1
|
Mayhew DS, Hearn AJ, Devineau O, Linnell JD, Macdonald DW. Loss of Sunda clouded leopards and forest integrity drive potential impacts of mesopredator release on vulnerable avifauna. Heliyon 2024; 10:e32801. [PMID: 38975237 PMCID: PMC11225837 DOI: 10.1016/j.heliyon.2024.e32801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Amongst the unintended consequences of anthropogenic landscape conversion is declining apex predator abundance linked to loss of forest integrity, which can potentially re-order trophic networks. One such re-ordering, known as mesopredator release, occurs when medium-sized predators, also called mesopredators, rapidly increase in abundance following the decline in apex predator abundance, consequently reducing the abundance of mesopredator prey, notably including terrestrial avifauna. We examine the cascading impacts of declining Sunda clouded leopard abundance, itself consequent upon a reduction in forest integrity, on the mesopredator community of Sabah, Malaysia, to determine whether the phenomenon of mesopredator release is manifest and specifically whether it impacts the terrestrial avifauna community of pheasants and pittas. To explore this trophic interaction, we used a piecewise structural equation model to compare changes in the relative abundance of organisms. Our results suggest that loss of forest integrity may have broad impacts on the community and trigger mesopredator release, the two acting additively in their impact on already vulnerable species of terrestrial avifauna: a result not previously documented in tropical systems and rarely detected even on a global scale. The limiting effect that the Sunda clouded leopard has on the Sunda leopard cat could illuminate the mechanism whereby mesopredator release impacts this system. Both Bulwer's pheasant and pittas appear to be significantly impacted by the increase in Sunda leopard cats, while the great argus pheasant shows similar compelling, although not statistically significant, declines as Sunda leopard cats increase. The inverse relationship between Sunda clouded leopards and Sunda leopard cats suggests that if a mesopredator release exists it could have downstream consequences for some terrestrial avifauna. These results suggest the under-studied interface between mammalian carnivores and avifauna, or more broadly species interactions in general, could offer important conservation tool for holistic ecosystem conservation efforts.
Collapse
Affiliation(s)
- Darwin S. Mayhew
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences - Campus Evenstad, Anne Evenstads Vei 80, 2480, Koppang, Norway
| | - Andrew J. Hearn
- WildCRU, Department of Biology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Rd, Tubney, OX13 5QL, United Kingdom
| | - Olivier Devineau
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences - Campus Evenstad, Anne Evenstads Vei 80, 2480, Koppang, Norway
| | - John D.C. Linnell
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences - Campus Evenstad, Anne Evenstads Vei 80, 2480, Koppang, Norway
- Norwegian Institute for Nature Research, Vormstuguveien 40, 2624, Lillehammer, Norway
| | - David W. Macdonald
- WildCRU, Department of Biology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Rd, Tubney, OX13 5QL, United Kingdom
| |
Collapse
|
2
|
van Breugel M, Bongers F, Norden N, Meave JA, Amissah L, Chanthorn W, Chazdon R, Craven D, Farrior C, Hall JS, Hérault B, Jakovac C, Lebrija-Trejos E, Martínez-Ramos M, Muñoz R, Poorter L, Rüger N, van der Sande M, Dent DH. Feedback loops drive ecological succession: towards a unified conceptual framework. Biol Rev Camb Philos Soc 2024; 99:928-949. [PMID: 38226776 DOI: 10.1111/brv.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.
Collapse
Affiliation(s)
- Michiel van Breugel
- Department of Geography, National University of Singapore, Arts Link, #03-01 Block AS2, 117570, Singapore
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Natalia Norden
- Centro de Estudios Socioecológicos y Cambio Global, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Circunvalar #16-20, Bogotá, Colombia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, Mexico
| | - Lucy Amissah
- CSIR-Forestry Research Institute of Ghana, UPO Box 63, Kumasi, Ghana
| | - Wirong Chanthorn
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, 50 Ngamwongwan Road, Jatujak District, 10900, Thailand
| | - Robin Chazdon
- Forest Research Institute, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Queensland, 4556, Australia
| | - Dylan Craven
- Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, 8580745, Chile
| | - Caroline Farrior
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Stop C0930, Austin, Texas, 78705, USA
| | - Jefferson S Hall
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Bruno Hérault
- CIRAD, UPR Forêts et Sociétés, F-34398 Montpellier, France & Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Catarina Jakovac
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, 88034-000, Florianópolis, Brazil
| | - Edwin Lebrija-Trejos
- Department of Biology and Environment, University of Haifa-Oranim, Tivon, 36006, Israel
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro # 8701, Col. Ex-Hacienda de San José de la Huerta, CP 58190, Morelia, Michoacán, Mexico
| | - Rodrigo Muñoz
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Nadja Rüger
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Economics, Institute of Empirical Economic Research, University of Leipzig, Grimmaische Str. 12, 04109, Leipzig, Germany
| | - Masha van der Sande
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Daisy H Dent
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
- ETH Zürich, Department of Environmental Systems Science, Institute for Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland
- Max Planck Institute for Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| |
Collapse
|
3
|
Changing rainforest to plantations shifts tropical food webs. Nature 2024:10.1038/d41586-024-00434-9. [PMID: 38702583 DOI: 10.1038/d41586-024-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
|
4
|
Potapov AM, Drescher J, Darras K, Wenzel A, Janotta N, Nazarreta R, Kasmiatun, Laurent V, Mawan A, Utari EH, Pollierer MM, Rembold K, Widyastuti R, Buchori D, Hidayat P, Turner E, Grass I, Westphal C, Tscharntke T, Scheu S. Rainforest transformation reallocates energy from green to brown food webs. Nature 2024; 627:116-122. [PMID: 38355803 PMCID: PMC10917685 DOI: 10.1038/s41586-024-07083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.
Collapse
Affiliation(s)
- Anton M Potapov
- Animal Ecology, University of Göttingen, Göttingen, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Insitute of Biology, University of Leipzig, Leipzig, Germany.
| | | | - Kevin Darras
- Agroecology, University of Göttingen, Göttingen, Germany
| | - Arne Wenzel
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
| | - Noah Janotta
- Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Rizky Nazarreta
- Department of Plant Protection, IPB University, Bogor, Indonesia
| | - Kasmiatun
- Department of Plant Protection, IPB University, Bogor, Indonesia
| | | | - Amanda Mawan
- Animal Ecology, University of Göttingen, Göttingen, Germany
| | - Endah H Utari
- Department of Plant Protection, IPB University, Bogor, Indonesia
| | | | - Katja Rembold
- Botanical Garden of University of Bern, University of Bern, Bern, Switzerland
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
| | | | - Damayanti Buchori
- Department of Plant Protection, IPB University, Bogor, Indonesia
- Centre for Transdisciplinary and Sustainability Sciences, IPB University, Bogor, Indonesia
| | - Purnama Hidayat
- Department of Plant Protection, IPB University, Bogor, Indonesia
| | - Edgar Turner
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ingo Grass
- Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, University of Göttingen, Göttingen, Germany
| | | | - Stefan Scheu
- Animal Ecology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttigen, Göttingen, Germany
| |
Collapse
|
5
|
Li L, Luo Z, Li L, Niu Y, Zhang Y, He R, Liu J, Nian L. Long-term phosphorus fertilization reveals the phosphorus limitation shaping the soil micro-food web stability in the Loess Plateau. Front Microbiol 2024; 14:1256269. [PMID: 38274741 PMCID: PMC10808297 DOI: 10.3389/fmicb.2023.1256269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The intricate decomposition pathways within soil micro-food webs are vital for cycling soil organic carbon and nutrients, influencing the quality, productivity, and sustainability of soil systems. However, the impact of diverse phosphorus addition on these organic decomposition pathways still needs to be explored. In an 8-year experiment, phosphorus (P) fertilizer was added at varying levels (0 kg ha-1, CK; 60 kg ha-1, P60; 120 kg ha-1, P120; and 180 kg ha-1, P180), to investigate the response of the soil micro-food web. The results revealed a significant effect of phosphorus addition on soil microorganisms and nematodes, with P60 exerting a greater influence than other treatments. At P60, the Shannon index of nematodes and fungi surpassed other treatments, indicating higher diversity, while the Shannon index of bacteria was lower. The Chao1 index of bacteria and fungi at P60 was higher, contrasting with the lower index for nematodes. Metabolic footprints of bacterivores and omnivores-predators (BFMF and OPMF) were higher at P60, while metabolic footprints of fungivores and plant parasites (FFMF and PPMF) were lower, signifying altered energy flow. Functional metabolic footprints and energy flow analysis unveiled a stable soil micro-food web structure at P60, with enhanced energy conversion efficiency. Network analysis illustrated positive correlations between fungi, fungivorous nematodes (FF), and omnivorous-predatory nematodes (OP) at P60, while P120 and P180 showed positive correlations among bacteria, bacterivorous nematodes (BF), and OP. Path analysis underscored the higher contribution rate of BF-C, FF-C, and OP-C to soil organic carbon at P60 compared with P120 and P180. These findings suggest that nutrient interactions between fungi and nematodes regulate soil micro-food web decomposition under low phosphorus concentrations. In contrast, interactions between bacteria and nematodes dominate at high phosphorus concentrations. The study indicates that adding phosphorus has nuanced bottom-up effects, intricately shaping the structure and activity of the pathways and underscoring the need for a comprehensive understanding of nutrient dynamics in soil ecosystems.
