1
|
Sun M, Lei X, Lan X, Lin Z, Xu H, Chen S. Online identification of potential antioxidant components and evaluation of DNA oxidative damage protection ability in Prunus persica flowers. Talanta 2024; 280:126702. [PMID: 39180873 DOI: 10.1016/j.talanta.2024.126702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
A high performance liquid chromatography-ultraviolet-visible detector-electrospray ionization-ion trap-time-of-flight-mass spectrometry-total antioxidant capacity determination (HPLC-UVD-ESI-IT-TOF-MS-TACD) new online technique was developed for efficient screening of potential antioxidant active components in Prunus persica flowers (PPF) from 4 origins. Through this online system, 46 compounds were initially identified, while 20 compounds with DPPH binding activity and 21 compounds with FRAP binding activity were detected. The antioxidant activities of 9 compounds obtained from the screening were then validated in DNA oxidative damage protection study. The results showed that this online system can cope well with the complexity of the samples. This also provides technical basis for rapid screening of antioxidant resources of PPF. In short, this study made the chemical composition of PPF more abundant and its potential antioxidant active compounds more explicit, which provided new ideas for the detection and development of natural antioxidants and provided scientific basis for PPF as functional food.
Collapse
Affiliation(s)
- Mimi Sun
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization By Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Xinyu Lei
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xin Lan
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Hongbo Xu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization By Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Chen S, Liu M, Yi W, Li H, Yu Q. Micropeptides derived from long non-coding RNAs: Computational analysis and functional roles in breast cancer and other diseases. Gene 2024; 935:149019. [PMID: 39461573 DOI: 10.1016/j.gene.2024.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Long non-coding RNAs (lncRNAs), once thought to be mere transcriptional noise, are now revealing a hidden code. Recent advancements like ribosome sequencing have unveiled that many lncRNAs harbor small open reading frames and can potentially encode functional micropeptides. Emerging research suggests these micropeptides, not the lncRNAs themselves, play crucial roles in regulating homeostasis, inflammation, metabolism, and especially in breast cancer progression. This review delves into the rapidly evolving computational tools used to predict and validate lncRNA-encoded micropeptides. We then explore the diverse functions and mechanisms of action of these micropeptides in breast cancer pathogenesis, with a focus on their roles in various species. Ultimately, this review aims to illuminate the functional landscape of lncRNA-encoded micropeptides and their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Mengru Liu
- Department of Infection, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Weizhen Yi
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Huagang Li
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Qingsheng Yu
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
3
|
Yang W, Ramadan S, Zu Y, Sun M, Huang X, Yu B. Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages. Nat Prod Rep 2024; 41:1403-1440. [PMID: 38888170 DOI: 10.1039/d4np00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.
Collapse
Affiliation(s)
- Weizhun Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Yan Zu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Mengxia Sun
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Dang QD, Deng YH, Sun TY, Zhang Y, Li J, Zhang X, Wu YD, Niu D. Catalytic glycosylation for minimally protected donors and acceptors. Nature 2024; 632:313-319. [PMID: 38885695 DOI: 10.1038/s41586-024-07695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Oligosaccharides have myriad functions throughout biological processes1,2. Chemical synthesis of these structurally complex molecules facilitates investigation of their functions. With a dense concentration of stereocentres and hydroxyl groups, oligosaccharide assembly through O-glycosylation requires simultaneous control of site, stereo- and chemoselectivities3,4. Chemists have traditionally relied on protecting group manipulations for this purpose5-8, adding considerable synthetic work. Here we report a glycosylation platform that enables selective coupling between unprotected or minimally protected donor and acceptor sugars, producing 1,2-cis-O-glycosides in a catalyst-controlled, site-selective manner. Radical-based activation9 of allyl glycosyl sulfones forms glycosyl bromides. A designed aminoboronic acid catalyst brings this reactive intermediate close to an acceptor through a network of non-covalent hydrogen bonding and reversible covalent B-O bonding interactions, allowing precise glycosyl transfer. The site of glycosylation can be switched with different aminoboronic acid catalysts by affecting their interaction modes with substrates. The method accommodates a wide range of sugar types, amenable to the preparation of naturally occurring sugar chains and pentasaccharides containing 11 free hydroxyls. Experimental and computational studies provide insights into the origin of selectivity outcomes.
Collapse
Affiliation(s)
- Qiu-Di Dang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yi-Hui Deng
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tian-Yu Sun
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yun-Dong Wu
- The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and School of Chemical Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Chen J, Qi D, Hu H, Wang X, Lin W. Unconventional posttranslational modification in innate immunity. Cell Mol Life Sci 2024; 81:290. [PMID: 38970666 PMCID: PMC11335215 DOI: 10.1007/s00018-024-05319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.
Collapse
Affiliation(s)
- Jiaxi Chen
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Dejun Qi
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Haorui Hu
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Wenlong Lin
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Liu Y, Wang Y, Chen J, Wang N, Huang N, Yao H. Stereoselective Synthesis of β- S-Glycosides via Palladium Catalysis. J Org Chem 2024; 89:8815-8827. [PMID: 38835152 DOI: 10.1021/acs.joc.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
S-Glycosides are more resistant to enzymatic and chemical hydrolysis and exhibit higher metabolic stability than common O-glycosides, demonstrating their widespread application in biological research and drug development. In particular, β-S-glycosides are used as antirheumatic, anticancer, and antidiabetic drugs in clinical practice. However, the stereoselective synthesis of β-S-glycosides is still highly challenging. Herein, we report an effective β-S-glycosylation using 3-O-trichloroacetimidoyl glycal and thiols under mild conditions. The C3-imidate is designed to guide Pd to form a complex with glucal from the upper face, followed by Pd-S (thiols) coordination to realize β-stereoselectivity. This method demonstrates excellent compatibility with a broad scope of various thiol acceptors and glycal donors with yields up to 87% and a β/α ratio of up to 20:1. The present β-S-glycosylation strategy is used for late-stage functionalization of drugs/natural products such as estrone, zingerone, and thymol. Overall, this novel and simple operation approach provides a general and practical strategy for the construction of β-thioglycosides, which holds high potential in drug discovery and development.
