain unknown. The phytosterols campesterol and stigmasterol were identified as compounds that reduce the content of chlorophyll in sclareol-treated Arabidopsis plants. The exogenous application of campesterol or stigmasterol dose-dependently reduced the content of chlorophyll in Arabidopsis leaves. Exogenously-applied sclareol enhanced the endogenous contents of campesterol and stigmasterol and the accumulation of transcripts for phytosterol biosynthetic genes. These results suggest that the phytosterols campesterol and stigmasterol, the production of which is enhanced in response to sclareol, contribute to reductions in chlorophyll content in Arabidopsis leaves.
Collapse
Affiliation(s)
- Asma Ben Hmidene
- Crop Disease Research Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba 305-8518, Ibaraki, Japan
| | - Hiroshi Ono
- Bioactive Chemical Analysis Unit, Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Ibaraki, Japan
| | - Shigemi Seo
- Crop Disease Research Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba 305-8518, Ibaraki, Japan
| |
Collapse
|
6
|
Kato S, Misumi O, Maruyama S, Nozaki H, Tsujimoto-Inui Y, Takusagawa M, Suzuki S, Kuwata K, Noda S, Ito N, Okabe Y, Sakamoto T, Yagisawa F, Matsunaga TM, Matsubayashi Y, Yamaguchi H, Kawachi M, Kuroiwa H, Kuroiwa T, Matsunaga S. Genomic analysis of an ultrasmall freshwater green alga, Medakamo hakoo. Commun Biol 2023; 6:89. [PMID: 36690657 PMCID: PMC9871001 DOI: 10.1038/s42003-022-04367-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Abstract
Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.
Collapse
Affiliation(s)
- Shoichi Kato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, Yoshida, Yamaguchi, 753-8512, Japan
| | - Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai, 980-8578, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, 112-8610, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yayoi Tsujimoto-Inui
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Mari Takusagawa
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Saki Noda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Nanami Ito
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoji Okabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Fumi Yagisawa
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa, 903-0213, Japan
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Tomoko M Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, Tokyo, 112-8681, Japan.
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
7
|
Takahashi Y, Sakai H, Ariga H, Teramoto S, Shimada TL, Eun H, Muto C, Naito K, Tomooka N. Domesticating Vigna stipulacea: Chromosome-Level genome assembly reveals VsPSAT1 as a candidate gene decreasing hard-seededness. FRONTIERS IN PLANT SCIENCE 2023; 14:1119625. [PMID: 37139108 PMCID: PMC10149957 DOI: 10.3389/fpls.2023.1119625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
To increase food production under the challenges presented by global climate change, the concept of de novo domestication-utilizing stress-tolerant wild species as new crops-has recently gained considerable attention. We had previously identified mutants with desired domestication traits in a mutagenized population of the legume Vigna stipulacea Kuntze (minni payaru) as a pilot for de novo domestication. Given that there are multiple stress-tolerant wild legume species, it is important to establish efficient domestication processes using reverse genetics and identify the genes responsible for domestication traits. In this study, we identified VsPSAT1 as the candidate gene responsible for decreased hard-seededness, using a Vigna stipulacea isi2 mutant that takes up water from the lens groove. Scanning electron microscopy and computed tomography revealed that the isi2 mutant has lesser honeycomb-like wax sealing the lens groove than the wild-type, and takes up water from the lens groove. We also identified the pleiotropic effects of the isi2 mutant: accelerating leaf senescence, increasing seed size, and decreasing numbers of seeds per pod. While doing so, we produced a V. stipulacea whole-genome assembly of 441 Mbp in 11 chromosomes and 30,963 annotated protein-coding sequences. This study highlights the importance of wild legumes, especially those of the genus Vigna with pre-existing tolerance to biotic and abiotic stresses, for global food security during climate change.