Collapse
Affiliation(s)
- Liangliang Li
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zhuzhu Luo
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Habitat Crop Science, Lanzhou, China
| | - Lingling Li
- State Key Laboratory of Arid Habitat Crop Science, Lanzhou, China
| | - Yining Niu
- State Key Laboratory of Arid Habitat Crop Science, Lanzhou, China
| | - Yaoquan Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Renyuan He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Liu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Yao H, Li Z, Geisen S, Qiao Z, Breed MF, Sun X. Degree of urbanization and vegetation type shape soil biodiversity in city parks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166437. [PMID: 37604369 DOI: 10.1016/j.scitotenv.2023.166437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Urbanization negatively impacts aboveground biodiversity, such as bird and insect communities. City parks can reduce these negative impacts by providing important habitat. However, it remains poorly understood how the degree of urbanization and vegetation types within city parks (e.g., lawns, woodland) impact soil biodiversity. Here we investigated the impact of the degree of urbanization (urban vs. suburban) and vegetation type (lawn, shrub-lawn, tree-lawn and tree-shrub mixtures) on soil biodiversity in parkland systems. We used eDNA metabarcoding to characterize soil biodiversity of bacteria, fungi, protists, nematodes, meso- and macrofauna across park vegetation types in urban and suburban regions in Xiamen, China. We observed a strong effect of the degree of urbanization on the richness of different soil biota groups, with higher species richness of protists and meso/macrofauna in urban compared to suburban areas, while the richness of bacteria and fungi did not differ, and the difference of nematode richness depended on vegetation type. At the functional level, increased degree of urbanization associated with greater species richness of bacterivores, plant pathogens and animal parasites. These urbanization effects were at least partly modulated by higher soil phosphorous levels in urban compared to suburban sites. Also, the vegetation type impacted soil biodiversity, particularly fungal richness, with the richness of pathogenic and saprotrophic fungi increasing from lawn to tree-shrub mixtures. Tree-shrub mixtures also had the highest connectedness between biotas and lowest variation in the soil community structure. Overall, we show that soil biodiversity is strongly linked to the degree of urbanization, with overall richness increasing with urbanization, especially in bacterivores, plant pathogens and animal parasites. Targeted management of vegetation types in urban areas should provide a useful way to help mitigate the negative effect of urbanization on soil biodiversity.
Collapse
Affiliation(s)
- Haifeng Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Zhipeng Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Stefan Geisen
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, 6700 ES Wageningen, the Netherlands.
| | - Zhihong Qiao
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
7
|
Wang X, Dai Z, Zhao H, Hu L, Dahlgren RA, Xu J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121548. [PMID: 37011779 DOI: 10.1016/j.envpol.2023.121548] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory. Given the stressful soil environment resulting from extremely high heavy metal concentrations and low nutrients, beta diversity of protist increased, but that of bacteria decreased, at high versus low pollution sites. Additionally, the bacteria community showed low functional diversity and redundancy at the highly polluted sites. We further identified indicative genus and "generalists" in response to heavy metal pollution. Predatory protists in Cercozoa were the most sensitive protist taxa with respect to heavy metal pollution, whereas photosynthetic protists showed a tolerance for metal pollution and nutrient deficiency. The complexity of ecological networks increased, but the communication among the modules disappeared with increasing metal pollution levels. Subnetworks of tolerant bacteria displaying functional versatility (Blastococcus, Agromyces and Opitutus) and photosynthetic protists (microalgae) became more complex with increasing metal pollution levels, indicating their potential for use in bioremediation and restoration of abandoned industrial sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Allen K, Bellingham PJ, Richardson SJ, Allen RB, Burrows LE, Carswell FE, Husheer SW, St John MG, Peltzer DA. Long-term exclusion of invasive ungulates alters tree recruitment and functional traits but not total forest carbon. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2836. [PMID: 36890426 DOI: 10.1002/eap.2836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/02/2023]
Abstract
Forests are major carbon (C) sinks, but their ability to sequester C and thus mitigate climate change, varies with the environment, disturbance regime, and biotic interactions. Herbivory by invasive, nonnative ungulates can have profound ecosystem effects, yet its consequences for forest C stocks remain poorly understood. We determined the impact of invasive ungulates on C pools, both above- and belowground (to 30 cm), and on forest structure and diversity using 26 paired long-term (>20 years) ungulate exclosures and adjacent unfenced control plots located in native temperate rainforests across New Zealand, spanning 36-41° S. Total ecosystem C was similar between ungulate exclosure (299.93 ± 25.94 Mg C ha-1 ) and unfenced control (324.60 ± 38.39 Mg C ha-1 ) plots. Most (60%) variation in total ecosystem C was explained by the biomass of the largest tree (mean diameter at breast height [dbh]: 88 cm) within each plot. Ungulate exclusion increased the abundance and diversity of saplings and small trees (dbh ≥2.5, <10 cm) compared with unfenced controls, but these accounted for ~5% of total ecosystem C, demonstrating that a few, large trees dominate the total forest ecosystem C but are unaffected by invasive ungulates at a timescale of 20-50 years. However, changes in understory C pools, species composition, and functional diversity did occur following long-term ungulate exclusion. Our findings suggest that, although the removal of invasive herbivores may not affect total forest C at the decadal scale, major shifts in the diversity and composition of regenerating species will have longer term consequences for ecosystem processes and forest C.
Collapse
Affiliation(s)
- Kara Allen
- Manaaki Whenua - Landcare Research, Lincoln, Canterbury, New Zealand
| | - Peter J Bellingham
- Manaaki Whenua - Landcare Research, Lincoln, Canterbury, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Robert B Allen
- Independent Researcher, 8 Roblyn Place, Lincoln, Canterbury, New Zealand
| | - Larry E Burrows
- Manaaki Whenua - Landcare Research, Lincoln, Canterbury, New Zealand
| | - Fiona E Carswell
- Manaaki Whenua - Landcare Research, Lincoln, Canterbury, New Zealand
| | - Sean W Husheer
- New Zealand Forest Surveys Limited, Hastings Aerodrome, Hawkes Bay, New Zealand
| | - Mark G St John
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | - Duane A Peltzer
- Manaaki Whenua - Landcare Research, Lincoln, Canterbury, New Zealand
| |
Collapse
|
9
|
Gong X, Shi S, Li X, Chen X, Sun J, Hu F, Liu M, Delgado-Baquerizo M. Fauna-microbe diversity coupling lost in agricultural soils: Implications from the bacteria hidden in earthworm gut. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
10
|
Aponte Rolón B, Perfecto I. Between two trees: Environmental effects of
I. micheliana
and
A. latifolia
on leaf litter ants in a coffee agroecosystem. Ecosphere 2023. [DOI: 10.1002/ecs2.4442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Bolívar Aponte Rolón
- School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA
| | - Ivette Perfecto
- School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
11
|
Bonfim FCG, Dodonov P, Guimarães PR, Cazetta E. Habitat loss shapes the structure and species roles in tropical plant–frugivore networks. OIKOS 2022. [DOI: 10.1111/oik.09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fernando César Gonçalves Bonfim
- Graduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Univ. Estadual de Santa Cruz Ilhéus Brazil
| | - Pavel Dodonov
- Graduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Univ. Estadual de Santa Cruz Ilhéus Brazil
- Spatial Ecology Lab, Inst. of Biology, Federal Univ. of Bahia Salvador Brazil
| | - Paulo R. Guimarães
- Depto de Ecologia, Inst. de Biociências, Univ. de São Paulo São Paulo Brazil
| | - Eliana Cazetta
- Graduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Univ. Estadual de Santa Cruz Ilhéus Brazil
| |
Collapse
|
12
|
Ureta C, Ramírez‐Barrón M, Sánchez‐García EA, Cuervo‐Robayo AP, Munguía‐Carrara M, Mendoza‐Ponce A, Gay C, Sánchez‐Cordero V. Species, taxonomic, and functional group diversities of terrestrial mammals at risk under climate change and land-use/cover change scenarios in Mexico. GLOBAL CHANGE BIOLOGY 2022; 28:6992-7008. [PMID: 36053734 PMCID: PMC9826092 DOI: 10.1111/gcb.16411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
There is a need to revise the framework used to project species risks under climate change (CC) and land-use/cover change (LUCC) scenarios. We built a CC risk index using the latest Intergovernmental Panel on Climate Change framework, where risk is a function of vulnerability (sensitivity and adaptive capacity), exposure, and hazard. We incorporated future LUCC scenarios as part of the exposure component. We combined a trait-based approach based on biological characteristics of species with a correlative approach based on ecological niche modeling, assigning risk scores to species, taxonomic (orders), and functional (trophic, body size, and locomotion) groups of terrestrial mammals occurring in Mexico. We identified 15 species projected to lose their climatic suitability. Of the 11 taxonomic orders, Eulipotyphla, Didelphimorphia, Artiodactyla, and Lagomorpha had the highest risk scores. Of the 19 trophic groups, piscivores, insectivores under canopy, frugivores-granivores, herbivores browser, and myrmecophagous had the highest risk scores. Of the five body-sized groups, large-sized species (>15 kg) had highest risk scores. Of the seven locomotion groups, arboreal and semi-aquatics had highest risk scores. CC and LUCC scenarios reduced suitable areas of species potential distributions by 37.5% (with CC), and 51% (with CC and LUCC) under a limited full-dispersal assumption. Reductions in suitable areas of species potential distributions increased to 50.2% (with CC), and 52.4% (with CC and LUCC) under a non-dispersal assumption. Species-rich areas (>75% species) projected 36% (with CC) and 57% (with CC and LUCC) reductions in suitability for 2070. Shifts in climatic suitability projections of species-rich areas increased in number of species in northeast and southeast Mexico and decreased in northwest and southern Mexico, suggesting important species turnover. High-risk projections under future CC and LUCC scenarios for species, taxonomic, and functional group diversities, and species-rich areas of terrestrial mammals highlight trends in different impacts on biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Carolina Ureta
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Investigadora por México‐CONACyTConsejo Nacional de Ciencia y TecnologíaCiudad de MéxicoMexico
| | - Mercedes Ramírez‐Barrón
- Departamento de ZoologíaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Edgar Andrés Sánchez‐García
- Departamento de ZoologíaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Angela P. Cuervo‐Robayo
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Insurgentes Sur‐PeriféricoCiudad de MéxicoMexico
| | - Mariana Munguía‐Carrara
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Insurgentes Sur‐PeriféricoCiudad de MéxicoMexico
| | - Alma Mendoza‐Ponce
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- International Institute for Applied Systems AnalysisLaxenburgAustria
| | - Carlos Gay
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Víctor Sánchez‐Cordero
- Departamento de ZoologíaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
13
|
Blanchard G, Munoz F. Revisiting extinction debt through the lens of multitrophic networks and meta‐ecosystems. OIKOS 2022. [DOI: 10.1111/oik.09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Blanchard
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- AMAP, IRD, Herbier de Nouvelle Calédonie Nouméa Nouvelle Calédonie
| | | |
Collapse
|
14
|
Palmer PI, Woodwark AJP, Finch DP, Taylor TE, Butz A, Tamminen J, Bösch H, Eldering A, Vincent-Bonnieu S. Role of space station instruments for improving tropical carbon flux estimates using atmospheric data. NPJ Microgravity 2022; 8:51. [PMID: 36404345 PMCID: PMC9676185 DOI: 10.1038/s41526-022-00231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
The tropics is the nexus for many of the remaining gaps in our knowledge of environmental science, including the carbon cycle and atmospheric chemistry, with dire consequences for our ability to describe the Earth system response to a warming world. Difficulties associated with accessibility, coordinated funding models and economic instabilities preclude the establishment of a dense pan-tropical ground-based atmospheric measurement network that would otherwise help to describe the evolving state of tropical ecosystems and the associated biosphere-atmosphere fluxes on decadal timescales. The growing number of relevant sensors aboard sun-synchronous polar orbiters provide invaluable information over the remote tropics, but a large fraction of the data collected along their orbits is from higher latitudes. The International Space Station (ISS), which is in a low-inclination, precessing orbit, has already demonstrated value as a proving ground for Earth observing atmospheric sensors and as a testbed for new technology. Because low-inclination orbits spend more time collecting data over the tropics, we argue that the ISS and its successors, offer key opportunities to host new Earth-observing atmospheric sensors that can lead to a step change in our understanding of tropical carbon fluxes.