Collapse
Affiliation(s)
- Yixuan Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Yuan Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jie Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| |
Collapse
|
7
|
Yang D, Ding H, Zhang XL, Zhang H, Zhang Y, Liu XW. Esterification and Etherification of Aliphatic Alcohols Enabled by Catalytic Strain-Release of Donor-Acceptor Cyclopropane. Org Lett 2024; 26:4986-4991. [PMID: 38842488 DOI: 10.1021/acs.orglett.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
We herein disclose a highly efficient protocol for the esterification and etherification of alcohols, leveraging a Sc(OTf)3-catalyzed ring-strain release event in the meticulously designed, chromatographically stable mixed anhydrides or benzyl esters that incorporate an intramolecular donor-acceptor cyclopropane (DAC). This versatile method facilitates the straightforward functionalization of sugar, terpene, and steroid alcohols under mild acidic conditions, as showcased by the single-catalyst-driven, dual protection of sugar diol.
Collapse
Affiliation(s)
- Dan Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Huajun Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yuhan Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
8
|
Liu B, Zou X, Zhang Y, Yang Y, Xu H, Tang F, Yu H, Xia F, Liu Z, Zhao J, Shi W, Huang W. Site- and Stereoselective Glycomodification of Biomolecules through Carbohydrate-Promoted Pictet-Spengler Reaction. Angew Chem Int Ed Engl 2024; 63:e202401394. [PMID: 38396356 DOI: 10.1002/anie.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Carbohydrates play pivotal roles in an array of essential biological processes and are consequently involved in many diseases. To meet the needs of glycobiology research, chemical enzymatic and non-enzymatic methods have been developed to generate glycoconjugates with well-defined structures. Herein, harnessing the unique properties of C6-oxidized glycans, we report a straightforward and robust strategy for site- and stereoselective glycomodification of biomolecules with N-terminal tryptophan residues by a carbohydrate-promoted Pictet-Spengler reaction, which is not adapted to typical aldehyde substrates under biocompatible conditions. This method reliably delivers highly homogeneous glycoconjugates with stable linkages and thus has great potential for functional modulation of peptides and proteins in glycobiology research. Moreover, this reaction can be performed at the glycosites of glycopeptides, glycoproteins and living-cell surfaces in a site-specific manner. Control experiments indicated that the protected α-O atom of aldehyde donors and free N-H bond of the tryptamine motif are crucial for this reaction. Mechanistic investigations demonstrated that the reaction exhibited a first-order dependence on both tryptophan and glycan, and deprotonation/rearomatization of the pentahydro-β-carbolinium ion intermediate might be the rate-determining step.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Xiangman Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Hao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Huixin Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Jianwei Zhao
- Shenzhen HUASUAN Technology Co., Ltd, Shenzhen, 518055, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| |
Collapse
|
9
|
Cheng Y, Xia Y, Yuan Z, Li H, Wang J, Wang Y, Yang CG, Yu B. Expeditious Synthesis of Gwanakoside A and the Chloronaphthol Glycoside Congeners. Org Lett 2024; 26:2425-2429. [PMID: 38506225 DOI: 10.1021/acs.orglett.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The synthesis of gwanakoside A, a chlorinated naphthol bis-glycoside, and its analogues was achieved through stepwise chlorination and donor-equivalent controlled regioselective phenol glycosylation with glycosyl N-phenyltrifluoroacetimidates as donors. Gwanakoside A displayed considerable inhibitory effects against various cancer cells and Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Yuting Cheng
- Department of Chemistry, University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, China
| | - Yan Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ziqi Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haotian Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Liang X, Yang JF, Huang ZH, Ma X, Yan Y, Qi SH. New Antibacterial Peptaibiotics against Plant and Fish Pathogens from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6402-6413. [PMID: 38491989 DOI: 10.1021/acs.jafc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Bacterial diseases could severely harm agricultural production. To develop new antibacterial agents, the secondary metabolites of a deep-sea-derived fungus Simplicillium obclavatum EIODSF 020 with antibacterial activities against plant and fish pathogens were investigated by a bioassay-guided approach, which led to the isolation of 11 new peptaibiotics, simplicpeptaibs A-K (1-11). They contain 16-19 residues, including β-alanine, tyrosine, or tyrosine O-sulfate, that were rarely present in peptaibiotics. Their structures were elucidated by spectroscopic analyses (NMR, HRMS, HRMS2, and ECD) and Marfey's method. The primary and secondary structures of novel sulfated peptaibiotic 9 were reconfirmed by single-crystal X-ray diffraction analysis. Genome sequencing of S. obclavatum EIODSF 020 allowed the detection of a gene cluster encoding two individual NRPSs (totally containing 19 modules) that was closely related to simplicpeptaib biosynthesis. Antibacterial investigations of 1-11 together with the previously isolated linear and cyclic peptides from this strain suggested the antibacterial property of this fungus was attributed to the peptaibiotics and cyclic lipopeptides. Among them, compounds 4, 6, 7, and 9 showed significant activity against the tobacco pathogen Ralstonia solanacearum or tilapia pathogens Streptococcus iniae and Streptococcus agalactiae. The antibacterial activity of 6 against R. solanacearum could be enhanced by the addition of 1% NaCl. The structure-bioactivity relationship of simplicpeptaibs was discussed.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jia-Fan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
11
|
Jiao Q, Guo Z, Zheng M, Lin W, Liao Y, Yan W, Liu T, Xu C. Anion-Bridged Dual Hydrogen Bond Enabled Concerted Addition of Phenol to Glycal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308513. [PMID: 38225720 PMCID: PMC10953558 DOI: 10.1002/advs.202308513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Indexed: 01/17/2024]
Abstract
A noncovalent organocatalytic concerted addition of phenol to glycal is developed for the stereoselective and regioselective construction of biologically important phenolic 2-deoxyglycosides, featuring wide substrate tolerance. The method relies on an anion-bridged dual hydrogen bond interaction which is experimentally proved by Nuclear Magnetic Resonance (NMR), Ultraviolet and visible (UV-vis), and fluorescence analysis. Experimental evidence including kinetic analysis, Kinetic Isotope Effect (KIE) studies, linear free energy relationship, Hammett plot, and density functional theory (DFT) calculations is provided for a concerted mechanism where a high-energy oxocarbenium ion is not formed. In addition, the potential utility of this method is further demonstrated by the synthesis of biologically active glycosylated flavones. The benchmarking studies demonstrate significant advances in this newly developed method compared to previous approaches.
