1
|
Zhu K, Song Y, Lesage JC, Luong JC, Bartolome JW, Chiariello NR, Dudney J, Field CB, Hallett LM, Hammond M, Harrison SP, Hayes GF, Hobbs RJ, Holl KD, Hopkinson P, Larios L, Loik ME, Prugh LR. Rapid shifts in grassland communities driven by climate change. Nat Ecol Evol 2024:10.1038/s41559-024-02552-z. [PMID: 39414961 DOI: 10.1038/s41559-024-02552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024]
Abstract
Many terrestrial plant communities, especially forests, have been shown to lag in response to rapid climate change. Grassland communities may respond more quickly to novel climates, as they consist mostly of short-lived species, which are directly exposed to macroclimate change. Here we report the rapid response of grassland communities to climate change in the California Floristic Province. We estimated 349 vascular plant species' climatic niches from 829,337 occurrence records, compiled 15 long-term community composition datasets from 12 observational studies and 3 global change experiments, and analysed community compositional shifts in the climate niche space. We show that communities experienced significant shifts towards species associated with warmer and drier locations at rates of 0.0216 ± 0.00592 °C yr-1 (mean ± s.e.) and -3.04 ± 0.742 mm yr-1, and these changes occurred at a pace similar to that of climate warming and drying. These directional shifts were consistent across observations and experiments. Our findings contrast with the lagged responses observed in communities dominated by long-lived plants and suggest greater biodiversity changes than expected in the near future.
Collapse
Affiliation(s)
- Kai Zhu
- School for Environment and Sustainability, Institute for Global Change Biology, and Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, MI, USA.
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA.
| | - Yiluan Song
- School for Environment and Sustainability, Institute for Global Change Biology, and Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Josephine C Lesage
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
- Earth and Environmental Sciences, Clark College, Vancouver, WA, USA
| | - Justin C Luong
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Forestry, Fire and Rangeland Management, California Polytechnic State University, Humboldt, Arcata, CA, USA
| | - James W Bartolome
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Nona R Chiariello
- Jasper Ridge Biological Preserve, Stanford University, Stanford, CA, USA
| | - Joan Dudney
- Bren School of Environmental Science and Management and Department of Environmental Studies, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Christopher B Field
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR, USA
| | | | - Susan P Harrison
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Grey F Hayes
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
- Swanton Pacific Ranch, California Polytechnic State University, Davenport, CA, USA
| | - Richard J Hobbs
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Karen D Holl
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Loralee Larios
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Michael E Loik
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
van Dijk LJA, Fisher BL, Miraldo A, Goodsell RM, Iwaszkiewicz-Eggebrecht E, Raharinjanahary D, Rajoelison ET, Łukasik P, Andersson AF, Ronquist F, Roslin T, Tack AJM. Temperature and water availability drive insect seasonality across a temperate and a tropical region. Proc Biol Sci 2024; 291:20240090. [PMID: 38889793 DOI: 10.1098/rspb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The more insects there are, the more food there is for insectivores and the higher the likelihood for insect-associated ecosystem services. Yet, we lack insights into the drivers of insect biomass over space and seasons, for both tropical and temperate zones. We used 245 Malaise traps, managed by 191 volunteers and park guards, to characterize year-round flying insect biomass in a temperate (Sweden) and a tropical (Madagascar) country. Surprisingly, we found that local insect biomass was similar across zones. In Sweden, local insect biomass increased with accumulated heat and varied across habitats, while biomass in Madagascar was unrelated to the environmental predictors measured. Drivers behind seasonality partly converged: In both countries, the seasonality of insect biomass differed between warmer and colder sites, and wetter and drier sites. In Sweden, short-term deviations from expected season-specific biomass were explained by week-to-week fluctuations in accumulated heat, rainfall and soil moisture, whereas in Madagascar, weeks with higher soil moisture had higher insect biomass. Overall, our study identifies key drivers of the seasonal distribution of flying insect biomass in a temperate and a tropical climate. This knowledge is key to understanding the spatial and seasonal availability of insects-as well as predicting future scenarios of insect biomass change.
Collapse
Affiliation(s)
- Laura J A van Dijk
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Brian L Fisher
- Entomology, California Academy of Sciences, San Francisco, CA 94118, USA
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
| | - Andreia Miraldo
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Robert M Goodsell
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | | | - Dimby Raharinjanahary
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
| | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anders F Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm 171 21, Sweden
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 114 18, Sweden
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 114 19 Stockholm, Sweden
| |
Collapse
|
3
|
Antunes AC, Berti E, Brose U, Hirt MR, Karger DN, O'Connor LMJ, Pollock LJ, Thuiller W, Gauzens B. Linking biodiversity, ecosystem function, and Nature's contributions to people: a macroecological energy flux perspective. Trends Ecol Evol 2024; 39:427-434. [PMID: 38310065 DOI: 10.1016/j.tree.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
At macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales. Importantly, this approach has the potential to upscale ecosystem functions, assess the vulnerability of flux-related NCP to the climate crisis, and support the development of multiscale mitigation policies.
Collapse
Affiliation(s)
- Ana Carolina Antunes
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| | - Emilio Berti
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Ulrich Brose
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Myriam R Hirt
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Dirk N Karger
- Swiss Federal Institute for Forest, Snow, and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Louise M J O'Connor
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Laura J Pollock
- Biology Department, McGill University, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada
| | - Wilfried Thuiller
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Benoit Gauzens
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Leathers K, Herbst D, de Mendoza G, Doerschlag G, Ruhi A. Climate change is poised to alter mountain stream ecosystem processes via organismal phenological shifts. Proc Natl Acad Sci U S A 2024; 121:e2310513121. [PMID: 38498724 PMCID: PMC10998557 DOI: 10.1073/pnas.2310513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Climate change is affecting the phenology of organisms and ecosystem processes across a wide range of environments. However, the links between organismal and ecosystem process change in complex communities remain uncertain. In snow-dominated watersheds, snowmelt in the spring and early summer, followed by a long low-flow period, characterizes the natural flow regime of streams and rivers. Here, we examined how earlier snowmelt will alter the phenology of mountain stream organisms and ecosystem processes via an outdoor mesocosm experiment in stream channels in the Eastern Sierra Nevada, California. The low-flow treatment, simulating a 3- to 6-wk earlier return to summer baseflow conditions projected under climate change scenarios in the region, increased water temperature and reduced biofilm production to respiration ratios by 32%. Additionally, most of the invertebrate species explaining community change (56% and 67% of the benthic and emergent taxa, respectively), changed in phenology as a consequence of the low-flow treatment. Further, emergent flux pulses of the dominant insect group (Chironomidae) almost doubled in magnitude, benefitting a generalist riparian predator. Changes in both invertebrate community structure (composition) and functioning (production) were mostly fine-scale, and response diversity at the community level stabilized seasonally aggregated responses. Our study illustrates how climate change in vulnerable mountain streams at the rain-to-snow transition is poised to alter the dynamics of stream food webs via fine-scale changes in phenology-leading to novel predator-prey "matches" or "mismatches" even when community structure and ecosystem processes appear stable at the annual scale.
Collapse
Affiliation(s)
- Kyle Leathers
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - David Herbst
- Sierra Nevada Aquatic Research Laboratory, University of California, Santa Barbara, CA93106
| | - Guillermo de Mendoza
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
- Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk76-200, Poland
| | - Gabriella Doerschlag
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA94720
| |
Collapse
|
5
|
Khaliq I, Rixen C, Zellweger F, Graham CH, Gossner MM, McFadden IR, Antão L, Brodersen J, Ghosh S, Pomati F, Seehausen O, Roth T, Sattler T, Supp SR, Riaz M, Zimmermann NE, Matthews B, Narwani A. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 2024; 15:1921. [PMID: 38429327 PMCID: PMC10907361 DOI: 10.1038/s41467-024-46282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Department of Zoology, Government (defunct) post-graduate college, Dera Ghazi Khan, 32200, Pakistan.
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - Florian Zellweger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
- University of London, Queen Mary, London, UK
| | - Laura Antão
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Tobias Roth
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
- Hintermann & Weber AG Austrasse 2a, 4153, Reinach, Switzerland
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Sarah R Supp
- Denison University, Data Analytics Program, Granville, OH, 43023, USA
| | - Maria Riaz
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
6
|
Dornelas M, Chase JM, Gotelli NJ, Magurran AE, McGill BJ, Antão LH, Blowes SA, Daskalova GN, Leung B, Martins IS, Moyes F, Myers-Smith IH, Thomas CD, Vellend M. Looking back on biodiversity change: lessons for the road ahead. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220199. [PMID: 37246380 PMCID: PMC10225864 DOI: 10.1098/rstb.2022.0199] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/24/2023] [Indexed: 05/30/2023] Open
Abstract
Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Maria Dornelas
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Guia Marine Laboratory, MARE, Faculdade de Ciencias da Universidade de Lisboa, Cascais 2750-374, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | | | - Anne E Magurran
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Laura H. Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki,Finland
| | - Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | - Gergana N. Daskalova
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Brian Leung
- Department of Biology, McGill University, Montreal, Canada H3A 1B1
| | - Inês S. Martins
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Faye Moyes
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | | | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Mark Vellend
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- Département de biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
7
|
Landaverde R, Rodriguez MT, Parrella JA. Honey Production and Climate Change: Beekeepers' Perceptions, Farm Adaptation Strategies, and Information Needs. INSECTS 2023; 14:493. [PMID: 37367309 DOI: 10.3390/insects14060493] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Because climate change has severely impacted global bee populations by depleting their habitats and food sources, beekeepers must implement management practices to adapt to changing climates. However, beekeepers in El Salvador lack information about necessary climate change adaptation strategies. This study explored Salvadoran beekeepers' experiences adapting to climate change. The researchers used a phenomenological case study approach and conducted semi-structured interviews with nine Salvadoran beekeepers who were members of The Cooperative Association for Marketing, Production, Savings, and Credit of Beekeepers of Chalatenango (ACCOPIDECHA). The beekeepers perceived water and food scarcity, as well as extreme weather events (e.g., increasing temperature, rain, winds), as the leading climate change-induced challenges to their production. Such challenges have augmented their honey bees' physiological need for water, limited their movement patterns, decreased apiary safety, and increased the incidence of pests and diseases, all of which have led to honey bee mortality. The beekeepers shared adaptation strategies, including box modification, apiary relocation, and food supplementation. Although most beekeepers accessed climate change information using the internet, they struggled to understand and apply pertinent information unless they received it from trusted ACCOPIDECHA personnel. Salvadoran beekeepers require information and demonstrations to improve their climate change adaptation strategies and implement new ones to address the challenges they experience.
