1
|
Zou T, Chen C, Chen H, Wang X, Gan L, Wang C, Gao Q, Zhang C, Liao W, Cheng J, Li R. Structural-functional connectivity decoupling in multiscale brain networks in Parkinson's disease. BMC Neurosci 2024; 25:78. [PMID: 39725901 DOI: 10.1186/s12868-024-00918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disease associated with functional and structural alterations beyond the nigrostriatal dopamine projection. However, the structural-functional (SC-FC) coupling changes in combination with subcortical regions at the network level are rarely investigated in PD. METHODS SC-FC coupling networks were systematically constructed using the structural connectivity obtained by diffusion tensor imaging and the functional connectivity obtained by resting-state functional magnetic resonance imaging in 53 PD and 72 age- and sex-matched healthy controls (HCs). Then, we explored how SC-FC coupling varied within and between several well-defined functional domains. RESULTS Results showed that the SC-FC coupling in patients with PD was globally reduced in comparison with HCs. Specifically, regional SC-FC decoupled in the inferior parietal lobule, occipitotemporal cortex, motor cortex, and higher-order association cortex in patients with PD. Moreover, PD showed intranetwork SC-FC decoupling in the visual network (VIS), limbic and higher-order association networks. Furthermore, internetwork decoupling mainly linked to the VIS, the somatomotor network (SOM), the dorsal attention network, and the default mode network, was observed, increased internetwork coupling was found between the subcortical network and the SOM in PD (all p < 0.05, FDR corrected). CONCLUSIONS These findings suggest that PD is characterized by SC-FC decoupling in topological organization of multiscale brain networks, providing insights into the brain network mechanisms in PD.
Collapse
Affiliation(s)
- Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Chen Chen
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Lin Gan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Chong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Chunyan Zhang
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Jingliang Cheng
- Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China.
| |
Collapse
|
2
|
Xiong M, Xia D, Yu H, Meng L, Zhang X, Chen J, Tian Y, Yuan X, Niu X, Nie S, Zhang Z, Liu C, Chen Q, Ye K, Zhang Z. Microglia Process α-Synuclein Fibrils and Enhance their Pathogenicity in a TREM2-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2413451. [PMID: 39665233 DOI: 10.1002/advs.202413451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease (PD) is characterized by the deposition of misfolded α-synuclein (α-syn) in the brain. Converging evidence indicates that the intracellular transmission and subsequent templated amplification of α-syn are involved in the onset and progression of PD. However, the molecular mechanisms underlying the cell-to-cell transmission of pathological α-syn remain poorly understood. Microglia is highly activated in the brains of PD patients. Here, it is shown that depletion of microglia slows the spread of pathological α-syn pathology in mice injected with α-syn fibrils. Microglia phagocytose α-syn fibrils and transform them into more toxic species. The phagocytosis of α-syn fibrils by microglia is partially mediated by triggering a receptor expressed on myeloid cells 2 (TREM2), a transmembrane protein expressed on the surface of microglia. The endocytosed α-syn fibrils are then cleaved by the lysosomal proteinase asparagine endopeptidase (AEP) to generate truncated α-syn 1-103 fibrils with enhanced seeding activity. Knockout of TREM2 and AEP impedes the endocytosis and cleavage of α-syn fibrils, respectively. The results demonstrate that TREM2-mediated phagocytosis of α-syn fibrils by microglia and subsequent AEP-mediated cleavage of α-syn fibrils contribute to the spread of α-syn in the brain. Blocking either of these two steps attenuates the progression of α-syn pathology.
Collapse
Affiliation(s)
- Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Danhao Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Honglu Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiehui Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Chen
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, 518035, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China
| |
Collapse
|
3
|
Shehjar F, James AW, Mahajan R, Shah ZA. Inhibition of iron-induced cofilin activation and inflammation in microglia by a novel cofilin inhibitor. J Neurochem 2024. [PMID: 39556452 DOI: 10.1111/jnc.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Neuroinflammatory conditions linked to iron dysregulation pose significant challenges in neurodegenerative diseases. Iron-loaded microglia are observed in the brains of patients with various neuroinflammatory conditions, yet how iron overload affects microglial function and contributes to various neuroinflammatory processes is poorly understood. This in vitro study elucidates the relationship between excess iron, cofilin activation, and microglial function, shedding light on potential therapeutic avenues. Iron overload was induced in Human Microglial Clone 3 cells using ferrous sulfate, and the expressions of ferritin heavy chain, ferritin light chain, divalent metal transporter 1, cofilin, p-cofilin, nuclear factor-κB (NF-κB), and various inflammatory cytokines were analyzed using real-time quantitative polymerase chain reaction, immunocytochemistry, Western blotting, and enzyme-linked immunosorbent assay. Results revealed a notable increase in cofilin, NF-κB, and inflammatory cytokine expression levels following excess iron exposure. Moreover, treatment with deferoxamine (DFX), a known iron chelator, and a novel cofilin inhibitor (CI) synthesized in our laboratory demonstrate a mitigating effect on iron-induced cofilin expression. Furthermore, both DFX and CI exhibit promising outcomes in mitigating the inflammatory consequences of excess iron, including the expression of pro-inflammatory cytokines and NF-κB activation. These findings suggest that both DFX and CI can potentially alleviate microglia-induced neuroinflammation by targeting both iron dysregulation and cofilin-mediated pathways. Overall, this study provides valuable insights into iron-induced cofilin activation and microglial activation, offering avenues for potential targeted therapies for neuroinflammatory conditions associated with iron and cofilin dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| |
Collapse
|
4
|
Stagaman K, Kmiecik MJ, Wetzel M, Aslibekyan S, Sonmez TF, Fontanillas P, Tung J, Holmes MV, Walk ST, Houser MC, Norcliffe-Kaufmann L. Oral and gut microbiome profiles in people with early idiopathic Parkinson's disease. COMMUNICATIONS MEDICINE 2024; 4:209. [PMID: 39443634 PMCID: PMC11499922 DOI: 10.1038/s43856-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Early detection of Parkinson's disease (PD), a neurodegenerative disease with central and peripheral nerve involvement, ensures timely treatment access. Microbes influence nervous system health and are altered in PD. METHODS We examined gut and mouth microbiomes from recently diagnosed patients in a geographically diverse, matched case-control, shotgun metagenomics study. RESULTS Here, we show greater alpha-diversity in 445 PD patients versus 221 controls. The microbial signature of PD includes overabundance of 16 OTUs, including Streptococcus mutans and Bifidobacterium dentium, and depletion of 28 OTUs. Machine learning models indicate that subspecies level oral microbiome abundances best distinguish PD with reasonably high accuracy (area under the curve: 0.758). Microbial networks are disrupted in cases, with reduced connectivity between short-chain fatty acid-producing bacteria the the gut. Importantly, microbiome diversity metrics are associated with non-motor autonomic symptom severity. CONCLUSIONS Our results provide evidence that predictive oral PD microbiome signatures could possibly be used as biomarkers for the early detection of PD, particularly when there is peripheral nervous system involvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Boytz R, Keita K, Pawlak JB, Laurent-Rolle M. Flaviviruses manipulate mitochondrial processes to evade the innate immune response. NPJ VIRUSES 2024; 2:47. [PMID: 39371935 PMCID: PMC11452341 DOI: 10.1038/s44298-024-00057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are essential eukaryotic organelles that regulate a range of cellular processes, from metabolism to calcium homeostasis and programmed cell death. They serve as essential platforms for antiviral signaling proteins during the innate immune response to viral infections. Mitochondria are dynamic structures, undergoing frequent fusion and fission processes that regulate various aspects of mitochondrial biology, including innate immunity. Pathogens have evolved sophisticated mechanisms to manipulate mitochondrial morphology and function to facilitate their replication. In this review, we examine the emerging literature on how flaviviruses modulate mitochondrial processes.