Collapse
Affiliation(s)
- Qinbo Jiao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Zhenbo Guo
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Mingwen Zheng
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Wentao Lin
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Yujie Liao
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weitao Yan
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Tianfei Liu
- State Key Laboratory of Elemento‐organic ChemistryCollege of ChemistryNankai UniversityWeijin Road No. 94Tianjin300071China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and TechnologyCollege of ChemistryFuzhou UniversityFuzhou350108China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| |
Collapse
|
12
|
Zeng W, Xue J, Geng H, Liu X, Yang J, Shen W, Yuan Y, Qiang Y, Zhu Q. Research progress on chemical modifications of tyrosine residues in peptides and proteins. Biotechnol Bioeng 2024; 121:799-822. [PMID: 38079153 DOI: 10.1002/bit.28622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 11/26/2023] [Indexed: 02/20/2024]
Abstract
The chemical modifications (CMs) of protein is an important technique in chemical biology, protein-based therapy, and material science. In recent years, there has been rapid advances in the development of CMs of peptides and proteins, providing new approaches for peptide and protein functionalization, as well as drug discovery. In this review, we highlight the methods for chemically modifying tyrosine (Tyr) residues in different regions, offering a comprehensive exposition of the research content related to Tyr modification. This review summarizes and provides an outlook on Tyr residue modification, aiming to offer readers assistance in the site-selective modification of macromolecules and to facilitate application research in this field.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianyuan Xue
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haoxing Geng
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xia Liu
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jin Yang
- Department of Biotechnology and the Quality Management, Zhejiang Pharmaceutical Industry Co. Ltd., Hangzhou, China
| | - Wei Shen
- Department of Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuqing Yuan
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Qiang
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qing Zhu
- Department of Biotechnology and the Quality Management, Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Azeem MZ, Dubey MS, Islam MSA, Mandal PK. An Open-Air Palladium-Catalyzed Stereoselective O-Glycosylation of Glycals via in-situ Generation of gem-Disubstituted Methanols from p-Quinone Methides. Chem Asian J 2024; 19:e202301013. [PMID: 38133606 DOI: 10.1002/asia.202301013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/23/2023]
Abstract
We devised a palladium-catalyzed α-stereoselective glycosylation that incorporates oxygen via in-situ generation of gem-disubstituted methanols from p-quinone methides to access 2,3-unsaturated gem-diarylmethyl O-glycosides under open-air atmosphere at room temperature. Advantages of this environmentally friendly strategy include the absence of additives and ligands, using water as the green source of oxygen, mildest, operationally simple, exhibiting a wide functional group tolerance, and compatibility with a variety of glycal progenitors in appreciable yields. A mechanistic study has been verified via H2 18 O labeling, which validates that water (moisture) is a sole source of oxygen.
Collapse
Affiliation(s)
- Ms Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
- Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ms Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Mr Sk Areful Islam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
- Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Sondag D, de Kleijne FFJ, Castermans S, Chatzakis I, van Geffen M, Van't Veer C, van Heerde WL, Boltje TJ, Rutjes FPJT. Synthesis and Evaluation of Glycosyl Luciferins. Chemistry 2024; 30:e202302547. [PMID: 37849395 DOI: 10.1002/chem.202302547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Measuring glycosidase activity is important to monitor any aberrations in carbohydrate hydrolase activity, but also for the screening of potential glycosidase inhibitors. To this end, synthetic substrates are needed which provide an enzyme-dependent read-out upon hydrolysis by the glycosidase. Herein, we present two new routes for the synthesis of caged luminescent carbohydrates, which can be used for determining glycosidase activity with a luminescent reporter molecule. The substrates were validated with glycosidase and revealed a clear linear range and enzyme-dependent signal upon the in situ generation of the luciferin moiety from the corresponding nitrile precursors. Besides, we showed that these compounds could directly be synthesized from unprotected glycosyl-α-fluorides in a two-step procedure with yields up to 75 %. The intermediate methyl imidate appeared a key intermediate which also reacted with d-cysteine to give the corresponding d-luciferin substrate rendering this a highly attractive method for synthesizing glycosyl luciferins in good yields.
Collapse
Affiliation(s)
- Daan Sondag
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Frank F J de Kleijne
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Sam Castermans
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Isa Chatzakis
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Mark van Geffen
- Enzyre BV, Novio Tech Campus, Transistorweg 5-i, 6534 AT, Nijmegen, The Netherlands
| | - Cornelis Van't Veer
- Enzyre BV, Novio Tech Campus, Transistorweg 5-i, 6534 AT, Nijmegen, The Netherlands
| | - Waander L van Heerde
- Enzyre BV, Novio Tech Campus, Transistorweg 5-i, 6534 AT, Nijmegen, The Netherlands
- Department of Haematology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Haemophilia Treatment Centre, Nijmegen Eindhoven Maastricht (HTC-NEM), The Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Khanam A, Dubey S, Mandal PK. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr Res 2023; 534:108976. [PMID: 37871478 DOI: 10.1016/j.carres.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
A simple and efficient protocol for the preparation of α-glycosyl chlorides within 15-30 min is described which employs a stable, cheap, and commercially available Trichloroisocyanuric acid (TCCA) as non-toxic chlorinating agent along with PPh3. This process involved a wide range of substrate scope and is well-suited with labile hydroxyl protecting groups such as benzyl, acetyl, benzoyl, isopropylidene, benzylidene, and TBDPS (tert-butyldiphenylsilyl) groups. This process is operationally simple, mild conditions and obtained good yields with excellent α selectivity. Moreover, a multi-catalyst one-pot glycosylation can be carried out to transform the glycosyl hemiacetals directly to a various O-glycosides in high overall yields without the need for separation or purification of the α-glycosyl chloride donors.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Deng LF, Wang Y, Xu S, Shen A, Zhu H, Zhang S, Zhang X, Niu D. Palladium catalysis enables cross-coupling-like S N2-glycosylation of phenols. Science 2023; 382:928-935. [PMID: 37995215 DOI: 10.1126/science.adk1111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Despite their importance in life and material sciences, the efficient construction of stereo-defined glycosides remains a challenge. Studies of carbohydrate functions would be advanced if glycosylation methods were as reliable and modular as palladium (Pd)-catalyzed cross-coupling. However, Pd-catalysis excels in forming sp2-hybridized carbon centers whereas glycosylation mostly builds sp3-hybridized C-O linkages. We report a glycosylation platform through Pd-catalyzed SN2 displacement from phenols toward bench-stable, aryl-iodide-containing glycosyl sulfides. The key Pd(II) oxidative addition intermediate diverges from an arylating agent (Csp2 electrophile) to a glycosylating agent (Csp3 electrophile). This method inherits many merits of cross-coupling reactions, including operational simplicity and functional group tolerance. It preserves the SN2 mechanism for various substrates and is amenable to late-stage glycosylation of commercial drugs and natural products.