Collapse
Affiliation(s)
- Rafael Landaverde
- Department of Agricultural Leadership, Education and Communications, Texas A&M University, College Station, TX 77843, USA
| | - Mary T Rodriguez
- Department of Agricultural Communication, Education and Leadership, The Ohio State University, Columbus, OH 43210, USA
| | - Jean A Parrella
- Department of Agricultural Leadership, Education and Communications, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Xu WB, Blowes SA, Brambilla V, Chow CFY, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Magurran AE, Gotelli NJ, McGill BJ, Dornelas M, Chase JM. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat Commun 2023; 14:1463. [PMID: 36927847 PMCID: PMC10020147 DOI: 10.1038/s41467-023-37127-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.
Collapse
Affiliation(s)
- Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Graduate School of Public Health, Teikyo University, Tokyo, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais, Portugal
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
9
|
Ma L, Conradie SR, Crawford CL, Gardner AS, Kearney MR, Maclean IMD, McKechnie AE, Mi CR, Senior RA, Wilcove DS. Global patterns of climate change impacts on desert bird communities. Nat Commun 2023; 14:211. [PMID: 36639376 PMCID: PMC9839677 DOI: 10.1038/s41467-023-35814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The world's warm deserts are predicted to experience disproportionately large temperature increases due to climate change, yet the impacts on global desert biodiversity remain poorly understood. Because species in warm deserts live close to their physiological limits, additional warming may induce local extinctions. Here, we combine climate change projections with biophysical models and species distributions to predict physiological impacts of climate change on desert birds globally. Our results show heterogeneous impacts between and within warm deserts. Moreover, spatial patterns of physiological impacts do not simply mirror air temperature changes. Climate change refugia, defined as warm desert areas with high avian diversity and low predicted physiological impacts, are predicted to persist in varying extents in different desert realms. Only a small proportion (<20%) of refugia fall within existing protected areas. Our analysis highlights the need to increase protection of refugial areas within the world's warm deserts to protect species from climate change.
Collapse
Affiliation(s)
- Liang Ma
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA. .,School of Ecology, Shenzhen Campus of SunYat-sen University, Shenzhen, Guangdong, People's Republic of China.
| | - Shannon R Conradie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, 2 Cussonia Ave, Brummeria, Pretoria, 0184, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Lynnwood Rd., Pretoria, 0002, South Africa
| | - Christopher L Crawford
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Alexandra S Gardner
- Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ilya M D Maclean
- Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, 2 Cussonia Ave, Brummeria, Pretoria, 0184, South Africa.,DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Lynnwood Rd., Pretoria, 0002, South Africa
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Rebecca A Senior
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.,Conservation Ecology Group, Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - David S Wilcove
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Betzholtz PE, Forsman A, Franzén M. Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. INSECTS 2023; 14:55. [PMID: 36661983 PMCID: PMC9864116 DOI: 10.3390/insects14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Parallel to the widespread decline of plants and animals, there is also an ongoing expansion of many species, which is especially pronounced in certain taxonomic groups and in northern latitudes. In order to inform an improved understanding of population dynamics in range-expanding taxa, we studied species richness, abundance and population growth in a sample of 25,138 individuals representing 107 range-expanding moth species at three light-trap sites in southeastern Sweden over 16 years (from 2005 to 2020) in relation to temperature and years since colonisation. Species richness and average abundance across range-expanding moths increased significantly over time, indicating a continuous influx of species expanding their ranges northward. Furthermore, average abundance and population growth increased significantly with increasing average ambient air temperature during the recording year, and average abundance also increased significantly with increasing temperature during the previous year. In general, population growth increased between years (growth rate > 1), although the population growth rate decreased significantly in association with years since colonisation. These findings highlight that, in contrast to several other studies in different parts of the world, species richness and abundance have increased in southeastern Sweden, partly because the warming climate enables range-expanding moths to realise their capacity for rapid distribution shifts and population growth. This may lead to fast and dramatic changes in community composition, with consequences for species interactions and the functioning of ecosystems. These findings are also of applied relevance for agriculture and forestry in that they can help to forecast the impacts of future invasive pest species.
Collapse
|
11
|
Neff F, Korner-Nievergelt F, Rey E, Albrecht M, Bollmann K, Cahenzli F, Chittaro Y, Gossner MM, Martínez-Núñez C, Meier ES, Monnerat C, Moretti M, Roth T, Herzog F, Knop E. Different roles of concurring climate and regional land-use changes in past 40 years' insect trends. Nat Commun 2022; 13:7611. [PMID: 36509742 PMCID: PMC9744861 DOI: 10.1038/s41467-022-35223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Climate and land-use changes are main drivers of insect declines, but their combined effects have not yet been quantified over large spatiotemporal scales. We analysed changes in the distribution (mean occupancy of squares) of 390 insect species (butterflies, grasshoppers, dragonflies), using 1.45 million records from across bioclimatic gradients of Switzerland between 1980 and 2020. We found no overall decline, but strong increases and decreases in the distributions of different species. For species that showed strongest increases (25% quantile), the average proportion of occupied squares increased in 40 years by 0.128 (95% credible interval: 0.123-0.132), which equals an average increase in mean occupancy of 71.3% (95% CI: 67.4-75.1%) relative to their 40-year mean occupancy. For species that showed strongest declines (25% quantile), the average proportion decreased by 0.0660 (95% CI: 0.0613-0.0709), equalling an average decrease in mean occupancy of 58.3% (95% CI: 52.2-64.4%). Decreases were strongest for narrow-ranged, specialised, and cold-adapted species. Short-term distribution changes were associated to both climate changes and regional land-use changes. Moreover, interactive effects between climate and regional land-use changes confirm that the various drivers of global change can have even greater impacts on biodiversity in combination than alone. In contrast, 40-year distribution changes were not clearly related to regional land-use changes, potentially reflecting mixed changes in local land use after 1980. Climate warming however was strongly linked to 40-year changes, indicating its key role in driving insect trends of temperate regions in recent decades.
Collapse
Affiliation(s)
- Felix Neff
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland.
| | | | - Emmanuel Rey
- info fauna, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Matthias Albrecht
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Kurt Bollmann
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Fabian Cahenzli
- Department of Crop Sciences, Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, 5070, Frick, Switzerland
| | - Yannick Chittaro
- info fauna, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Carlos Martínez-Núñez
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Eliane S Meier
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | | | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Tobias Roth
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
- Hintermann & Weber AG, Austrasse 2a, 4153, Reinach, Switzerland
| | - Felix Herzog
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Eva Knop
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
12
|
Rathore P, Roy A, Karnatak H. Predicting the future of species assemblages under climate and land use land cover changes in Himalaya: A geospatial modelling approach. CLIMATE CHANGE ECOLOGY 2022. [DOI: 10.1016/j.ecochg.2022.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Hellegers M, van Swaay CAM, van Hinsberg A, Huijbregts MAJ, Schipper AM. Modulating Effects of Landscape Characteristics on Responses to Warming Differ Among Butterfly Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.873366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding and predicting biodiversity responses to climate change are vital to inform conservation strategies, but this is not straightforward as climate change responses depend on the landscape context and differ among species. Here, we quantified changes in the distribution and abundance of 30 butterfly species in the Netherlands in relation to climate change and in landscapes that vary in the amount and connectivity of (semi-)natural vegetation (SNV). We obtained yearly counts of well-monitored butterfly species from 327 time series over 27 years (1992–2018). We used these counts to build mixed effect hurdle models to relate species’ occurrence and abundance to temperature and the amount and connectivity of SNV around the sites. For 55% of the butterfly species, an increased amount or connectivity of SNV corresponded with stronger increases or reduced decreases in occurrence in response to warming, indicating that SNV may facilitate range expansion or mitigate extirpations due to climate change. However, for the occurrence of the other species we found no or a negative interaction between warming and SNV. Further, we did not find indications of a mitigating effect of SNV on abundance responses to warming. Our results thus suggest that increasing the amount and connectivity of SNV does not offer a “one-size-fits-all” solution, highlighting the need for additional measures if butterfly diversity is to be conserved.
