1
|
Jepsen JU, Arneberg P, Ims RA, Siwertsson A, Yoccoz NG, Fauchald P, Pedersen ÅØ, van der Meeren GI, von Quillfeldt CH. Panel-based assessment of ecosystem condition as a platform for adaptive and knowledge driven management. ENVIRONMENTAL MANAGEMENT 2024; 74:1020-1036. [PMID: 39271533 PMCID: PMC11438735 DOI: 10.1007/s00267-024-02042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Ecosystems are subjected to increasing exposure to multiple anthropogenic drivers. This has led to the development of national and international accounting systems describing the condition of ecosystems, often based on few, highly aggregated indicators. Such accounting systems would benefit from a stronger theoretical and empirical underpinning of ecosystem dynamics. Operational tools for ecosystem management require understanding of natural ecosystem dynamics, consideration of uncertainty at all levels, means for quantifying driver-response relationships behind observed and anticipated future trajectories of change, and an efficient and transparent synthesis to inform knowledge-driven decision processes. There is hence a gap between highly aggregated indicator-based accounting tools and the need for explicit understanding and assessment of the links between multiple drivers and ecosystem condition as a foundation for informed and adaptive ecosystem management. We describe here an approach termed PAEC (Panel-based Assessment of Ecosystem Condition) for combining quantitative and qualitative elements of evidence and uncertainties into an integrated assessment of ecosystem condition at spatial scales relevant to management and monitoring. The PAEC protocol is founded on explicit predictions, termed phenomena, of how components of ecosystem structure and functions are changing as a result of acting drivers. The protocol tests these predictions with observations and combines these tests to assess the change in the condition of the ecosystem as a whole. PAEC includes explicit, quantitative or qualitative, assessments of uncertainty at different levels and integrates these in the final assessment. As proofs-of-concept we summarize the application of the PAEC protocol to a marine and a terrestrial ecosystem in Norway.
Collapse
Affiliation(s)
- Jane U Jepsen
- Norwegian Institute for Nature Research, Department of Arctic Ecology, Fram Centre, 9296, Tromsø, Norway.
| | - Per Arneberg
- Institute of Marine Research, Department of Ecosystem Processes, Fram Centre, 9296, Tromsø, Norway
| | - Rolf A Ims
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037, Tromsø, Norway
| | - Anna Siwertsson
- Institute of Marine Research, Department of Ecosystem Processes, Fram Centre, 9296, Tromsø, Norway
- Akvaplan-niva, Fram Centre, 9296, Tromsø, Norway
| | - Nigel G Yoccoz
- UiT The Arctic University of Norway, Department of Arctic and Marine Biology, 9037, Tromsø, Norway
| | - Per Fauchald
- Norwegian Institute for Nature Research, Department of Arctic Ecology, Fram Centre, 9296, Tromsø, Norway
| | | | - Gro I van der Meeren
- Institute of Marine Research, Department of Ecosystem Processes, 5392, Storebø, Norway
| | | |
Collapse
|
2
|
Schleussner CF, Ganti G, Lejeune Q, Zhu B, Pfleiderer P, Prütz R, Ciais P, Frölicher TL, Fuss S, Gasser T, Gidden MJ, Kropf CM, Lacroix F, Lamboll R, Martyr R, Maussion F, McCaughey JW, Meinshausen M, Mengel M, Nicholls Z, Quilcaille Y, Sanderson B, Seneviratne SI, Sillmann J, Smith CJ, Steinert NJ, Theokritoff E, Warren R, Price J, Rogelj J. Overconfidence in climate overshoot. Nature 2024; 634:366-373. [PMID: 39385053 PMCID: PMC11464373 DOI: 10.1038/s41586-024-08020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/29/2024] [Indexed: 10/11/2024]
Abstract
Global emission reduction efforts continue to be insufficient to meet the temperature goal of the Paris Agreement1. This makes the systematic exploration of so-called overshoot pathways that temporarily exceed a targeted global warming limit before drawing temperatures back down to safer levels a priority for science and policy2-5. Here we show that global and regional climate change and associated risks after an overshoot are different from a world that avoids it. We find that achieving declining global temperatures can limit long-term climate risks compared with a mere stabilization of global warming, including for sea-level rise and cryosphere changes. However, the possibility that global warming could be reversed many decades into the future might be of limited relevance for adaptation planning today. Temperature reversal could be undercut by strong Earth-system feedbacks resulting in high near-term and continuous long-term warming6,7. To hedge and protect against high-risk outcomes, we identify the geophysical need for a preventive carbon dioxide removal capacity of several hundred gigatonnes. Yet, technical, economic and sustainability considerations may limit the realization of carbon dioxide removal deployment at such scales8,9. Therefore, we cannot be confident that temperature decline after overshoot is achievable within the timescales expected today. Only rapid near-term emission reductions are effective in reducing climate risks.
Collapse
Affiliation(s)
- Carl-Friedrich Schleussner
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.
- Geography Department and IRITHESys Institute, Humboldt-Universität zu Berlin, Berlin, Germany.
- Climate Analytics, Berlin, Germany.