Collapse
Affiliation(s)
- Yu Takahashi
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
- *Correspondence: Yu Takahashi,
| | - Hiroaki Sakai
- Research Center of Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hirotaka Ariga
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi L. Shimada
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Inage-ku, Japan
| | - Heesoo Eun
- Research Center of Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Chiaki Muto
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Norihiko Tomooka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
8
|
Burciaga-Monge A, López-Tubau JM, Laibach N, Deng C, Ferrer A, Altabella T. Effects of impaired steryl ester biosynthesis on tomato growth and developmental processes. FRONTIERS IN PLANT SCIENCE 2022; 13:984100. [PMID: 36247562 PMCID: PMC9557751 DOI: 10.3389/fpls.2022.984100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Steryl esters (SE) are stored in cytoplasmic lipid droplets and serve as a reservoir of sterols that helps to maintain free sterols (FS) homeostasis in cell membranes throughout plant growth and development, and provides the FS needed to meet the high demand of these key plasma membrane components during rapid plant organ growth and expansion. SE are also involved in the recycling of sterols and fatty acids released from membranes during plant tissues senescence. SE are synthesized by sterol acyltransferases, which catalyze the transfer of long-chain fatty acid groups to the hydroxyl group at C3 position of FS. Depending on the donor substrate, these enzymes are called acyl-CoA:sterol acyltransferases (ASAT), when the substrate is a long-chain acyl-CoA, and phospholipid:sterol acyltransferases (PSAT), which use a phospholipid as a donor substrate. We have recently identified and preliminary characterized the tomato (Solanum lycopersicum cv. Micro-Tom) SlASAT1 and SlPSAT1 enzymes. To gain further insight into the biological role of these enzymes and SE biosynthesis in tomato, we generated and characterized CRISPR/Cas9 single knock-out mutants lacking SlPSAT1 (slpsat1) and SlASAT1 (slasat1), as well as the double mutant slpsat1 x slasat1. Analysis of FS and SE profiles in seeds and leaves of the single and double mutants revealed a strong depletion of SE in slpsat1, that was even more pronounced in the slpsat1 x slasat1 mutant, while an increase of SE levels was observed in slasat1. Moreover, SlPSAT1 and SlASAT1 inactivation affected in different ways several important cellular and physiological processes, like leaf lipid bo1dies formation, seed germination speed, leaf senescence, and the plant size. Altogether, our results indicate that SlPSAT1 has a predominant role in tomato SE biosynthesis while SlASAT1 would mainly regulate the flux of the sterol pathway. It is also worth to mention that some of the metabolic and physiological responses in the tomato mutants lacking functional SlPSAT1 or SlASAT1 are different from those previously reported in Arabidopsis, being remarkable the synergistic effect of SlASAT1 inactivation in the absence of a functional SlPSAT1 on the early germination and premature senescence phenotypes.
Collapse
Affiliation(s)
- Alma Burciaga-Monge
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Joan Manel López-Tubau
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Natalie Laibach
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Albert Ferrer
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Haywood J, Breese KJ, Zhang J, Waters MT, Bond CS, Stubbs KA, Mylne JS. A fungal tolerance trait and selective inhibitors proffer HMG-CoA reductase as a herbicide mode-of-action. Nat Commun 2022; 13:5563. [PMID: 36137996 PMCID: PMC9500038 DOI: 10.1038/s41467-022-33185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Decades of intense herbicide use has led to resistance in weeds. Without innovative weed management practices and new herbicidal modes of action, the unabated rise of herbicide resistance will undoubtedly place further stress upon food security. HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is the rate limiting enzyme of the eukaryotic mevalonate pathway successfully targeted by statins to treat hypercholesterolemia in humans. As HMGR inhibitors have been shown to be herbicidal, HMGR could represent a mode of action target for the development of herbicides. Here, we present the crystal structure of a HMGR from Arabidopsis thaliana (AtHMG1) which exhibits a wider active site than previously determined structures from different species. This plant conserved feature enables the rational design of specific HMGR inhibitors and we develop a tolerance trait through sequence analysis of fungal gene clusters. These results suggest HMGR to be a viable herbicide target modifiable to provide a tolerance trait.
Collapse
Affiliation(s)
- Joel Haywood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Jingjing Zhang
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Joshua S Mylne
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia.