Collapse
|
14
|
Pinsky ML, Comte L, Sax DF. Unifying climate change biology across realms and taxa. Trends Ecol Evol 2022; 37:672-682. [PMID: 35610063 DOI: 10.1016/j.tree.2022.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/18/2023]
Abstract
A major challenge in modern biology is to understand extinction risk from climate change across all realms. Recent research has revealed that physiological tolerance, behavioral thermoregulation, and small elevation shifts are dominant coping strategies on land, whereas large-scale latitudinal shifts are more important in the ocean. Freshwater taxa may face the highest global extinction risks. Nevertheless, some species in each realm face similar risks because of shared adaptive, dispersal, or physiological tolerances and abilities. Taking a cross-realm perspective offers unique research opportunities because confounding physical factors in one realm are often disaggregated in another realm. Cross-realm, across taxa, and other forms of climate change biology synthesis are needed to advance our understanding of emergent patterns of risk across all life.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Dov F Sax
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| |
Collapse
|
15
|
Li X, Liu T, Li H, Geisen S, Hu F, Liu M. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. J Anim Ecol 2022; 91:1770-1780. [PMID: 35579946 DOI: 10.1111/1365-2656.13744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic land use is threatening global biodiversity. As one of the most abundant animals on Earth, nematodes occupy several key positions in belowground food webs and contribute to many ecosystem functions and services. However, the effects of land use on nematode abundance and its determinants remain poorly understood at a global scale. To characterize nematodes' responses to land use across trophic groups, we used a dataset of 6,825 soil samples globally to assess how nematode abundance varies among regional land-use types (i.e., primary vegetation, secondary vegetation, pasture, cropland, and urban) and local land-use intensities (i.e., human-managed or not). We also quantified the interactive effects of land use and environmental predictors (i.e., mean annual temperature, annual precipitation, soil organic carbon, soil pH, global vegetation biomass, and global vegetation productivity) on nematode abundance. We found that total nematode abundance and the abundance of bacterivores, fungivores, herbivores, omnivores, and predators generally increased or were not affected under management across land-use types. Specifically, the most numerically abundant bacterivores were higher in managed than in unmanaged secondary vegetation habitats and urban areas, and herbivores were more abundant in managed than in unmanaged primary and secondary vegetation habitats. Furthermore, the numbers of significant environmental predictors of nematode abundance were reduced and the magnitude and the direction of the predictors were changed under management. We also found that nematode abundance was more variable and less determined by environmental factors in urban than in other land-use types. These findings challenge the view that human land use decreases animal abundance across trophic groups, but highlight that land use is altering the trophic composition of soil nematodes and its relationships with the environment at the global scale.
Collapse
Affiliation(s)
- Xianping Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Ting Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Manqiang Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Ahmed S, Soorae PS, Hammadi EA, Zaabi RA, Saji A, Khan SB, Sakkir S, Ali A, Khaliq I, Gubiani RE, Javed S, Omari KA, Dhaheri SA. Does habitat heterogeneity influence taxonomic richness and abundance? A case study from a terrestrial protected area in Abu Dhabi, United Arab Emirates. Saudi J Biol Sci 2022; 29:1737-1746. [PMID: 35280566 PMCID: PMC8913417 DOI: 10.1016/j.sjbs.2021.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/19/2021] [Accepted: 10/19/2021] [Indexed: 10/26/2022] Open
Abstract
Biodiversity is under enormous pressure from multiple threats including climate change, land use change, habitat alterations and hunting pressure. One way to ease this pressure on biodiversity and to mitigate the effects of above-mentioned threats, is to establish protected areas. Importance of protected increases many folds in regions that are considered as biodiversity poor regions i.e. deserts. Protected areas have long been a major pillar of biodiversity conservation strategies; the Houbara Protected Area (HPA) is one of the 13 terrestrial protected areas in Abu Dhabi Emirate officially declared in 2017. However, no information regarding the status of biodiversity in the HPA has been communicated to the research fraternity. During the present study, surveys were conducted to fill this gap. The survey area was divided in to 50 grids of 5 × 5 km2 and monitoring surveys were undertaken from January to December 2016. A total of 14 bi-monthly to monthly surveys were conducted within HPA and 196 species of different taxonomical groups were recorded. A year-long survey yielded highly diversified fauna and flora from 19 different habitat types (H) 1.32, (E) 2.28, Shannon Diversity Index). We looked at the influence of habitat breadth and temperature on the species richness and abundance, results shows that in desert setup heterogeneity of habitat is not an important factor in maintaining the biodiversity as total number of individuals as well as species were similar in the grids that have different number of habitat types (df = 34.3, t = -0.472, P = 0.640). However, we did find a positive impact of mean monthly temperature on species richness (df = 154, t = 2.53, P = 0.012). Our study highlights the importance of temperature in driving species abundance and richness in protected area. Abundance and species richness are similar in protected areas indicating that protection is allowing species to explore the heterogenous habitats. Overall, we can conclude that protection is beneficial for species.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | | | - Eissa Al Hammadi
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Rashed Al Zaabi
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Anitha Saji
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Shahid B Khan
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Sabitha Sakkir
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Ahmed Ali
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Imran Khaliq
- Department of Ecology, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Überlandtrasse 113, 8600 Dübendorf, Switzerland.,WSL, Institute for Snow and Avalanche Research SLF, Flüelastr. 11, 7260 Davos Dorf, Switzerland
| | - Robert E Gubiani
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Sálim Javed
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Khaldoun Al Omari
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| | - Shaikha Al Dhaheri
- Environment Agency - Abu Dhabi, P.O. Box 45553, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Neubauer TA, Georgopoulou E. Extinction risk is linked to lifestyle in freshwater gastropods. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Thomas A. Neubauer
- Department of Animal Ecology and Systematics Justus Liebig University Giessen Germany
- Naturalis Biodiversity Center Leiden The Netherlands
| | - Elisavet Georgopoulou
- Natural History Museum of Crete University of Crete Heraklion Greece
- Olive and Agroecological Production Systems Lab (EOPS) Department of Agriculture Hellenic Mediterranean University Heraklion Greece
| |
Collapse
|
18
|
Ferrer-Sánchez Y, Rodríguez-Estrella R. Identifying best conservation areas for an endangered and endemic raptor in Cuba through abundance spatial modeling: A niche-centroid distances approach. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Zajicek P, Welti EAR, Baker NJ, Januschke K, Brauner O, Haase P. Long-term data reveal unimodal responses of ground beetle abundance to precipitation and land use but no changes in taxonomic and functional diversity. Sci Rep 2021; 11:17468. [PMID: 34471149 PMCID: PMC8410911 DOI: 10.1038/s41598-021-96910-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
While much of global biodiversity is undoubtedly under threat, the responses of ecological communities to changing climate, land use intensification, and long-term changes in both taxonomic and functional diversity over time, has still not been fully explored for many taxonomic groups, especially invertebrates. We compiled time series of ground beetles covering the past two decades from 40 sites located in five regions across Germany. We calculated site-based trends for 21 community metrics representing taxonomic and functional diversity of ground beetles, activity density (a proxy for abundance), and activity densities of functional groups. We assessed both overall and regional temporal trends and the influence of the global change drivers of temperature, precipitation, and land use on ground beetle communities. While we did not detect overall temporal changes in ground beetle taxonomic and functional diversity, taxonomic turnover changed within two regions, illustrating that community change at the local scale does not always correspond to patterns at broader spatial scales. Additionally, ground beetle activity density had a unimodal response to both annual precipitation and land use. Limited temporal change in ground beetle communities may indicate a shifting baseline, where community degradation was reached prior to the start of our observation in 1999. In addition, nonlinear responses of animal communities to environmental change present a challenge when quantifying temporal trends.
Collapse
Affiliation(s)
- Petr Zajicek
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Ellen A R Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Nathan J Baker
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Januschke
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Oliver Brauner
- Office for Zoology, Vegetation and Conservation (Büro für Zoologie, Vegetation und Naturschutz), Eberswalde, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Menzel F, Feldmeyer B. How does climate change affect social insects? CURRENT OPINION IN INSECT SCIENCE 2021; 46:10-15. [PMID: 33545433 DOI: 10.1016/j.cois.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Climate change poses a major threat to global biodiversity, already causing sharp declines of populations and species. In some social insect species we already see advanced phenologies, changes in distribution ranges, and changes in abundance Rafferty (2017) and Diamond et al. (2017). Physiologically, social insects are no different from solitary insects, but they possess a number of characteristics that distinguish their response to climate change. Here, we examine these traits, which might enable them to cope better with climate change than solitary insects, but only in the short term. In addition, we discuss how climate change will alter biotic interactions and ecosystem functions, and how it will affect invasive social insects.
Collapse
Affiliation(s)
- Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Huang S, Tucker MA, Hertel AG, Eyres A, Albrecht J. Scale-dependent effects of niche specialisation: The disconnect between individual and species ranges. Ecol Lett 2021; 24:1408-1419. [PMID: 33960589 DOI: 10.1111/ele.13759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/28/2023]
Abstract
One of the most general expectations of species range dynamics is that widespread species tend to have broader niches. However, it remains unclear how this relationship is expressed at different levels of biological organisation, which involve potentially distinctive processes operating at different spatial and temporal scales. Here, we show that range sizes of terrestrial non-volant mammals at the individual and species level show contrasting relationships with two ecological niche dimensions: diet and habitat breadth. While average individual home range size appears to be mainly shaped by the interplay of diet niche breadth and body mass, species geographical range size is primarily related to habitat niche breadth but not to diet niche breadth. Our findings suggest that individual home range size is shaped by the trade-off between energetic requirements, movement capacity and trophic specialisation, whereas species geographical range size is related to the ability to persist under various environmental conditions.
Collapse
Affiliation(s)
- Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Marlee A Tucker
- Department of Environmental Science, Radboud University, Nijmegen, Netherlands
| | - Anne G Hertel
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Alison Eyres
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Department of Biological Sciences, Goethe-University Frankfurt, Frankfurt, Germany.,RSPB Centre for Conservation Science, Cambridge, UK
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| |
Collapse
|
22
|
Abstract
Insects have diversified through more than 450 million y of Earth's changeable climate, yet rapidly shifting patterns of temperature and precipitation now pose novel challenges as they combine with decades of other anthropogenic stressors including the conversion and degradation of land. Here, we consider how insects are responding to recent climate change while summarizing the literature on long-term monitoring of insect populations in the context of climatic fluctuations. Results to date suggest that climate change impacts on insects have the potential to be considerable, even when compared with changes in land use. The importance of climate is illustrated with a case study from the butterflies of Northern California, where we find that population declines have been severe in high-elevation areas removed from the most immediate effects of habitat loss. These results shed light on the complexity of montane-adapted insects responding to changing abiotic conditions. We also consider methodological issues that would improve syntheses of results across long-term insect datasets and highlight directions for future empirical work.