Collapse
Affiliation(s)
- Li-Fan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yingwei Wang
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ao Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hangping Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Siyu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Chang CW, Lin MH, Chiang TY, Wu CH, Lin TC, Wang CC. Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction. SCIENCE ADVANCES 2023; 9:eadk0531. [PMID: 37851803 PMCID: PMC10584349 DOI: 10.1126/sciadv.adk0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The stereoselectivity of glycosidic bond formation continues to pose a noteworthy hurdle in synthesizing carbohydrates, primarily due to the simultaneous occurrence of SN1 and SN2 processes during the glycosylation reaction. Here, we applied an in-depth analysis of the glycosylation mechanism by using low-temperature nuclear magnetic resonance and statistical approaches. A pathway driven by counterion exchanges and reaction byproducts was first discovered to outline the stereocontributions of intermediates. Moreover, the relative reactivity values, acceptor nucleophilic constants, and Hammett substituent constants (σ values) provided a general index to indicate the mechanistic pathways. These results could allow building block tailoring and reaction condition optimization in carbohydrate synthesis to be greatly facilitated and simplified.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Chun Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
18
|
Zuo H, Zhang C, Zhang Y, Niu D. Base-Promoted Glycosylation Allows Protecting Group-Free and Stereoselective O-Glycosylation of Carboxylic Acids. Angew Chem Int Ed Engl 2023; 62:e202309887. [PMID: 37590127 DOI: 10.1002/anie.202309887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Here we report a simple and general method to achieve fully unprotected, stereoselective glycosylation of carboxylic acids, employing bench-stable allyl glycosyl sulfones as donors. Running the glycosylation reaction under basic conditions was crucial for the efficiencies and selectivities. Both the donor activation stage and the glycosidic bond forming stage of the process are compatible with free hydroxyl groups, thereby allowing for the use of fully unprotected glycosyl donors. This transformation is stereoconvergent, occurs under mild and metal-free conditions at ambient temperature with visible light (455 nm) irradiation, and displays remarkable scope with respect to both reaction partners. Many natural products and commercial drugs, including an acid derived from the complex anticancer agent taxol, were efficiently glycosylated. Experimental studies provide insights into the origin of the stereochemical outcome.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Chen Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
19
|
Affiliation(s)
- Weidong Shang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Department of Chemical Engineering, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
20
|
Wu J, Wang C, Zhang T, Zhang H, Zhan X. Synthesis of mannan oligosaccharide-sialic acid conjugates and its inhibition on Aβ42 aggregation. Carbohydr Res 2023; 531:108891. [PMID: 37393628 DOI: 10.1016/j.carres.2023.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
In this work, a mannan-oligosaccharide conjugate with sialic acid capable of perturbing Aβ42 aggregation was designed and synthesized. Mannan oligosaccharides with degree polymerization of 3-13 were obtained by stepwise hydrolysis of locust bean gum using β-mannanase and α-galactosidase, named as LBOS. The activated LBOS was further chemically conjugated with sialic acid (Sia, N-acetylneuraminic acid) by fluoro-mercapto chemical coupling to synthesize a conjugate LBOS-Sia, and then phosphorylated to obtain pLBOS-Sia. The successful synthesis of pLBOS-Sia was confirmed by infrared1 chromatography, mass spectrometry, and 1H NMR. The soluble protein analysis, microscopic observation, thioflavin T-labeling, and circular dichroism spectroscopy revealed that both LBOS-Sia and pLBOS-Sia can inhibit Aβ42 aggregation. MTT assay showed that LBOS-Sia and pLBOS-Sia had no cytotoxicity to BV-2 cells, and could substantially reduce the release of pro-inflammatory factor TNF-α induced by Aβ42 in BV-2 cells, and inhibit the occurrence of neuroinflammation. In future, this novel structure of mannan oligosaccharide-sialic acid conjugate can be potentially used to for the development of glycoconjugates against AD targeting Aβ.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Congsheng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
21
|
Wang S, Chen K, Guo F, Zhu W, Liu C, Dong H, Yu JQ, Lei X. C-H Glycosylation of Native Carboxylic Acids: Discovery of Antidiabetic SGLT-2 Inhibitors. ACS CENTRAL SCIENCE 2023; 9:1129-1139. [PMID: 37396867 PMCID: PMC10311666 DOI: 10.1021/acscentsci.3c00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 07/04/2023]
Abstract
C-Glycosides are critical motifs embedded in many bioactive natural products. The inert C-glycosides are privileged structures for developing therapeutic agents owing to their high chemical and metabolic stability. Despite the comprehensive strategies and tactics established in the past few decades, highly efficient C-glycoside syntheses via C-C coupling with excellent regio-, chemo-, and stereoselectivity are still needed. Here, we report the efficient Pd-catalyzed glycosylation of C-H bonds promoted by weak coordination with native carboxylic acids without external directing groups to install various glycals to the structurally diverse aglycon parts. Mechanistic evidence points to the participation of a glycal radical donor in the C-H coupling reaction. The method has been applied to a wide range of substrates (over 60 examples), including many marketed drug molecules. Natural product- or drug-like scaffolds with compelling bioactivities have been constructed using a late-stage diversification strategy. Remarkably, a new potent sodium-glucose cotransporter-2 inhibitor with antidiabetic potential has been discovered, and the pharmacokinetic/pharmacodynamic profiles of drug molecules have been changed using our C-H glycosylation approach. The method developed here provides a powerful tool for efficiently synthesizing C-glycosides to facilitate drug discovery.
Collapse
Affiliation(s)
- Sanshan Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kaiqi Chen
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fusheng Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wenneng Zhu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chendi Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haoran Dong
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Quan Yu
- Department
of Chemistry, The Scripps Research Institute,10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
- Institute
for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
22
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Yu J, Vogt MC, Fox BW, Wrobel CJJ, Fajardo Palomino D, Curtis BJ, Zhang B, Le HH, Tauffenberger A, Hobert O, Schroeder FC. Parallel pathways for serotonin biosynthesis and metabolism in C. elegans. Nat Chem Biol 2023; 19:141-150. [PMID: 36216995 PMCID: PMC9898190 DOI: 10.1038/s41589-022-01148-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
The neurotransmitter serotonin plays a central role in animal behavior and physiology, and many of its functions are regulated via evolutionarily conserved biosynthesis and degradation pathways. Here we show that in Caenorhabditis elegans, serotonin is abundantly produced in nonneuronal tissues via phenylalanine hydroxylase, in addition to canonical biosynthesis via tryptophan hydroxylase in neurons. Combining CRISPR-Cas9 genome editing, comparative metabolomics and synthesis, we demonstrate that most serotonin in C. elegans is incorporated into N-acetylserotonin-derived glucosides, which are retained in the worm body and further modified via the carboxylesterase CEST-4. Expression patterns of CEST-4 suggest that serotonin or serotonin derivatives are transported between different tissues. Last, we show that bacterial indole production interacts with serotonin metabolism via CEST-4. Our results reveal a parallel pathway for serotonin biosynthesis in nonneuronal cell types and further indicate that serotonin-derived metabolites may serve distinct signaling functions and contribute to previously described serotonin-dependent phenotypes.