Collapse
Affiliation(s)
- RuthMabel Boytz
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Kadiatou Keita
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
| | - Joanna B. Pawlak
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Maudry Laurent-Rolle
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
6
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Yan M, Zhang Q, Chen Y, Zhu C, Wang D, Tan J, He B, Li Q, Deng X, Wan Y. α-Synuclein-mediated mitochondrial translocation of cofilin-1 leads to oxidative stress and cell apoptosis in PD. Front Neurosci 2024; 18:1420507. [PMID: 39224576 PMCID: PMC11366625 DOI: 10.3389/fnins.2024.1420507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein protein and the loss of dopaminergic neurons in the substantia nigra. Abnormal α-synuclein aggregates form toxic Lewy bodies, ultimately inducing neuronal injury. Mitochondrial dysfunction was reported to be involved in the neurotoxicity of α-synuclein aggregates in PD. However, the specific mechanism by which abnormal α-synuclein aggregates cause mitochondrial disorders remains poorly defined. Previously, we found that cofilin-1, a member of the actin-binding protein, regulates α-synuclein pathogenicity by promoting its aggregation and spreading in vitro and in vivo. In this study, we further investigated the effect of cofilin-1 on α-synuclein induced mitochondrial damage. We discovered that α-synuclein aggregates accelerate the translocation of cofilin-1 to mitochondria, promote its combination with the mitochondrial outer membrane receptor Tom 20, and ultimately activate the oxidative damage and apoptosis pathway in mitochondria. All these results demonstrate the important regulatory role of cofilin-1 in the mitochondrial neurotoxicity of pathological α-synuclein during the progression of PD.
Collapse
Affiliation(s)
- Mingmin Yan
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, China
| | - Qian Zhang
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Yu Chen
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Chenyi Zhu
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Dan Wang
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Jie Tan
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Bihua He
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Qin Li
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaorong Deng
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| | - Yue Wan
- Department of Neurology, Hubei No. 3 People's Hospital, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
8
|
Phongpreecha T, Mathi K, Cholerton B, Fox EJ, Sigal N, Espinosa C, Reincke M, Chung P, Hwang LJ, Gajera CR, Berson E, Perna A, Xie F, Shu CH, Hazra D, Channappa D, Dunn JE, Kipp LB, Poston KL, Montine KS, Maecker HT, Aghaeepour N, Montine TJ. Single-cell peripheral immunoprofiling of lewy body and Parkinson's disease in a multi-site cohort. Mol Neurodegener 2024; 19:59. [PMID: 39090623 PMCID: PMC11295553 DOI: 10.1186/s13024-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Multiple lines of evidence support peripheral organs in the initiation or progression of Lewy body disease (LBD), a spectrum of neurodegenerative diagnoses that include Parkinson's Disease (PD) without or with dementia (PDD) and dementia with Lewy bodies (DLB). However, the potential contribution of the peripheral immune response to LBD remains unclear. This study aims to characterize peripheral immune responses unique to participants with LBD at single-cell resolution to highlight potential biomarkers and increase mechanistic understanding of LBD pathogenesis in humans. METHODS In a case-control study, peripheral mononuclear cell (PBMC) samples from research participants were randomly sampled from multiple sites across the United States. The diagnosis groups comprise healthy controls (HC, n = 159), LBD (n = 110), Alzheimer's disease dementia (ADD, n = 97), other neurodegenerative disease controls (NDC, n = 19), and immune disease controls (IDC, n = 14). PBMCs were activated with three stimulants (LPS, IL-6, and IFNa) or remained at basal state, stained by 13 surface markers and 7 intracellular signal markers, and analyzed by flow cytometry, which generated 1,184 immune features after gating. RESULTS The model classified LBD from HC with an AUROC of 0.87 ± 0.06 and AUPRC of 0.80 ± 0.06. Without retraining, the same model was able to distinguish LBD from ADD, NDC, and IDC. Model predictions were driven by pPLCγ2, p38, and pSTAT5 signals from specific cell populations under specific activation. The immune responses characteristic for LBD were not associated with other common medical conditions related to the risk of LBD or dementia, such as sleep disorders, hypertension, or diabetes. CONCLUSIONS AND RELEVANCE Quantification of PBMC immune response from multisite research participants yielded a unique pattern for LBD compared to HC, multiple related neurodegenerative diseases, and autoimmune diseases thereby highlighting potential biomarkers and mechanisms of disease.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Kavita Mathi
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | | | - Eddie J Fox
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Natalia Sigal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Camilo Espinosa
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Momsen Reincke
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Philip Chung
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Ling-Jen Hwang
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Eloise Berson
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Amalia Perna
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Feng Xie
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Chi-Hung Shu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Debapriya Hazra
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Jeffrey E Dunn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lucas B Kipp
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Tröger J, Dörr F, Schwed L, Linz N, König A, Thies T, Barbe MT, Orozco-Arroyave JR, Rusz J. An automatic measure for speech intelligibility in dysarthrias-validation across multiple languages and neurological disorders. Front Digit Health 2024; 6:1440986. [PMID: 39108340 PMCID: PMC11300433 DOI: 10.3389/fdgth.2024.1440986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Dysarthria, a motor speech disorder caused by muscle weakness or paralysis, severely impacts speech intelligibility and quality of life. The condition is prevalent in motor speech disorders such as Parkinson's disease (PD), atypical parkinsonism such as progressive supranuclear palsy (PSP), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Improving intelligibility is not only an outcome that matters to patients but can also play a critical role as an endpoint in clinical research and drug development. This study validates a digital measure for speech intelligibility, the ki: SB-M intelligibility score, across various motor speech disorders and languages following the Digital Medicine Society (DiMe) V3 framework. Methods The study used four datasets: healthy controls (HCs) and patients with PD, HD, PSP, and ALS from Czech, Colombian, and German populations. Participants' speech intelligibility was assessed using the ki: SB-M intelligibility score, which is derived from automatic speech recognition (ASR) systems. Verification with inter-ASR reliability and temporal consistency, analytical validation with correlations to gold standard clinical dysarthria scores in each disease, and clinical validation with group comparisons between HCs and patients were performed. Results Verification showed good to excellent inter-rater reliability between ASR systems and fair to good consistency. Analytical validation revealed significant correlations between the SB-M intelligibility score and established clinical measures for speech impairments across all patient groups and languages. Clinical validation demonstrated significant differences in intelligibility scores between pathological groups and healthy controls, indicating the measure's discriminative capability. Discussion The ki: SB-M intelligibility score is a reliable, valid, and clinically relevant tool for assessing speech intelligibility in motor speech disorders. It holds promise for improving clinical trials through automated, objective, and scalable assessments. Future studies should explore its utility in monitoring disease progression and therapeutic efficacy as well as add data from further dysarthrias to the validation.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra König
- ki elements GmbH, Saarbrücken, Germany
- Cobtek (Cognition-Behaviour-Technology) Lab, University Côte d’azur, Nice, France
- Centre de Mémoire de Ressources et de Recherche, Centre Hospitalier Universitaire Nice (CHUN), Nice, France
| | - Tabea Thies
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- IfL Phonetics, Faculty of Arts and Humanities, University of Cologne, Cologne, Germany
| | - Michael T. Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Juan Rafael Orozco-Arroyave
- GITA Lab, Faculty of Engineering, University of Antioquia, Medellín, Colombia
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Rusz
- Department of Circuit Theory, Czech Technical University in Prague, Prague, Czechia
| |
Collapse
|
10
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
11
|
Li B, Xiao X, Bi M, Jiao Q, Chen X, Yan C, Du X, Jiang H. Modulating α-synuclein propagation and decomposition: Implications in Parkinson's disease therapy. Ageing Res Rev 2024; 98:102319. [PMID: 38719160 DOI: 10.1016/j.arr.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
α-Synuclein (α-Syn) is closely related to the pathogenesis of Parkinson's disease (PD). Under pathological conditions, the conformation of α-syn changes and different forms of α-syn lead to neurotoxicity. According to Braak stages, α-syn can propagate in different brain regions, inducing neurodegeneration and corresponding clinical manifestations through abnormal aggregation of Lewy bodies (LBs) and lewy axons in different types of neurons in PD. So far, PD lacks early diagnosis biomarkers, and treatments are mainly targeted at some clinical symptoms. There is no effective therapy to delay the progression of PD. This review first summarized the role of α-syn in physiological and pathological states, and the relationship between α-syn and PD. Then, we focused on the origin, secretion, aggregation, propagation and degradation of α-syn as well as the important regulatory factors in these processes systematically. Finally, we reviewed some potential drug candidates for alleviating the abnormal aggregation of α-syn in order to provide valuable targets for the treatment of PD to cope with the occurrence and progression of this disease.