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
| |
Collapse
|
10
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|
11
|
Cheung AY, Cosgrove DJ, Hara-Nishimura I, Jürgens G, Lloyd C, Robinson DG, Staehelin LA, Weijers D. A rich and bountiful harvest: Key discoveries in plant cell biology. THE PLANT CELL 2022; 34:53-71. [PMID: 34524464 PMCID: PMC8773953 DOI: 10.1093/plcell/koab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | | | - Gerd Jürgens
- ZMBP-Developmental Genetics, University of Tuebingen, Tuebingen 72076, Germany
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany
| | - L Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, the Netherlands
| |
Collapse
|
12
|
Wang Q, Meng Q, Xu F, Chen Q, Ma C, Huang L, Li G, Luo M. Comparative Metabolomics Analysis Reveals Sterols and Sphingolipids Play a Role in Cotton Fiber Cell Initiation. Int J Mol Sci 2021; 22:ijms222111438. [PMID: 34768870 PMCID: PMC8583818 DOI: 10.3390/ijms222111438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Cotton fiber is a seed trichome that protrudes from the outer epidermis of cotton ovule on the day of anthesis (0 day past anthesis, 0 DPA). The initial number and timing of fiber cells are closely related to fiber yield and quality. However, the mechanism underlying fiber initiation is still unclear. Here, we detected and compared the contents and compositions of sphingolipids and sterols in 0 DPA ovules of Xuzhou142 lintless-fuzzless mutants (Xufl) and Xinxiangxiaoji lintless-fuzzless mutants (Xinfl) and upland cotton wild-type Xuzhou142 (XuFL). Nine classes of sphingolipids and sixty-six sphingolipid molecular species were detected in wild-type and mutants. Compared with the wild type, the contents of Sphingosine-1-phosphate (S1P), Sphingosine (Sph), Glucosylceramide (GluCer), and Glycosyl-inositol-phospho-ceramides (GIPC) were decreased in the mutants, while the contents of Ceramide (Cer) were increased. Detail, the contents of two Cer molecular species, d18:1/22:0 and d18:1/24:0, and two Phyto-Cer molecular species, t18:0/22:0 and t18:0/h22:1 were significantly increased, while the contents of all GluCer and GIPC molecular species were decreased. Consistent with this result, the expression levels of seven genes involved in GluCer and GIPC synthesis were decreased in the mutants. Furthermore, exogenous application of a specific inhibitor of GluCer synthase, PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol), in ovule culture system, significantly inhibited the initiation of cotton fiber cells. In addition, five sterols and four sterol esters were detected in wild-type and mutant ovules. Compared with the wild type, the contents of total sterol were not significantly changed. While the contents of stigmasterol and campesterol were significantly increased, the contents of cholesterol were significantly decreased, and the contents of total sterol esters were significantly increased. In particular, the contents of campesterol esters and stigmasterol esters increased significantly in the two mutants. Consistently, the expression levels of some sterol synthase genes and sterol ester synthase genes were also changed in the two mutants. These results suggested that sphingolipids and sterols might have some roles in the initiation of fiber cells. Our results provided a novel insight into the regulatory mechanism of fiber cell initiation.
Collapse
Affiliation(s)
- Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China
| | - Caixia Ma
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
- Correspondence: or
| |
Collapse
|
13
|
Pu X, Dong X, Li Q, Chen Z, Liu L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1211-1226. [PMID: 33538411 DOI: 10.1111/jipb.13076] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
Isoprenoids are among the largest and most chemically diverse classes of organic compounds in nature and are involved in the processes of photosynthesis, respiration, growth, development, and plant responses to stress. The basic building block units for isoprenoid synthesis-isopentenyl diphosphate and its isomer dimethylallyl diphosphate-are generated by the mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. Here, we summarize recent advances on the roles of the MEP and MVA pathways in plant growth, development and stress responses, and attempt to define the underlying gene networks that orchestrate the MEP and MVA pathways in response to developmental or environmental cues. Through phylogenomic analysis, we also provide a new perspective on the evolution of the plant isoprenoid pathway. We conclude that the presence of the MVA pathway in plants may be associated with the transition from aquatic to subaerial and terrestrial environments, as lineages for its core components are absent in green algae. The emergence of the MVA pathway has acted as a key evolutionary event in plants that facilitated land colonization and subsequent embryo development, as well as adaptation to new and varied environments.