Collapse
Affiliation(s)
- Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Bingsen Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Arnaud Tauffenberger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Declas N, Maynard JRJ, Menin L, Gasilova N, Götze S, Sprague JL, Stallforth P, Matile S, Waser J. Tyrosine bioconjugation with hypervalent iodine. Chem Sci 2022; 13:12808-12817. [PMID: 36519034 PMCID: PMC9645396 DOI: 10.1039/d2sc04558c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Hypervalent iodine reagents have recently emerged as powerful tools for late-stage peptide and protein functionalization. Herein we report a tyrosine bioconjugation methodology for the introduction of hypervalent iodine onto biomolecules under physiological conditions. Tyrosine residues were engaged in a selective addition onto the alkynyl bond of ethynylbenziodoxolones (EBX), resulting in stable vinylbenziodoxolones (VBX) bioconjugates. The methodology was successfully applied to peptides and proteins and tolerated all other nucleophilic residues, with the exception of cysteine. The generated VBX were further functionalized by palladium-catalyzed cross-coupling and azide-alkyne cycloaddition reactions. The method could be successfully used to modify bioactive natural products and native streptavidin to enable thiol-mediated cellular uptake.
Collapse
Affiliation(s)
- Nina Declas
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - John R J Maynard
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Laure Menin
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Natalia Gasilova
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Sebastian Götze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
25
|
See NW, Xu X, Ferro V. An Improved Protocol for the Stereoselective Synthesis of β-d-Glycosyl Fluorides from 2- O-Acyl Thioglycosides. J Org Chem 2022; 87:14230-14240. [PMID: 36222442 DOI: 10.1021/acs.joc.2c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A safe and operationally simple protocol for the preparation of β-d-glycosyl fluorides is presented. We demonstrate that a precise combination of XtalFluor-M, N-bromosuccinimide, and Et3N·3HF can mediate facile, high-yielding, and diastereoselective conversions of 2-O-acyl thioglycosides to β-d- and other 1,2-trans glycosyl fluorides. The key roles of these reagents are dissected in this work, as is the impact of their interplay on the fluorination stereoselectivity.
Collapse
Affiliation(s)
- Nicholas W See
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaowen Xu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Witte MD, Minnaard AJ. Site-Selective Modification of (Oligo)Saccharides. ACS Catal 2022; 12:12195-12205. [PMID: 36249871 PMCID: PMC9552177 DOI: 10.1021/acscatal.2c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Oligosaccharides, either as such or as part of glycolipids, glycopeptides, or glycoproteins, are ubiquitous in nature and fulfill important roles in the living cell. Also in medicine and to some extent in materials, oligosaccharides play an important role. In order to study their function, modifying naturally occurring oligosaccharides, and building in reactive groups and reporter groups in oligosaccharides, are key strategies. The development of oligosaccharides as drugs, or vaccines, requires the introduction of subtle modifications in the structure of oligosaccharides to optimize efficacy and, in the case of antibiotics, circumvent bacterial resistance. Provided the natural oligosaccharide is available, site-selective modification is an attractive approach as total synthesis of the target is often very laborious. Researchers in catalysis areas, such as transition-metal catalysis, enzyme catalysis, organocatalysis, and photoredox catalysis, have made considerable progress in the development of site-selective and late-stage modification methods for mono- and oligosaccharides. It is foreseen that the fields of enzymatic modification of glycans and the chemical modification of (oligo)saccharides will approach and potentially meet each other, but there is a lot to learn and discover before this will be the case.
Collapse
Affiliation(s)
- Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
27
|
Xu Z, Wu Y, Hu X, Deng C, Sun N. Inherently hydrophilic mesoporous channel coupled with metal oxide for fishing endogenous salivary glycopeptides and phosphopeptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Balada C, Díaz V, Castro M, Echeverría-Bugueño M, Marchant MJ, Guzmán L. Chemistry and Bioactivity of Microsorum scolopendria (Polypodiaceae): Antioxidant Effects on an Epithelial Damage Model. Molecules 2022; 27:molecules27175467. [PMID: 36080235 PMCID: PMC9457714 DOI: 10.3390/molecules27175467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Microsorum scolopendia (MS), which grows on the Chilean island of Rapa Nui, is a medicinal fern used to treat several diseases. Despite being widely used, this fern has not been deeply investigated. The aim of this study was to perform a characterization of the polyphenolic and flavonoid identity, radical scavenging, antimicrobial, and anti-inflammatory properties of MS rhizome and leaf extracts (RAE and HAE). The compound identity was analyzed through the reversed-phase high-performance liquid chromatography (RP-HPLC) method coupled with mass spectrometry. The radical scavenging and anti-inflammatory activities were evaluated for DPPH, ORAC, ROS formation, and COX inhibition activity assay. The antimicrobial properties were evaluated using an infection model on Human Dermal Fibroblast adult (HDFa) cell lines incubated with Staphylococcus aureus and Staphylococcus epidermidis. The most abundant compounds were phenolic acids between 46% to 57% in rhizome and leaf extracts, respectively; followed by flavonoids such as protocatechic acid 4-O-glucoside, cirsimaritin, and isoxanthohumol, among others. MS extract inhibited and disaggregated the biofilm bacterial formed and showed an anti-inflammatory selective property against COX-2 enzyme. RAE generated a 64% reduction of ROS formation in the presence of S. aureus and 87.35% less ROS in the presence of S. epidermidis on HDFa cells. MS has great therapeutic potential and possesses several biological properties that should be evaluated.