| | - Gaurav Ganti
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Geography Department and IRITHESys Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Climate Analytics, Berlin, Germany
| | - Quentin Lejeune
- Geography Department and IRITHESys Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Climate Analytics, Berlin, Germany
| | - Biqing Zhu
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Laboratoire des Sciences du Climate et de l'Environnement, LSCE, Gif-sur-Yvette, France
| | - Peter Pfleiderer
- Climate Analytics, Berlin, Germany
- Research Unit for Sustainability and Climate Risks, University of Hamburg, Hamburg, Germany
| | - Ruben Prütz
- Geography Department and IRITHESys Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin, Germany
- Grantham Institute for Climate Change and the Environment, Imperial College London, London, UK
| | - Philippe Ciais
- Laboratoire des Sciences du Climate et de l'Environnement, LSCE, Gif-sur-Yvette, France
| | - Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Sabine Fuss
- Geography Department and IRITHESys Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Thomas Gasser
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Matthew J Gidden
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Climate Analytics, Berlin, Germany
| | - Chahan M Kropf
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Federal Office of Meteorology and Climatology, MeteoSwiss, Zürich, Switzerland
| | - Fabrice Lacroix
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Robin Lamboll
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Rosanne Martyr
- Geography Department and IRITHESys Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Climate Analytics, Berlin, Germany
| | - Fabien Maussion
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jamie W McCaughey
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Federal Office of Meteorology and Climatology, MeteoSwiss, Zürich, Switzerland
| | - Malte Meinshausen
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Climate Resource, Melbourne, Victoria, Australia
| | - Matthias Mengel
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Zebedee Nicholls
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Climate Resource, Melbourne, Victoria, Australia
| | - Yann Quilcaille
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Benjamin Sanderson
- Centre for International Climate and Environmental Research, Oslo, Norway
| | - Sonia I Seneviratne
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Jana Sillmann
- Research Unit for Sustainability and Climate Risks, University of Hamburg, Hamburg, Germany
- Centre for International Climate and Environmental Research, Oslo, Norway
| | - Christopher J Smith
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Met Office Hadley Centre, Exeter, UK
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - Norman J Steinert
- Centre for International Climate and Environmental Research, Oslo, Norway
| | - Emily Theokritoff
- Geography Department and IRITHESys Institute, Humboldt-Universität zu Berlin, Berlin, Germany
- Climate Analytics, Berlin, Germany
- Grantham Institute for Climate Change and the Environment, Imperial College London, London, UK
| | - Rachel Warren
- Tyndall Centre for Climate Change Research and School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Jeff Price
- Tyndall Centre for Climate Change Research and School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Joeri Rogelj
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Grantham Institute for Climate Change and the Environment, Imperial College London, London, UK
- Centre for Environmental Policy, Imperial College London, London, UK
| |
Collapse
|
3
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
4
|
Cravens AE, Clifford KR, Knapp C, Travis WR. The dynamic feasibility of resisting (R), accepting (A), or directing (D) ecological change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14331. [PMID: 39016709 DOI: 10.1111/cobi.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024]
Abstract
Ecological transformations are occurring as a result of climate change, challenging traditional approaches to land management decision-making. The resist-accept-direct (RAD) framework helps managers consider how to respond to this challenge. We examined how the feasibility of the choices to resist, accept, and direct shifts in complex and dynamic ways through time. We considered 4 distinct types of social feasibility: regulatory, financial, public, and organizational. Our commentary is grounded in literature review and the examples that exist but necessarily has speculative elements because empirical evidence on this newly emerging management strategy is scarce. We expect that resist strategies will become less feasible over time as managers encounter situations where resisting is ecologically, by regulation, financially, or publicly not feasible. Similarly, we expect that as regulatory frameworks increasingly permit their use, if costs decrease, and if the public accepts them, managers will increasingly view accept and direct strategies as more viable options than they do at present. Exploring multiple types of feasibility over time allows consideration of both social and ecological trajectories of change in tandem. Our theorizing suggested that deepening the time horizon of decision-making allows one to think carefully about when one should adopt different approaches and how to combine them over time.
Collapse
Affiliation(s)
- Amanda E Cravens
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon, USA
| | - Katherine R Clifford
- Western Water Assessment, University of Colorado Boulder, Boulder, Colorado, USA
| | - Corrine Knapp
- Haub School of Environment & Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - William R Travis
- Department of Geography and North Central Climate Adaptation Science Center, Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
5
|
Evans MEK, Dey SMN, Heilman KA, Tipton JR, DeRose RJ, Klesse S, Schultz EL, Shaw JD. Tree rings reveal the transient risk of extinction hidden inside climate envelope forecasts. Proc Natl Acad Sci U S A 2024; 121:e2315700121. [PMID: 38830099 PMCID: PMC11181036 DOI: 10.1073/pnas.2315700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/03/2024] [Indexed: 06/05/2024] Open
Abstract
Given the importance of climate in shaping species' geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data-such that individuals at the cool edge of a species' distribution should benefit from warming (the "leading edge"), whereas individuals at the warm edge should suffer (the "trailing edge"). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species' distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming-the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species' distribution with respect to temperature and the majority of the species' distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.
Collapse
Affiliation(s)
| | - Sharmila M. N. Dey
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - Kelly A. Heilman
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ85721
| | - John R. Tipton
- Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM87545
| | - R. Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT84322
| | - Stefan Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, BirmensdorfCH-8903, Switzerland
| | - Emily L. Schultz
- Department of Biology, Colorado Mountain College, Breckenridge, CO80424
| | - John D. Shaw
- Riverdale Forestry Sciences Lab, Rocky Mountain Research Station, US Forest Service, Riverdale, UT84405
| |
Collapse
|
6
|
Fastovich D, Radeloff VC, Zuckerberg B, Williams JW. Legacies of millennial-scale climate oscillations in contemporary biodiversity in eastern North America. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230012. [PMID: 38583476 PMCID: PMC10999273 DOI: 10.1098/rstb.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/22/2024] [Indexed: 04/09/2024] Open
Abstract
The Atlantic meridional overturning circulation (AMOC) has caused significant climate changes over the past 90 000 years. Prior work has hypothesized that these millennial-scale climate variations effected past and contemporary biodiversity, but the effects are understudied. Moreover, few biogeographic models have accounted for uncertainties in palaeoclimatic simulations of millennial-scale variability. We examine whether refuges from millennial-scale climate oscillations have left detectable legacies in the patterns of contemporary species richness in eastern North America. We analyse 13 palaeoclimate estimates from climate simulations and proxy-based reconstructions as predictors for the contemporary richness of amphibians, passerine birds, mammals, reptiles and trees. Results suggest that past climate changes owing to AMOC variations have left weak but detectable imprints on the contemporary richness of mammals and trees. High temperature stability, precipitation increase, and an apparent climate fulcrum in the southeastern United States across millennial-scale climate oscillations aligns with high biodiversity in the region. These findings support the hypothesis that the southeastern United States may have acted as a biodiversity refuge. However, for some taxa, the strength and direction of palaeoclimate-richness relationships varies among different palaeoclimate estimates, pointing to the importance of palaeoclimatic ensembles and the need for caution when basing biogeographic interpretations on individual palaeoclimate simulations. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- David Fastovich
- Department of Geography, University of Wisconsin–Madison, 550 North Park Street, Madison, WI 53706, USA
- Department of Earth and Environmental Sciences, Syracuse University, 141 Crouse Drive, Syracuse, NY 13210, USA
| | - Volker C. Radeloff
- SILVIS Laboratory, Department of Forest and Wildlife Ecology, University of Wisconsin–Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin–Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - John W. Williams
- Department of Geography, University of Wisconsin–Madison, 550 North Park Street, Madison, WI 53706, USA
- Center for Climatic Research, University of Wisconsin–Madison, 550 North Park Street, Madison, WI 53706, USA
| |
Collapse
|
7
|