Collapse
|
23
|
Hewitt JE, Bulmer RH, Stephenson F, Thrush SF. Sampling frequency, duration and the Southern Oscillation influence the ability of long-term studies to detect sudden change. GLOBAL CHANGE BIOLOGY 2021; 27:2213-2224. [PMID: 33599051 DOI: 10.1111/gcb.15558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Ecologists have long acknowledged the importance of context dependency related to position along spatial gradients. It is also acknowledged that broad-scale climate patterns can directly and indirectly alter population dynamics. What is not often addressed is whether climate patterns such as the Southern Oscillation interact with population-level temporal patterns and affect the ability of time-series data, such as long-term state of the environment monitoring programmes, to detect change. Monitoring design criteria generally focus on number of data points, sampling frequency and duration, often derived from previous information on species seasonal and multi-year temporal patterns. Our study questioned whether the timing of any changes relative to Southern Oscillation, interacting with species populations dynamics, would also be important. We imposed a series of simulated reductions on macrofaunal abundance data collected regularly over 29 years from two sites, using species selected for observed differences in temporal dynamics. We hypothesized that (1) high within-year sampling frequency would increase detection ability for species with repeatable seasonality cycles and (2) timing of the reduction in abundance relative to the Southern Oscillation was only likely to affect detection ability for long-lived species with multi-year cyclic patterns in abundance. However, regardless of species population dynamics, we found both within-year sampling frequency and the timing of the imposed reduction relative to the Southern Oscillation Index affected detection ability. The latter result, while apparently demonstrating a confounding influence on monitoring, offers the opportunity to improve our ability to detect and interpret analyses of monitoring data, and thus our ability to make recommendations to managers.
Collapse
Affiliation(s)
- Judi E Hewitt
- Marine Ecology Group, National Institute of Water and Atmosphere, Hamilton, New Zealand
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Richard H Bulmer
- Marine Ecology Group, National Institute of Water and Atmosphere, Hamilton, New Zealand
| | - Fabrice Stephenson
- Marine Ecology Group, National Institute of Water and Atmosphere, Hamilton, New Zealand
| | - Simon F Thrush
- Institute of Marine Studies, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Ewers-Saucedo C, Allspach A, Barilaro C, Bick A, Brandt A, Fiege D, Füting S, Hausdorf B, Hayer S, Husemann M, Joger U, Kamcke C, Küster M, Lohrmann V, Martin I, Michalik P, Reinicke GB, Schwentner M, Stiller M, Brandis D. Natural history collections recapitulate 200 years of faunal change. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201983. [PMID: 33996123 PMCID: PMC8059531 DOI: 10.1098/rsos.201983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Changing species assemblages represent major challenges to ecosystems around the world. Retracing these changes is limited by our knowledge of past biodiversity. Natural history collections represent archives of biodiversity and are therefore an unparalleled source to study biodiversity changes. In the present study, we tested the value of natural history collections for reconstructing changes in the abundance and presence of species over time. In total, we scrutinized 17 080 quality-checked records for 242 epibenthic invertebrate species from the North and Baltic Seas collected throughout the last 200 years. Our approaches identified eight previously reported species introductions, 10 range expansions, six of which are new to science, as well as the long-term decline of 51 marine invertebrate species. The cross-validation of our results with published accounts of endangered species and neozoa of the area confirmed the results for two of the approaches for 49 to 55% of the identified species, and contradicted our results for 9 to 10%. The results based on relative record trends were less validated. We conclude that, with the proper approaches, natural history collections are an unmatched resource for recovering early species introductions and declines.
Collapse
Affiliation(s)
- Christine Ewers-Saucedo
- Zoologisches Museum, Christian-Albrechts-Universität zu Kiel, Hegewischstraße 3, 24105 Kiel, Germany
| | - Andreas Allspach
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Christina Barilaro
- Landesmuseum Natur und Mensch Oldenburg, Damm 38-44, 26135 Oldenburg, Germany
| | - Andreas Bick
- Zoological Collections of the University of Rostock, Institute for Biological Sciences, General and Systematic Zoology, Universitätsplatz 2, 18055 Rostock, Germany
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Goethe-University of Frankfurt, FB 15, Institute for Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | - Dieter Fiege
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Susanne Füting
- Museum für Natur und Umwelt Lübeck, Musterbahn 8, 23552 Lübeck, Germany
| | - Bernhard Hausdorf
- Centrum für Naturkunde (CeNak), Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Sarah Hayer
- Zoologisches Museum, Christian-Albrechts-Universität zu Kiel, Hegewischstraße 3, 24105 Kiel, Germany
| | - Martin Husemann
- Centrum für Naturkunde (CeNak), Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Ulrich Joger
- Staatliches Naturhistorisches Museum, Pockelsstraße 10, 38106 Braunschweig, Germany
| | - Claudia Kamcke
- Staatliches Naturhistorisches Museum, Pockelsstraße 10, 38106 Braunschweig, Germany
| | - Mathias Küster
- Müritzeum, Zur Steinmole 1, 17192 Waren (Müritz), Germany
| | - Volker Lohrmann
- Übersee-Museum Bremen, Bahnhofsplatz 13, 28195 Bremen, Germany
| | - Ines Martin
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany
| | - Peter Michalik
- Zoologisches Museum der Universität Greifswald, Loitzer Straße 26, 17489 Greifswald, Germany
| | | | - Martin Schwentner
- Centrum für Naturkunde (CeNak), Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Naturhistorisches Museum Wien, Burgring 7, 1140 Wien, Austria
| | - Michael Stiller
- Übersee-Museum Bremen, Bahnhofsplatz 13, 28195 Bremen, Germany
| | - Dirk Brandis
- Zoologisches Museum, Christian-Albrechts-Universität zu Kiel, Hegewischstraße 3, 24105 Kiel, Germany
| |
Collapse
|
25
|
Forister ML, Halsch CA, Nice CC, Fordyce JA, Dilts TE, Oliver JC, Prudic KL, Shapiro AM, Wilson JK, Glassberg J. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 2021; 371:1042-1045. [PMID: 33674492 DOI: 10.1126/science.abe5585] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/10/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Uncertainty remains regarding the role of anthropogenic climate change in declining insect populations, partly because our understanding of biotic response to climate is often complicated by habitat loss and degradation among other compounding stressors. We addressed this challenge by integrating expert and community scientist datasets that include decades of monitoring across more than 70 locations spanning the western United States. We found a 1.6% annual reduction in the number of individual butterflies observed over the past four decades, associated in particular with warming during fall months. The pervasive declines that we report advance our understanding of climate change impacts and suggest that a new approach is needed for butterfly conservation in the region, focused on suites of species with shared habitat or host associations.
Collapse
Affiliation(s)
- M L Forister
- Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA.
| | - C A Halsch
- Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | - C C Nice
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - J A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - T E Dilts
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - J C Oliver
- Office of Digital Innovation and Stewardship, University Libraries, University of Arizona, Tucson, AZ 85721, USA
| | - K L Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
| | - A M Shapiro
- Center for Population Biology, University of California-Davis, Davis, CA 95616, USA
| | - J K Wilson
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
| | - J Glassberg
- North American Butterfly Association, Morristown, NJ 07960, USA.,Department of BioSciences, Rice University, Houston, TX 77251, USA
| |
Collapse
|
26
|
Baker NJ, Pilotto F, Jourdan J, Beudert B, Haase P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143685. [PMID: 33288265 DOI: 10.1016/j.scitotenv.2020.143685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Freshwater ecosystems are dynamic, complex systems with a multitude of physical and ecological processes and stressors which drive fluctuations on the community-level. Disentangling the effects of different processes and stressors is challenging due to their interconnected nature. However, as protected areas (i.e. national parks) are less anthropogenically impacted, they are ideal for investigating single stressors. We focus on the Bavarian Forest National Park, a Long-Term Ecological Research (LTER) site in Germany, where the major stressors are climate warming, air pollution (i.e. acidification) and bark beetle infestations. We investigated the effects of these stressors on freshwater macroinvertebrates using comprehensive long-term (1983-2014) datasets comprising high-resolution macroinvertebrate and physico-chemical data from a near-natural stream. Macroinvertebrate communities have undergone substantial changes over the past 32 years, highlighted by increases in overall community abundance (+173%) and richness (+51.6%) as well as taxonomic restructuring driven by a disproportional increase of dipterans. Prior to the year 2000, regression analyses revealed a decline in sulphate deposition and subsequent recovery from historical acidification as potential drivers of the increases in abundance and richness rather than to increases in water temperature (1.5 °C overall increase). Post 2000, however, alterations to nutrient cycling caused by bark beetle infestations coupled with warming temperatures were correlated to taxonomic restructuring and disproportional increases of dipterans at the expense of sensitive taxa such as plecopterans and trichopterans. Our results highlight the challenges when investigating the effects of climate change within a multi-stressor context. Even in conservation areas, recovery from previous disturbance might mask the effects of ongoing disturbances like climate change. Overall, we observed strong community restructuring, demonstrating that stenothermal headwater communities face additional stress due to emerging competition with tolerant taxa. Conservation efforts should consider the temporal variability of communities and their recovery from disturbances to adequately identify species vulnerable to local or widespread extinction.