Collapse
Affiliation(s)
- Beining Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mingxia Bi
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Chunling Yan
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Holfeld A, Schuster D, Sesterhenn F, Gillingham AK, Stalder P, Haenseler W, Barrio-Hernandez I, Ghosh D, Vowles J, Cowley SA, Nagel L, Khanppnavar B, Serdiuk T, Beltrao P, Korkhov VM, Munro S, Riek R, de Souza N, Picotti P. Systematic identification of structure-specific protein-protein interactions. Mol Syst Biol 2024; 20:651-675. [PMID: 38702390 PMCID: PMC11148107 DOI: 10.1038/s44320-024-00037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.
Collapse
Affiliation(s)
- Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Dina Schuster
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Fabian Sesterhenn
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Patrick Stalder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Walther Haenseler
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- University Research Priority Program AdaBD (Adaptive Brain Circuits in Development and Learning), University of Zurich, Zurich, Switzerland
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Jane Vowles
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Luise Nagel
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Basavraj Khanppnavar
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Pedro Beltrao
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Volodymyr M Korkhov
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Lengacher NA, Tomlinson JJ, Jochum AK, Franz J, Hasan Ali O, Flatz L, Jochum W, Penninger J, Stadelmann C, Woulfe JM, Schlossmacher MG. Neuropathological assessment of the olfactory bulb and tract in individuals with COVID-19. Acta Neuropathol Commun 2024; 12:70. [PMID: 38698465 PMCID: PMC11067107 DOI: 10.1186/s40478-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/17/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.
Collapse
Affiliation(s)
- Nathalie A Lengacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Julianna J Tomlinson
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ann-Kristin Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Jonas Franz
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Omar Hasan Ali
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Josef Penninger
- Department of Life Sciences, University of British Columbia, Vancouver, BC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Christine Stadelmann
- Neuropathology Institute, University of Goettingen Medical Centre, Goettingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - John M Woulfe
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| | - Michael G Schlossmacher
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
14
|
Oliveira da Silva MI, Santejo M, Babcock IW, Magalhães A, Minamide LS, Won SJ, Castillo E, Gerhardt E, Fahlbusch C, Swanson RA, Outeiro TF, Taipa R, Ruff M, Bamburg JR, Liz MA. α-Synuclein triggers cofilin pathology and dendritic spine impairment via a PrP C-CCR5 dependent pathway. Cell Death Dis 2024; 15:264. [PMID: 38615035 PMCID: PMC11016063 DOI: 10.1038/s41419-024-06630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.
Collapse
Grants
- R01 AG049668 NIA NIH HHS
- R01 NS105774 NINDS NIH HHS
- R43 AG071064 NIA NIH HHS
- S10 OD025127 NIH HHS
- Applicable Funding Source FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD). Márcia A Liz is supported by CEECINST/00091/2018.
- FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD).
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), and R43AG071064 (J.R.B).
- National Institutes on Aging of the National Institutes of Health under award number RO1NS105774 (R.A.S).
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2067/1- 390729940) and SFB1286 (Project B8)
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), R43AG071064 (J.R.B)
Collapse
Affiliation(s)
- Marina I Oliveira da Silva
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Miguel Santejo
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Isaac W Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ana Magalhães
- Addiction Biology Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Laurie S Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seok-Joon Won
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Erika Castillo
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Ricardo Taipa
- Neuropathology Unit, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
- Autoimmune and Neuroscience Research Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| | - Michael Ruff
- Creative Bio-Peptides, Rockville, MD, 20854, USA
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Márcia A Liz
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
15
|
Sierra-Fernández CR, Garnica-Geronimo LR, Huipe-Dimas A, Ortega-Hernandez JA, Ruiz-Mafud MA, Cervantes-Arriaga A, Hernández-Medrano AJ, Rodríguez-Violante M. Electrocardiographic approach strategies in patients with Parkinson disease treated with deep brain stimulation. Front Cardiovasc Med 2024; 11:1265089. [PMID: 38682099 PMCID: PMC11047133 DOI: 10.3389/fcvm.2024.1265089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Deep brain stimulation (DBS) is an interdisciplinary and reversible therapy that uses high-frequency electrical stimulation to correct aberrant neural pathways in motor and cognitive neurological disorders. However, the high frequency of the waves used in DBS can interfere with electrical recording devices (e.g., electrocardiogram, electroencephalogram, cardiac monitor), creating artifacts that hinder their interpretation. The compatibility of DBS with these devices varies and depends on factors such as the underlying disease and the configuration of the neurostimulator. In emergencies where obtaining an electrocardiogram is crucial, the need for more consensus on reducing electrical artifacts in patients with DBS becomes a significant challenge. Various strategies have been proposed to attenuate the artifact generated by DBS, such as changing the DBS configuration from monopolar to bipolar, temporarily deactivating DBS during electrocardiographic recording, applying frequency filters both lower and higher than those used by DBS, and using non-standard leads. However, the inexperience of medical personnel, variability in DBS models, or the lack of a controller at the time of approach limit the application of these strategies. Current evidence on their reproducibility and efficacy is limited. Due to the growing elderly population and the rising utilization of DBS, it is imperative to create electrocardiographic methods that are easily accessible and reproducible for general physicians and emergency services.
Collapse
Affiliation(s)
| | | | - Alejandra Huipe-Dimas
- Department of Medical Education, National Institute of Cardiology Ignacio Chávez, Mexico, Mexico
| | | | - María Alejandra Ruiz-Mafud
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| | - Amin Cervantes-Arriaga
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| | - Ana Jimena Hernández-Medrano
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| | - Mayela Rodríguez-Violante
- Department of Movement Disorders, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico, Mexico
| |
Collapse
|
16
|
Fan Y, Wang J, Jian J, Wen Y, Li J, Tian H, Crommen J, Bi W, Zhang T, Jiang Z. High-throughput discovery of highly selective reversible hMAO-B inhibitors based on at-line nanofractionation. Acta Pharm Sin B 2024; 14:1772-1786. [PMID: 38572096 PMCID: PMC10985270 DOI: 10.1016/j.apsb.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 04/05/2024] Open
Abstract
Human monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability. Molecular docking and molecular dynamics simulations elucidated the inhibition mechanism. Sedanolide (IC50 = 103 nmol/L; SI = 645) and neocnidilide (IC50 = 131 nmol/L; SI = 207) demonstrated their excellent potential as hMAO-B inhibitors. They offset the limitations of deactivating enzymes associated with irreversible hMAO-B inhibitors such as rasagiline. In SH-SY5Y cell assays, sedanolide (EC50 = 0.962 μmol/L) and neocnidilide (EC50 = 1.161 μmol/L) exhibited significant neuroprotective effects, comparable to the positive drugs rasagiline (EC50 = 0.896 μmol/L) and safinamide (EC50 = 1.079 μmol/L). These findings underscore the potential of sedanolide as a novel natural hMAO-B inhibitor that warrants further development as a promising drug candidate.