Svenning JC, McGeoch MA, Normand S, Ordonez A, Riede F. Navigating ecological novelty towards planetary stewardship: challenges and opportunities in biodiversity dynamics in a transforming biosphere. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230008. [PMID: 38583480 PMCID: PMC10999270 DOI: 10.1098/rstb.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Human-induced global changes, including anthropogenic climate change, biotic globalization, trophic downgrading and pervasive land-use intensification, are transforming Earth's biosphere, placing biodiversity and ecosystems at the forefront of unprecedented challenges. The Anthropocene, characterized by the importance of Homo sapiens in shaping the Earth system, necessitates a re-evaluation of our understanding and stewardship of ecosystems. This theme issue delves into the multifaceted challenges posed by the ongoing ecological planetary transformation and explores potential solutions across four key subthemes. Firstly, it investigates the functioning and stewardship of emerging novel ecosystems, emphasizing the urgent need to comprehend the dynamics of ecosystems under uncharted conditions. The second subtheme focuses on biodiversity projections under global change, recognizing the necessity of predicting ecological shifts in the Anthropocene. Importantly, the inherent uncertainties and the complexity of ecological responses to environmental stressors pose challenges for societal responses and for accurate projections of ecological change. The RAD framework (resist-accept-direct) is highlighted as a flexible yet nuanced decision-making tool that recognizes the need for adaptive approaches, providing insights for directing and adapting to Anthropocene dynamics while minimizing negative impacts. The imperative to extend our temporal perspective beyond 2100 is emphasized, given the irreversible changes already set in motion. Advancing methods to study ecosystem dynamics under rising biosphere novelty is the subject of the third subtheme. The fourth subtheme emphasizes the importance of integrating human perspectives into understanding, forecasting and managing novel ecosystems. Cultural diversity and biological diversity are intertwined, and the evolving relationship between humans and ecosystems offers lessons for future stewardship. Achieving planetary stewardship in the Anthropocene demands collaboration across scales and integration of ecological and societal perspectives, scalable approaches fit to changing, novel ecological conditions, as well as cultural innovation. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Sustainable Landscapes under Global Change (SustainScapes), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Melodie A. McGeoch
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia
| | - Signe Normand
- Center for Sustainable Landscapes under Global Change (SustainScapes), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Landscape Research in Sustainable Agricultural Futures (Land-CRAFT), Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Alejandro Ordonez
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Sustainable Landscapes under Global Change (SustainScapes), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Felix Riede
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Department of Archaeology and Heritage Studies, Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
| |
Collapse
|
8
|
Conradi T, Eggli U, Kreft H, Schweiger AH, Weigelt P, Higgins SI. Reassessment of the risks of climate change for terrestrial ecosystems. Nat Ecol Evol 2024; 8:888-900. [PMID: 38409318 DOI: 10.1038/s41559-024-02333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Forecasting the risks of climate change for species and ecosystems is necessary for developing targeted conservation strategies. Previous risk assessments mapped the exposure of the global land surface to changes in climate. However, this procedure is unlikely to robustly identify priority areas for conservation actions because nonlinear physiological responses and colimitation processes ensure that ecological changes will not map perfectly to the forecast climatic changes. Here, we combine ecophysiological growth models of 135,153 vascular plant species and plant growth-form information to transform ambient and future climatologies into phytoclimates, which describe the ability of climates to support the plant growth forms that characterize terrestrial ecosystems. We forecast that 33% to 68% of the global land surface will experience a significant change in phytoclimate by 2070 under representative concentration pathways RCP 2.6 and RCP 8.5, respectively. Phytoclimates without present-day analogue are forecast to emerge on 0.3-2.2% of the land surface and 0.1-1.3% of currently realized phytoclimates are forecast to disappear. Notably, the geographic pattern of change, disappearance and novelty of phytoclimates differs markedly from the pattern of analogous trends in climates detected by previous studies, thereby defining new priorities for conservation actions and highlighting the limits of using untransformed climate change exposure indices in ecological risk assessments. Our findings suggest that a profound transformation of the biosphere is underway and emphasize the need for a timely adaptation of biodiversity management practices.
Collapse
Affiliation(s)
- Timo Conradi
- Plant Ecology, University of Bayreuth, Bayreuth, Germany.
| | - Urs Eggli
- Sukkulenten-Sammlung Zürich, Grün Stadt Zürich, Zürich, Switzerland
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Andreas H Schweiger
- Institute of Landscape and Plant Ecology, Department of Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | | |
Collapse
|
9
|
Lin Q, Zhang K, Giguet-Covex C, Arnaud F, McGowan S, Gielly L, Capo E, Huang S, Ficetola GF, Shen J, Dearing JA, Meadows ME. Transient social-ecological dynamics reveal signals of decoupling in a highly disturbed Anthropocene landscape. Proc Natl Acad Sci U S A 2024; 121:e2321303121. [PMID: 38640342 PMCID: PMC11046650 DOI: 10.1073/pnas.2321303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Abstract
Understanding the transient dynamics of interlinked social-ecological systems (SES) is imperative for assessing sustainability in the Anthropocene. However, how to identify critical transitions in real-world SES remains a formidable challenge. In this study, we present an evolutionary framework to characterize these dynamics over an extended historical timeline. Our approach leverages multidecadal rates of change in socioeconomic data, paleoenvironmental, and cutting-edge sedimentary ancient DNA records from China's Yangtze River Delta, one of the most densely populated and intensively modified landscapes on Earth. Our analysis reveals two significant social-ecological transitions characterized by contrasting interactions and feedback spanning several centuries. Initially, the regional SES exhibited a loosely connected and ecologically sustainable regime. Nevertheless, starting in the 1950s, an increasingly interconnected regime emerged, ultimately resulting in the crossing of tipping points and an unprecedented acceleration in soil erosion, water eutrophication, and ecosystem degradation. Remarkably, the second transition occurring around the 2000s, featured a notable decoupling of socioeconomic development from ecoenvironmental degradation. This decoupling phenomenon signifies a more desirable reconfiguration of the regional SES, furnishing essential insights not only for the Yangtze River Basin but also for regions worldwide grappling with similar sustainability challenges. Our extensive multidecadal empirical investigation underscores the value of coevolutionary approaches in understanding and addressing social-ecological system dynamics.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Ke Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Charline Giguet-Covex
- Laboratoire Environnements, Dyamiques et Teritoires de la Montagne, Université Savoie Mont Blanc, CNRS, Chambéry73000, France
| | - Fabien Arnaud
- Laboratoire Environnements, Dyamiques et Teritoires de la Montagne, Université Savoie Mont Blanc, CNRS, Chambéry73000, France
| | - Suzanne McGowan
- Department of Aquatic Ecology, Netherlands Institute of Ecology, Wageningen6708PB, Netherlands
| | - Ludovic Gielly
- Laboratoire d’Écologie Alpine, CNRS, Université Grenoble Alpes, GrenobleF-38000, France
| | - Eric Capo
- Department of Ecology and Environmental Sciences, Umeå University, UmeåSE-90187, Sweden
| | - Shixin Huang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Gentile Francesco Ficetola
- Laboratoire d’Écologie Alpine, CNRS, Université Grenoble Alpes, GrenobleF-38000, France
- Department of Environmental Science and Policy, University of Milan, Milan20133, Italy
| | - Ji Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing210023, People’s Republic of China
| | - John A. Dearing
- School of Geography and Environmental Science, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Michael E. Meadows
- School of Geography and Ocean Science, Nanjing University, Nanjing210023, People’s Republic of China
- Department of Environmental & Geographical Science, University of Cape Town, Rondebosch7701, South Africa
| |
Collapse
|
10
|
York JM, Taylor TN, LaPotin S, Lu Y, Mueller U. Hymenopteran-specific TRPA channel from the Texas leaf cutter ant (Atta texana) is heat and cold activated and expression correlates with environmental temperature. INSECT SCIENCE 2024. [PMID: 38605428 DOI: 10.1111/1744-7917.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico. We focus on transient receptor potential (TRP) channel genes, the best characterized temperature sensor proteins in animals. Atta texana antennae express 6 of 13 Hymenopteran TRP channel genes and sequences are under a mix of relaxed and intensified selection. In a behavioral assay, we find A. texana workers prefer 24 °C (range 21-26 °C) for fungal growth. There was no evidence of regulatory evolution across a temperature transect in Texas, but instead Hymenoptera-specific TRPA (HsTRPA) expression highly correlated with ambient temperature. When expressed in vitro, HsTRPA from A. texana is temperature activated with Q10 values exceeding 100 on initial exposure to temperatures above 33 °C. Surprisingly, HsTRPA also appears to be activated by cooling, and therefore to our knowledge, the first non-TRPA1 ortholog to be described with dual heat/cold activation and the first in any invertebrate.