Collapse
Affiliation(s)
- Paul I Palmer
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
- National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK.
| | | | - Douglas P Finch
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Thomas E Taylor
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - André Butz
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | | | - Hartmut Bösch
- National Centre for Earth Observation, University of Leicester, Leicester, UK
- Earth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, UK
| | - Annmarie Eldering
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sebastien Vincent-Bonnieu
- Directorate of Human and Robotic Exploration Programmes, European Space Agency - ESTEC, Noordwijk-ZH, The Netherlands
| |
Collapse
|
15
|
Kasmiatun, Hartke TR, Buchori D, Hidayat P, Siddikah F, Amrulloh R, Hiola MS, Najmi L, Noerdjito WA, Scheu S, Drescher J. Rainforest conversion to smallholder cash crops leads to varying declines of beetles (Coleoptera) on Sumatra. Biotropica 2022. [DOI: 10.1111/btp.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kasmiatun
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Tamara R. Hartke
- Animal Ecology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
- Zoological Research Museum Alexander König (ZFMK) Centre for Biodiversity Monitoring Bonn Germany
| | - Damayanti Buchori
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
- Center for Transdisciplinary and Sustainability Sciences IPB University Bogor West Java Indonesia
| | - Purnama Hidayat
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Fatimah Siddikah
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Rosyid Amrulloh
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | | | - Lailatun Najmi
- Department of Plant Protection, Faculty of Agriculture IPB University Bogor West Java Indonesia
| | - Woro A. Noerdjito
- Research Center for Biology Indonesian Institute of Sciences Bogor West Java Indonesia
| | - Stefan Scheu
- Animal Ecology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Göttingen Germany
| | - Jochen Drescher
- Animal Ecology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany
| |
Collapse
|
16
|
Kouakou AK, Cortet J, Kolo Y, Brauman A. Using Trait-Based Approaches to Assess the Response of Epedaphic Collembola to Organic Matter Management Practices: A Case Study in a Rubber Plantation in South-Eastern Côte d'Ivoire. INSECTS 2022; 13:892. [PMID: 36292840 PMCID: PMC9604168 DOI: 10.3390/insects13100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
We used trait-based approaches to reveal the functional responses of springtails communities to organic matter inputs in a rubber plantation in Côte d’Ivoire. Pitfall traps were used to sample springtails in each practice. The results showed that the total abundance of springtails increased significantly with the amount of organic matter (R0L0 < R2L1). Larger springtails (body length, furca and antennae) were observed in plots with high organic matter. Practices with logging residues and legume recorded the highest functional richness. The principal coordinate analysis showed different functional composition patterns between practices with logging residues (R1L1 and R2L1) and those without inputs (R0L0 and R0L1). This difference in functional composition (PERMANOVA analysis) was related to the effect of practices. These results highlight the pertinence of the functional trait approach in the characterization of springtail communities, a bioindicator of soil health, for organic matter management practice.
Collapse
Affiliation(s)
- Aymard Kouakou Kouakou
- Station D’écologie de Lamto, Université Nangui Abrogoua, Abidjan 02 BP 801, Côte d’Ivoire
- Eco & Sols, University Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, F-34398 Montperliier, France
| | - Jérôme Cortet
- UMR CEFE 5175, University of Montpellier, EPHE, University Paul-Valéry Montpellier, Route de Mende, CEDEX, F-34199 Montpellier, France
| | - Yeo Kolo
- Station D’écologie de Lamto, Université Nangui Abrogoua, Abidjan 02 BP 801, Côte d’Ivoire
| | - Alain Brauman
- Eco & Sols, University Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, F-34398 Montperliier, France
| |
Collapse
|
17
|
Ramos D, Hartke TR, Buchori D, Dupérré N, Hidayat P, Lia M, Harms D, Scheu S, Drescher J. Rainforest conversion to rubber and oil palm reduces abundance, biomass and diversity of canopy spiders. PeerJ 2022; 10:e13898. [PMID: 35990898 PMCID: PMC9390325 DOI: 10.7717/peerj.13898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Rainforest canopies, home to one of the most complex and diverse terrestrial arthropod communities, are threatened by conversion of rainforest into agricultural production systems. However, little is known about how predatory arthropod communities respond to such conversion. To address this, we compared canopy spider (Araneae) communities from lowland rainforest with those from three agricultural systems in Jambi Province, Sumatra, Indonesia, i.e., jungle rubber (rubber agroforest) and monoculture plantations of rubber and oil palm. Using canopy fogging, we collected 10,676 spider specimens belonging to 36 families and 445 morphospecies. The four most abundant families (Salticidae N = 2,043, Oonopidae N = 1,878, Theridiidae N = 1,533 and Clubionidae N = 1,188) together comprised 62.2% of total individuals, while the four most speciose families, Salticidae (S = 87), Theridiidae (S = 83), Araneidae (S = 48) and Thomisidae (S = 39), contained 57.8% of all morphospecies identified. In lowland rainforest, average abundance, biomass and species richness of canopy spiders was at least twice as high as in rubber or oil palm plantations, with jungle rubber showing similar abundances as rainforest, and intermediate biomass and richness. Community composition of spiders was similar in rainforest and jungle rubber, but differed from rubber and oil palm, which also differed from each other. Canonical Correspondence Analysis showed that canopy openness, aboveground tree biomass and tree density together explained 18.2% of the variation in spider communities at family level. On a morphospecies level, vascular plant species richness and tree density significantly affected the community composition but explained only 6.8% of the variance. While abundance, biomass and diversity of spiders declined strongly with the conversion of rainforest into monoculture plantations of rubber and oil palm, we also found that a large proportion of the rainforest spider community can thrive in extensive agroforestry systems such as jungle rubber. Despite being very different from rainforest, the canopy spider communities in rubber and oil palm plantations may still play a vital role in the biological control of canopy herbivore species, thus contributing important ecosystem services. The components of tree and palm canopy structure identified as major determinants of canopy spider communities may aid in decision-making processes toward establishing cash-crop plantation management systems which foster herbivore control by spiders.
Collapse
Affiliation(s)
- Daniel Ramos
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Tamara R. Hartke
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| | - Damayanti Buchori
- Center for Transdisciplinary and Sustainability Sciences, IPB University, Bogor, West Java, Indonesia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Nadine Dupérré
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Purnama Hidayat
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Mayanda Lia
- Department of Plant Protection, Faculty of Agriculture, IPB University Bogor, Bogor, West Java, Indonesia
| | - Danilo Harms
- Center for Taxonomy and Morphology, Zoological Museum Hamburg, Leibnitz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Stefan Scheu
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
- Center for Biodiversity and Sustainable Land Use, Georg-August Universität Göttingen, Göttingen, Germany
| | - Jochen Drescher
- Department of Animal Ecology, J.-F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen, Germany
| |
Collapse
|
18
|
Steibl S, Gebauer G, Laforsch C. Impacts on food web properties of island invertebrate communities vary between different human land uses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154838. [PMID: 35346698 DOI: 10.1016/j.scitotenv.2022.154838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Human land use is of growing concern for island ecosystems. Besides direct impacts on biodiversity, land uses can alter the functioning and structure of ecosystems. Central to this are impacts on food webs. The release of additional nutrients from human origin, habitat homogenization, or environmental filtering due to human land use can change the diet of individual consumer species (i.e., their trophic niches) and the distribution and overlap of trophic niches within a food web. However, it remains largely unclear whether the effects on food web properties vary between the different and predominant human land uses present on islands. Here, we investigated the impact of two dominant human land uses on small oceanic islands (i.e., urban and tourism development) and tested if and how different land uses on islands affect food web structure. To disentangle human land uses, we investigated islands, which were either privately owned by a tourist facility (i.e., exclusively tourism land use) or experienced urban development from the local population (i.e., urban land use), or remained uninhabited, serving as reference sites free of direct land use. Using stable isotope analysis, we show that isotope signature, trophic (isotopic) niches, and overall food web properties of the investigated island invertebrate communities were significantly changed under both land use regimes. While trophic diversity was reduced and trophic niche widths increased under tourism land use, the investigated food webs showed reduced trophic diversity at the food web base and a more uneven trophic niche distribution under urban land use. In summary, these findings show that different human land uses can have contrasting impacts on oceanic island food webs. As oceanic islands experience rapidly growing human land conversion, our results indicate that they may also face increasing yet unpredictable long-term changes in food web dynamics.
Collapse
Affiliation(s)
- Sebastian Steibl
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany.
| | - Gerhard Gebauer
- BayCEER - Laboratory of Isotope Biogeochemistry, University of Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany.