Collapse
Affiliation(s)
- Xiaojun Pu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Xiumei Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Qing Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zexi Chen
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 434200, China
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, the Chinese Academy of Sciences, and Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| |
Collapse
|
14
|
Shimada TL, Ueda T, Hara-Nishimura I. Excess sterol accumulation affects seed morphology and physiology in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1872217. [PMID: 33446024 PMCID: PMC7971342 DOI: 10.1080/15592324.2021.1872217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 05/21/2023]
Abstract
Sterols are essential lipids for plant growth, and the sterol content is tightly regulated by a fail-safe system consisting of two processes: 1) suppression of excess sterol production by a negative regulator of sterol biosynthesis (HIGR STEROL ESTER 1, HISE1), and 2) conversion of excess sterols to sterol esters by PHOSPHOLIPID STEROL ACYLTRANSFERASE 1 (PSAT1) in Arabidopsis thaliana. The hise1-3 psat1-2 double mutant has a 1.5-fold higher sterol content in leaves than the wild type; this upregulates the expression of stress-responsive genes, leading to disruption of cellular activities in leaves. However, the effects of excess sterols on seeds are largely unknown. Here, we show that excess sterols cause multiple defects in seeds. The seeds of hise1-3 psat1-2 plants had a higher sterol content than wild-type seeds and showed a deeper color than wild-type seeds because of the accumulation of proanthocyanidin. The seed coat in the hise1-3 psat1-2 mutant was abnormally wrinkled. Seed coat formation is accompanied by cell death-mediated shrinkage of the inner integument. In the hise1-3 psat1-2 mutant, transmission electron microscopy showed that shrinkage of the integument was impaired, resulting in a thick seed coat and delayed seed germination. Moreover, psat1-2 and hise1-3 psat1-2 seeds displayed defective imbibition. Taken together, the results suggest that excess sterols impair proper seed coat formation, thereby inhibiting seed germination.
Collapse
Affiliation(s)
- Takashi L. Shimada
- Graduate School of Horticulture, Chiba University, Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- CONTACT Takashi L. Shimada Graduate School of Horticulture, Chiba University, Matsudo, Chiba271-8510, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
| | | |
Collapse
|
15
|
De Vriese K, Pollier J, Goossens A, Beeckman T, Vanneste S. Dissecting cholesterol and phytosterol biosynthesis via mutants and inhibitors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:241-253. [PMID: 32929492 DOI: 10.1093/jxb/eraa429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Plants stand out among eukaryotes due to the large variety of sterols and sterol derivatives that they can produce. These metabolites not only serve as critical determinants of membrane structures, but also act as signaling molecules, as growth-regulating hormones, or as modulators of enzyme activities. Therefore, it is critical to understand the wiring of the biosynthetic pathways by which plants generate these distinct sterols, to allow their manipulation and to dissect their precise physiological roles. Here, we review the complexity and variation of the biosynthetic routes of the most abundant phytosterols and cholesterol in the green lineage and how different enzymes in these pathways are conserved and diverged from humans, yeast, and even bacteria. Many enzymatic steps show a deep evolutionary conservation, while others are executed by completely different enzymes. This has important implications for the use and specificity of available human and yeast sterol biosynthesis inhibitors in plants, and argues for the development of plant-tailored inhibitors of sterol biosynthesis.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- VIB Metabolomics Core, Technologiepark, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, Yeonsu-gu, Incheon, Republic of Korea
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Zhang X, Lin K, Li Y. Highlights to phytosterols accumulation and equilibrium in plants: Biosynthetic pathway and feedback regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:637-649. [PMID: 32858426 DOI: 10.1016/j.plaphy.2020.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 05/26/2023]
Abstract
Phytosterols are a group of sterols exclusive to plants and fungi, but are indispensable to humans because of their medicinal and nutritional values. However, current raw materials used for phytosterols extraction add to the cost and waste in the process. For higher sterols production, major attention is drawn to plant materials abundant in phytosterols and genetic modification. To provide an insight into phytosterols metabolism, the research progress on key enzymes involved in phytosterols biosynthesis and conversions were summarized. CAS, SSR2, SMT, DWF1 and CYP710A, the enzymes participating in the biosynthetic pathway, and PSAT, ASAT and SGT, the enzymes involved in the conversion of free sterols to conjugated ones, were reviewed. Specifically, SMT and CYP710A were emphasized for their function on modulating the percentage composition of different kinds of phytosterols. The thresholds of sterol equilibrium and the resultant phytosterols accumulation, which vary in plant species and contribute to plasma membrane remodeling under stresses, were also discussed. By retrospective analysis of the previous researches, we proposed a feedback mechanism regulating sterol equilibrium underlying sterols metabolism. From a strategic perspective, we regard salt tolerant plant as an alternative to present raw materials, which will attain higher phytosterols production in combination with gene-modification.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