Collapse
Affiliation(s)
- Julia M York
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, USA
| | - Timothy N Taylor
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
| | - Sarah LaPotin
- Institute for Neuroscience, University of Texas at Austin, Austin, USA
- Department of Human Genetics, University of Utah, Salt Lake City, USA
| | - Ying Lu
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, USA
| | - Ulrich Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
| |
Collapse
|
11
|
Siegel KJ, Cavanaugh KC, Dee LE. Balancing multiple management objectives as climate change transforms ecosystems. Trends Ecol Evol 2024; 39:381-395. [PMID: 38052686 DOI: 10.1016/j.tree.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
As climate change facilitates significant and persistent ecological transformations, managing ecosystems according to historical baseline conditions may no longer be feasible. The Resist-Accept-Direct (RAD) framework can guide climate-informed management interventions, but in its current implementations RAD has not yet fully accounted for potential tradeoffs between multiple - sometimes incompatible - ecological and societal goals. Key scientific challenges for informing climate-adapted ecosystem management include (i) advancing our predictive understanding of transformations and their socioecological impacts under novel climate conditions, and (ii) incorporating uncertainty around trajectories of ecological change and the potential success of RAD interventions into management decisions. To promote the implementation of RAD, practitioners can account for diverse objectives within just and equitable participatory decision-making processes.
Collapse
Affiliation(s)
- Katherine J Siegel
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA; Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO, USA.
| | - Kyle C Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, CA, USA
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
12
|
Candido-Ribeiro R, Aitken SN. Weak local adaptation to drought in seedlings of a widespread conifer. THE NEW PHYTOLOGIST 2024; 241:2395-2409. [PMID: 38247230 DOI: 10.1111/nph.19543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Tree seedlings from populations native to drier regions are often assumed to be more drought tolerant than those from wetter provenances. However, intraspecific variation in drought tolerance has not been well-characterized despite being critical for developing climate change mitigation and adaptation strategies, and for predicting the effects of drought on forests. We used a large-scale common garden drought-to-death experiment to assess range-wide variation in drought tolerance, measured by decline of photosynthetic efficiency, growth, and plastic responses to extreme summer drought in seedlings of 73 natural populations of the two main varieties of Douglas-fir (Pseudotsuga menziesii var. menziesii and var. glauca). Local adaptation to drought was weak in var. glauca and nearly absent in menziesii. Var. glauca showed higher tolerance to drought but slower growth than var. menziesii. Clinal variation in drought tolerance and growth species-wide was mainly associated with temperature rather than precipitation. A higher degree of plasticity for growth was observed in var. menziesii in response to extreme drought. Genetic variation for drought tolerance in seedlings within varieties is maintained primarily within populations. Selective breeding within populations may facilitate adaptation to drought more than assisted gene flow.
Collapse
Affiliation(s)
- Rafael Candido-Ribeiro
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
14
|
Seebacher F, Narayan E, Rummer JL, Tomlinson S, Cooke SJ. How can physiology best contribute to wildlife conservation in a warming world? CONSERVATION PHYSIOLOGY 2023; 11:coad038. [PMID: 37287992 PMCID: PMC10243909 DOI: 10.1093/conphys/coad038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Global warming is now predicted to exceed 1.5°C by 2033 and 2°C by the end of the 21st century. This level of warming and the associated environmental variability are already increasing pressure on natural and human systems. Here we emphasize the role of physiology in the light of the latest assessment of climate warming by the Intergovernmental Panel on Climate Change. We describe how physiology can contribute to contemporary conservation programmes. We focus on thermal responses of animals, but we acknowledge that the impacts of climate change are much broader phylogenetically and environmentally. A physiological contribution would encompass environmental monitoring, coupled with measuring individual sensitivities to temperature change and upscaling these to ecosystem level. The latest version of the widely accepted Conservation Standards designed by the Conservation Measures Partnership includes several explicit climate change considerations. We argue that physiology has a unique role to play in addressing these considerations. Moreover, physiology can be incorporated by institutions and organizations that range from international bodies to national governments and to local communities, and in doing so, it brings a mechanistic approach to conservation and the management of biological resources.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Edward Narayan
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia QLD4072, Australia
| | - Jodie L Rummer
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4810, Australia
| | - Sean Tomlinson
- School of Biological Sciences, University of Adelaide, SA 5000, Australia
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
Cerini F, Childs DZ, Clements CF. A predictive timeline of wildlife population collapse. Nat Ecol Evol 2023; 7:320-331. [PMID: 36702859 DOI: 10.1038/s41559-023-01985-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023]
Abstract
Contemporary rates of biodiversity decline emphasize the need for reliable ecological forecasting, but current methods vary in their ability to predict the declines of real-world populations. Acknowledging that stressor effects start at the individual level, and that it is the sum of these individual-level effects that drives populations to collapse, shifts the focus of predictive ecology away from using predominantly abundance data. Doing so opens new opportunities to develop predictive frameworks that utilize increasingly available multi-dimensional data, which have previously been overlooked for ecological forecasting. Here, we propose that stressed populations will exhibit a predictable sequence of observable changes through time: changes in individuals' behaviour will occur as the first sign of increasing stress, followed by changes in fitness-related morphological traits, shifts in the dynamics (for example, birth rates) of populations and finally abundance declines. We discuss how monitoring the sequential appearance of these signals may allow us to discern whether a population is increasingly at risk of collapse, or is adapting in the face of environmental change, providing a conceptual framework to develop new forecasting methods that combine multi-dimensional (for example, behaviour, morphology, life history and abundance) data.