Collapse
Affiliation(s)
- Yu Fan
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
- KU Leuven-University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, Leuven 3000, Belgium
| | - Yalei Wen
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiahao Li
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hao Tian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Wei Bi
- Department of Neurology, the First Affiliated Hospital of Jinan University/Clinical Neuroscience Institute, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Jin M, Wang S, Gao X, Zou Z, Hirotsune S, Sun L. Pathological and physiological functional cross-talks of α-synuclein and tau in the central nervous system. Neural Regen Res 2024; 19:855-862. [PMID: 37843221 PMCID: PMC10664117 DOI: 10.4103/1673-5374.382231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 10/17/2023] Open
Abstract
α-Synuclein and tau are abundant multifunctional brain proteins that are mainly expressed in the presynaptic and axonal compartments of neurons, respectively. Previous works have revealed that intracellular deposition of α-synuclein and/or tau causes many neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Despite intense investigation, the normal physiological functions and roles of α-synuclein and tau are still unclear, owing to the fact that mice with knockout of either of these proteins do not present apparent phenotypes. Interestingly, the co-occurrence of α-synuclein and tau aggregates was found in post-mortem brains with synucleinopathies and tauopathies, some of which share similarities in clinical manifestations. Furthermore, the direct interaction of α-synuclein with tau is considered to promote the fibrillization of each of the proteins in vitro and in vivo. On the other hand, our recent findings have revealed that α-synuclein and tau are cooperatively involved in brain development in a stage-dependent manner. These findings indicate strong cross-talk between the two proteins in physiology and pathology. In this review, we provide a summary of the recent findings on the functional roles of α-synuclein and tau in the physiological conditions and pathogenesis of neurodegenerative diseases. A deep understanding of the interplay between α-synuclein and tau in physiological and pathological conditions might provide novel targets for clinical diagnosis and therapeutic strategies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shengming Wang
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Xiaodie Gao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Zhenyou Zou
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Liyuan Sun
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
19
|
Kouli A, Spindler LRB, Fryer TD, Hong YT, Malpetti M, Aigbirhio FI, White SR, Camacho M, O’Brien JT, Williams-Gray CH. Neuroinflammation is linked to dementia risk in Parkinson's disease. Brain 2024; 147:923-935. [PMID: 37757857 PMCID: PMC10907093 DOI: 10.1093/brain/awad322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The development of dementia is a devastating aspect of Parkinson's disease (PD), affecting nearly half of patients within 10 years post-diagnosis. For effective therapies to prevent and slow progression to PD dementia (PDD), the key mechanisms that determine why some people with PD develop early dementia, while others remain cognitively unaffected, need to be understood. Neuroinflammation and tau protein accumulation have been demonstrated in post-mortem PD brains, and in many other neurodegenerative disorders leading to dementia. However, whether these processes mediate dementia risk early on in the PD disease course is not established. To this end, we used PET neuroimaging with 11C-PK11195 to index neuroinflammation and 18F-AV-1451 for misfolded tau in early PD patients, stratified according to dementia risk in our 'Neuroinflammation and Tau Accumulation in Parkinson's Disease Dementia' (NET-PDD) study. The NET-PDD study longitudinally assesses newly-diagnosed PD patients in two subgroups at low and high dementia risk (stratified based on pentagon copying, semantic fluency, MAPT genotype), with comparison to age- and sex-matched controls. Non-displaceable binding potential (BPND) in 43 brain regions (Hammers' parcellation) was compared between groups (pairwise t-tests), and associations between BPND of the tracers tested (linear-mixed-effect models). We hypothesized that people with higher dementia risk have greater inflammation and/or tau accumulation in advance of significant cognitive decline. We found significantly elevated neuroinflammation (11C-PK11195 BPND) in multiple subcortical and restricted cortical regions in the high dementia risk group compared with controls, while in the low-risk group this was limited to two cortical areas. The high dementia risk group also showed significantly greater neuroinflammation than the low-risk group concentrated on subcortical and basal ganglia regions. Neuroinflammation in most of these regions was associated with worse cognitive performance (Addenbrooke's Cognitive Examination-III score). Overall neuroinflammation burden also correlated with serum levels of pro-inflammatory cytokines. In contrast, increases in 18F-AV-1451 (tau) BPND in PD versus controls were restricted to subcortical regions where off-target binding is typically seen, with no relationship to cognition found. Whole-brain 18F-AV-1451 burden correlated with serum phosphorylated tau181 levels. Although there was minimal regional tau accumulation in PD, regional neuroinflammation and tau burden correlated in PD participants, with the strongest association in the high dementia risk group, suggesting possible co-localization of these pathologies. In conclusion, our findings suggest that significant regional neuroinflammation in early PD might underpin higher risk for PDD development, indicating neuroinflammation as a putative early modifiable aetiopathological disease factor to prevent or slow dementia development using immunomodulatory strategies.
Collapse
Affiliation(s)
- Antonina Kouli
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Lennart R B Spindler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Simon R White
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, CB2 0SL, UK
| | - Marta Camacho
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | |
Collapse
|
20
|
Wang J, Dai L, Chen S, Zhang Z, Fang X, Zhang Z. Protein-protein interactions regulating α-synuclein pathology. Trends Neurosci 2024; 47:209-226. [PMID: 38355325 DOI: 10.1016/j.tins.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies (LBs). The main proteinaceous component of LBs is aggregated α-synuclein (α-syn). However, the mechanisms underlying α-syn aggregation are not yet fully understood. Converging lines of evidence indicate that, under certain pathological conditions, various proteins can interact with α-syn and regulate its aggregation. Understanding these protein-protein interactions is crucial for unraveling the molecular mechanisms contributing to PD pathogenesis. In this review we provide an overview of the current knowledge on protein-protein interactions that regulate α-syn aggregation. Additionally, we briefly summarize the methods used to investigate the influence of protein-protein interactions on α-syn aggregation and propagation.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
21
|
Sonuç Karaboğa MN, Ünal MA, Arı F, Sezgintürk MK, Özkan SA. An innovative method for the detection of alpha synuclein, a potential biomarker of Parkinson's disease: quartz tuning fork-based mass sensitive immunosensor design. Phys Chem Chem Phys 2024; 26:5106-5114. [PMID: 38259152 DOI: 10.1039/d3cp04527g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
An innovative biosensing fabrication strategy has been demonstrated for the first time using a quartz tuning fork (QTF) to develop a practical immunosensor for sensitive, selective and practical analysis of alpha synuclein protein (SYN alpha), a potential biomarker of Parkinson's disease. Functionalization of gold-coated QTFs was carried out in 2 steps by forming a self-assembled monolayer with 4-aminothiophenol (4-ATP) and conjugation of gold nanoparticles (AuNPs). The selective determination range for SYN alpha of the developed biosensor system is 1-500 ng mL-1 in accordance with the resonance frequency shifts associated with a limit of detection of 0.098 ng mL-1. The changes in surface morphology and elemental composition were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). The remarkable point of the study is that this QTF based mass sensitive biosensor system can capture the SYN alpha target protein in cerebrospinal fluid (CSF) samples with recoveries ranging from 92% to 104%.
Collapse
Affiliation(s)
| | | | - Fikret Arı
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Ankara University, Ankara, Turkey
| | - Mustafa Kemal Sezgintürk
- Faculty of Engineering, Bioengineering Department, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | | |
Collapse
|
22
|
Shehjar F, Almarghalani DA, Mahajan R, Hasan SAM, Shah ZA. The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy. Cells 2024; 13:188. [PMID: 38247879 PMCID: PMC10814918 DOI: 10.3390/cells13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like Aβ plaques and α-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with α-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Daniyah A. Almarghalani
- Stroke Research Unit, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
| | - Syed A.-M. Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (F.S.); (R.M.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
23
|
Guo T, Xiong J, Feng H, Bu L, Xiao T, Zhou L, He J, Deng M, Liu Y, Zhang Z, Zhang Z. L116 Deletion in CSPα Promotes α-Synuclein Aggregation and Neurodegeneration. Mol Neurobiol 2024; 61:15-27. [PMID: 37566176 DOI: 10.1007/s12035-023-03552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Parkinsonism is a clinical syndrome that is caused by Parkinson's disease (PD) and other neurodegenerative diseases. Here, we report a patient who exhibited progressive parkinsonism, epilepsy, and cognitive impairment and was diagnosed with adult-onset neuronal ceroid lipofuscinoses (ANCLs). The patient carries a mutation (p.Leu116 del) in the DNAJC5 gene that encodes cysteine string protein (CSPα). Since the patient shows typical parkinsonism and loss of dopamine transporter in the striatum, we investigated the effect of wild-type and L116del mutant CSPα on the aggregation of α-synuclein (α-syn) and neurotoxicity in vitro. Overexpression of wild-type CSPα attenuated the phosphorylation, ubiquitination, and aggregation of α-syn induced by α-syn fibrils. Moreover, wild-type CSPα inhibits oxidative stress and cell apoptosis and rescues inefficient SNARE complex formation induced by α-syn fibrils in SH-SY5Y cells. However, these protective effects of CSPα were abolished by the L116del mutation. Collectively, these results indicate that L116 deletion in CSPα promotes α-syn pathology and neurotoxicity. Boosting CSPα may be therapeutically useful for treating synucleinopathies.