Collapse
Affiliation(s)
- Cristóbal Balada
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Valentina Díaz
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Mónica Castro
- Laboratorio de Propagación, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, La Palma S/N, Quillota 2260000, Chile
| | - Macarena Echeverría-Bugueño
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Quillota 980, Viña del Mar 2531015, Chile
- Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad Andrés Bello, Quillota 980, Viña del Mar 2531015, Chile
| | - María José Marchant
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Leda Guzmán
- Laboratorio de Biomedicina y Biocatálisis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
- Correspondence:
| |
Collapse
|
29
|
Hsu C, Tsai HY, Chang CF, Yang CC, Su NW. Discovery of a novel phosphotransferase from Bacillus subtilis that phosphorylates a broad spectrum of flavonoids. Food Chem 2022; 400:134001. [DOI: 10.1016/j.foodchem.2022.134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
|
30
|
Singh Y, Geringer SA, Demchenko AV. Synthesis and Glycosidation of Anomeric Halides: Evolution from Early Studies to Modern Methods of the 21st Century. Chem Rev 2022; 122:11701-11758. [PMID: 35675037 PMCID: PMC9417321 DOI: 10.1021/acs.chemrev.2c00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic carbohydrate chemistry have dramatically improved access to common glycans. However, many novel methods still fail to adequately address challenges associated with chemical glycosylation and glycan synthesis. Since a challenge of glycosylation has remained, scientists have been frequently returning to the traditional glycosyl donors. This review is dedicated to glycosyl halides that have played crucial roles in shaping the field of glycosciences and continue to pave the way toward our understanding of chemical glycosylation.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
31
|
Maiti S, Li Y, Sasmal S, Guin S, Bhattacharya T, Lahiri GK, Paton RS, Maiti D. Expanding chemical space by para-C-H arylation of arenes. Nat Commun 2022; 13:3963. [PMID: 35803905 PMCID: PMC9270437 DOI: 10.1038/s41467-022-31506-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Biaryl scaffolds are privileged templates used in the discovery and design of therapeutics with high affinity and specificity for a broad range of protein targets. Biaryls are found in the structures of therapeutics, including antibiotics, anti-inflammatory, analgesic, neurological and antihypertensive drugs. However, existing synthetic routes to biphenyls rely on traditional coupling approaches that require both arenes to be prefunctionalized with halides or pseudohalides with the desired regiochemistry. Therefore, the coupling of drug fragments may be challenging via conventional approaches. As an attractive alternative, directed C−H activation has the potential to be a versatile tool to form para-substituted biphenyl motifs selectively. However, existing C–H arylation protocols are not suitable for drug entities as they are hindered by catalyst deactivation by polar and delicate functionalities present alongside the instability of macrocyclic intermediates required for para-C−H activation. To address this challenge, we have developed a robust catalytic system that displays unique efficacy towards para-arylation of highly functionalized substrates such as drug entities, giving access to structurally diversified biaryl scaffolds. This diversification process provides access to an expanded chemical space for further exploration in drug discovery. Further, the applicability of the transformation is realized through the synthesis of drug molecules bearing a biphenyl fragment. Computational and experimental mechanistic studies further provide insight into the catalytic cycle operative in this versatile C−H arylation protocol. Biaryls are privileged structural motif used in the discovery and design of therapeutics with high affinity and specificity for a broad range of protein targets. Herein, the authors develop a robust strategy for para-C–H arylation of arenes with a range of (het)aryl iodides, including bioactive molecules.
Collapse
Affiliation(s)
- Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Yingzi Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,IDP in Climate Studies, Indian Institute of Technology Bombay, 400076, Mumbai, India.
| |
Collapse
|
32
|
Méndez-Líter JA, Pozo-Rodríguez A, Madruga E, Rubert M, Santana AG, de Eugenio LI, Sánchez C, Martínez A, Prieto A, Martínez MJ. Glycosylation of Epigallocatechin Gallate by Engineered Glycoside Hydrolases from Talaromyces amestolkiae: Potential Antiproliferative and Neuroprotective Effect of These Molecules. Antioxidants (Basel) 2022; 11:antiox11071325. [PMID: 35883816 PMCID: PMC9312355 DOI: 10.3390/antiox11071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that hydrolyze glycosidic bonds, but some of them can also catalyze the synthesis of glycosides by transglycosylation. However, the yields of this reaction are generally low since the glycosides formed end up being hydrolyzed by these same enzymes. For this reason, mutagenic variants with null or drastically reduced hydrolytic activity have been developed, thus enhancing their synthetic ability. Two mutagenic variants, a glycosynthase engineered from a β-glucosidase (BGL-1-E521G) and a thioglycoligase from a β-xylosidase (BxTW1-E495A), both from the ascomycete Talaromyces amestolkiae, were used to synthesize three novel epigallocatechin gallate (EGCG) glycosides. EGCG is a phenolic compound from green tea known for its antioxidant effects and therapeutic benefits, whose glycosylation could increase its bioavailability and improve its bioactive properties. The glycosynthase BGL-1-E521G produced a β-glucoside and a β-sophoroside of EGCG, while the thioglycoligase BxTW1-E495A formed the β-xyloside of EGCG. Glycosylation occurred in the 5″ and 4″ positions of EGCG, respectively. In this work, the reaction conditions for glycosides’ production were optimized, achieving around 90% conversion of EGCG with BGL-1-E521G and 60% with BxTW1-E495A. The glycosylation of EGCG caused a slight loss of its antioxidant capacity but notably increased its solubility (between 23 and 44 times) and, in the case of glucoside, also improved its thermal stability. All three glycosides showed better antiproliferative properties on breast adenocarcinoma cell line MDA-MB-231 than EGCG, and the glucosylated and sophorylated derivatives induced higher neuroprotection, increasing the viability of SH-S5Y5 neurons exposed to okadaic acid.
Collapse
Affiliation(s)
- Juan A. Méndez-Líter
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Ana Pozo-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Enrique Madruga
- Centro de Investigaciones Biológicas Margarita Salas, Department of Structural and Chemical Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (A.M.)
| | - María Rubert
- Department of Biochemistry and Molecular Biology, School of Biology, Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, C/de José Antonio Nováis 12, 28040 Madrid, Spain; (M.R.); (C.S.)
| | - Andrés G. Santana
- Department of Bioorganic Chemistry, Instituto de Química Orgánica General, Spanish National Research Council (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Laura I. de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Instituto de Investigación Hospital 12 de Octubre, Universidad Complutense de Madrid, C/de José Antonio Nováis 12, 28040 Madrid, Spain; (M.R.); (C.S.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Structural and Chemical Biology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (A.M.)
| | - Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Department of Microbial and Plant Biotechnology, Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (A.P.-R.); (L.I.d.E.); (A.P.)