Collapse
Affiliation(s)
- Francesco Cerini
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Dylan Z Childs
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
16
|
Goren A, Viljugrein H, Rivrud IM, Jore S, Bakka H, Vindenes Y, Mysterud A. The emergence and shift in seasonality of Lyme borreliosis in Northern Europe. Proc Biol Sci 2023; 290:20222420. [PMID: 36809802 PMCID: PMC9943644 DOI: 10.1098/rspb.2022.2420] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Climate change has had a major impact on seasonal weather patterns, resulting in marked phenological changes in a wide range of taxa. However, empirical studies of how changes in seasonality impact the emergence and seasonal dynamics of vector-borne diseases have been limited. Lyme borreliosis, a bacterial infection spread by hard-bodied ticks, is the most common vector-borne disease in the northern hemisphere and has been rapidly increasing in both incidence and geographical distribution in many regions of Europe and North America. By analysis of long-term surveillance data (1995-2019) from across Norway (latitude 57°58'-71°08' N), we demonstrate a marked change in the within-year timing of Lyme borreliosis cases accompanying an increase in the annual number of cases. The seasonal peak in cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts in plant phenology and previous model predictions. The seasonal shift occurred predominantly in the first 10 years of the study period. The concurrent upsurgence in case number and shift in case timing indicate a major change in the Lyme borreliosis disease system over recent decades. This study highlights the potential for climate change to shape the seasonal dynamics of vector-borne disease systems.
Collapse
Affiliation(s)
- Asena Goren
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Inger Maren Rivrud
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, NO-0855 Oslo, Norway
| | - Solveig Jore
- Zoonotic, Food and Waterborne Infections, The Norwegian Public Health Institute, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Haakon Bakka
- Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Institute for Nature Research (NINA), PO Box 5685 Sluppen, NO-7485 Trondheim, Norway
| |
Collapse
|
17
|
Synodinos AD, Karnatak R, Aguilar‐Trigueros CA, Gras P, Heger T, Ionescu D, Maaß S, Musseau CL, Onandia G, Planillo A, Weiss L, Wollrab S, Ryo M. The rate of environmental change as an important driver across scales in ecology. OIKOS 2022. [DOI: 10.1111/oik.09616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis D. Synodinos
- Theoretical and Experimental Ecology Station, CNRS Moulis France
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Rajat Karnatak
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Carlos A. Aguilar‐Trigueros
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Freie Universität Berlin, Inst. of Biology Berlin Germany
| | - Pierre Gras
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Ecological Dynamics, Leibniz Inst. for Zoo and Wildlife Research (IZW) Berlin Germany
| | - Tina Heger
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
- Freie Universität Berlin, Inst. of Biology Berlin Germany
- Biodiversity Research/Botany, Univ. of Potsdam Potsdam Germany
- Restoration Ecology, Technical Univ. of Munich Freising Germany
| | - Danny Ionescu
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Neuglobsow Germany
| | - Stefanie Maaß
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Camille L. Musseau
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Biology, Chemistry, Pharmacy, Inst. of Biology, Freie Univ. Berlin Berlin Germany
- Leibniz Inst.I of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Gabriela Onandia
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF) Muencheberg Germany
| | - Aimara Planillo
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Ecological Dynamics, Leibniz Inst. for Zoo and Wildlife Research (IZW) Berlin Germany
| | - Lina Weiss
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Sabine Wollrab
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Masahiro Ryo
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF) Muencheberg Germany
- Environment and Natural Sciences, Brandenburg Univ. of Technology Cottbus‐Senftenberg Cottbus Germany
| |
Collapse
|
18
|
Strack T, Jonkers L, C Rillo M, Hillebrand H, Kucera M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat Ecol Evol 2022; 6:1871-1880. [PMID: 36216906 PMCID: PMC9715429 DOI: 10.1038/s41559-022-01888-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Biodiversity is expected to change in response to future global warming. However, it is difficult to predict how species will track the ongoing climate change. Here we use the fossil record of planktonic foraminifera to assess how biodiversity responded to climate change with a magnitude comparable to future anthropogenic warming. We compiled time series of planktonic foraminifera assemblages, covering the time from the last ice age across the deglaciation to the current warm period. Planktonic foraminifera assemblages shifted immediately when temperature began to rise at the end of the last ice age and continued to change until approximately 5,000 years ago, even though global temperature remained relatively stable during the last 11,000 years. The biotic response was largest in the mid latitudes and dominated by range expansion, which resulted in the emergence of new assemblages without analogues in the glacial ocean. Our results indicate that the plankton response to global warming was spatially heterogeneous and did not track temperature change uniformly over the past 24,000 years. Climate change led to the establishment of new assemblages and possibly new ecological interactions, which suggests that current anthropogenic warming may lead to new, different plankton community composition.
Collapse
Affiliation(s)
- Tonke Strack
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Lukas Jonkers
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Marina C Rillo
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Michal Kucera
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid BN, Campbell-Staton SC, Green NF, Hellmann JJ. Understanding Local Adaptation to Prepare Populations for Climate Change. Bioscience 2022. [DOI: 10.1093/biosci/biac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Adaptation within species to local environments is widespread in nature. Better understanding this local adaptation is critical to conserving biodiversity. However, conservation practices can rely on species’ trait averages or can broadly assume homogeneity across the range to inform management. Recent methodological advances for studying local adaptation provide the opportunity to fine-tune efforts for managing and conserving species. The implementation of these advances will allow us to better identify populations at greatest risk of decline because of climate change, as well as highlighting possible strategies for improving the likelihood of population persistence amid climate change. In the present article, we review recent advances in the study of local adaptation and highlight ways these tools can be applied in conservation efforts. Cutting-edge tools are available to help better identify and characterize local adaptation. Indeed, increased incorporation of local adaptation in management decisions may help meet the imminent demands of managing species amid a rapidly changing world.
Collapse
Affiliation(s)
- Mariah H Meek
- Department of Integrative Biology, AgBio Research, and the Ecology, Evolution, and Behavior Program Michigan State University , East Lansing, Michigan, United States
| | - Erik A Beever
- Department of Ecology, Montana State University , Bozeman, Montana, United States
| | - Soraia Barbosa
- Department of Fish and Wildlife Sciences, University of Idaho , Moscow, Idaho, United States
| | - Sarah W Fitzpatrick
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
| | - Nicholas K Fletcher
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
- Department of Biology, University of Maryland , College Park, Maryland, United States
| | - Cinnamon S Mittan-Moreau
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
| | - Brendan N Reid
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology, Evolution, and Natural Resources, Rutgers University , New Brunswick, New Jersey, United States
| | - Shane C Campbell-Staton
- Department of Ecology and Evolutionary Biology, Princeton University , Princeton, New Jersey, United States
| | - Nancy F Green
- US Fish and Wildlife Service, Falls Church , Virginia, United States
| | - Jessica J Hellmann
- Institute of the Environment and Department of Ecology, Evolution, and Behavior, University of Minnesota , Saint Paul, Minnesota, United States
| |
Collapse
|
20
|
Felton AJ, Shriver RK, Stemkovski M, Bradford JB, Suding KN, Adler PB. Climate disequilibrium dominates uncertainty in long-term projections of primary productivity. Ecol Lett 2022; 25:2688-2698. [PMID: 36269682 DOI: 10.1111/ele.14132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Rapid climate change may exceed ecosystems' capacities to respond through processes including phenotypic plasticity, compositional turnover and evolutionary adaption. However, consequences of the resulting climate disequilibria for ecosystem functioning are rarely considered in projections of climate change impacts. Combining statistical models fit to historical climate data and remotely-sensed estimates of herbaceous net primary productivity with an ensemble of climate models, we demonstrate that assumptions concerning the magnitude of climate disequilibrium are a dominant source of uncertainty: models assuming maximum disequilibrium project widespread decreases in productivity in the western US by 2100, while models assuming minimal disequilibrium project productivity increases. Uncertainty related to climate disequilibrium is larger than uncertainties from variation among climate models or emissions pathways. A better understanding of processes that regulate climate disequilibria is essential for improving long-term projections of ecological responses and informing management to maintain ecosystem functioning at historical baselines.