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany.
| |
Collapse
|
19
|
Guo WY, Serra-Diaz JM, Schrodt F, Eiserhardt WL, Maitner BS, Merow C, Violle C, Anand M, Belluau M, Bruun HH, Byun C, Catford JA, Cerabolini BEL, Chacón-Madrigal E, Ciccarelli D, Cornelissen JHC, Dang-Le AT, de Frutos A, Dias AS, Giroldo AB, Guo K, Gutiérrez AG, Hattingh W, He T, Hietz P, Hough-Snee N, Jansen S, Kattge J, Klein T, Komac B, Kraft NJB, Kramer K, Lavorel S, Lusk CH, Martin AR, Mencuccini M, Michaletz ST, Minden V, Mori AS, Niinemets Ü, Onoda Y, Peñuelas J, Pillar VD, Pisek J, Robroek BJM, Schamp B, Slot M, Sosinski ÊE, Soudzilovskaia NA, Thiffault N, van Bodegom P, van der Plas F, Wright IJ, Xu WB, Zheng J, Enquist BJ, Svenning JC. High exposure of global tree diversity to human pressure. Proc Natl Acad Sci U S A 2022; 119:e2026733119. [PMID: 35709320 PMCID: PMC9231180 DOI: 10.1073/pnas.2026733119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.
Collapse
Affiliation(s)
- Wen-Yong Guo
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, People’s Republic of China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, People’s Republic of China
| | - Josep M. Serra-Diaz
- UMR Silva, Université de Lorraine, AgroParisTech, and INRAE, 54000 Nancy, France
| | - Franziska Schrodt
- School of Geography, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Wolf L. Eiserhardt
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Brian S. Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | - Cory Merow
- Eversource Energy Center, University of Connecticut, Storrs, CT 06268
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268
| | - Cyrille Violle
- CEFE, Uni Montpellier, CNRS, EPHE, IRD, 34293 Montpellier Cedex 5, France
| | - Madhur Anand
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Michaël Belluau
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Chaeho Byun
- Department of Biological Sciences and Biotechnology, Andong National University, Andong 36729, Korea
| | - Jane A. Catford
- Department of Geography, King’s College London, London WC2B 4BG, United Kingdom
| | - Bruno E. L. Cerabolini
- Department of Biotechnology and Life Sciences, University of Insubria, I-21100 Varese, Italy
| | | | | | - J. Hans C. Cornelissen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Anh Tuan Dang-Le
- University of Science, 700000 Ho Chi Minh City, Vietnam
- Vietnam National University, 700000 Ho Chi Minh City, Vietnam
| | - Angel de Frutos
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
| | - Arildo S. Dias
- Institute for Physical Geography, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aelton B. Giroldo
- Departamento de Ensino, Instituto Federal de Educação, Ciências e Tecnologia do Ceará, Crateús 63708-260, Brazil
| | - Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, People’s Republic of China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, People’s Republic of China
| | - Alvaro G. Gutiérrez
- Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
- Institute of Ecology and Biodiversity (IEB), Barrio Universitario, 4070374 Concepción, Chile
| | - Wesley Hattingh
- Global Systems and Analytics, Nova Pioneer, Paulshof, Gauteng, 2191, South Africa
| | - Tianhua He
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Peter Hietz
- Institute of Botany, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | | | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, 89081 Ulm, Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Benjamin Komac
- Centre d’Estudis de la Neu i la Muntanya d’Andorra, Institut d’Estudis, Andorrans (CENMA–IEA), AD600 Sant Julià de Lòria, Principality of Andorra
| | - Nathan J. B. Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Koen Kramer
- Forest Ecology and Management Group, Wageningen University, 6700 AA Wageningen, The Netherlands
- Land Life Company, 1092AD Amsterdam, The Netherlands
| | - Sandra Lavorel
- Laboratoire d’Ecologie Alpine, LECA, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, 38058 Grenoble Cedex 9, France
| | - Christopher H. Lusk
- Environmental Research Institute, University of Waikato, Hamilton 3240, New Zealand
| | - Adam R. Martin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Maurizio Mencuccini
- ICREA, 08010 Barcelona, Spain
- CREAF, Universidad Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Sean T. Michaletz
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vanessa Minden
- Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute for Biology and Environmental Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Akira S. Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya, Yokohama 240-8501, Japan
| | - Ülo Niinemets
- Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Yusuke Onoda
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto 606-8502 Japan
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, 08193 Catalonia, Spain
- CSIC, Global Ecology Unit CREAF, CSIC–UAB, Bellaterra, Barcelona, 08193 Catalonia, Spain
| | - Valério D. Pillar
- Department of Ecology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Jan Pisek
- Tartu Observatory, University of Tartu, Tõravere, 61602 Tartumaa, Estonia
| | - Bjorn J. M. Robroek
- Aquatic Ecology & Environmental Biology Group, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Brandon Schamp
- Department of Biology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | | | | | - Nelson Thiffault
- Canadian Wood Fibre Centre, Natural Resources Canada, Québec City, QC G1V 4C7, Canada
| | - Peter van Bodegom
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Ian J. Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Wu-Bing Xu
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
| | - Jingming Zheng
- Beijing Key Laboratory for Forest Resources and Ecosystem Processes, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
- The Santa Fe Institute, Santa Fe, NM 87501
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Parra-Paitan C, Verburg PH. Accounting for land use changes beyond the farm-level in sustainability assessments: The impact of cocoa production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154032. [PMID: 35202678 DOI: 10.1016/j.scitotenv.2022.154032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Impact assessments are used to raise evidence and guide the implementation of sustainability strategies in commodity value chains. Due to methodological and data difficulties, most assessments of agricultural commodities capture the impacts occurring at the farm-level but often dismiss or oversimplify the impacts caused by land use dynamics at larger geographic scale. In this study we analyzed the impacts of two cocoa production systems, full-sun and agroforestry, at the farm-level and beyond the farm-level. We used life cycle assessment to calculate the impacts at the farm-level and a combination of land use modelling with spatial analysis to calculate the impacts beyond the farm-level. We applied this to three different future cocoa production scenarios. The impacts at the farm-level showed that, due to lower yields, cocoa agroforestry performs worse than cocoa full-sun for most impact indicators. However, the impacts beyond the farm-level showed that promoting cocoa agroforestry in the landscape can bring the largest gains in carbon and biodiversity. A scenario analysis of the impacts at the landscape-level showed large nuances depending on the cocoa farming system adopted, market dynamics, and nature conservation policies. The analysis indicated that increasing cocoa demand does not necessarily result in negative impacts for carbon stocks and biodiversity, if sustainable land management and sustainable intensification are adopted. Landscape-level impacts can be larger than farm-level impacts or show completely opposite direction, which highlights the need to complement farm-level assessments with assessments accounting for land use dynamics beyond the farm-level.
Collapse
Affiliation(s)
- Claudia Parra-Paitan
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam (VU), De Boelelaan 1111, 1081 HV Amsterdam, the Netherlands.
| | - Peter H Verburg
- Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam (VU), De Boelelaan 1111, 1081 HV Amsterdam, the Netherlands; Swiss Federal Research Institute WSL, Zürcherstrasse 111,CH-8903 Birmensdorf, Switzerland.
| |
Collapse
|
21
|
Pashkevich MD, Luke SH, Aryawan AAK, Waters HS, Caliman J, Dupérré N, Naim M, Potapov AM, Turner EC. Riparian buffers made of mature oil palms have inconsistent impacts on oil palm ecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2552. [PMID: 35112418 PMCID: PMC9286838 DOI: 10.1002/eap.2552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Expansion of oil palm has caused widespread declines in biodiversity and changes in ecosystem functioning across the tropics. A major driver of these changes is loss of habitat heterogeneity as forests are converted into oil palm plantations. Therefore, one strategy to help support biodiversity and functioning in oil palm is to increase habitat heterogeneity, for instance, by retaining forested buffers around rivers when new plantations are established, or maintaining buffers made of mature oil palms ("mature palm buffers") when old plantations are replanted. While forested buffers are known to benefit oil palm systems, the impacts of mature palm buffers are less certain. In this study, we assessed the benefits of mature palm buffers, which were being passively restored (in this case, meaning that buffers were treated with no herbicides, pesticides, or fertilizers) by sampling environmental conditions and arthropods within buffers and in surrounding non-buffer areas (i.e., areas that were 25 and 125 m from buffers, and receiving normal business-as-usual management) across an 8-year chronosequence in industrial oil palm plantations (Sumatra, Indonesia). We ask (1) Do environmental conditions and biodiversity differ between buffer and non-buffer areas? (2) Do buffers affect environmental conditions and biodiversity in adjacent non-buffer areas (i.e., areas that were 25 m from buffers)? (3) Do buffers become more environmentally complex and biodiverse over time? We found that buffers can have environmental conditions (canopy openness, variation in openness, vegetation height, ground cover, and soil temperature) and levels of arthropod biodiversity (total arthropod abundance and spider abundance in the understory and spider species-level community composition in all microhabitats) that are different from those in non-buffer areas, but that these differences are inconsistent across the oil palm commercial life cycle. We also found that buffers might contribute to small increases in vegetation height and changes in ground cover in adjacent non-buffer areas, but do not increase levels of arthropod biodiversity in these areas. Finally, we found that canopy openness, variation in openness, and ground cover, but no aspects of arthropod biodiversity, change within buffers over time. Collectively, our findings indicate that mature palm buffers that are being passively restored can have greater environmental complexity and higher levels of arthropod biodiversity than non-buffer areas, particularly in comparison to recently replanted oil palm, but these benefits are not consistent across the crop commercial life cycle. If the goal of maintaining riparian buffers is to consistently increase habitat heterogeneity and improve biodiversity, an alternative to mature palm buffers or a move toward more active restoration of these areas is, therefore, probably required.