- Correspondence:
| |
Collapse
|
33
|
The Landscape of Using Glycosyltransferase Gene Signatures for Overall Survival Prediction in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5989419. [PMID: 35774357 PMCID: PMC9239767 DOI: 10.1155/2022/5989419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/24/2022] [Accepted: 04/30/2022] [Indexed: 12/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease that occurs in the setting of chronic liver diseases. The role of glycosyltransferase (GT) genes has recently been the focus of research associated with tumor development. However, the prognostic value of GT genes in HCC remains unclear. Therefore, this study aimed to identify GT genes related to HCC prognosis through bioinformatics analysis. We firstly constructed a prognostic signature based on four GT genes using univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses in The Cancer Genome Atlas (TCGA) dataset. Next, the risk score of each patient was calculated, and HCC patients were divided into high- and low-risk groups. Kaplan–Meier analysis showed that the survival rate of high-risk patients was significantly lower than that of low-risk patients. Receiver operating characteristic (ROC) curves assessed that risk scores calculated with a four-gene signature could predict 3- and 5-year overall survival (OS) of HCC patients, revealing the prognostic ability of this gene signature. Moreover, univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent prognostic factor of HCC. Finally, functional analysis revealed that immune-related pathways were enriched and the immune status was different between the two risk groups in HCC. In summary, the novel GT gene signature could be used for prognostic prediction of HCC. Thus, targeting the GT genes may serve as an alternative treatment strategy for HCC.
Collapse
|
34
|
Zhu Q, Tang Y, Yu B. GeCl 2·Dioxane-AgBF 4 Catalyzed Activation of Glycosyl Fluorides for Glycosylation. Org Lett 2022; 24:3626-3630. [PMID: 35549391 DOI: 10.1021/acs.orglett.2c01146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A catalytic glycosyl fluoride activation system using the GeCl2·dioxane-AgBF4 combination was developed, which involves a reversible activation of the anomeric C-F bond by a [Ge(II)-Cl]+ cation and a reversible chloride ion transfer between Ge(II) and glycosyl cations. This catalytic glycosylation system is easy to operate, proceeds at room temperature, and offers a broad scope of substrates.
Collapse
Affiliation(s)
- Qiuyu Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
35
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
36
|
Zhang C, Zuo H, Lee GY, Zou Y, Dang QD, Houk KN, Niu D. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat Chem 2022; 14:686-694. [DOI: 10.1038/s41557-022-00918-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
37
|
Wang G, Yuan J, Luo J, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. Emerging role of protein modification in inflammatory bowel disease. J Zhejiang Univ Sci B 2022; 23:173-188. [PMID: 35261214 PMCID: PMC8913920 DOI: 10.1631/jzus.b2100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Clinical Laboratory, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jintao Yuan
- Clinical Laboratory, the People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China
| | - Ji Luo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast 02630, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
38
|
Dey K, Jayaraman N. Anomeric alkylations and acylations of unprotected mono- and disaccharides mediated by pyridoneimine in aqueous solutions. Chem Commun (Camb) 2022; 58:2224-2227. [PMID: 35072677 DOI: 10.1039/d1cc07056h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A site-specific deprotonation followed by alkylations and acylations of sugar hemiacetals to the corresponding alkyl glycosides and acylated sugars in aqueous solutions is disclosed herein. Pyridoneimine as a new base is developed to mediate the deprotonation of readily available sugar hemiacetals and further reactions with alkylation and acylation agents.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
39
|
Xiao K, Hu Y, Wan Y, Li X, Nie Q, Yan H, Wang L, Liao J, Liu D, Tu Y, Sun J, Codée JDC, Zhang Q. Hydrogen bond activated glycosylation under mild conditions. Chem Sci 2022; 13:1600-1607. [PMID: 35282639 PMCID: PMC8826775 DOI: 10.1039/d1sc05772c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy. A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.![]()
Collapse
Affiliation(s)
- Ke Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - XinXin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jinxi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Deyong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jiansong Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China .,Key Laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
40
|
Wen P, Jia P, Fan Q, McCarty BJ, Tang W. Streamlined Iterative Assembly of Thio-Oligosaccharides by Aqueous S-Glycosylation of Diverse Deoxythio Sugars. CHEMSUSCHEM 2022; 15:e202102483. [PMID: 34911160 PMCID: PMC9100857 DOI: 10.1002/cssc.202102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Indexed: 06/14/2023]
Abstract
A streamlined iterative assembly of thio-oligosaccharides was developed by aqueous glycosylation. Facile syntheses of various deoxythio sugars with the sulfur on different positions from commercially available starting materials were described. These syntheses featured efficient chemical methods including our recently reported BTM-catalyzed site-selective acylation. The resulting deoxythio sugars could then be used for the Ca(OH)2 -promoted protecting group-free S-glycosylation in water at room temperature. The aqueous glycosylation reaction proceeded smoothly to afford the corresponding 1,2-trans S-glycosides in good yields with high chemo- and stereoselectivity. An appropriate choice of protecting groups for the thiol in the glycosyl donor was necessary for the development of iterative synthesis of thio-oligosaccharides. The aqueous glycosylation was then applied to the synthesis of a trimannoside moiety of N-linked glycans core region.