Collapse
Affiliation(s)
- Andrew J Felton
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Robert K Shriver
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA.,Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | | | - John B Bradford
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
| | - Katharine N Suding
- Department of Ecology and Evolutionary Biology, and Institute of Alpine and Arctic Research, University of Colorado, Boulder, Colorado, USA
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA
| |
Collapse
|
21
|
de Melo DB, Dolbeth M, Paiva FF, Molozzi J. Extreme drought scenario shapes different patterns of Chironomid coexistence in reservoirs in a semi-arid region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153053. [PMID: 35038537 DOI: 10.1016/j.scitotenv.2022.153053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Semi-arid regions are particularly prone to extreme climate events such as droughts, which result in drastic fluctuations in the water volume of aquatic ecosystems, including artificial ones. As these climate extremes intensify, species must adapt, however, not all species can persist under new climate regimes in such a short period of time. In this study, we evaluated how fluctuations in the water levels of reservoirs, caused by drought, affect Chironomidae diversity patterns in a semi-arid region. We studied six reservoirs (256 sites) in two basins in Northeastern Brazil, exposed to different levels of anthropic impact. Sampling was carried out in 2014, 2015 (both extremely dry years) and 2019. A dead water volume was attained during the extreme drought in 2015, consequently affecting the reservoir and resulting in a low diversity, abundance, and functional redundancy of the Chironomidae assemblages. Despite precipitation increases in 2019, some reservoirs continued to be water deficient. These drastic water fluctuations led to different patterns in Chironomidae taxonomic and functional diversity, which were also influenced by anthropic stressors. Thus, the most impacted basin presented lower diversity, with some species and trait turnover between reservoirs. The opposite trend was observed in the least impacted basin. Overall, taxonomic and functional diversity decreased with decreasing water volume, resulting in a community dominated by small-medium sized individuals with multivoltine cycles and hemoglobin and diapause resistant forms, conferring higher tolerance to water stress. The drought and consequent water volume fluctuations throughout the years seemed to exacerbate the water quality due to pre-existing exposure to anthropic impacts (e.g., domestic discharge, fishing activity, agriculture, livestock). This resulted in biotic homogenization, with an observed loss of taxa and traits. This study reinforced the need to implement habitat conservation and water quality improvement strategies to prevent further ecosystem damage in the face of climate change uncertainty.
Collapse
Affiliation(s)
- Dalescka Barbosa de Melo
- Universidade Estadual da Paraíba, Campus I, Departamento de Biologia - Programa de Pós-graduação em Ecologia e Conservação, Av. Baraúnas, 351, Bairro Universitário, CEP: 58429-500, Campina Grande, Brazil.
| | - Marina Dolbeth
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, Universidade do Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.
| | - Franciely Ferreira Paiva
- Universidade Estadual da Paraíba, Campus I, Departamento de Biologia - Programa de Pós-graduação em Ecologia e Conservação, Av. Baraúnas, 351, Bairro Universitário, CEP: 58429-500, Campina Grande, Brazil.
| | - Joseline Molozzi
- Universidade Estadual da Paraíba, Campus I, Departamento de Biologia - Programa de Pós-graduação em Ecologia e Conservação, Av. Baraúnas, 351, Bairro Universitário, CEP: 58429-500, Campina Grande, Brazil.
| |
Collapse
|
22
|
Abstract
Archaeological and paleontological records offer tremendous yet often untapped potential for examining long-term biodiversity trends and the impact of climate change and human activity on ecosystems. Yet, zooarchaeological and fossil remains suffer various limitations, including that they are often highly fragmented and morphologically unidentifiable, preventing them from being optimally leveraged for addressing fundamental research questions in archaeology, paleontology, and conservation paleobiology. Here, we explore the potential of palaeoproteomics—the study of ancient proteins—to serve as a critical tool for creating richer, more informative datasets about biodiversity change that can be leveraged to generate more realistic, constructive, and effective conservation and restoration strategies into the future.
Collapse
|
23
|
Fraker ME, Sinclair JS, Frank KT, Hood JM, Ludsin SA. Temporal scope influences ecosystem driver-response relationships: A case study of Lake Erie with implications for ecosystem-based management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152473. [PMID: 34973328 DOI: 10.1016/j.scitotenv.2021.152473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
Understanding environmental driver-response relationships is critical to the implementation of effective ecosystem-based management. Ecosystems are often influenced by multiple drivers that operate on different timescales and may be nonstationary. In turn, contrasting views of ecosystem state and structure could arise depending on the temporal perspective of analysis. Further, assessment of multiple ecosystem components (e.g., biological indicators) may serve to identify different key drivers and connections. To explore how the timescale of analysis and data richness can influence the identification of driver-response relationships within a large, dynamic ecosystem, this study analyzed long-term (1969-2018) data from Lake Erie (USA-Canada). Data were compiled on multiple biological, physical, chemical, and socioeconomic components of the ecosystem to quantify trends and identify potential key drivers during multiple time intervals (20 to 50 years duration), using zooplankton, bird, and fish community metrics as indicators of ecosystem change. Concurrent temporal shifts of many variables occurred during the 1980s, but asynchronous dynamics were evident among indicator taxa. The strengths and rank orders of predictive drivers shifted among intervals and were sometimes taxon-specific. Drivers related to nutrient loading and lake trophic status were consistently strong predictors of temporal patterns for all indicators; however, within the longer intervals, measures of agricultural land use were the strongest predictors, whereas within shorter intervals, the stronger predictors were measures of tributary or in-lake nutrient concentrations. Physical drivers also tended to increase in predictive ability within shorter intervals. The results highlight how the time interval examined can filter influences of lower-frequency, slower drivers and higher-frequency, faster drivers. Understanding ecosystem change in support of ecosystem-based management requires consideration of both the temporal perspective of analysis and the chosen indicators, as both can influence which drivers are identified as most predictive of ecosystem trends at that timescale.