Collapse
Affiliation(s)
- Nathan Jay Baker
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Francesca Pilotto
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Umeå, Sweden
| | - Jonas Jourdan
- Department of Aquatic Ecotoxicology, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Burkhard Beudert
- Department of Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Hof C. Towards more integration of physiology, dispersal and land-use change to understand the responses of species to climate change. J Exp Biol 2021; 224:224/Suppl_1/jeb238352. [PMID: 33627466 DOI: 10.1242/jeb.238352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The accelerating biodiversity crisis, for which climate change has become an important driver, urges the scientific community for answers to the question of whether and how species are capable of responding successfully to rapidly changing climatic conditions. For a better understanding and more realistic predictions of species' and biodiversity responses, the consideration of extrinsic (i.e. environment-related) and intrinsic (i.e. organism-related) factors is important, among which four appear to be particularly crucial: climate change and land-use change, as extrinsic factors, as well as physiology and dispersal capacity, as intrinsic factors. Here, I argue that these four factors should be considered in an integrative way, but that the scientific community has not yet been very successful in doing so. A quantitative literature review revealed a generally low level of integration within global change biology, with a pronounced gap especially between the field of physiology and other (sub)disciplines. After a discussion of potential reasons for this unfortunate lack of integration, some of which may relate to key deficits e.g. in the reward and incentive systems of academia, I suggest a few ideas that might help to overcome some of the barriers between separated research communities. Furthermore, I list several examples for promising research along the integration frontier, after which I outline some research questions that could become relevant if one is to push the boundary of integration among disciplines, of data and methods, and across scales even further - for a better understanding and more reliable predictions of species and biodiversity in a world of global change.
Collapse
Affiliation(s)
- Christian Hof
- Terrestrial Ecology Research Group, Technical University of Munich, Freising, Germany
| |
Collapse
|
28
|
F Millán M, Carranza J, Pérez-González J, Valencia J, Torres-Porras J, Seoane JM, de la Peña E, Alarcos S, Sánchez-Prieto CB, Castillo L, Flores A, Membrillo A. Rainfall decrease and red deer rutting behaviour: Weaker and delayed rutting activity though higher opportunity for sexual selection. PLoS One 2021; 16:e0244802. [PMID: 33471796 PMCID: PMC7817023 DOI: 10.1371/journal.pone.0244802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
In the last decades, climate change has caused an increase in mean temperatures and a reduction in average rainfall in southern Europe, which is expected to reduce resource availability for herbivores. Resource availability can influence animals' physical condition and population growth. However, much less is known on its effects on reproductive performance and sexual selection. In this study, we assessed the impact of three environmental factors related to climate change (rainfall, temperature and vegetation index) on Iberian red deer Cervus elaphus hispanicus reproductive timing and sexual behaviour, and their effects on the opportunity for sexual selection in the population. We measured rutting phenology as rut peak date, the intensity of male rutting activity as roaring rate, and the opportunity for sexual selection from the distribution of females among harem holding males in Doñana Biological Reserve (Southwest Spain), from data of daily observations collected during the rut over a period of 25 years. For this study period, we found a trend for less raining and hence poorer environmental conditions, which associated with delayed rutting season and decreased rutting intensity, but that appeared to favour a higher degree of polygyny and opportunity for sexual selection, all these relationships being modulated by population density and sex ratio. This study highlights how climate change (mainly rainfall reduction in this area) can alter the conditions for mating and the opportunity for sexual selection in a large terrestrial mammal.
Collapse
Affiliation(s)
- Marina F Millán
- Wildlife Research Unit (UIRCP), Universidad de Córdoba, Córdoba, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), Universidad de Córdoba, Córdoba, Spain
| | | | - Juliana Valencia
- Didáctica de las Ciencias Experimentales, Facultad de Ciencias de la Educación, Universidad de Málaga, Málaga, Spain
| | - Jerónimo Torres-Porras
- Department of Social and Experimental Sciences Teaching, Faculty of Educational Sciences, Universidad de Córdoba, Córdoba, Spain
| | - Jose M Seoane
- Wildlife Research Unit (UIRCP), Universidad de Córdoba, Córdoba, Spain
| | - Eva de la Peña
- Wildlife Research Unit (UIRCP), Universidad de Córdoba, Córdoba, Spain
| | - Susana Alarcos
- Biology and Ethology Unit, Universidad de Extremadura, Cáceres, Spain
| | | | - Leticia Castillo
- Biology and Ethology Unit, Universidad de Extremadura, Cáceres, Spain
| | - Antonio Flores
- Biology and Ethology Unit, Universidad de Extremadura, Cáceres, Spain
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
29
|
Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci Rep 2020; 10:21081. [PMID: 33273514 PMCID: PMC7712829 DOI: 10.1038/s41598-020-77885-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
Acute climate events like marine heatwaves have the potential to temporarily or permanently alter community structure with effects on biodiversity and ecosystem services. We aimed to quantify the magnitude and consistency of climate driven community shifts inside and outside Marine Protected Areas before and after a marine heatwave using a kelp forest fish community dataset in southern California, USA. Abundance, biomass, diversity and recruitment of warm-water affinity species during the marine heatwave were significantly greater compared with prior years yet cool-water affinity species did not show commensurate declines. Fish communities inside MPAs were not buffered from these community shifts. This result is likely because the particular species most responsible for the community response to environmental drivers, were not fisheries targets. Resource managers working to preserve biodiversity in a changing climate will need to consider additional management tools and strategies in combination with protected areas to mitigate the effect of warming on marine communities.
Collapse
|
30
|
Pilotto F, Kühn I, Adrian R, Alber R, Alignier A, Andrews C, Bäck J, Barbaro L, Beaumont D, Beenaerts N, Benham S, Boukal DS, Bretagnolle V, Camatti E, Canullo R, Cardoso PG, Ens BJ, Everaert G, Evtimova V, Feuchtmayr H, García-González R, Gómez García D, Grandin U, Gutowski JM, Hadar L, Halada L, Halassy M, Hummel H, Huttunen KL, Jaroszewicz B, Jensen TC, Kalivoda H, Schmidt IK, Kröncke I, Leinonen R, Martinho F, Meesenburg H, Meyer J, Minerbi S, Monteith D, Nikolov BP, Oro D, Ozoliņš D, Padedda BM, Pallett D, Pansera M, Pardal MÂ, Petriccione B, Pipan T, Pöyry J, Schäfer SM, Schaub M, Schneider SC, Skuja A, Soetaert K, Spriņģe G, Stanchev R, Stockan JA, Stoll S, Sundqvist L, Thimonier A, Van Hoey G, Van Ryckegem G, Visser ME, Vorhauser S, Haase P. Meta-analysis of multidecadal biodiversity trends in Europe. Nat Commun 2020; 11:3486. [PMID: 32661354 PMCID: PMC7359034 DOI: 10.1038/s41467-020-17171-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/16/2020] [Indexed: 11/22/2022] Open
Abstract
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
Collapse
Affiliation(s)
- Francesca Pilotto
- Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Umeå, Sweden.
| | - Ingolf Kühn
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
- Martin Luther University Halle-Wittenberg, Geobotany and Botanical Garden, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Leipzig, Germany
| | - Rita Adrian
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries & Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Renate Alber
- Biological Laboratory, Agency for Environment and Climate Protection, Bolzano, Italy
| | - Audrey Alignier
- UMR 0980 BAGAP, INRAE - Institut Agro - ESA, Rennes, France
- LTSER Zone Atelier Armorique, 35042, Rennes, France
| | | | - Jaana Bäck
- Institute for Atmospheric and Earth system Research, Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Luc Barbaro
- Dynafor, INRAE, University of Toulouse, France & CESCO, Muséum National d'Histoire Naturelle, Sorbonne-Univ, Paris, France & LTSER Zone Atelier Pyrénées Garonne, Auzeville-Tolosane, France
| | | | - Natalie Beenaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology & Soil and Water Research Infrastructure, Ceske Budejovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Vincent Bretagnolle
- CEBC, UMR7372, CNRS & La Rochelle University, 79360, Villiers en bois, France
- LTSER Zone Atelier Plaine & Val de Sèvre, 79360, Beauvoir sur Niort, France
| | - Elisa Camatti
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | - Roberto Canullo
- School of Biosciences and Veterinary Medicine, unit Plant Diversity and Ecosystems Management, University of Camerino, Camerino, Italy
| | - Patricia G Cardoso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Porto, Portugal
| | - Bruno J Ens
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | | | - Vesela Evtimova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Heidrun Feuchtmayr
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | | | | | - Ulf Grandin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerzy M Gutowski
- Department of Natural Forests, Forest Research Institute, Białowieża, Poland
| | | | - Lubos Halada
- Institute of Landscape Ecology SAS, Branch Nitra, Slovakia
| | - Melinda Halassy
- MTA Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Herman Hummel
- Royal Netherlands Institute for Sea Research, and Utrecht University, Yerseke, The Netherlands
| | - Kaisa-Leena Huttunen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Oulanka Research Station, University of Oulu Infrastructure Platform, Kuusamo, Finland
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | | | | | - Inger Kappel Schmidt
- Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Kröncke
- Senckenberg am Meer, Marine Research Department, Wilhelmshaven, Germany
| | - Reima Leinonen
- Kainuu Centre for Economic Development, Transport and the Environment, Kajaani, Finland
| | - Filipe Martinho
- Centre For Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Julia Meyer
- Senckenberg am Meer, Marine Research Department, Wilhelmshaven, Germany
| | - Stefano Minerbi
- Forest Services, Autonomous Province of Bolzano - South Tyrol, Bolzano, Italy
| | - Don Monteith
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Boris P Nikolov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Daniel Oro
- CEAB (CSIC), 17300, Blanes, Spain
- IMEDEA (CSIC-UIB), 07190, Esporles, Spain
| | - Dāvis Ozoliņš
- Institute of Biology, University of Latvia, Salaspils, Latvia
| | - Bachisio M Padedda
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Sassari, Italy
| | | | - Marco Pansera
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | - Miguel Ângelo Pardal
- Centre For Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Bruno Petriccione
- Carabinieri, Biodiversity and Park Protection Department, Castel di Sangro Biodiversity Unit, L'Aquila, Italy
| | - Tanja Pipan
- ZRC SAZU Karst Research Institute, Ljubljana & UNESCO Chair on Karst Education University of Nova Gorica, Vipava, Slovenia
| | - Juha Pöyry
- Finnish Environment Institute (SYKE), Biodiversity Centre, Helsinki, Finland
| | | | - Marcus Schaub
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Agnija Skuja
- Institute of Biology, University of Latvia, Salaspils, Latvia
| | - Karline Soetaert
- Royal Netherlands Institute for Sea Research, and Utrecht University, Yerseke, The Netherlands
| | - Gunta Spriņģe
- Institute of Biology, University of Latvia, Salaspils, Latvia
| | - Radoslav Stanchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jenni A Stockan
- Ecological Sciences, James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - Stefan Stoll
- University of Applied Sciences Trier, Environmental Campus Birkenfeld, Birkenfeld, Germany
- University of Duisburg-Essen, Essen, Germany
| | - Lisa Sundqvist
- Swedish Meteorological and Hydrological Institute, Gothenburg, Sweden
| | - Anne Thimonier
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Gert Van Hoey
- Flanders Research Institute for Agriculture, Fishery and Food, Oostende, Belgium
| | | | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Samuel Vorhauser
- Biological Laboratory, Agency for Environment and Climate Protection, Bolzano, Italy
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
- University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
31
|
Wiemers M, Chazot N, Wheat CW, Schweiger O, Wahlberg N. A complete time-calibrated multi-gene phylogeny of the European butterflies. Zookeys 2020; 938:97-124. [PMID: 32550787 PMCID: PMC7289901 DOI: 10.3897/zookeys.938.50878] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/03/2020] [Indexed: 11/12/2022] Open
Abstract
With the aim of supporting ecological analyses in butterflies, the third most species-rich superfamily of Lepidoptera, this paper presents the first time-calibrated phylogeny of all 496 extant butterfly species in Europe, including 18 very localised endemics for which no public DNA sequences had been available previously. It is based on a concatenated alignment of the mitochondrial gene COI and up to eleven nuclear gene fragments, using Bayesian inferences of phylogeny. To avoid analytical biases that could result from our region-focussed sampling, our European tree was grafted upon a global genus-level backbone butterfly phylogeny for analyses. In addition to a consensus tree, the posterior distribution of trees and the fully concatenated alignment are provided for future analyses. Altogether a complete phylogenetic framework of European butterflies for use by the ecological and evolutionary communities is presented.