Collapse
Affiliation(s)
| | - Sarah H. Luke
- Insect Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Helen S. Waters
- Insect Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
- School of GeosciencesUniversity of EdinburghEdinburghUK
| | - Jean‐Pierre Caliman
- Sinar Mas Agro Resources and Technology Research Institute (SMARTRI)PekanbaruIndonesia
| | | | - Mohammad Naim
- Sinar Mas Agro Resources and Technology Research Institute (SMARTRI)PekanbaruIndonesia
| | - Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and AnthropologyUniversity of GoettingenGoettingenGermany
| | - Edgar C. Turner
- Insect Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
22
|
Li X, Liu T, Li H, Geisen S, Hu F, Liu M. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. J Anim Ecol 2022; 91:1770-1780. [PMID: 35579946 DOI: 10.1111/1365-2656.13744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic land use is threatening global biodiversity. As one of the most abundant animals on Earth, nematodes occupy several key positions in belowground food webs and contribute to many ecosystem functions and services. However, the effects of land use on nematode abundance and its determinants remain poorly understood at a global scale. To characterize nematodes' responses to land use across trophic groups, we used a dataset of 6,825 soil samples globally to assess how nematode abundance varies among regional land-use types (i.e., primary vegetation, secondary vegetation, pasture, cropland, and urban) and local land-use intensities (i.e., human-managed or not). We also quantified the interactive effects of land use and environmental predictors (i.e., mean annual temperature, annual precipitation, soil organic carbon, soil pH, global vegetation biomass, and global vegetation productivity) on nematode abundance. We found that total nematode abundance and the abundance of bacterivores, fungivores, herbivores, omnivores, and predators generally increased or were not affected under management across land-use types. Specifically, the most numerically abundant bacterivores were higher in managed than in unmanaged secondary vegetation habitats and urban areas, and herbivores were more abundant in managed than in unmanaged primary and secondary vegetation habitats. Furthermore, the numbers of significant environmental predictors of nematode abundance were reduced and the magnitude and the direction of the predictors were changed under management. We also found that nematode abundance was more variable and less determined by environmental factors in urban than in other land-use types. These findings challenge the view that human land use decreases animal abundance across trophic groups, but highlight that land use is altering the trophic composition of soil nematodes and its relationships with the environment at the global scale.
Collapse
Affiliation(s)
- Xianping Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Ting Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Manqiang Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Carneiro de Melo Moura C, Setyaningsih CA, Li K, Merk MS, Schulze S, Raffiudin R, Grass I, Behling H, Tscharntke T, Westphal C, Gailing O. Biomonitoring via DNA metabarcoding and light microscopy of bee pollen in rainforest transformation landscapes of Sumatra. BMC Ecol Evol 2022; 22:51. [PMID: 35473550 PMCID: PMC9040256 DOI: 10.1186/s12862-022-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. RESULTS Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. CONCLUSIONS Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.
Collapse
Affiliation(s)
| | - Christina A Setyaningsih
- Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Kevin Li
- Agroecology, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Miryam Sarah Merk
- Statistics and Econometrics, University of Göttingen, Göttingen, Germany
| | - Sonja Schulze
- Agroecology, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Rika Raffiudin
- Department of Biology, IPB University ID, Bogor, West Java, 16880, Indonesia
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, 70599, Stuttgart, Germany
| | - Hermann Behling
- Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Teja Tscharntke
- Agroecology, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany. .,Centre of Biodiversity and Sustainable Land Use, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
24
|
Elliot Noe E, Innes J, Barnes A, Joshi C, Clarkson BD. Habitat provision is a major driver of native bird communities in restored urban forests. J Anim Ecol 2022; 91:1444-1457. [PMID: 35396865 PMCID: PMC9541441 DOI: 10.1111/1365-2656.13700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Urbanization, and the drastic loss of habitat it entails, poses a major threat to global avian biodiversity. Ecological restoration of urban forests is therefore increasingly vital for native bird conservation, but control of invasive predators may also be needed to sustain native bird populations in cities where species invasions have been particularly severe. We evaluated restoration success by investigating changes in native bird communities along a restoration chronosequence of 25 restored urban forests representing 72 years of forest development, which we compared to two target reference systems and a control system. We hypothesized that total species richness and relative abundance of native forest birds would increase with the age of restoration planting. We further hypothesized that relative abundance of rats, possums and cats would negatively impact native birds, while amount of native forest in the surrounding landscape would have a positive effect. We used structural equation modelling (SEM) to investigate the relative influence of forest structure (complexity index, tree height, canopy openness, basal area, species richness and density), landscape attributes (patch area, perimeter length, landscape composition within three buffer zones, distance to the nearest road and water source) and invasive mammalian predator indices of relative abundance on total species richness and relative abundance of native forest birds. Species richness increased with age of restoration planting, with community composition progressing towards that found in target reference systems. SEM revealed that years restored was a direct driver of bird species richness but an indirect driver of abundance, which was directly driven by canopy openness. Contrary to our predictions, invasive mammals had no significant effect on native bird species richness or abundance. Our results demonstrate that provision and improvement of habitat quantity and quality through restoration is the vital first step to re‐establishing native forest bird communities in cities.
Collapse
Affiliation(s)
- E Elliot Noe
- University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - J Innes
- Manaaki Whenua-Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand
| | - A Barnes
- University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - C Joshi
- University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - B D Clarkson
- University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| |
Collapse
|
25
|
Seasonal and temporal patterns of rainfall shape arthropod community composition and multi-trophic interactions in an arid environment. Sci Rep 2022; 12:3742. [PMID: 35260643 PMCID: PMC8904780 DOI: 10.1038/s41598-022-07716-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
In arid and semi-arid ecosystems, rainfall and rainfall temporal distribution shape species communities and multi-trophic interactions. Whereas the relationship between climate change-induced decline of precipitation and plants is well know, there is little knowledge of these relationships with consumers, such as arthropods of different trophic levels. In a 6-year period we studied precipitation effects and microhabitat conditions on multi-trophic interactions of ground-dwelling arthropods in an arid savannah. We analysed the effects of seasonal rainfall, plant cover and soil texture on community composition and activity density of arthropods of different trophic levels and investigated the critical window of vegetation and occurrence arthropods in relation to rainfall. Our result show, that arthropod community composition was determined by seasonal rainfall and plant cover. Soil texture did not explain arthropod response sufficiently. Especially detritivorous arthropods were strongly affected by precipitation and can therefore serve as indicators of droughts. Further, multi-trophic interactions can better be explained by short-term rainfall pulses, rather than by seasonal patterns, with a window of seven days being most suitable to explain the influence of rainfall. Plant cover responded immediately after the rainfall, followed by herbivorous and predatory arthropods, and with a lag of 23 days omnivorous arthropods. This highlights the importance of short-term rain pulses for multi-trophic interactions among arthropods and emphasized the relevance of studying detailed precipitation effects for the arthropod diversity and ecosystem stability in arid ecosystems.
Collapse
|
26
|
Moi DA, Teixeira-de-Mello F. Cascading impacts of urbanization on multitrophic richness and biomass stock in neotropical streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151398. [PMID: 34742800 DOI: 10.1016/j.scitotenv.2021.151398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The conversion of natural streams to urbanized systems with the intention of supplying the cities' water demand causes species loss across many trophic groups, with negative consequences for ecosystem functioning. High levels of watershed urbanization cause environmental changes through water quality deterioration and loss of habitat heterogeneity. However, it remains unclear how environmental changes resulting from urbanization affect the diversity of multiple trophic groups and ecosystem functions, such as biomass stock in streams. Here, using a dataset from Neotropical streams, we investigate the cascading effects of urbanization (via impoverishment of water quality and habitat heterogeneity) on richness of multiple trophic groups of fish, and their consequences to biomass stock of streams. The increase in urbanization decreased the richness and standing biomass of carnivores, omnivores, and detritivores across streams. Urbanization also decreased habitat heterogeneity and water quality, which driver a huge cascading decrease in the richness of carnivores, omnivores, and detritivores, and ultimately reduced the whole-community standing biomass. Our analysis revealed that urbanization expansion induces a cascading reduction of multitrophic diversity and standing biomass in Neotropical streams. Therefore, the predicted increase in urbanization in the coming decades should impacts the richness of multiple trophic levels, with potential negative consequences to ecosystem functioning of streams.
Collapse
Affiliation(s)
- Dieison André Moi
- Department of Biology, Graduate Program in Ecology of Inland Waters, Nupelia, University of Maringá, Av. Colombo 5790, Bloco H90, Jd. Universitário, Maringá, PR 87020-900, Brazil.
| | - Franco Teixeira-de-Mello
- Departamento de Ecología y Gestión Ambiental CURE, Universidad de la República, Tacuarembó s/n, Maldonado, Uruguay.
| |
Collapse
|
27
|
Gallina S, Contreras A, Álvarez-Peredo C, Saucedo-Castillo E, García-Feria L, Flores-Romero C, Tejeda-Cruz C, Ortega-Argueta A, Pineda-Vázquez M. Contribution of wildlife management units to the conservation of terrestrial mammals in southeastern Mexico. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Diversity of plant-parasitic nematodes associated with kiwi trees and related relationship with selected soil variables in Limpopo Province, South Africa. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
How Does Land Consolidation Affect Soil Fungal Community Structure? Take Heavy Metal Contaminated Areas in Eastern China for Example. LAND 2022. [DOI: 10.3390/land11010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Farmland land consolidation can effectively improve the quality of farmland soil and the agricultural production level, and can effectively guarantee farmland ecology and food security, which has been widely used in the world. A large number of studies have shown that farmland consolidation has certain adjustments to the basic physical and chemical properties of soil and the content of heavy metals. As a key indicator of soil quality and ecological conditions, soil microorganisms play an important role in soil pollution restoration and the promotion of crop growth. However, there are few domestic and foreign studies on how farmland consolidation affects soil microbial properties, and there are no related reports on the mechanism of action between them, which is a blank in the field of agricultural land consolidation and soil microecology, especially in heavy metal contaminated areas. Therefore, we used the DNA sequence technology to compare fungal community structure in farmlands with and without consolidation in heavy metal contaminated areas. Our results showed that (1) farmland consolidation had a significant impact on soil microbial characteristics, which were mainly manifested as changes in microbial biomass, microbial diversity and community structure. (2) Farmland consolidation had an indirect impact on soil fungal community structure by adjusting the soil physical and chemical properties. (3) The impact of heavy metals on the fungal community structure varied significantly under different levels of heavy metal pollution in farmland consolidation areas. When the pollution was at the highest level, there existed 7 fungus genera showing a strong tolerance to heavy metals and consuming a lot of soil nutrients, of which were Melanospora, Pseudeurotium, Guehomyces, Schizothecium, Gibberella, Myrothecium, and Neurospora. In this study, an analytical method was proposed to analyze the effects of farmland consolidation on soil fungi, and the mechanism was discussed from two aspects—soil physical and chemical properties, and heavy metal content. The results shed some light on farmland consolidation, cultivated land quality evaluation and territorial space ecological restoration.