Collapse
Affiliation(s)
- Tao Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongyan Feng
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juanfeng He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Min Deng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Liu
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
24
|
Camacho-Ordonez A, Cervantes-Arriaga A, Rodríguez-Violante M, Hernandez-Medrano AJ, Somilleda-Ventura SA, Pérez-Cano HJ, Nava-Castañeda Á, Guerrero-Berger O. Is there any correlation between alpha-synuclein levels in tears and retinal layer thickness in Parkinson's disease? Eur J Ophthalmol 2024; 34:252-259. [PMID: 37151018 DOI: 10.1177/11206721231173725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PURPOSE To determine the total alpha-synuclein (αSyn) reflex tears and its association with retinal layers thickness in Parkinson's disease (PD). METHODS Fifty-two eyes of 26 PD subjects and 52 eyes of age-and sex-matched healthy controls were included. Total αSyn in reflex tears was quantified using a human total αSyn enzyme-linked immunosorbent assay (ELISA) kit. The retinal thickness was evaluated with spectral-domain optical coherence tomography. The Movement Disorder Society-Unified Parkinsońs Disease Rating Scale (MDS-UPDRS), Non-Motor Symptoms Scale (NMSS), and Montreal Cognitive Assessment (MoCA) were used to assess motor, non-motor, and cognition. RESULTS In PD, total αSyn levels were increased compared to control subjects [1.76pg/mL (IQR 1.74-1.80) vs 1.73pg/mL (IQR 1.70-1.77), p < 0.004]. The nerve fiber layer, ganglion cell layer, internal plexiform layer, inner nuclear layer, and outer nuclear layer were thinner in PD in comparison with controls (p < 0.05). The outer plexiform layer and retinal pigment epithelium were thicker in PD (p < 0.05). The total αSyn levels positively correlated with the central volume of the inner nuclear layer (r = 0.357, p = 0.009). CONCLUSION Total αSyn reflex tear levels were increased in subjects with PD compared to controls. PD patients showed significant thinning of the inner retinal layers and thickening of outer retinal layers in comparison with controls. Total αSyn levels positively correlate with the central volume of the inner nuclear layer in PD. The combination of these biomarkers might have a possible role as a diagnostic tool in PD subjects.
Collapse
Affiliation(s)
- Azyadeh Camacho-Ordonez
- Neuro-ophthalmology Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
- Anterior Segment Department, Fundacion Hospital Nuestra Señora de la Luz, IAP, Mexico City, Mexico
| | - Amin Cervantes-Arriaga
- Movement Disorder Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | | | | | - Hector J Pérez-Cano
- Biomedical Research Center, Fundacion Hospital Nuestra Señora de la Luz, IAP, Mexico City, Mexico
| | - Ángel Nava-Castañeda
- Oculoplastics Department, Instituto de Oftalmologia Fundacion Conde de Valenciana IAP, Mexico City, Mexico
| | - Oscar Guerrero-Berger
- Anterior Segment Department, Fundacion Hospital Nuestra Señora de la Luz, IAP, Mexico City, Mexico
| |
Collapse
|
25
|
Neumann WJ, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain 2023; 146:4456-4468. [PMID: 37450573 PMCID: PMC10629774 DOI: 10.1093/brain/awad239] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation. Over the years, various forms of neurophysiological evidence have emerged which demonstrate changes to brain activity across spatiotemporal resolutions; from single neuron, to local field potential, to brain-wide cortical network effects. Though fruitful, such studies have often led to debate about a singular putative mechanism. In this Update we aim to produce an integrative account of complementary instead of mutually exclusive neurophysiological effects to derive a generalizable concept of the mechanisms of deep brain stimulation. In particular, we offer a critical review of the most common historical competing theories, an updated discussion on recent literature from animal and human neurophysiological studies, and a synthesis of synaptic and network effects of deep brain stimulation across scales of observation, including micro-, meso- and macroscale circuit alterations.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Leon A Steiner
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
| | - Luka Milosevic
- Department of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto M5T 1M8, Canada
- Institute of Biomedical Engineering, Institute of Medical Sciences, and CRANIA Neuromodulation Institute, University of Toronto, Toronto M5S 3G9, Canada
| |
Collapse
|
26
|
Ma T, Huang W, Li Y, Jin H, Kwok LY, Sun Z, Zhang H. Probiotics alleviate constipation and inflammation in late gestating and lactating sows. NPJ Biofilms Microbiomes 2023; 9:70. [PMID: 37741814 PMCID: PMC10517943 DOI: 10.1038/s41522-023-00434-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Constipation and systemic inflammation are common in late pregnant and lactating sows, which cause health problems like uteritis, mastitis, dystocia, or even stillbirth, further influencing piglets' survival and growth. Probiotic supplementation can improve such issues, but the beneficial mechanism of relieving constipation and enhancing gut motility remains underexplored. This study aimed to investigate the effects and mechanism of probiotic supplementation in drinking water to late pregnant sows on constipation, inflammation, and piglets' growth performance. Seventy-four sows were randomly allocated to probiotic (n = 36) and control (n = 38) groups. Probiotic treatment significantly relieved sow constipation, enhanced serum IL-4 and IL-10 levels while reducing serum IL-1β, IL-12p40, and TNF-α levels, and increased piglet daily gain and weaning weight. Furthermore, probiotic administration reshaped the sow gut bacteriome and phageome structure/diversity, accompanied by increases in some potentially beneficial bacteria. At 113 days of gestation, the probiotic group was enriched in several gut microbial bioactive metabolites, multiple carbohydrate-active enzymes that degrade pectin and starch, fecal butyrate and acetate, and some serum metabolites involved in vitamin and amino acid metabolism. Our integrated correlation network analysis revealed that the alleviation of constipation and inflammation was associated with changes in the sow gut bacteriome, phageome, bioactive metabolic potential, and metabolism.