Collapse
Affiliation(s)
- Martin Wiemers
- Senckenberg Deutsches Entomologisches Institut, Eberswalder Straße 90, 15374, Müncheberg, Germany UFZ - Helmholtz Centre for Environmental Research Halle Germany.,UFZ - Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany Senckenberg Deutsches Entomologisches Institut Müncheberg Germany
| | - Nicolas Chazot
- Department of Biology, Lund University, 22362, Lund, Sweden Lund University Lund Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden University of Gothenburg Gothenburg Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden Gothenburg Global Biodiversity Centre Gothenburg Sweden
| | - Christopher W Wheat
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden Stockholm University Stockholm Sweden
| | - Oliver Schweiger
- UFZ - Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany Senckenberg Deutsches Entomologisches Institut Müncheberg Germany
| | - Niklas Wahlberg
- Department of Biology, Lund University, 22362, Lund, Sweden Lund University Lund Sweden
| |
Collapse
|
32
|
van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020; 368:417-420. [PMID: 32327596 DOI: 10.1126/science.aax9931] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/03/2020] [Indexed: 01/16/2023]
Abstract
Recent case studies showing substantial declines of insect abundances have raised alarm, but how widespread such patterns are remains unclear. We compiled data from 166 long-term surveys of insect assemblages across 1676 sites to investigate trends in insect abundances over time. Overall, we found considerable variation in trends even among adjacent sites but an average decline of terrestrial insect abundance by ~9% per decade and an increase of freshwater insect abundance by ~11% per decade. Both patterns were largely driven by strong trends in North America and some European regions. We found some associations with potential drivers (e.g., land-use drivers), and trends in protected areas tended to be weaker. Our findings provide a more nuanced view of spatiotemporal patterns of insect abundance trends than previously suggested.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany. .,Leipzig University, 04109 Leipzig, Germany.,WBBS Foundation, 9409 TV, Loon, Netherlands
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany.,Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany
| | - Konstantin B Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia.,M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Alessandro Gentile
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.,Department of Computer Science, Martin Luther University-Halle Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
33
|
Temperature-related biodiversity change across temperate marine and terrestrial systems. Nat Ecol Evol 2020; 4:927-933. [PMID: 32367031 DOI: 10.1038/s41559-020-1185-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/24/2020] [Indexed: 11/08/2022]
Abstract
Climate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5-60.0° latitude) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, where species richness mostly increases with warming. However, biodiversity responses are conditional on the baseline climate, such that in initially warmer locations richness increase is more pronounced while abundance declines with warming. In contrast, we do not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. As the world is committed to further warming, substantial challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of 'climate migrants'. Temperature-driven community restructuring is especially evident in the ocean, whereas climatic debt may be accumulating on land.
Collapse
|
34
|
Burrows MT, Hawkins SJ, Moore JJ, Adams L, Sugden H, Firth L, Mieszkowska N. Global-scale species distributions predict temperature-related changes in species composition of rocky shore communities in Britain. GLOBAL CHANGE BIOLOGY 2020; 26:2093-2105. [PMID: 31859400 DOI: 10.1111/gcb.14968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Changes in rocky shore community composition as responses to climatic fluctuations and anthropogenic warming can be shown by changes in average species thermal affinities. In this study, we derived thermal affinities for European Atlantic rocky intertidal species by matching their known distributions to patterns in average annual sea surface temperature. Average thermal affinities (the Community Temperature Index, CTI) tracked patterns in sea surface temperature from Portugal to Norway, but CTI for communities of macroalgae and plant species changed less than those composed of animal species. This reduced response was in line with the expectation that communities with a smaller range of thermal affinities among species would change less in composition along thermal gradients and over time. Local-scale patterns in CTI over wave exposure gradients suggested that canopy macroalgae allow species with ranges centred in cooler than local temperatures ('cold-affinity') to persist in otherwise too-warm conditions. In annual surveys of rocky shores, communities of animal species in Shetland showed a shift in dominance towards warm-affinity species ('thermophilization') with local warming from 1980 to 2018 but the community of plant and macroalgal species did not. From 2002 to 2018, communities in southwest Britain showed the reverse trend in CTI: declining average thermal affinities over a period of modest temperature decline. Despite the cooling, trends in species abundance were in line with the general mechanism of direction and magnitude of long-term trends depending on the difference between species thermal affinities and local temperatures. Cold-affinity species increased during cooling and warm-affinity ones decreased. The consistency of responses across different communities and with general expectations based on species thermal characteristics suggests strong predictive accuracy of responses of community composition to anthropogenic warming.
Collapse
Affiliation(s)
| | - Stephen J Hawkins
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
- Marine Biological Association, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - J Jon Moore
- Aquatic Survey and Monitoring Ltd., Cosheston, UK
| | - Leoni Adams
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
- Marine Biological Association, Plymouth, UK
| | - Heather Sugden
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Cullercoats, UK
| | - Louise Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Nova Mieszkowska
- Marine Biological Association, Plymouth, UK
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
35
|
Bowler DE, Bjorkman AD, Dornelas M, Myers‐Smith IH, Navarro LM, Niamir A, Supp SR, Waldock C, Winter M, Vellend M, Blowes SA, Böhning‐Gaese K, Bruelheide H, Elahi R, Antão LH, Hines J, Isbell F, Jones HP, Magurran AE, Cabral JS, Bates AE. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10071] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Diana E. Bowler
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biodiversity Friedrich Schiller University Jena Jena Germany
- Department of Ecosystem Services UFZ – Helmholtz Centre for Environmental Research Leipzig Germany
| | - Anne D. Bjorkman
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
- Gothenburg Global Biodiversity Centre Gothenburg Sweden
| | - Maria Dornelas
- Centre for Biological Diversity University of St Andrews St Andrews UK
| | | | - Laetitia M. Navarro
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle–Wittenberg Halle Germany
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
| | - Sarah R. Supp
- Data Analytics Program Denison University Granville OH USA
| | - Conor Waldock
- Ocean and Earth Science National Oceanography Centre SouthamptonUniversity of Southampton Southampton UK
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Leipzig University Leipzig Germany
| | | | - Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Computer Science Martin Luther University Halle‐Wittenberg Halle (Salle) Germany
| | | | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology/Geobotany and Botanical Garden Martin Luther University Halle–Wittenberg Halle Germany
| | - Robin Elahi
- Hopkins Marine Station Stanford University Pacific Grove CA USA
| | - Laura H. Antão
- Centre for Biological Diversity University of St Andrews St Andrews UK
- Department of Biology and CESAM Universidade de Aveiro Aveiro Portugal
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of Biology Leipzig University Leipzig Germany
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior University of Minnesota Twin Cities Saint Paul MN USA
| | - Holly P. Jones
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy Northern Illinois University DeKalb IL USA
| | - Anne E. Magurran
- Centre for Biological Diversity University of St Andrews St Andrews UK
| | - Juliano Sarmento Cabral
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Ecosystem Modeling Centre for Computational and Theoretical Biology University of Würzburg Würzburg Germany
| | - Amanda E. Bates
- Ocean and Earth Science National Oceanography Centre SouthamptonUniversity of Southampton Southampton UK
- Department of Ocean Sciences Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
36
|
Can Topographic Variation in Climate Buffer against Climate Change-Induced Population Declines in Northern Forest Birds? DIVERSITY 2020. [DOI: 10.3390/d12020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased attention is being paid to the ecological drivers and conservation measures which could mitigate climate change-induced pressures for species survival, potentially helping populations to remain in their present-day locations longer. One important buffering mechanism against climate change may be provided by the heterogeneity in topography and consequent local climate conditions. However, the buffering capacity of this topoclimate has so far been insufficiently studied based on empirical survey data across multiple sites and species. Here, we studied whether the fine-grained air temperature variation of protected areas (PAs) affects the population changes of declining northern forest bird species. Importantly to our study, in PAs harmful land use, such as logging, is not allowed, enabling the detection of the effects of temperature buffering, even at relatively moderate levels of topographic variation. Our survey data from 129 PAs located in the boreal zone in Finland show that the density of northern forest species was higher in topographically heterogeneous PAs than in topographically more homogeneous PAs. Moreover, local temperature variation had a significant effect on the density change of northern forest birds from 1981–1999 to 2000–2017, indicating that change in bird density was generally smaller in PAs with higher topographic variation. Thus, we found a clear buffering effect stemming from the local temperature variation of PAs in the population trends of northern forest birds.