Collapse
|
30
|
Lin Y, Ye Y, Liu S, Wen J, Chen D. Effect Mechanism of Land Consolidation on Soil Bacterial Community: A Case Study in Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020845. [PMID: 35055667 PMCID: PMC8775918 DOI: 10.3390/ijerph19020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023]
Abstract
Farmland consolidation is an effective tool to improve farmland infrastructures, soil quality, and sustain a healthy farmland ecosystem and rural population, generating contributions to food security and regional sustainable development. Previous studies showed that farmland consolidation regulates soil physical and chemical properties. Soil microorganisms also play an important role in soil health and crop performance; however, few studies reported how farmland consolidation influence soil microecology. Here, we used DNA sequencing technology to compare bacterial community structure in farmlands with and without consolidation. DNA sequencing technology is the most advanced technology used to obtain biological information in the world, and it has been widely used in the research of soil micro-ecological environment. In September 2018, we collected soil samples in Jiashan County, Zhejiang Province, China, and used DNA sequence technology to compare the bacterial community structure in farmlands with and without consolidation. Our results found that (1) farmland consolidation had significant impacts on soil microbial characteristics, which were mainly manifested as changes in microbial biomass, microbial diversity and community structure. Farmland consolidation can increase the relative abundance of the three dominant bacteria phyla and the three fungal dominant phyla, but it also negatively affects the relative abundance of the six dominant bacteria phyla and the three fungal dominant phyla. (2) Farmland consolidation had an indirect impact on soil bacterial community structure by adjusting the soil physical and chemical properties. (3) The impact of heavy metals on bacterial community structure varied significantly under different levels of heavy metal pollution in farmland consolidation areas. There were 6, 3, 3, and 5 bacterial genera that had significant correlations with heavy metal content in cultivated land with low pollution, light pollution, medium pollution, and heavy pollution, respectively. The number of heavy metal-tolerant bacteria in the soil generally increased first and then decreased under heavy metal polluted conditions. Our study untangled the relationship between varied farmland consolidation strategies and bacteria through soil physcicochemical properties and metal pollution conditions. Our results can guide farmland consolidation strategies and sustain soil health and ecological balance in agriculture.
Collapse
Affiliation(s)
- Yaoben Lin
- School of Law and Politics, Nanjing Tech University, Nanjing 211816, China;
| | - Yanmei Ye
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou 310058, China; (Y.Y.); (S.L.)
| | - Shuchang Liu
- Land Academy for National Development (LAND), Zhejiang University, Hangzhou 310058, China; (Y.Y.); (S.L.)
| | - Jiahao Wen
- Department of Watershed Sciences, Utah State University, Logan, UT 84321, USA;
| | - Danling Chen
- Department of Land Management, College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
31
|
Abstract
The Amazon Basin is undergoing extensive environmental degradation as a result of deforestation and the rising occurrence of fires. The degradation caused by fires is exacerbated by the occurrence of anomalously dry periods in the Amazon Basin. The objectives of this study were: (i) to quantify the extent of areas that burned between 2001 and 2019 and relate them to extreme drought events in a 20-year time series; (ii) to identify the proportion of countries comprising the Amazon Basin in which environmental degradation was strongly observed, relating the spatial patterns of fires; and (iii) examine the Amazon Basin carbon balance following the occurrence of fires. To this end, the following variables were evaluated by remote sensing between 2001 and 2019: gross primary production, standardized precipitation index, burned areas, fire foci, and carbon emissions. During the examined period, fires affected 23.78% of the total Amazon Basin. Brazil had the largest affected area (220,087 fire foci, 773,360 km2 burned area, 54.7% of the total burned in the Amazon Basin), followed by Bolivia (102,499 fire foci, 571,250 km2 burned area, 40.4%). Overall, these fires have not only affected forests in agricultural frontier areas (76.91%), but also those in indigenous lands (17.16%) and conservation units (5.93%), which are recognized as biodiversity conservation areas. During the study period, the forest absorbed 1,092,037 Mg of C, but emitted 2908 Tg of C, which is 2.66-fold greater than the C absorbed, thereby compromising the role of the forest in acting as a C sink. Our findings show that environmental degradation caused by fires is related to the occurrence of dry periods in the Amazon Basin.
Collapse
|
32
|
Fungal Perspective of Pine and Oak Colonization in Mediterranean Degraded Ecosystems. FORESTS 2022. [DOI: 10.3390/f13010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forest restoration has become one of the most important challenges for restoration ecology in the recent years. In this regard, soil fungi are fundamental drivers of forest ecosystem processes, with significant implications for plant growth and survival. However, the post-disturbance recovery of belowground communities has been rarely assessed, especially in highly degraded systems such as mines. Our aim was to compare forests and mined systems for biomass and structure of fungal communities in soil during early stages of tree establishment after disturbance. We performed ergosterol analysis and PacBio and Illumina sequencing of internal transcribed spacer 2 amplicons across soil layers in P. sylvestris, Q. robur and Q. ilex (holm oak) forests and naturally revegetated mined sites. In pine forests, total fungal biomass was significantly higher in litter and humus compared to mineral layers, with dominance of the mycorrhizal genera Tomentella, Inocybe and Tricholoma. Conversely, in oak forests the most abundant mycorrhizal genera were Tomentella, Cortinarius and Sebacina, but the biomass of saprotrophic fungi was greater in the litter layer compared to mycorrhizal fungi, with the genus Preussia being the most abundant. In the revegetated mined sites, ectomycorrhizal fungi dominated in the humus and mineral layers, with the mycorrhizal genus Oidiodendron being dominant. In contrast, in holm oak forests saprotrophic fungi dominated both soil humus and mineral layers, with the genera of Alternaria, Bovista and Mycena dominating the soil humus forest layer, while the genus Cadophora dominated the mineral layer. The habitat-specific differences in soil fungal community composition and putative functions suggest that an understanding of soil–plant–microbial interactions for different tree species and use of specific soil/litter inoculum upon planting/seeding might help to increase the effectiveness of tree restoration strategies in Mediterranean degraded sites.
Collapse
|
33
|
Bowd E, Blanchard W, McBurney L, Lindenmayer D. Direct and indirect disturbance impacts on forest biodiversity. Ecosphere 2021. [DOI: 10.1002/ecs2.3823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Elle Bowd
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Wade Blanchard
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Lachlan McBurney
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - David Lindenmayer
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory 2601 Australia
| |
Collapse
|
34
|
Using Airborne Laser Scanning to Characterize Land-Use Systems in a Tropical Landscape Based on Vegetation Structural Metrics. REMOTE SENSING 2021. [DOI: 10.3390/rs13234794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many Indonesian forests have been cleared and replaced by fast-growing cash crops (e.g., oil palm and rubber plantations), altering the vegetation structure of entire regions. Complex vegetation structure provides habitat niches to a large number of native species. Airborne laser scanning (ALS) can provide detailed three-dimensional information on vegetation structure. Here, we investigate the potential of ALS metrics to highlight differences across a gradient of land-use management intensities in Sumatra, Indonesia. We focused on tropical rainforests, jungle rubber, rubber plantations, oil palm plantations and transitional lands. Twenty-two ALS metrics were extracted from 183 plots. Analysis included a principal component analysis (PCA), analysis of variance (ANOVAs) and random forest (RF) characterization of the land use/land cover (LULC). Results from the PCA indicated that a greater number of canopy gaps are associated with oil palm plantations, while a taller stand height and higher vegetation structural metrics were linked with rainforest and jungle rubber. A clear separation in metrics performance between forest (including rainforest and jungle rubber) and oil palm was evident from the metrics pairwise comparison, with rubber plantations and transitional land behaving similar to forests (rainforest and jungle rubber) and oil palm plantations, according to different metrics. Lastly, two RF models were carried out: one using all five land uses (5LU), and one using four, merging jungle rubber with rainforest (4LU). The 5LU model resulted in a lower overall accuracy (51.1%) due to mismatches between jungle rubber and forest, while the 4LU model resulted in a higher accuracy (72.2%). Our results show the potential of ALS metrics to characterize different LULCs, which can be used to track changes in land use and their effect on ecosystem functioning, biodiversity and climate.
Collapse
|
35
|
Lourençoni T, da Silva Junior CA, Lima M, Teodoro PE, Pelissari TD, Dos Santos RG, Teodoro LPR, Luz IM, Rossi FS. Advance of soy commodity in the southern Amazonia with deforestation via PRODES and ImazonGeo: a moratorium-based approach. Sci Rep 2021; 11:21792. [PMID: 34750464 PMCID: PMC8576044 DOI: 10.1038/s41598-021-01350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
The guidance on decision-making regarding deforestation in Amazonia has been efficient as a result of monitoring programs using remote sensing techniques. Thus, the objective of this study was to identify the expansion of soybean farming in disagreement with the Soy Moratorium (SoyM) in the Amazonia biome of Mato Grosso from 2008 to 2019. Deforestation data provided by two Amazonia monitoring programs were used: PRODES (Program for Calculating Deforestation in Amazonia) and ImazonGeo (Geoinformation Program on Amazonia). For the identification of soybean areas, the Perpendicular Crop Enhancement Index (PCEI) spectral model was calculated using a cloud platform. To verify areas (polygons) of largest converted forest-soybean occurrences, the Kernel Density (KD) estimator was applied. Mann-Kendall and Pettitt tests were used to identify trends over the time series. Our findings reveal that 1,387,288 ha were deforested from August 2008 to October 2019 according to PRODES data, of which 108,411 ha (7.81%) were converted into soybean. The ImazonGeo data showed 729,204 hectares deforested and 46,182 hectares (6.33%) converted into soybean areas. Based on the deforestation polygons of the two databases, the KD estimator indicated that the municipalities of Feliz Natal, Tabaporã, Nova Ubiratã, and União do Sul presented higher occurrences of soybean fields in disagreement with the SoyM. The results indicate that the PRODES system presents higher data variability and means statistically superior to ImazonGeo.