Collapse
Affiliation(s)
- Michael E Fraker
- Cooperative Institute for Great Lakes Research and Michigan Sea Grant, School for Environment and Sustainability, University of Michigan, 4840 S. State, Ann Arbor, MI 48108, USA.
| | - James S Sinclair
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212, USA
| | - Kenneth T Frank
- Bedford Institute of Oceanography, Department of Fisheries and Oceans, Dartmouth, NS B2Y 4A2, Canada
| | - James M Hood
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212, USA; Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Stuart A Ludsin
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
24
|
EU-Trees4F, a dataset on the future distribution of European tree species. Sci Data 2022; 9:37. [PMID: 35115529 PMCID: PMC8813948 DOI: 10.1038/s41597-022-01128-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/15/2021] [Indexed: 01/25/2023] Open
Abstract
We present "EU-Trees4F", a dataset of current and future potential distributions of 67 tree species in Europe at 10 km spatial resolution. We provide both climatically suitable future areas of occupancy and the future distribution expected under a scenario of natural dispersal for two emission scenarios (RCP 4.5 and RCP 8.5) and three time steps (2035, 2065, and 2095). Also, we provide a version of the dataset where tree ranges are limited by future land use. These data-driven projections were made using an ensemble species distribution model calibrated using EU-Forest, a comprehensive dataset of tree species occurrences for Europe, and driven by seven bioclimatic parameters derived from EURO-CORDEX regional climate model simulations, and two soil parameters. "EU-Trees4F", can benefit various research fields, including forestry, biodiversity, ecosystem services, and bio-economy. Possible applications include the calibration or benchmarking of dynamic vegetation models, or informing forest adaptation strategies based on assisted tree migration. Given the multiple European policy initiatives related to forests, this dataset represents a timely and valuable resource to support policymaking.
Collapse
|
25
|
|
26
|
Uncertainty, Complexity and Constraints: How Do We Robustly Assess Biological Responses under a Rapidly Changing Climate? CLIMATE 2021. [DOI: 10.3390/cli9120177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
How robust is our assessment of impacts to ecosystems and species from a rapidly changing climate during the 21st century? We examine the challenges of uncertainty, complexity and constraints associated with applying climate projections to understanding future biological responses. This includes an evaluation of how to incorporate the uncertainty associated with different greenhouse gas emissions scenarios and climate models, and constraints of spatiotemporal scales and resolution of climate data into impact assessments. We describe the challenges of identifying relevant climate metrics for biological impact assessments and evaluate the usefulness and limitations of different methodologies of applying climate change to both quantitative and qualitative assessments. We discuss the importance of incorporating extreme climate events and their stochastic tendencies in assessing ecological impacts and transformation, and provide recommendations for better integration of complex climate–ecological interactions at relevant spatiotemporal scales. We further recognize the compounding nature of uncertainty when accounting for our limited understanding of the interactions between climate and biological processes. Given the inherent complexity in ecological processes and their interactions with climate, we recommend integrating quantitative modeling with expert elicitation from diverse disciplines and experiential understanding of recent climate-driven ecological processes to develop a more robust understanding of ecological responses under different scenarios of future climate change. Inherently complex interactions between climate and biological systems also provide an opportunity to develop wide-ranging strategies that resource managers can employ to prepare for the future.
Collapse
|
27
|
|
28
|
Clifford KR, Cravens AE, Knapp CN. Responding to Ecological Transformation: Mental Models, External Constraints, and Manager Decision-Making. Bioscience 2021. [DOI: 10.1093/biosci/biab086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Ecological transformation creates many challenges for public natural resource management and requires managers to grapple with new relationships to change and new ways to manage it. In the context of unfamiliar trajectories of ecological change, a manager can resist, accept, or direct change, choices that make up the resist-accept-direct (RAD) framework. In this article, we provide a conceptual framework for how to think about this new decision space that managers must navigate. We identify internal factors (mental models) and external factors (social feasibility, institutional context, and scientific uncertainty) that shape management decisions. We then apply this conceptual framework to the RAD strategies (resist, accept, direct) to illuminate how internal and external factors shape those decisions. Finally, we conclude with a discussion of how this conceptual framework shapes our understanding of management decisions, especially how these decisions are not just ecological but also social, and the implications for research and management.
Collapse
Affiliation(s)
- Katherine R Clifford
- Postdoctoral social science research fellow, Fort Collins, Colorado, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | | |
Collapse
|
29
|
Crausbay SD, Sofaer HR, Cravens AE, Chaffin BC, Clifford KR, Gross JE, Knapp CN, Lawrence DJ, Magness DR, Miller-Rushing AJ, Schuurman GW, Stevens-Rumann CS. A Science Agenda to Inform Natural Resource Management Decisions in an Era of Ecological Transformation. Bioscience 2021. [DOI: 10.1093/biosci/biab102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Earth is experiencing widespread ecological transformation in terrestrial, freshwater, and marine ecosystems that is attributable to directional environmental changes, especially intensifying climate change. To better steward ecosystems facing unprecedented and lasting change, a new management paradigm is forming, supported by a decision-oriented framework that presents three distinct management choices: resist, accept, or direct the ecological trajectory. To make these choices strategically, managers seek to understand the nature of the transformation that could occur if change is accepted while identifying opportunities to intervene to resist or direct change. In this article, we seek to inspire a research agenda for transformation science that is focused on ecological and social science and based on five central questions that align with the resist–accept–direct (RAD) framework. Development of transformation science is needed to apply the RAD framework and support natural resource management and conservation on our rapidly changing planet.
Collapse
Affiliation(s)
- Shelley D Crausbay
- Conservation Science Partners, Fort Collins, Colorado, and is a consortium partner for the US Geological Survey's North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Helen R Sofaer
- US Geological Survey Pacific Island Ecosystems Research Center, Hawaii Volcanoes National Park, Hawai'i, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | | | - Katherine R Clifford
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | - John E Gross
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | | | - David J Lawrence
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - Dawn R Magness
- US Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | | | - Gregor W Schuurman
- US National Park Service Climate Change Response Program, in Fort Collins, Colorado, United States
| | - Camille S Stevens-Rumann
- Forest and Rangeland Stewardship Department and assistant director of the Colorado Forest Restoration Institute, at Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
30
|
Schuurman GW, Cole DN, Cravens AE, Covington S, Crausbay SD, Hoffman CH, Lawrence DJ, Magness DR, Morton JM, Nelson EA, O'Malley R. Navigating Ecological Transformation: Resist–Accept–Direct as a Path to a New Resource Management Paradigm. Bioscience 2021. [DOI: 10.1093/biosci/biab067] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Natural resource managers worldwide face a growing challenge: Intensifying global change increasingly propels ecosystems toward irreversible ecological transformations. This nonstationarity challenges traditional conservation goals and human well-being. It also confounds a longstanding management paradigm that assumes a future that reflects the past. As once-familiar ecological conditions disappear, managers need a new approach to guide decision-making. The resist–accept–direct (RAD) framework, designed for and by managers, identifies the options managers have for responding and helps them make informed, purposeful, and strategic choices in this context. Moving beyond the diversity and complexity of myriad emerging frameworks, RAD is a simple, flexible, decision-making tool that encompasses the entire decision space for stewarding transforming ecosystems. Through shared application of a common approach, the RAD framework can help the wider natural resource management and research community build the robust, shared habits of mind necessary for a new, twenty-first-century natural resource management paradigm.