Collapse
|
37
|
Schleuning M, Neuschulz EL, Albrecht J, Bender IMA, Bowler DE, Dehling DM, Fritz SA, Hof C, Mueller T, Nowak L, Sorensen MC, Böhning-Gaese K, Kissling WD. Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends Ecol Evol 2020; 35:319-328. [PMID: 31987640 DOI: 10.1016/j.tree.2019.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Plant-animal interactions are fundamentally important in ecosystems, but have often been ignored by studies of climate-change impacts on biodiversity. Here, we present a trait-based framework for predicting the responses of interacting plants and animals to climate change. We distinguish three pathways along which climate change can impact interacting species in ecological communities: (i) spatial and temporal mismatches in the occurrence and abundance of species, (ii) the formation of novel interactions and secondary extinctions, and (iii) alterations of the dispersal ability of plants. These pathways are mediated by three kinds of functional traits: response traits, matching traits, and dispersal traits. We propose that incorporating these traits into predictive models will improve assessments of the responses of interacting species to climate change.
Collapse
Affiliation(s)
- Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Irene M A Bender
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; Institute of Biology, Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Diana E Bowler
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - D Matthias Dehling
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Susanne A Fritz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Biological Sciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Christian Hof
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Terrestrial Ecology Research Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Biological Sciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Larissa Nowak
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Biological Sciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Marjorie C Sorensen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Biological Sciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Department of Integrative Biology, University of Guelph, 50 Stone Rd. E., Guelph, ON, Canada N1G 2W1
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Biological Sciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1090, GE, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Martin G, Devictor V, Motard E, Machon N, Porcher E. Short-term climate-induced change in French plant communities. Biol Lett 2019; 15:20190280. [PMID: 31288688 DOI: 10.1098/rsbl.2019.0280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Latitudinal and altitudinal range shifts in response to climate change have been reported for numerous animal species, especially those with high dispersal capacities. In plants, the impact of climate change on species distribution or community composition has been documented mainly over long periods (decades) and in specific habitats, often forests. Here, we broaden the results of such long-term, focused studies by examining climate-driven changes in plant community composition over a large area (France) encompassing multiple habitat types and over a short period (2009-2017). To this end, we measured mean community thermal preference, calculated as the community-weighted mean of the Ellenberg temperature indicator value, using data from a standardized participatory monitoring scheme. We report a rapid increase in the mean thermal preference of plant communities at national and regional scales, which we relate to climate change. This reshuffling of plant community composition corresponds to a relative increase in the abundance of warm- versus cold-adapted species. However, support for this trend was weaker when considering only the common species, including common annuals. Our results thus suggest for the first time that the response of plant communities to climate change involves subtle changes affecting all species rare and common, which can nonetheless be detected over short time periods. Whether such changes are sufficient to cope with the current climate warming remains to be ascertained.
Collapse
Affiliation(s)
- Gabrielle Martin
- 1 Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université , Paris , France
| | - Vincent Devictor
- 2 ISEM, Université de Montpellier, CNRS, EPHE, IRD , Montpellier , France
| | - Eric Motard
- 3 Institute of Ecology and Environmental Sciences - Paris, Sorbonne Université-CNRS-IRD-INRA-P7-UPEC , Paris , France
| | - Nathalie Machon
- 1 Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université , Paris , France
| | - Emmanuelle Porcher
- 1 Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université , Paris , France
| |
Collapse
|
39
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
40
|
Azovsky AI, Kokarev VN. Stable but fragile: long-term dynamics of arctic benthic macrofauna in Baydaratskaya Bay (the Kara Sea). Polar Biol 2019. [DOI: 10.1007/s00300-019-02519-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Bishop TR, Parr CL, Gibb H, van Rensburg BJ, Braschler B, Chown SL, Foord SH, Lamy K, Munyai TC, Okey I, Tshivhandekano PG, Werenkraut V, Robertson MP. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. GLOBAL CHANGE BIOLOGY 2019; 25:2162-2173. [PMID: 30887614 DOI: 10.1111/gcb.14622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Predicting and understanding the biological response to future climate change is a pressing challenge for humanity. In the 21st century, many species will move into higher latitudes and higher elevations as the climate warms. In addition, the relative abundances of species within local assemblages are likely to change. Both effects have implications for how ecosystems function. Few biodiversity forecasts, however, take account of both shifting ranges and changing abundances. We provide a novel analysis predicting the potential changes to assemblage-level relative abundances in the 21st century. We use an established relationship linking ant abundance and their colour and size traits to temperature and UV-B to predict future abundance changes. We also predict future temperature driven range shifts and use these to alter the available species pool for our trait-mediated abundance predictions. We do this across three continents under a low greenhouse gas emissions scenario (RCP2.6) and a business-as-usual scenario (RCP8.5). Under RCP2.6, predicted changes to ant assemblages by 2100 are moderate. On average, species richness will increase by 26%, while species composition and relative abundance structure will be 26% and 30% different, respectively, compared with modern assemblages. Under RCP8.5, however, highland assemblages face almost a tripling of species richness and compositional and relative abundance changes of 66% and 77%. Critically, we predict that future assemblages could be reorganized in terms of which species are common and which are rare: future highland assemblages will not simply comprise upslope shifts of modern lowland assemblages. These forecasts reveal the potential for radical change to montane ant assemblages by the end of the 21st century if temperature increases continue. Our results highlight the importance of incorporating trait-environment relationships into future biodiversity predictions. Looking forward, the major challenge is to understand how ecosystem processes will respond to compositional and relative abundance changes.
Collapse
Affiliation(s)
- Tom R Bishop
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Heloise Gibb
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
- The Research Centre for Future Landscapes, La Trobe University, Melbourne, Victoria, Australia
| | - Berndt J van Rensburg
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
- Centre for Invasion Biology, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Brigitte Braschler
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Stefan H Foord
- Centre for Invasion Biology, Department of Zoology, University of Venda, Thohoyandou, South Africa
| | - Kévin Lamy
- LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France
| | - Thinandavha C Munyai
- Centre for Invasion Biology, Department of Zoology, University of Venda, Thohoyandou, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Iona Okey
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - Pfarelo G Tshivhandekano
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Victoria Werenkraut
- Laboratorio Ecotono, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, INIBIOMA-CONICET, Bariloche, Rio Negro, Argentina
| | - Mark P Robertson
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Kröncke I, Neumann H, Dippner JW, Holbrook S, Lamy T, Miller R, Padedda BM, Pulina S, Reed DC, Reinikainen M, Satta CT, Sechi N, Soltwedel T, Suikkanen S, Lugliè A. Comparison of biological and ecological long-term trends related to northern hemisphere climate in different marine ecosystems. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.34.30209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Data from five sites of the International Long Term Ecological Research (ILTER) network in the North-Eastern Pacific, Western Arctic Ocean, Northern Baltic Sea, South-Eastern North Sea and in the Western Mediterranean Sea were analyzed by dynamic factor analysis (DFA) to trace common multi-year trends in abundance and composition of phytoplankton, benthic fauna and temperate reef fish. Multiannual trends were related to climate and environmental variables to study interactions. Two common trends in biological responses were detected, with temperature and climate indices as explanatory variables in four of the five LTER sites considered. Only one trend was observed at the fifth site, the Northern Baltic Sea, where no explanatory variables were identified. Our findings revealed quasi-synchronous biological shifts in the different marine ecosystems coincident with the 2000 climatic regime shift and provided evidence on a possible further biological shift around 2010. The observed biological modifications were coupled with abrupt or continuous increase in sea water and air temperature confirming the key-role of temperature in structuring marine communities.
Collapse
|
43
|
Haase P, Pilotto F, Li F, Sundermann A, Lorenz AW, Tonkin JD, Stoll S. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1531-1538. [PMID: 30678011 DOI: 10.1016/j.scitotenv.2018.12.234] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Climate warming often results in species range shifts, biodiversity loss and accumulated climatic debts of biota (i.e. slower changes in biota than in temperature). Here, we analyzed the changes in community composition and temperature signature of stream invertebrate communities over 25 years (1990-2014), based on a large set of samples (n = 3782) over large elevation, latitudinal and longitudinal gradients in central Europe. Although warming was moderate (average 0.5 °C), we found a strong reorganization of stream invertebrate communities. Total abundance (+35.9%) and richness (+39.2%) significantly increased. The share of abundance (TA) and taxonomic richness (TR) of warm-dwelling taxa (TA: +73.2%; TR: +60.2%) and medium-temperature-dwelling taxa (TA: +0.4%; TR: +5.8%) increased too, while cold-dwelling taxa declined (TA: -61.5%; TR: -47.3%). The community temperature index, representing the temperature signature of stream invertebrate communities, increased at a similar pace to physical temperature, indicating a thermophilization of the communities and, for the first time, no climatic debt. The strongest changes occurred along the altitudinal gradient, suggesting that stream invertebrates use the spatial configuration of river networks to track their temperature niche uphill. Yet, this may soon come to an end due to the summit trap effect. Our results indicate an ongoing process of replacement of cold-adapted species by thermophilic species at only 0.5 °C warming, which is particularly alarming in the light of the more drastic climate warming projected for coming decades.