Collapse
Affiliation(s)
- Thais Lourençoni
- State University of Mato Grosso (UNEMAT), Alta Floresta, MT, Brazil
| | | | - Mendelson Lima
- State University of Mato Grosso (UNEMAT), Alta Floresta, MT, Brazil
| | - Paulo Eduardo Teodoro
- Department of Crop Science, Department of Agronomy, Federal University of Mato Grosso Do Sul (UFMS), Chapadão Do Sul, MS, Brazil.
| | | | - Regimar Garcia Dos Santos
- Department of Crop Science, Department of Agronomy, Federal University of Mato Grosso Do Sul (UFMS), Chapadão Do Sul, MS, Brazil
| | - Larissa Pereira Ribeiro Teodoro
- Department of Crop Science, Department of Agronomy, Federal University of Mato Grosso Do Sul (UFMS), Chapadão Do Sul, MS, Brazil
| | | | | |
Collapse
|
36
|
Davison CW, Rahbek C, Morueta-Holme N. Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. GLOBAL CHANGE BIOLOGY 2021; 27:5414-5429. [PMID: 34392585 DOI: 10.1111/gcb.15846] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/26/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Land-use change is considered the greatest threat to nature, having caused worldwide declines in the abundance, diversity, and health of species and ecosystems. Despite increasing research on this global change driver, there are still challenges to forming an effective synthesis. The estimated impact of land-use change on biodiversity can depend on location, research methods, and taxonomic focus, with recent global meta-analyses reaching disparate conclusions. Here, we critically appraise this research body and our ability to reach a reliable consensus. We employ named entity recognition to analyze more than 4000 abstracts, alongside full reading of 100 randomly selected papers. We highlight the broad range of study designs and methodologies used; the most common being local space-for-time comparisons that classify land use in situ. Species metrics including abundance, distribution, and diversity were measured more frequently than complex responses such as demography, vital rates, and behavior. We identified taxonomic biases, with vertebrates well represented while detritivores were largely missing. Omitting this group may hinder our understanding of how land-use change affects ecosystem feedback. Research was heavily biased toward temperate forested biomes in North America and Europe, with warmer regions being acutely underrepresented despite offering potential insights into the future effects of land-use change under novel climates. Various land-use histories were covered, although more research in understudied regions including Africa and the Middle East is required to capture regional differences in the form of current and historical land-use practices. Failure to address these challenges will impede our global understanding of land-use change impacts on biodiversity, limit the reliability of future projections and have repercussions for the conservation of threatened species. Beyond identifying literature biases, we highlight the research priorities and data gaps that need urgent attention and offer perspectives on how to move forward.
Collapse
Affiliation(s)
- Charles W Davison
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Ecology, Peking University, Beijing, China
- Department of Life Sciences, Imperial College London, Ascot, UK
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Naia Morueta-Holme
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Bowd EJ, Banks SC, Bissett A, May TW, Lindenmayer DB. Disturbance alters the forest soil microbiome. Mol Ecol 2021; 31:419-447. [PMID: 34687569 DOI: 10.1111/mec.16242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Billions of microorganisms perform critical below-ground functions in all terrestrial ecosystems. While largely invisible to the naked eye, they support all higher lifeforms, form symbiotic relationships with ~90% of terrestrial plant species, stabilize soils, and facilitate biogeochemical cycles. Global increases in the frequency of disturbances are driving major changes in the structure and function of forests. However, despite their functional significance, the disturbance responses of forest microbial communities are poorly understood. Here, we explore the influence of disturbance on the soil microbiome (archaea, fungi and bacteria) of some of the world's tallest and most carbon-dense forests, the Mountain Ash forests of south-eastern Australia. From 80 sites, we identified 23,277 and 19,056 microbial operational taxonomic units from the 0-10 cm and 20-30 cm depths of soil respectively. From this extensive data set, we found the diversity and composition of these often cryptic communities has been altered by human and natural disturbance events. For instance, the diversity of ectomycorrhizal fungi declined with clearcut logging, the diversity of archaea declined with salvage logging, and bacterial diversity and overall microbial diversity declined with the number of fires. Moreover, we identified key associations between edaphic (soil properties), environmental (slope, elevation) and spatial variables and the composition of all microbial communities. Specifically, we found that soil pH, manganese, magnesium, phosphorus, iron and nitrate were associated with the composition of all microbial communities. In a period of widespread degradation of global forest ecosystems, our findings provide an important and timely insight into the disturbance responses of soil microbial communities, which may influence key ecological functions.
Collapse
Affiliation(s)
- Elle J Bowd
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.,College of Engineering, IT and the Environment, Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Andrew Bissett
- The Commonwealth Scientific and Industrial Research Organization, CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
| | - Tom W May
- Royal Botanic Gardens Victoria, Melbourne, VIC, Australia
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
38
|
Carbonne B, Bohan DA, Foffová H, Daouti E, Frei B, Neidel V, Saska P, Skuhrovec J, Petit S. Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Carbonne
- Agroécologie AgroSup Dijon INRAEUniversité de Bourgogne Franche‐Comté Dijon France
| | - David A. Bohan
- Agroécologie AgroSup Dijon INRAEUniversité de Bourgogne Franche‐Comté Dijon France
| | - Hana Foffová
- Functional Diversity in Agro‐Ecosystems, Crop Research Institute Ruzyně Czech Republic
- Department of Ecology Faculty of Environmental Sciences Czech University of Life Sciences Prague Praha‐Suchdol Czech Republic
| | - Eirini Daouti
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Britta Frei
- Agroécologie AgroSup Dijon INRAEUniversité de Bourgogne Franche‐Comté Dijon France
- Mountain Agriculture Research Unit and Department of Zoology University of Innsbruck Innsbruck Austria
| | - Veronika Neidel
- Mountain Agriculture Research Unit and Department of Zoology University of Innsbruck Innsbruck Austria
| | - Pavel Saska
- Functional Diversity in Agro‐Ecosystems, Crop Research Institute Ruzyně Czech Republic
| | - Jiří Skuhrovec
- Functional Diversity in Agro‐Ecosystems, Crop Research Institute Ruzyně Czech Republic
| | - Sandrine Petit
- Agroécologie AgroSup Dijon INRAEUniversité de Bourgogne Franche‐Comté Dijon France
| |
Collapse
|
39
|
Donald J, Murienne J, Chave J, Iribar A, Louisanna E, Manzi S, Roy M, Tao S, Orivel J, Schimann H, Zinger L. Multi-taxa environmental DNA inventories reveal distinct taxonomic and functional diversity in urban tropical forest fragments. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Kreider JJ, Chen T, Hartke TR, Buchori D, Hidayat P, Nazarreta R, Scheu S, Drescher J. Rainforest conversion to monocultures favors generalist ants with large colonies. Ecosphere 2021. [DOI: 10.1002/ecs2.3717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jan J. Kreider
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| | - Ting‐Wen Chen
- Institute of Soil Biology Biology Centre of the Czech Academy of Sciences Na Sádkách 7 Ceske Budejovice 37005 Czech Republic
| | - Tamara R. Hartke
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| | - Damayanti Buchori
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
- Center for Transdisciplinary and Sustainability Sciences IPB University Jl. Raya Pajajartan Bogor 16153 Indonesia
| | - Purnama Hidayat
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
| | - Rizky Nazarreta
- Department of Plant Protection Faculty of Agriculture IPB University Jl. Kamper, Kampus IPB Dramaga Bogor 16680 Indonesia
| | - Stefan Scheu
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 Göttingen 37077 Germany
| | - Jochen Drescher
- Animal Ecology J.‐F.‐Blumenbach Institute for Zoology and Anthropology University of Göttingen Untere Karspüle 2 Göttingen 37073 Germany
| |
Collapse
|
41
|
Calderón-Sanou I, Münkemüller T, Zinger L, Schimann H, Yoccoz NG, Gielly L, Foulquier A, Hedde M, Ohlmann M, Roy M, Si-Moussi S, Thuiller W. Cascading effects of moth outbreaks on subarctic soil food webs. Sci Rep 2021; 11:15054. [PMID: 34301993 PMCID: PMC8302651 DOI: 10.1038/s41598-021-94227-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
The increasing severity and frequency of natural disturbances requires a better understanding of their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment remained unclear. Here, we combined eDNA surveys of multiple trophic groups with network analyses to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this disturbance, diversity and relative abundance of certain trophic groups declined (e.g., ectomycorrhizal fungi), while many others expanded (e.g., bacterivores and omnivores) making soil food webs more diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks increased belowground diversity at different trophic levels. Our results highlight that a holistic view of ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.
Collapse
Affiliation(s)
- Irene Calderón-Sanou
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France.
| | - Tamara Münkemüller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| | - Lucie Zinger
- Institut de Biologie de L'ENS (IBENS), Département de biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Heidy Schimann
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université Des Antilles, Université de Guyane), Kourou, France
| | - Nigel Gilles Yoccoz
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ludovic Gielly
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| | - Arnaud Foulquier
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| | - Mickael Hedde
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34398, Montpellier, France
| | - Marc Ohlmann
- Université Savoie Mont-Blanc, LAMA, 73000, Chambéry, France
| | - Mélanie Roy
- Laboratoire Évolution Et Diversité Biologique, CNRS, UMR 5174 UPS CNRS IRD, Université Toulouse 3 Paul Sabatier, Toulouse, France
- Instituto Franco-Argentino Para El Estudio del Clima Y Sus Impactos (UMI IFAECI/CNRS-CONICET-UBA-IRD), Dpto. de Ciencias de La Atmosfera Y Los Oceanos, FCEN, Universidad de Buenos Aires, Intendente Guiraldes 2160 - Ciudad Universitaria (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Si-Moussi
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34398, Montpellier, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| |
Collapse
|
42
|
Bowd EJ, Blair DP, Lindenmayer DB. Prior disturbance legacy effects on plant recovery post‐high‐severity wildfire. Ecosphere 2021. [DOI: 10.1002/ecs2.3480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Elle J. Bowd
- Fenner School of Environment and Society College of Science The Australian National University Canberra Australian Capital Territory Australia
| | - David P. Blair
- Fenner School of Environment and Society College of Science The Australian National University Canberra Australian Capital Territory Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society College of Science The Australian National University Canberra Australian Capital Territory Australia
| |
Collapse
|
43
|
Huang S, Tucker MA, Hertel AG, Eyres A, Albrecht J. Scale-dependent effects of niche specialisation: The disconnect between individual and species ranges. Ecol Lett 2021; 24:1408-1419. [PMID: 33960589 DOI: 10.1111/ele.13759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/28/2023]
Abstract
One of the most general expectations of species range dynamics is that widespread species tend to have broader niches. However, it remains unclear how this relationship is expressed at different levels of biological organisation, which involve potentially distinctive processes operating at different spatial and temporal scales. Here, we show that range sizes of terrestrial non-volant mammals at the individual and species level show contrasting relationships with two ecological niche dimensions: diet and habitat breadth. While average individual home range size appears to be mainly shaped by the interplay of diet niche breadth and body mass, species geographical range size is primarily related to habitat niche breadth but not to diet niche breadth. Our findings suggest that individual home range size is shaped by the trade-off between energetic requirements, movement capacity and trophic specialisation, whereas species geographical range size is related to the ability to persist under various environmental conditions.