Collapse
Affiliation(s)
- Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Weiqiang Huang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
27
|
Odongo R, Bellur O, Abdik E, Çakır T. Brain-wide transcriptome-based metabolic alterations in Parkinson's disease: human inter-region and human-experimental model correlations. Mol Omics 2023; 19:522-537. [PMID: 36928892 DOI: 10.1039/d2mo00343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Alterations in brain metabolism are closely associated with the molecular hallmarks of Parkinson's disease (PD). A clear understanding of the main metabolic perturbations in PD is therefore important. Here, we retrospectively analysed the expression of metabolic genes from 34 PD-control post-mortem human brain transcriptome data comparisons from literature, spanning multiple brain regions. We found high metabolic correlations between the Substantia nigra (SN)- and cerebral cortex-derived tissues. Moreover, three clusters of PD patient cohorts were identified based on perturbed metabolic processes in the SN - each characterised by perturbations in (a) bile acid metabolism (b) omega-3 fatty acid metabolism, and (c) lipoic acid and androgen metabolism - metabolic themes not comprehensively addressed in PD. These perturbations were supported by concurrence between transcriptome and proteome changes in the expression patterns for CBR1, ECI2, BDH2, CYP27A1, ALDH1B1, ALDH9A1, ADH5, ALDH7A1, L1CAM, and PLXNB3 genes, providing a valuable resource for drug targeting and diagnosis. Also, we analysed 58 PD-control transcriptome data comparisons from in vivo/in vitro disease models and identified experimental PD models with significant correlations to matched human brain regions. Collectively, our findings suggest metabolic alterations in several brain regions, heterogeneity in metabolic alterations between study cohorts for the SN tissues and the need to optimize current experimental models to advance research on metabolic aspects of PD.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Orhan Bellur
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
28
|
Müller-Nedebock AC, Dekker MCJ, Farrer MJ, Hattori N, Lim SY, Mellick GD, Rektorová I, Salama M, Schuh AFS, Stoessl AJ, Sue CM, Tan AH, Vidal RL, Klein C, Bardien S. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:110. [PMID: 37443150 DOI: 10.1038/s41531-023-00535-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
The biological basis of the neurodegenerative movement disorder, Parkinson's disease (PD), is still unclear despite it being 'discovered' over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen "PD experts" from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Marieke C J Dekker
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Matthew J Farrer
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0106, Japan
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - George D Mellick
- Griffith Institute of Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, Australia
| | - Irena Rektorová
- First Department of Neurology and International Clinical Research Center, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Applied Neuroscience Research Group, CEITEC, Masaryk University, Brno, Czech Republic
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo (AUC), New Cairo, 11835, Egypt
- Faculty of Medicine, Mansoura University, Dakahleya, Egypt
- Atlantic Senior Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | - Artur F S Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Department of Medicine (Division of Neurology), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Carolyn M Sue
- Neuroscience Research Australia; Faculty of Medicine, University of New South Wales; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst; Department of Neurology, Prince of Wales Hospital, South Eastern Sydney Local Health District, Randwick, NSW, Australia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rene L Vidal
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
29
|
Iemolo A, De Risi M, Giordano N, Torromino G, Somma C, Cavezza D, Colucci M, Mancini M, de Iure A, Granata R, Picconi B, Calabresi P, De Leonibus E. Synaptic mechanisms underlying onset and progression of memory deficits caused by hippocampal and midbrain synucleinopathy. NPJ Parkinsons Dis 2023; 9:92. [PMID: 37328503 DOI: 10.1038/s41531-023-00520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/15/2023] [Indexed: 06/18/2023] Open
Abstract
Cognitive deficits, including working memory, and visuospatial deficits are common and debilitating in Parkinson's disease. α-synucleinopathy in the hippocampus and cortex is considered as the major risk factor. However, little is known about the progression and specific synaptic mechanisms underlying the memory deficits induced by α-synucleinopathy. Here, we tested the hypothesis that pathologic α-Synuclein (α-Syn), initiated in different brain regions, leads to distinct onset and progression of the pathology. We report that overexpression of human α-Syn in the murine mesencephalon leads to late onset memory impairment and sensorimotor deficits accompanied by reduced dopamine D1 expression in the hippocampus. In contrast, human α-Syn overexpression in the hippocampus leads to early memory impairment, altered synaptic transmission and plasticity, and decreased expression of GluA1 AMPA-type glutamate receptors. These findings identify the synaptic mechanisms leading to memory impairment induced by hippocampal α-synucleinopathy and provide functional evidence of the major neuronal networks involved in disease progression.
Collapse
Affiliation(s)
- Attilio Iemolo
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
- Institute of Genetics and Biophysics (IGB), Consiglio Nazionale delle Ricerche (CNR), via Pietro Castellino 111, Naples, Italy
| | - Maria De Risi
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
| | - Nadia Giordano
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Giulia Torromino
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
- University of Naples Federico II, Department of Humanistic Studies, Naples, Italy
| | - Cristina Somma
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Diletta Cavezza
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
| | - Martina Colucci
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy
- Institute of Genetics and Biophysics (IGB), Consiglio Nazionale delle Ricerche (CNR), via Pietro Castellino 111, Naples, Italy
| | - Maria Mancini
- Institute of Neuroscience (IN), Consiglio Nazionale delle Ricerche (CNR), via Raoul Follereau 3, Vedano al Lambro, Monza e Brianza, Italy
| | - Antonio de Iure
- Lab. Experimental Neurophysiology, IRCCS San Raffaele, Rome, 00166, Italy
| | - Rocco Granata
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy
| | - Barbara Picconi
- Lab. Experimental Neurophysiology, IRCCS San Raffaele, Rome, 00166, Italy
- Telematic University San Raffaele, Rome, 00166, Italy
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Neurology, Department of Neuroscience, Faculty of Medicine, Università Cattolica del "Sacro Cuore", 00168, Rome, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Via dei Campi Flegrei 34, Pozzuoli, Naples, Italy.
- Institute of Genetics and Biophysics (IGB), Consiglio Nazionale delle Ricerche (CNR), via Pietro Castellino 111, Naples, Italy.
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via Ramarini 33, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
30
|
Zhou L, Guo T, Meng L, Zhang X, Tian Y, Dai L, Niu X, Li Y, Liu C, Chen G, Liu C, Ke W, Zhang Z, Bao A, Zhang Z. N-homocysteinylation of α-synuclein promotes its aggregation and neurotoxicity. Aging Cell 2023; 22:e13745. [PMID: 36437524 PMCID: PMC10014048 DOI: 10.1111/acel.13745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
The aggregation of α-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Epidemiological evidence indicates that high level of homocysteine (Hcy) is associated with an increased risk of PD. However, the molecular mechanisms remain elusive. Here, we report that homocysteine thiolactone (HTL), a reactive thioester of Hcy, covalently modifies α-synuclein on the K80 residue. The levels of α-synuclein K80Hcy in the brain are increased in an age-dependent manner in the TgA53T mice, correlating with elevated levels of Hcy and HTL in the brain during aging. The N-homocysteinylation of α-synuclein stimulates its aggregation and forms fibrils with enhanced seeding activity and neurotoxicity. Intrastriatal injection of homocysteinylated α-synuclein fibrils induces more severe α-synuclein pathology and motor deficits when compared with unmodified α-synuclein fibrils. Increasing the levels of Hcy aggravates α-synuclein neuropathology in a mouse model of PD. In contrast, blocking the N-homocysteinylation of α-synuclein ameliorates α-synuclein pathology and degeneration of dopaminergic neurons. These findings suggest that the covalent modification of α-synuclein by HTL promotes its aggregation. Targeting the N-homocysteinylation of α-synuclein could be a novel therapeutic strategy against PD.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.,TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Ryman S, Vakhtin AA, Richardson SP, Lin HC. Microbiome-gut-brain dysfunction in prodromal and symptomatic Lewy body diseases. J Neurol 2023; 270:746-758. [PMID: 36355185 PMCID: PMC9886597 DOI: 10.1007/s00415-022-11461-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Lewy body diseases, such as Parkinson's disease and dementia with Lewy bodies, vary in their clinical phenotype but exhibit the same defining pathological feature, α-synuclein aggregation. Microbiome-gut-brain dysfunction may play a role in the initiation or progression of disease processes, though there are multiple potential mechanisms. We discuss the need to evaluate gastrointestinal mechanisms of pathogenesis across Lewy body diseases, as disease mechanisms likely span across diagnostic categories and a 'body first' clinical syndrome may better account for the heterogeneity of clinical presentations across the disorders. We discuss two primary hypotheses that suggest that either α-synuclein aggregation occurs in the gut and spreads in a prion-like fashion to the brain or systemic inflammatory processes driven by gastrointestinal dysfunction contribute to the pathophysiology of Lewy body diseases. Both of these hypotheses posit that dysbiosis and intestinal permeability are key mechanisms and potential treatment targets. Ultimately, this work can identify early interventions targeting initial disease pathogenic processes before the development of overt motor and cognitive symptoms.