Collapse
Affiliation(s)
- Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Francesca Pilotto
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Fengqing Li
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Andrea Sundermann
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Armin W Lorenz
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Stefan Stoll
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Environmental Campus Birkenfeld, University of Applied Sciences Trier, Birkenfeld, Germany
| |
Collapse
|
44
|
Esquivel‐Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo‐Mendoza A, Arroyo L, Álvarez-Dávila E, Higuchi N, Marimon BS, Marimon-Junior BH, Silveira M, Vilanova E, Gloor E, Malhi Y, Chave J, Barlow J, Bonal D, Davila Cardozo N, Erwin T, Fauset S, Hérault B, Laurance S, Poorter L, Qie L, Stahl C, Sullivan MJP, ter Steege H, Vos VA, Zuidema PA, Almeida E, Almeida de Oliveira E, Andrade A, Vieira SA, Aragão L, Araujo‐Murakami A, Arets E, Aymard C GA, Baraloto C, Camargo PB, Barroso JG, Bongers F, Boot R, Camargo JL, Castro W, Chama Moscoso V, Comiskey J, Cornejo Valverde F, Lola da Costa AC, del Aguila Pasquel J, Di Fiore A, Fernanda Duque L, Elias F, Engel J, Flores Llampazo G, Galbraith D, Herrera Fernández R, Honorio Coronado E, Hubau W, Jimenez‐Rojas E, Lima AJN, Umetsu RK, Laurance W, Lopez‐Gonzalez G, Lovejoy T, Aurelio Melo Cruz O, Morandi PS, Neill D, Núñez Vargas P, Pallqui Camacho NC, Parada Gutierrez A, Pardo G, Peacock J, Peña‐Claros M, Peñuela‐Mora MC, Petronelli P, Pickavance GC, Pitman N, Prieto A, Quesada C, Ramírez‐Angulo H, Réjou‐Méchain M, Restrepo Correa Z, Roopsind A, Rudas A, Salomão R, Silva N, Silva Espejo J, Singh J, Stropp J, Terborgh J, Thomas R, Toledo M, Torres‐Lezama A, Valenzuela Gamarra L, van de Meer PJ, van der Heijden G, van der Hout P, Vasquez Martinez R, Vela C, Vieira ICG, Phillips OL. Compositional response of Amazon forests to climate change. GLOBAL CHANGE BIOLOGY 2019; 25:39-56. [PMID: 30406962 PMCID: PMC6334637 DOI: 10.1111/gcb.14413] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 05/05/2023]
Abstract
Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
Collapse
|
45
|
Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc Natl Acad Sci U S A 2018; 115:13294-13299. [PMID: 30530689 PMCID: PMC6310845 DOI: 10.1073/pnas.1807745115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding how land-use and climate change interact is of major importance to project the future of biodiversity. We assessed how the global species richness of vertebrates may become affected by these two threats, especially under a scenario following the Paris Agreement, which aims to limit global warming to 2 °C or even 1.5 °C. We found that combined effects of climate and land-use change will be most severe under such a scenario, due to the massive expansion of bioenergy cropland for climate change mitigation. While our findings suggest that the Paris goals will reduce direct climate change impacts on biodiversity, biodiversity will suffer as severely as under a high-level emission scenario if bioenergy remains a major component of climate change mitigation strategies. Climate and land-use change interactively affect biodiversity. Large-scale expansions of bioenergy have been suggested as an important component for climate change mitigation. Here we use harmonized climate and land-use projections to investigate their potential combined impacts on global vertebrate diversity under a low- and a high-level emission scenario. We combine climate-based species distribution models for the world’s amphibians, birds, and mammals with land-use change simulations and identify areas threatened by both climate and land-use change in the future. The combined projected effects of climate and land-use change on vertebrate diversity are similar under the two scenarios, with land-use change effects being stronger under the low- and climate change effects under the high-emission scenario. Under the low-emission scenario, increases in bioenergy cropland may cause severe impacts in biodiversity that are not compensated by lower climate change impacts. Under this low-emission scenario, larger proportions of species distributions and a higher number of small-range species may become impacted by the combination of land-use and climate change than under the high-emission scenario, largely a result of bioenergy cropland expansion. Our findings highlight the need to carefully consider both climate and land-use change when projecting biodiversity impacts. We show that biodiversity is likely to suffer severely if bioenergy cropland expansion remains a major component of climate change mitigation strategies. Our study calls for an immediate and significant reduction in energy consumption for the benefit of both biodiversity and to achieve the goals of the Paris Agreement.
Collapse
|
46
|
Jourdan J, O'Hara RB, Bottarin R, Huttunen KL, Kuemmerlen M, Monteith D, Muotka T, Ozoliņš D, Paavola R, Pilotto F, Springe G, Skuja A, Sundermann A, Tonkin JD, Haase P. Effects of changing climate on European stream invertebrate communities: A long-term data analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:588-599. [PMID: 29195206 DOI: 10.1016/j.scitotenv.2017.11.242] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Robert B O'Hara
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Mathias Kuemmerlen
- Dept. Systems Analysis, Integrated Assessment and Modelling, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Don Monteith
- Centre for Ecology & Hydrology, Lancaster Environment Centre, UK
| | - Timo Muotka
- Department of Ecology & Genetics, University of Oulu, Oulu, Finland; Natural Environment Centre, Finnish Environment Institute, Finland
| | | | - Riku Paavola
- Oulanka research station, University of Oulu Infrastructure Platform, University of Oulu, Kuusamo, Finland
| | - Francesca Pilotto
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | | | | | - Andrea Sundermann
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Institute of Ecology, Evolution & Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonathan D Tonkin
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR, USA
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
47
|
Magurran AE, Deacon AE, Moyes F, Shimadzu H, Dornelas M, Phillip DAT, Ramnarine IW. Divergent biodiversity change within ecosystems. Proc Natl Acad Sci U S A 2018; 115:1843-1847. [PMID: 29440416 PMCID: PMC5828582 DOI: 10.1073/pnas.1712594115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Earth's ecosystems are under unprecedented pressure, yet the nature of contemporary biodiversity change is not well understood. Growing evidence that community size is regulated highlights the need for improved understanding of community dynamics. As stability in community size could be underpinned by marked temporal turnover, a key question is the extent to which changes in both biodiversity dimensions (temporal α- and temporal β-diversity) covary within and among the assemblages that comprise natural communities. Here, we draw on a multiassemblage dataset (encompassing vertebrates, invertebrates, and unicellular plants) from a tropical freshwater ecosystem and employ a cyclic shift randomization to assess whether any directional change in temporal α-diversity and temporal β-diversity exceeds baseline levels. In the majority of cases, α-diversity remains stable over the 5-y time frame of our analysis, with little evidence for systematic change at the community level. In contrast, temporal β-diversity changes are more prevalent, and the two diversity dimensions are decoupled at both the within- and among-assemblage level. Consequently, a pressing research challenge is to establish how turnover supports regulation and when elevated temporal β-diversity jeopardizes community integrity.
Collapse
Affiliation(s)
- Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland, United Kingdom;
| | - Amy E Deacon
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland, United Kingdom
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland, United Kingdom
| | - Hideyasu Shimadzu
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland, United Kingdom
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland, United Kingdom
| | - Dawn A T Phillip
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Indar W Ramnarine
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
48
|
Amano T, Székely T, Sandel B, Nagy S, Mundkur T, Langendoen T, Blanco D, Soykan CU, Sutherland WJ. Successful conservation of global waterbird populations depends on effective governance. Nature 2017; 553:199-202. [DOI: 10.1038/nature25139] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022]
|
49
|
Zettler ML, Friedland R, Gogina M, Darr A. Variation in benthic long-term data of transitional waters: Is interpretation more than speculation? PLoS One 2017; 12:e0175746. [PMID: 28422974 PMCID: PMC5396916 DOI: 10.1371/journal.pone.0175746] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Biological long-term data series in marine habitats are often used to identify anthropogenic impacts on the environment or climate induced regime shifts. However, particularly in transitional waters, environmental properties like water mass dynamics, salinity variability and the occurrence of oxygen minima not necessarily caused by either human activities or climate change can attenuate or mask apparent signals. At first glance it very often seems impossible to interpret the strong fluctuations of e.g. abundances or species richness, since abiotic variables like salinity and oxygen content vary simultaneously as well as in apparently erratic ways. The long-term development of major macrozoobenthic parameters (abundance, biomass, species numbers) and derivative macrozoobenthic indices (Shannon diversity, Margalef, Pilou's evenness and Hurlbert) has been successfully interpreted and related to the long-term fluctuations of salinity and oxygen, incorporation of the North Atlantic Oscillation index (NAO index), relying on the statistical analysis of modelled and measured data during 35 years of observation at three stations in the south-western Baltic Sea. Our results suggest that even at a restricted spatial scale the benthic system does not appear to be tightly controlled by any single environmental driver and highlight the complexity of spatially varying temporal response.
Collapse
Affiliation(s)
- Michael Lothar Zettler
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, Rostock, Germany
- * E-mail:
| | - René Friedland
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, Rostock, Germany
| | - Mayya Gogina
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, Rostock, Germany
| | - Alexander Darr
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, Rostock, Germany
| |
Collapse
|