Collapse
Affiliation(s)
- Gregor W Schuurman
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - David N Cole
- US Forest Service, Aldo Leopold Wilderness Research Institute, Missoula, Montana, United States
| | - Amanda E Cravens
- US Geological Survey's Social and Economic Analysis Branch, Fort Collins, Colorado, United States
| | - Scott Covington
- US Fish and Wildlife Service's National Wildlife Refuge System, Falls Church, Virginia, United States
| | - Shelley D Crausbay
- Conservation Science Partners, Inc, Fort Collins, Colorado, United States
- US Geological Survey North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Cat Hawkins Hoffman
- Supervisory natural resource specialist and program manager, Fort Collins, Colorado, United States
| | - David J Lawrence
- US National Park Service Climate Change Response Program, Fort Collins, Colorado, United States
| | - Dawn R Magness
- US Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | - John M Morton
- Alaska Wildlife Alliance, Anchorage, Alaska, United States
| | - Elizabeth A Nelson
- Science advisor on conservation and climate change at Parks Canada, Vancouver, British Columbia, Canada
| | - Robin O'Malley
- USGS North Central Climate Adaptation Science Center, and is based in Fort Collins, Colorado, United States
| |
Collapse
|
31
|
Affiliation(s)
- John W Williams
- Department of Geography, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
32
|
Turner MG, Braziunas KH, Hansen WD, Hoecker TJ, Rammer W, Ratajczak Z, Westerling AL, Seidl R. The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monica G. Turner
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Kristin H. Braziunas
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Winslow D. Hansen
- Earth Institute Columbia University New York City New York 10025 USA
| | - Tyler J. Hoecker
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53706 USA
| | - Werner Rammer
- School of Life Sciences Technical University of Munich 85354 Freising Germany
| | - Zak Ratajczak
- Department of Biology Kansas State University Manhattan Kansas 66506‐4901 USA
| | - A. Leroy Westerling
- Sierra Nevada Research Institute and School of Engineering University of California‐Merced Merced California 95343 USA
| | - Rupert Seidl
- School of Life Sciences Technical University of Munich 85354 Freising Germany
- Berchtesgaden National Park 83471 Berchtesgaden Germany
| |
Collapse
|
33
|
Carroll C, Ray JC. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. GLOBAL CHANGE BIOLOGY 2021; 27:3395-3414. [PMID: 33852186 PMCID: PMC8360173 DOI: 10.1111/gcb.15645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 06/01/2023]
Abstract
Global commitments to protected area expansion should prioritize opportunities to protect climate refugia and ecosystems which store high levels of irrecoverable carbon, as key components of an effective response to biodiversity loss and climate change. The United States and Canada are responsible for one-sixth of global greenhouse gas emissions but hold extensive natural ecosystems that store globally significant above- and below-ground carbon. Canada has initiated a process of protected area network expansion in concert with efforts at reconciliation with Indigenous Peoples, and acknowledged nature-based solutions as a key aspect of climate change mitigation. The US, although not a party to global biodiversity conventions, has recently committed to protecting 30% of its extent by 2030 and achieving the UNFCCC Paris Agreement's mitigation targets. The opportunities afforded by these dual biodiversity conservation and climate commitments require coordinated national and regional policies to ensure that new protected areas maximize biodiversity-focused adaptation and nature-based mitigation opportunities. We address how global commitments can best inform national policy initiatives which build on existing agency mandates for regional planning and species conservation. Previous analyses of global conservation priorities under climate change have been tenuously linked to policy contexts of individual nations and have lacked information on refugia due to limitations of globally available datasets. Comparison and synthesis of predictions from a range of recently developed refugia metrics allow such data to inform planning despite substantial uncertainty arising from contrasting model assumptions and inputs. A case study for endangered species planning for old-forest-associated species in the US Pacific Northwest demonstrates how regional planning can be nested hierarchically within national biodiversity-focused adaptation and nature-based mitigation strategies which integrate refugia, connectivity, and ecosystem carbon metrics to holistically evaluate the role of different land designations and where carbon mitigation and protection of biodiversity's resilience to climate change can be aligned.
Collapse
|
34
|
Moll RJ, Killion AK, Hayward MW, Montgomery RA. A Framework for the Eltonian Niche of Humans. Bioscience 2021. [DOI: 10.1093/biosci/biab055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Recent research has highlighted several influential roles that humans play in ecosystems, including that of a superpredator, hyperkeystone species, and niche constructor. This work has begun to describe the Eltonian niche of humans, which encompasses humanity's cumulative ecological and evolutionary roles in trophic systems. However, we lack a unifying framework that brings together these strands of research, links them to ecoevolutionary and sociocultural theory, and identifies current research needs. In this article, we present such a framework in hope of facilitating a more holistic approach to operationalizing human roles in trophic systems across an increasingly anthropogenic biosphere. The framework underscores how humans play numerous nuanced roles in trophic systems, from top-down to bottom-up, that entail not only pernicious effects but also benefits for many nonhuman species. Such a nuanced view of the Eltonian niche of humans is important for understanding complex social–ecological system functioning and enacting effective policies and conservation measures.
Collapse
Affiliation(s)
- Remington J Moll
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States
| | - Alexander K Killion
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States
| | - Matt W Hayward
- Conservation Biology Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Mammal Research Centre, University of Pretoria, Tshwane, South Africa, and with the Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Robert A Montgomery
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney, United Kingdom
| |
Collapse
|
35
|
Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proc Natl Acad Sci U S A 2021; 118:1921854118. [PMID: 33876741 PMCID: PMC8053992 DOI: 10.1073/pnas.1921854118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the effects of anthropogenic climate change become more severe, several approaches for deliberate climate intervention to reduce or stabilize Earth’s surface temperature have been proposed. Solar radiation modification (SRM) is one potential approach to partially counteract anthropogenic warming by reflecting a small proportion of the incoming solar radiation to increase Earth’s albedo. While climate science research has focused on the predicted climate effects of SRM, almost no studies have investigated the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, community, population, and organism. Complex interactions among Earth’s climate system and living systems would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAI), a well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earth’s surface temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of SAI on ecological systems. Desired ecological outcomes might also inform development of future SAI implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between ecologists and climate scientists would identify a common set of SAI research goals and improve the communication about potential SAI impacts and risks with the public. Without this collaboration, forecasts of SAI impacts will overlook potential effects on biodiversity and ecosystem services for humanity.
Collapse
|