Collapse
Affiliation(s)
- Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Marlee A Tucker
- Department of Environmental Science, Radboud University, Nijmegen, Netherlands
| | - Anne G Hertel
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Alison Eyres
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Department of Biological Sciences, Goethe-University Frankfurt, Frankfurt, Germany.,RSPB Centre for Conservation Science, Cambridge, UK
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| |
Collapse
|
44
|
Vásquez‐Ávila B, Knowlton JL, Espinosa CI, Tinoco BA. Habitat alteration modifies the structure and function of mixed‐species flocks in an Andean landscape. Biotropica 2021. [DOI: 10.1111/btp.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Carlos I. Espinosa
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos Universidad Técnica Particular de Loja Loja Ecuador
| | | |
Collapse
|
45
|
Rocha FI, Ribeiro TG, Fontes MA, Schwab S, Coelho MRR, Lumbreras JF, da Motta PEF, Teixeira WG, Cole J, Borsanelli AC, Dutra IDS, Howe A, de Oliveira AP, Jesus EDC. Land-Use System and Forest Floor Explain Prokaryotic Metacommunity Structuring and Spatial Turnover in Amazonian Forest-to-Pasture Conversion Areas. Front Microbiol 2021; 12:657508. [PMID: 33967996 PMCID: PMC8097146 DOI: 10.3389/fmicb.2021.657508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Advancing extensive cattle production is a major threat to biodiversity conservation in Amazonia. The dominant vegetation cover has a drastic impact on soil microbial communities, affecting their composition, structure, and ecological services. Herein, we explored relationships between land-use, soil types, and forest floor compartments on the prokaryotic metacommunity structuring in Western Amazonia. Soil samples were taken in sites under high anthropogenic pressure and distributed along a ±800 km gradient. Additionally, the litter and a root layer, characteristic of the forest environment, were sampled. DNA was extracted, and metacommunity composition and structure were assessed through 16S rRNA gene sequencing. Prokaryotic metacommunities in the bulk soil were strongly affected by pH, base and aluminum saturation, Ca + Mg concentration, the sum of bases, and silt percentage, due to land-use management and natural differences among the soil types. Higher alpha, beta, and gamma diversities were observed in sites with higher soil pH and fertility, such as pasture soils or fertile soils of the state of Acre. When taking litter and root layer communities into account, the beta diversity was significantly higher in the forest floor than in pasture bulk soil for all study regions. Our results show that the forest floor's prokaryotic metacommunity performs a spatial turnover hitherto underestimated to the regional scale of diversity.
Collapse
Affiliation(s)
- Fernando Igne Rocha
- Department of Soil, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | | | | | - Stefan Schwab
- National Agrobiology Research Center, Embrapa Agrobiologia, Seropédica, Brazil
| | | | | | | | | | - James Cole
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - Iveraldo dos Santos Dutra
- Department of Support, Production and Animal Health, Universidade Estadual Paulista, Araçatuba, Brazil
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
46
|
Large ecosystem-scale effects of restoration fail to mitigate impacts of land-use legacies in longleaf pine savannas. Proc Natl Acad Sci U S A 2021; 118:2020935118. [PMID: 33875596 DOI: 10.1073/pnas.2020935118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecological restoration is a global priority, with potential to reverse biodiversity declines and promote ecosystem functioning. Yet, successful restoration is challenged by lingering legacies of past land-use activities, which are pervasive on lands available for restoration. Although legacies can persist for centuries following cessation of human land uses such as agriculture, we currently lack understanding of how land-use legacies affect entire ecosystems, how they influence restoration outcomes, or whether restoration can mitigate legacy effects. Using a large-scale experiment, we evaluated how restoration by tree thinning and land-use legacies from prior cultivation and subsequent conversion to pine plantations affect fire-suppressed longleaf pine savannas. We evaluated 45 ecological properties across four categories: 1) abiotic attributes, 2) organism abundances, 3) species diversity, and 4) species interactions. The effects of restoration and land-use legacies were pervasive, shaping all categories of properties, with restoration effects roughly twice the magnitude of legacy effects. Restoration effects were of comparable magnitude in savannas with and without a history of intensive human land use; however, restoration did not mitigate numerous legacy effects present prior to restoration. As a result, savannas with a history of intensive human land use supported altered properties, especially related to soils, even after restoration. The signature of past human land-use activities can be remarkably persistent in the face of intensive restoration, influencing the outcome of restoration across diverse ecological properties. Understanding and mitigating land-use legacies will maximize the potential to restore degraded ecosystems.
Collapse
|
47
|
Bowd EJ, Banks SC, Bissett A, May TW, Lindenmayer DB. Direct and indirect disturbance impacts in forests. Ecol Lett 2021; 24:1225-1236. [PMID: 33830614 DOI: 10.1111/ele.13741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 01/16/2023]
Abstract
Human and natural disturbances are key drivers of change in forest ecosystems. Yet, the direct and indirect mechanisms which underpin these changes remain poorly understood at the ecosystem level. Here, using structural equation modelling across a 150+ year chronosequence, we disentangle the direct and indirect effects of major disturbances in a temperate forest ecosystem. We show that wildfires, logging and post-fire (salvage) logging can affect plant and microbial communities and abiotic soil properties both directly and indirectly through plant-soil-microbial interactions. We quantified 68 direct and indirect disturbance effects across these components, with the majority resulting in ecosystem-wide adverse effects. Indirect disturbance effects accounted for 43% of total disturbance effects, with some amplifying or partially mitigating direct disturbance effects. Overall, human disturbances were associated with more negative effects than natural disturbances. Our analyses provide novel insights into the multifaceted dynamics of forest disturbances and the mechanisms which underpin their relative impacts.
Collapse
Affiliation(s)
- Elle J Bowd
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia.,Research Institute for Environment and Livelihoods, College of Engineering, IT and the Environment, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Andrew Bissett
- The Commonwealth Scientific and Industrial Research Organization, CSIRO Oceans and Atmosphere, Hobart, TAS, 700, Australia
| | - Tom W May
- Royal Botanic Gardens Victoria, Birdwood Ave, Melbourne, Vic., 3004, Australia
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
48
|
Linders TEW, Schaffner U, Alamirew T, Allan E, Choge SK, Eschen R, Shiferaw H, Manning P. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Theo E. W. Linders
- Senckenberg Biodiversity and Climate Research Centre (SBIK‐F) Frankfurt am Main Germany
| | | | - Tena Alamirew
- Water and Land Resource Centre Addis Ababa University Addis Ababa Ethiopia
| | - Eric Allan
- Institute of Plant Sciences University of Bern Bern Switzerland
- Centre for Development and the Environment University of Bern Bern Switzerland
| | - Simon K. Choge
- Baringo SubcentreKenya Forestry Research Institute Marigat Kenya
| | | | - Hailu Shiferaw
- Water and Land Resource Centre Addis Ababa University Addis Ababa Ethiopia
| | - Peter Manning
- Senckenberg Biodiversity and Climate Research Centre (SBIK‐F) Frankfurt am Main Germany
| |
Collapse
|
49
|
Laigle I, Moretti M, Rousseau L, Gravel D, Venier L, Handa IT, Messier C, Morris D, Hazlett P, Fleming R, Webster K, Shipley B, Aubin I. Direct and Indirect Effects of Forest Anthropogenic Disturbance on Above and Below Ground Communities and Litter Decomposition. Ecosystems 2021. [DOI: 10.1007/s10021-021-00613-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Boyle MJW, Bishop TR, Luke SH, Breugel M, Evans TA, Pfeifer M, Fayle TM, Hardwick SR, Lane‐Shaw RI, Yusah KM, Ashford ICR, Ashford OS, Garnett E, Turner EC, Wilkinson CL, Chung AYC, Ewers RM. Localised climate change defines ant communities in human‐modified tropical landscapes. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Michael J. W. Boyle
- Department of Life Sciences Imperial College London Silwood Park UK
- Department of Biological Sciences National University of Singapore Singapore City Singapore
- School of Biological Sciences The University of Hong Kong Hong Kong City Hong Kong
| | - Tom R. Bishop
- Department of Zoology and Entomology University of Pretoria Pretoria South Africa
- Department of Earth, Ocean and Ecological Sciences University of Liverpool Liverpool UK
| | - Sarah H. Luke
- School of Biological Sciences University of East Anglia Norwich UK
- Department of Zoology University of Cambridge Cambridge UK
| | - Michiel Breugel
- Forest GEOSmithsonian Tropical Research Institute Panama
- Yale‐NUS College Singapore City Singapore
| | - Theodore A. Evans
- Department of Biological Sciences National University of Singapore Singapore City Singapore
- School of Biological Sciences The University of Western Australia Crawley Australia
| | - Marion Pfeifer
- Department of Life Sciences Imperial College London Silwood Park UK
- School of Biology Newcastle University Newcastle Upon Tyne UK
| | - Tom M. Fayle
- Department of Life Sciences Imperial College London Silwood Park UK
- Biology Centre of the Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Sabah Malaysia
| | | | | | - Kalsum M. Yusah
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Sabah Malaysia
| | | | - Oliver S. Ashford
- Department of Zoology University of Cambridge Cambridge UK
- Integrative Oceanography Division Scripps Institution of Oceanography University of California San Diego San Diego CA USA
| | - Emma Garnett
- Department of Zoology University of Cambridge Cambridge UK
| | - Edgar C. Turner
- Department of Life Sciences Imperial College London Silwood Park UK
- Department of Zoology University of Cambridge Cambridge UK
| | - Clare L. Wilkinson
- Department of Life Sciences Imperial College London Silwood Park UK
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| | | | - Robert M. Ewers
- Department of Life Sciences Imperial College London Silwood Park UK
| |
Collapse
|