Collapse
Affiliation(s)
- Peng Wen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Peijing Jia
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiuhua Fan
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bethany J McCarty
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
41
|
Wang Q, Lai M, Luo H, Ren K, Wang J, Huang N, Deng Z, Zou K, Yao H. Stereoselective O-Glycosylation of Glycals with Arylboronic Acids Using Air as the Oxygen Source. Org Lett 2022; 24:1587-1592. [DOI: 10.1021/acs.orglett.1c04378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qiuyuan Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Mengnan Lai
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Huajun Luo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Keke Ren
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Jingrui Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
42
|
Wang S, Zhou Q, Zhang X, Wang P. Site‐Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
43
|
Wang S, Zhou Q, Zhang X, Wang P. Site-Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202111388. [PMID: 34845804 DOI: 10.1002/anie.202111388] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Site-selective peptide functionalization provides a straightforward and cost-effective access to diversify peptides for biological studies. Among many existing non-invasive peptide conjugations methodologies, photoredox catalysis has emerged as one of the powerful approaches for site-specific manipulation on native peptides. Herein, we report a highly N-termini-specific method to rapidly access itaconated peptides and their derivatives through a combination of transamination and photoredox conditions. This strategy exploits the facile reactivity of peptidyl-dihydropyridine in the complex peptide settings, complementing existing approaches for bioconjugations with excellent selectivity under mild conditions. Distinct from conventional methods, this method utilizes the highly reactive carbamoyl radical derived from a peptidyl-dihydropyridine. In addition, this itaconated peptide can be further functionalized as a Michael acceptor to access the corresponding peptide-protein conjugate.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| |
Collapse
|
44
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
45
|
Liu T, Ma X, Yu J, Yang W, Wang G, Wang Z, Ge Y, Song J, Han H, Zhang W, Yang D, Liu X, Ma M. Rational generation of lasso peptides based on biosynthetic gene mutations and site-selective chemical modifications. Chem Sci 2021; 12:12353-12364. [PMID: 34603665 PMCID: PMC8480316 DOI: 10.1039/d1sc02695j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Lasso peptides are a unique family of natural products whose structures feature a specific threaded fold, which confers these peptides the resistance to thermal and proteolytic degradation. This stability gives lasso peptides excellent pharmacokinetic properties, which together with their diverse reported bioactivities have garnered extensive attention because of their drug development potential. Notably, the threaded fold has proven quite inaccessible by chemical synthesis, which has hindered efficient generation of structurally diverse lasso peptides. We herein report the discovery of a new lasso peptide stlassin (1) by gene activation based on a Streptomyces heterologous expression system. Site-directed mutagenesis on the precursor peptide-encoding gene is carried out systematically, generating 17 stlassin derivatives (2–17 and 21) with residue-replacements at specific positions of 1. The solution NMR structures of 1, 3, 4, 14 and 16 are determined, supporting structural comparisons that ultimately enabled the rational production of disulfide bond-containing derivatives 18 and 19, whose structures do not belong to any of the four classes currently used to classify lasso peptides. Several site-selective chemical modifications are first applied on 16 and 21, efficiently generating new derivatives (20, 22–27) whose structures bear various decorations beyond the peptidyl monotonicity. The high production yields of these stlassin derivatives facilitate biological assays, which show that 1, 4, 16, 20, 21 and 24 possess antagonistic activities against the binding of lipopolysaccharides to toll-like receptor 4 (TLR4). These results demonstrate proof-of-concept for the combined mutational/chemical generation of lasso peptide libraries to support drug lead development. A new class II lasso peptide stlassin (1) was discovered and stlassin derivatives (2–27) were rationally generated by biosynthetic gene mutations and site-selective chemical modifications, expanding the structural diversity of lasso peptides.![]()
Collapse
Affiliation(s)
- Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Wensheng Yang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Zhengdong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Yuanjie Ge
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Hua Han
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Wen Zhang
- School of Medicine, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| | - Xuehui Liu
- CAS Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chao-yang District Beijing 100101 China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University 38 Xueyuan Road, Haidian District Beijing 100191 China
| |
Collapse
|
46
|
Puri K, Kulkarni SS. Total Synthesis of the Phosphorylated Zwitterionic Trisaccharide Repeating Unit of Photorhabdus temperata cinerea 3240. Org Lett 2021; 23:7083-7087. [PMID: 34459612 DOI: 10.1021/acs.orglett.1c02487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the total synthesis of the phosphorylated zwitterionic trisaccharide repeating unit of Photorhabdus temperata subsp. cinerea 3240. The efficient route involves regio- and stereoselective assembly of trisaccharide with rare deoxyamino sugar AAT at the nonreducing end, late stage oxidation, and installation of a phosphate linker on the trisaccharide. The total synthesis was completed via a longest linear sequence of 24 steps in 6.5% overall yield.
Collapse
Affiliation(s)
- Krishna Puri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
47
|
Rajendran D, Bhagavathsingh J. O
‐Galactosylation of Diphenolic Compounds Using Boc Activation: A Convenient Chemical Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Divya Rajendran
- Department of Chemistry Karunya Institute of Technology and Sciences, Karunya Nagar Coimbatore 641114 Tamilnadu India
| | - Jebasingh Bhagavathsingh
- Department of Chemistry Karunya Institute of Technology and Sciences, Karunya Nagar Coimbatore 641114 Tamilnadu India
| |
Collapse
|
48
|
Wan LQ, Zhang X, Zou Y, Shi R, Cao JG, Xu SY, Deng LF, Zhou L, Gong Y, Shu X, Lee GY, Ren H, Dai L, Qi S, Houk KN, Niu D. Nonenzymatic Stereoselective S-Glycosylation of Polypeptides and Proteins. J Am Chem Soc 2021; 143:11919-11926. [PMID: 34323481 DOI: 10.1021/jacs.1c05156] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here we report a nonenzymatic glycosylation reaction that builds axial S-glycosidic bonds under biorelevant conditions. This strategy is enabled by the design and use of allyl glycosyl sulfones as precursors to glycosyl radicals and exploits the exceptional functional group tolerance of radical processes. Our method introduces a variety of unprotected glycosyl units to the cysteine residues of peptides in a highly selective fashion. Through developing the second-generation protocol, we applied our method in the direct glycosylation of complex polypeptides and proteins. Computational studies were performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Li-Qiang Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Rong Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Jin-Ge Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Shi-Yang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Li-Fan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoling Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Haiyan Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| |
Collapse
|
49
|
Zhao X, Li B, Xu J, Tang Q, Cai Z, Jiang X. Visible-Light-Driven Redox Neutral Direct C-H Amination of Glycine Derivatives and Peptides with N-Acyloxyphthalimides. Chemistry 2021; 27:12540-12544. [PMID: 34164860 DOI: 10.1002/chem.202101982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 12/12/2022]
Abstract
A room temperature, visible-light-promoted and redox neutral direct C-H amination of glycine and peptides has been firstly accomplished by using N-acyloxyphthalimide or -succinimide as nitrogen-radical precursor. The present strategy provides ways to introduce functionalities such as N-acyloxyphthalimide or -succinimide specifically to terminal glycine segment of peptides. Herein, mild conditions and high functional-group tolerance allow the preparation of non-natural α-amino acids and modification of corresponding peptides in this way.
Collapse
Affiliation(s)
- Xiaoyun Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bai Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jingyao Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qinglin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjun Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
50
|
Wang P, Cheng Y, Wu C, Zhou Y, Cheng Z, Li H, Wang R, Su W, Fang L. Tyrosine-Specific Modification via a Dearomatization-Rearomatization Strategy: Access to Azobenzene Functionalized Peptides. Org Lett 2021; 23:4137-4141. [PMID: 34010007 DOI: 10.1021/acs.orglett.1c01013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Azobenzene functionalized peptides are of great importance in photoresponsive biosystems and photopharmacology. Herein, we report an efficient approach to prepare azobenzene functionalized peptides through late-stage modification of tyrosine-containing peptides using a dearomatization-rearomatization strategy. This approach shows good chemoselectivity and site selectivity as well as sensitive group tolerance to various peptides. This method enriches the postsynthetic modification toolbox of peptides and has great potential to be applied in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Pengxin Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.,Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yulian Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu, China
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yimin Zhou
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhehong Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|