Collapse
Affiliation(s)
- Sephira Ryman
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Andrei A Vakhtin
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Henry C Lin
- Department of Medicine, The University of New Mexico, Albuquerque, NM, 87131, USA
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
| |
Collapse
|
32
|
Wang X, Zhu X, Li X, Li Z, Mao Y, Zhang S, Liu X, Liu X, Liu Y, Cao F, Zhang J. Transcriptomic and metabolomic analyses provide insights into the attenuation of neuroinflammation by nervonic acid in MPTP-stimulated PD model mice. Food Funct 2023; 14:277-291. [PMID: 36484706 DOI: 10.1039/d2fo02595g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nervonic acid is one of the most promising bioactive fatty acids, which is believed to be beneficial for the recovery of human cognitive disorders. However, the detailed neuroprotective effects and mode of action of nervonic acid have not yet been fully elucidated. In this study, we used an MPTP-stimulated mouse Parkinson's disease (PD) model as a target to investigate the neuroprotective effects by behavioral tests and integrative analysis of trancriptomes and metabolomes of PD mouse brain with nervonic acid injections. The KEGG pathway enrichment analysis of transcriptomes showed that the genes involved in neuroinflammation were significantly increased after MPTP induction and have been greatly inhibited by nervonic acid injection, while nervonic acid also greatly improved nerve growth and synaptic plasticity pathways which were significantly downregulated by MPTP. At the same time, the upregulation of oleic acid and arachidonic acid metabolism pathways and the downregulation of amino acid metabolism pathways in metabolomes were particularly highlighted in the nervonic acid protection groups compared with the PD model. Meanwhile, it was found that arachidonic acid, oleic acid and taurine play an important regulatory role in the neuroprotective mechanism of nervonic acid through fatty acid metabolism by integrative analysis. Therefore, our study laid a solid foundation for further studies on the specific role of nervonic acid in the inhibition of PD at the level of metabolic regulation.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.,Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Ying Mao
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Shunbin Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xiaoxiao Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Xingguo Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Yapeng Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.,Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
33
|
Krokidis MG, Exarchos TP, Vrahatis AG, Tzouvelekis C, Drakoulis D, Papavassileiou F, Vlamos P. A Sensor-Based Platform for Early-Stage Parkinson's Disease Monitoring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1424:23-29. [PMID: 37486475 DOI: 10.1007/978-3-031-31982-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Biosensing platforms have gained much attention in clinical practice screening thousands of samples simultaneously for the accurate detection of important markers in various diseases for diagnostic and prognostic purposes. Herein, a framework for the design of an innovative methodological approach combined with data processing and appropriate software in order to implement a complete diagnostic system for Parkinson's disease exploitation is presented. The integrated platform consists of biochemical and peripheral sensor platforms for measuring biological and biometric parameters of examinees, a central collection and management unit along with a server for storing data, and a decision support system for patient's state assessment regarding the occurrence of the disease. The suggested perspective is oriented on data processing and experimental implementation and can provide a powerful holistic evaluation of personalized monitoring of patients or individuals at high risk of manifestation of the disease.
Collapse
Affiliation(s)
- Marios G Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece.
| | - Themis P Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| | - Aristidis G Vrahatis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| | - Christos Tzouvelekis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece
| | | | | | - Panagiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, Corfu, Greece.
| |
Collapse
|
34
|
Peelaerts W, Baekelandt V. ⍺-Synuclein Structural Diversity and the Cellular Environment in ⍺-Synuclein Transmission Models and Humans. Neurotherapeutics 2023; 20:67-82. [PMID: 37052776 PMCID: PMC10119367 DOI: 10.1007/s13311-023-01365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/14/2023] Open
Abstract
Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are termed synucleinopathies, disorders that are characterized by the intracellular aggregation of the protein ɑ-synuclein. The cellular tropism of synuclein pathology in these syndromes is notably distinct since in the Lewy disorders, PD and DLB, ɑSyn forms aggregates in neurons whereas in MSA ɑSyn forms aggregates in oligodendrocytes. Studies examining ɑSyn pathology in experimental models and in human brain have now identified fibrillar ɑSyn with unique but distinct molecular signatures, suggesting that the structure of these ɑSyn fibrils might be closely tied to their cellular ontogeny. In contrast to the native structural heterogeneity of ɑSyn in vitro, the conformational landscape of fibrillar ɑSyn in human brain and in vivo transmission models appears to be remarkably uniform. Here, we review the studies by which we propose a hypothesis that the cellular host environment might be in part responsible for how ɑSyn filaments assemble into phenotype-specific strains. We postulate that the maturation of ɑSyn strains develops as a function of their in vivo transmission routes and cell-specific risk factors. The impact of the cellular environment on the structural diversity of ɑSyn might have important implications for the design of preclinical studies and their use for the development of ɑSyn-based biomarkers and therapeutic strategies. By combining phenotype-specific fibrils and relevant synucleinopathy transmission models, preclinical models might more closely reflect unique disease phenotypes.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Dadu A, Satone V, Kaur R, Hashemi SH, Leonard H, Iwaki H, Makarious MB, Billingsley KJ, Bandres‐Ciga S, Sargent LJ, Noyce AJ, Daneshmand A, Blauwendraat C, Marek K, Scholz SW, Singleton AB, Nalls MA, Campbell RH, Faghri F. Identification and prediction of Parkinson's disease subtypes and progression using machine learning in two cohorts. NPJ Parkinsons Dis 2022; 8:172. [PMID: 36526647 PMCID: PMC9758217 DOI: 10.1038/s41531-022-00439-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care.
Collapse
Affiliation(s)
- Anant Dadu
- grid.35403.310000 0004 1936 9991Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820 USA ,grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.511118.dData Tecnica International, Washington, DC 20812 USA
| | - Vipul Satone
- grid.35403.310000 0004 1936 9991Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820 USA
| | - Rachneet Kaur
- grid.35403.310000 0004 1936 9991Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820 USA
| | - Sayed Hadi Hashemi
- grid.35403.310000 0004 1936 9991Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820 USA
| | - Hampton Leonard
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.511118.dData Tecnica International, Washington, DC 20812 USA ,grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Hirotaka Iwaki
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.511118.dData Tecnica International, Washington, DC 20812 USA ,grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mary B. Makarious
- grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA ,grid.83440.3b0000000121901201Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK ,grid.83440.3b0000000121901201UCL Movement Disorders Centre, University College London, London, UK
| | - Kimberley J. Billingsley
- grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sara Bandres‐Ciga
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Lana J. Sargent
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.224260.00000 0004 0458 8737School of Nursing, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Alastair J. Noyce
- grid.83440.3b0000000121901201UCL Movement Disorders Centre, University College London, London, UK ,grid.416041.60000 0001 0738 5466Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London and Department of Neurology, Royal London Hospital, London, UK
| | - Ali Daneshmand
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118 USA
| | - Cornelis Blauwendraat
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ken Marek
- grid.452597.8InviCRO LLC, Boston, MA USA ,grid.452597.8Molecular Neuroimaging, A Division of InviCRO, New Haven, CT USA
| | - Sonja W. Scholz
- grid.416870.c0000 0001 2177 357XNeurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA ,grid.21107.350000 0001 2171 9311Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrew B. Singleton
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mike A. Nalls
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.511118.dData Tecnica International, Washington, DC 20812 USA ,grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Roy H. Campbell
- grid.35403.310000 0004 1936 9991Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820 USA
| | - Faraz Faghri
- grid.94365.3d0000 0001 2297 5165Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA ,grid.511118.dData Tecnica International, Washington, DC 20812 USA ,grid.94365.3d0000 0001 2297 5165Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
36
|
Ben Bashat D, Thaler A, Lerman Shacham H, Even-Sapir E, Hutchison M, Evans KC, Orr-Urterger A, Cedarbaum JM, Droby A, Giladi N, Mirelman A, Artzi M. Neuromelanin and T 2*-MRI for the assessment of genetically at-risk, prodromal, and symptomatic Parkinson's disease. NPJ Parkinsons Dis 2022; 8:139. [PMID: 36271084 PMCID: PMC9586960 DOI: 10.1038/s41531-022-00405-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
MRI was suggested as a promising method for the diagnosis and assessment of Parkinson's Disease (PD). We aimed to assess the sensitivity of neuromelanin-MRI and T2* with radiomics analysis for detecting PD, identifying individuals at risk, and evaluating genotype-related differences. Patients with PD and non-manifesting (NM) participants [NM-carriers (NMC) and NM-non-carriers (NMNC)], underwent MRI and DAT-SPECT. Imaging-based metrics included 48 neuromelanin and T2* radiomics features and DAT-SPECT specific-binding-ratios (SBR), were extracted from several brain regions. Imaging values were assessed for their correlations with age, differences between groups, and correlations with the MDS-likelihood-ratio (LR) score. Several machine learning classifiers were evaluated for group classification. A total of 127 participants were included: 46 patients with PD (62.3 ± 10.0 years) [15:LRRK2-PD, 16:GBA-PD, and 15:idiopathic-PD (iPD)], 47 NMC (51.5 ± 8.3 years) [24:LRRK2-NMC and 23:GBA-NMC], and 34 NMNC (53.5 ± 10.6 years). No significant correlations were detected between imaging parameters and age. Thirteen MRI-based parameters and radiomics features demonstrated significant differences between PD and NMNC groups. Support-Vector-Machine (SVM) classifier achieved the highest performance (AUC = 0.77). Significant correlations were detected between LR scores and two radiomic features. The classifier successfully identified two out of three NMC who converted to PD. Genotype-related differences were detected based on radiomic features. SBR values showed high sensitivity in all analyses. In conclusion, neuromelanin and T2* MRI demonstrated differences between groups and can be used for the assessment of individuals at-risk in cases when DAT-SPECT can't be performed. Combining neuromelanin and T2*-MRI provides insights into the pathophysiology underlying PD, and suggests that iron accumulation precedes neuromelanin depletion during the prodromal phase.