17
|
Shimada TL, Yamaguchi K, Shigenobu S, Takahashi H, Murase M, Fukuyoshi S, Hara-Nishimura I. Excess sterols disrupt plant cellular activity by inducing stress-responsive gene expression. JOURNAL OF PLANT RESEARCH 2020; 133:383-392. [PMID: 32185672 DOI: 10.1007/s10265-020-01181-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Sterols are important lipid constituents of cellular membranes in plants and other organisms. Sterol homeostasis is under strict regulation in plants because excess sterols negatively impact plant growth. HIGH STEROL ESTER 1 (HISE1) functions as a negative regulator of sterol accumulation. If sterol production exceeds a certain threshold, excess sterols are detoxified via conversion to sterol esters by PHOSPHOLIPID STEROL ACYL TRANSFERASE 1 (PSAT1). We previously reported that the Arabidopsis thaliana double mutant hise1-3 psat1-2 shows 1.5-fold higher sterol content than the wild type and consequently a severe growth defect. However, the specific defects caused by excess sterol accumulation in plants remain unknown. In this study, we investigated the effects of excess sterols on plants by analyzing the phenotypes and transcriptomes of the hise1-3 psat1-2 double mutant. Transcriptomic analysis revealed that 435 genes were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Gene ontology (GO) enrichment analysis revealed that abiotic and biotic stress-responsive genes including RESPONSIVE TO DESICCATION 29B/LOW-TEMPERATURE-INDUCED 65 (RD29B/LTI65) and COLD-REGULATED 15A (COR15A) were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Expression levels of senescence-related genes were also much higher in hise1-3 psat1-2 leaves than in wild-type leaves. hise1-3 psat1-2 leaves showed early senescence, suggesting that excess sterols induce senescence of leaves. In the absence of sucrose, hise1-3 psat1-2 exhibited defects in seedling growth and root elongation. Together, our data suggest that excess sterol accumulation disrupts cellular activities of vegetative organs including leaves and roots, resulting in multiple damages to plants.
Collapse
Affiliation(s)
- Takashi L Shimada
- Graduate School of Horticulture, Chiba University, Matsudo648, Matsudo, Chiba, 271-8510, Japan.
- Plant Molecular Science Center, Chiba University, Chiba, Chiba, 260-8675, Japan.
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo648, Matsudo, Chiba, 271-8510, Japan
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masataka Murase
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ikuko Hara-Nishimura
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, 658-8501, Japan
| |
Collapse
|
18
|
Suchodolski J, Muraszko J, Korba A, Bernat P, Krasowska A. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole-gentamicin treatment. Yeast 2020; 37:117-129. [PMID: 31826306 PMCID: PMC7004182 DOI: 10.1002/yea.3455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
Adherence of the fungus, Candida albicans, to biotic (e.g. human tissues) and abiotic (e.g. catheters) surfaces can lead to emergence of opportunistic infections in humans. The process of adhesion and further biofilm development depends, in part, on cell surface hydrophobicity (CSH). In this study, we compared the resistance of C. albicans strains with different CSH to the most commonly prescribed antifungal drug, fluconazole, and the newly described synergistic combination, fluconazole and gentamicin. The hydrophobic strain was more resistant to fluconazole due to, among others, overexpression of the ERG11 gene encoding the fluconazole target protein (CYP51A1, Erg11p), which leads to overproduction of ergosterol in this strain. Additionally, the hydrophobic strain displayed high efflux activity of the multidrug resistance Cdr1 pump due to high expression of the CDR1 gene. On the other hand, the hydrophobic C. albicans strain was more susceptible to fluconazole-gentamicin combination because of its different effect on lipid content in the two strains. The combination resulted in ergosterol depletion with subsequent Cdr1p mislocalization and loss of activity in the hydrophobic strain. We propose that C. albicans strains with different CSH may possess altered lipid metabolism and consequently may differ in their response to treatment.
Collapse
Affiliation(s)
- Jakub Suchodolski
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksandra Korba
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Anna Krasowska
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
19
|
Zienkiewicz K, Zienkiewicz A. Degradation of Lipid Droplets in Plants and Algae-Right Time, Many Paths, One Goal. FRONTIERS IN PLANT SCIENCE 2020; 11:579019. [PMID: 33014002 PMCID: PMC7509404 DOI: 10.3389/fpls.2020.579019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.
Collapse
|
20
|
Affiliation(s)
- Sylvain Darnet
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Hubert Schaller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|