Collapse
Affiliation(s)
- Dafna Ben Bashat
- grid.413449.f0000 0001 0518 6922Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hedva Lerman Shacham
- grid.413449.f0000 0001 0518 6922Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Einat Even-Sapir
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Department of Nuclear Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Avi Orr-Urterger
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jesse M. Cedarbaum
- Coeruleus Clinical Sciences LLC, Woodbridge, CT USA ,grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA
| | - Amgad Droby
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel ,grid.413449.f0000 0001 0518 6922Laboratory of Early Markers Of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moran Artzi
- grid.413449.f0000 0001 0518 6922Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
A population-based retrospective study of the modifying effect of urban blue space on the impact of socioeconomic deprivation on mental health, 2009-2018. Sci Rep 2022; 12:13040. [PMID: 35906285 PMCID: PMC9338232 DOI: 10.1038/s41598-022-17089-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
The incidence of mental health disorders in urban areas is increasing and there is a growing interest in using urban blue spaces (urban waterways, canals, lakes, ponds, coasts, etc.) as a tool to manage and mitigate mental health inequalities in the population. However, there is a dearth of longitudinal evidence of the mechanisms and impact of blue spaces on clinical markers of mental health to support and inform such interventions. We conducted a 10-year retrospective study, following STROBE guidelines, using routinely collected population primary care health data within the National Health Service (NHS) administrative area of Greater Glasgow and Clyde for the North of Glasgow city area. We explored whether living near blue space modifies the negative effect of socio-economic deprivation on mental health during the regeneration of an urban blue space (canal) from complete dereliction and closure. A total of 132,788 people (65,351 female) fulfilling the inclusion criteria were entered in the analysis. We established a base model estimating the effect of deprivation on the risk of mental health disorders using a Cox proportional hazards model, adjusted for age, sex and pre-existing comorbidities. We then investigated the modifying effect of living near blue space by computing a second model which included distance to blue space as an additional predicting variable and compared the results to the base model. Living near blue space modified the risk of mental health disorders deriving from socio-economic deprivation by 6% (hazard ratio 2.48, 95% confidence interval 2.39–2.57) for those living in the most deprived tertile (T1) and by 4% (hazard ratio 1.66, 95% confidence interval 1.60–1.72) for those in the medium deprivation tertile (T2). Our findings support the notion that living near blue space could play an important role in reducing the burden of mental health inequalities in urban populations.
Collapse
|
38
|
Kee TR, Wehinger JL, Gonzalez PE, Nguyen E, McGill Percy KC, Khan SA, Chaput D, Wang X, Liu T, Kang DE, Woo JAA. Pathological characterization of a novel mouse model expressing the PD-linked CHCHD2-T61I mutation. Hum Mol Genet 2022; 31:3987-4005. [PMID: 35786718 PMCID: PMC9703812 DOI: 10.1093/hmg/ddac083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a mitochondrial protein that plays important roles in cristae structure, oxidative phosphorylation and apoptosis. Multiple mutations in CHCHD2 have been associated with Lewy body disorders (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies, with the CHCHD2-T61I mutation being the most widely studied. However, at present, only CHCHD2 knockout or CHCHD2/CHCHD10 double knockout mouse models have been investigated. They do not recapitulate the pathology seen in patients with CHCHD2 mutations. We generated the first transgenic mouse model expressing the human PD-linked CHCHD2-T61I mutation driven by the mPrP promoter. We show that CHCHD2-T61I Tg mice exhibit perinuclear mitochondrial aggregates, neuroinflammation, and have impaired long-term synaptic plasticity associated with synaptic dysfunction. Dopaminergic neurodegeneration, a hallmark of PD, is also observed along with α-synuclein pathology. Significant motor dysfunction is seen with no changes in learning and memory at 1 year of age. A minor proportion of the CHCHD2-T61I Tg mice (~10%) show a severe motor phenotype consistent with human Pisa Syndrome, an atypical PD phenotype. Unbiased proteomics analysis reveals surprising increases in many insoluble proteins predominantly originating from mitochondria and perturbing multiple canonical biological pathways as assessed by ingenuity pathway analysis, including neurodegenerative disease-associated proteins such as tau, cofilin, SOD1 and DJ-1. Overall, CHCHD2-T61I Tg mice exhibit pathological and motor changes associated with LBDs, indicating that this model successfully captures phenotypes seen in human LBD patients with CHCHD2 mutations and demonstrates changes in neurodegenerative disease-associated proteins, which delineates relevant pathological pathways for further investigation.
Collapse
Affiliation(s)
- Teresa R Kee
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA,Department of Molecular of Medicine, USF Health College of Medicine, Tampa, FL 33613, USA
| | - Jessica L Wehinger
- Department of Molecular of Medicine, USF Health College of Medicine, Tampa, FL 33613, USA
| | | | - Eric Nguyen
- Department of Molecular of Medicine, USF Health College of Medicine, Tampa, FL 33613, USA
| | | | - Sophia A Khan
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Xinming Wang
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA
| | - Tian Liu
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA
| | - David E Kang
- Department of Pathology, CWRU School of Medicine, Cleveland, OH 44106, USA,Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Jung-A A Woo
- To whom correspondence should be addressed at: Department of Pathology, CWRU School of Medicine, 2103 Cornell Rd, Cleveland, OH 44106, USA. Tel: +1 2163680052; Fax: +1 2163680494;
| |
Collapse
|
39
|
Kou L, Chi X, Sun Y, Han C, Wan F, Hu J, Yin S, Wu J, Li Y, Zhou Q, Zou W, Xiong N, Huang J, Xia Y, Wang T. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome. J Neuroinflammation 2022; 19:133. [PMID: 35668454 PMCID: PMC9169406 DOI: 10.1186/s12974-022-02494-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian disturbance is a common nonmotor complaint in Parkinson's disease (PD). The molecular basis underlying circadian rhythm in PD is poorly understood. Neuroinflammation has been identified as a key contributor to PD pathology. In this study, we explored the potential link between the core clock molecule Rev-erbα and the microglia-mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome in PD pathogenesis. METHODS We first examined the diurnal Rev-erbα rhythms and diurnal changes in microglia-mediated inflammatory cytokines expression in the SN of MPTP-induced PD mice. Further, we used BV2 cell to investigate the impacts of Rev-erbα on NLRP3 inflammasome and microglial polarization induced by 1-methyl-4-phenylpyridinium (MPP+) and αsyn pre-formed fibril. The role of Rev-erbα in regulating microglial activation via NF-κB and NLRP3 inflammasome pathway was then explored. Effects of SR9009 against NLRP3 inflammasome activation, microgliosis and nigrostriatal dopaminergic degeneration in the SN and striatum of MPTP-induced PD mice were studied in detail. RESULTS BV2 cell-based experiments revealed the role of Rev-erbα in regulating microglial activation and polarization through the NF-κB and NLRP3 inflammasome pathways. Circadian oscillation of the core clock gene Rev-erbα in the substantia nigra (SN) disappeared in MPTP-induced PD mice, as well as diurnal changes in microglial morphology. The expression of inflammatory cytokines in SN of the MPTP-induced mice were significantly elevated. Furthermore, dopaminergic neurons loss in the nigrostriatal system were partially reversed by SR9009, a selective Rev-erbα agonist. In addition, SR9009 effectively reduced the MPTP-induced glial activation, microglial polarization and NLRP3 inflammasome activation in the nigrostriatal system. CONCLUSIONS These observations suggest that the circadian clock protein Rev-erbα plays an essential role in attenuating neuroinflammation in PD pathology, and provides a potential therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Han
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|