1
|
Sayed H, Ahmed AM, Hajjiah A, Abdelkawy MA, Aly AH. Highly sensitive salinity sensing using annular one-dimensional photonic crystals. Sci Rep 2025; 15:18337. [PMID: 40419595 DOI: 10.1038/s41598-025-02241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
This study explores annular one-dimensional (1D) photonic crystals (PCs) in detail as potentially useful instruments for applications involving salinity detection. The distinctive configuration of annular 1D PCs facilitates the containment and manipulation of light within a concise and unified framework, facilitating the creation of compact and portable sensing apparatus suitable for on-site applications and real-time monitoring. Unlike conventional planar and texturing-based PC sensors, the annular configuration enhances light confinement and defect mode engineering, leading to superior sensing performance. The study describes the simulation process that uses the COMSOL Multiphysics technique and the Finite Element Method (FEM) to create annular 1D PCs, underscoring the criticality of precise management of layer thickness and uniformity. Wherein, the structure of a 1D- annular PC is created as [Formula: see text], since A represents Silicon dioxide ([Formula: see text] and B signifies Titanium dioxide ([Formula: see text]) with material thicknesses set at 850 nm for each. D represents the central defect layer from saline water, which equals 3400 nm, and N equals 5. Hence, we achieve an exceptional sensitivity of 1910.6 nm/RIU, surpassing most reported 1D-PC salinity sensors. Also, the materials used in our design ([Formula: see text] are highly chemically and mechanically stable which resistant to etching in the saline water. Furthermore, we discuss the feasibility of fabricating the proposed sensor using advanced nanofabrication techniques, ensuring its practical implementation in environmental and biomedical monitoring applications.
Collapse
Affiliation(s)
- Hassan Sayed
- TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni Suef, 62514, Egypt.
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Ali Hajjiah
- Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait
| | - M A Abdelkawy
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11432, Riyadh, Saudi Arabia
| | - Arafa H Aly
- TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Beni Suef, 62514, Egypt
| |
Collapse
|
2
|
Gao R, Bao SS, Su QQ, Ma XF, Zheng LM. Lanthanide-Diphosphonate Frameworks Containing Dianthracene: Isolation of Metastable Intermediates and Lanthanide-Dependent UV and X-ray Light-Responsive Properties. Inorg Chem 2025; 64:9303-9313. [PMID: 40305405 DOI: 10.1021/acs.inorgchem.5c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Capturing kinetic intermediates is crucial for understanding the formation mechanism of metal-organic frameworks (MOFs), but it is particularly challenging for metal phosphonate frameworks. Here, we employ a modulator-based strategy to control the crystallization of MOFs. By adding the chelating ligand shikimic acid, we obtained three-dimensional (3D) lanthanide-diphosphonate frameworks, [Ln2(amp2H2)3(H2O)x]·4H2O (Ln-3D, x = 6, Ln = Sm, Eu, Gd, Tb, Ho; x = 4, Ln = Er), where amp2H4 is prephotodimerized 9-anthracenemethylphosphonic acid. By reducing the reaction temperature from 90 to 70 °C, we successfully isolated the metastable reaction intermediates, [Ln2(amp2H2)2(H2O)12](amp2H2)·10H2O (Ln-1D), with one-dimensional (1D) chain structures. The dianthracene moiety in the linker amp2H22- confers additional dynamic features to the material due to its potential dissociation into anthracene pairs and affects the photophysical and photochemical properties, which vary with the lanthanide ion. Moreover, the labile coordinated water molecule in Ho-3D is releasable under X-ray irradiation at 300 K, whereas this X-ray responsiveness is not obvious for other Ln-3D (Ln = Sm, Eu, Gd, and Tb). This study not only provides a new case for metal phosphonate intermediate trapping but also demonstrates rare metal-organic materials with ultraviolet (UV) light and X-ray responsiveness.
Collapse
Affiliation(s)
- Ran Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Qian-Qian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiu-Fang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Tian X, Li W, Li F, Cai M, Si Y, Tang H, Li H, Zhang H. Direct Photopatterning of Zeolitic Imidazolate Frameworks via Photoinduced Fluorination. Angew Chem Int Ed Engl 2025; 64:e202500476. [PMID: 39959928 DOI: 10.1002/anie.202500476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Precise and effective patterning strategies are essential for integrating metal-organic frameworks (MOFs) into microelectronics, photonics, sensors, and other solid-state devices. Direct lithography of MOFs with light and other irradiation sources has emerged as a promising patterning strategy. However, existing direct lithography methods often rely on the irradiation-induced amorphization of the MOFs structures and the breaking of strong covalent bonds in their organic linkers. High-energy sources (such as X-rays or electron beams) and large irradiation doses - conditions unfavorable for scalable patterning - are thus required. Here, we report a photoinduced fluorination chemistry for patterning various zeolitic imidazolate frameworks (ZIFs) under mild UV irradiation. Using UV doses as low as 10 mJ cm-2, light-sensitive fluorine-containing molecules covalently bond to ZIFs and enhance their stability in water. This creates a water-stability contrast between ZIFs in exposed and unexposed regions, enabling scalable direct photolithography of ZIFs with high resolution (2 μm) on 4-inch wafers and flexible substrates. The patterned ZIFs preserve their original crystallinity and porous properties while gaining increased hydrophobicity. This allows for the demonstration of a water-responsive fluorescent MOFs array with implications in sensing and multicolor information encryption.
Collapse
Affiliation(s)
- Xiaoli Tian
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fu Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mingfeng Cai
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yilong Si
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao Tang
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haifang Li
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao Zhang
- Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Dai M, Zhou B, Yan D. Rare Earth Single-Atomic Hybrid Glasses for Near-Infrared II Optical Waveguides. Angew Chem Int Ed Engl 2025:e202505322. [PMID: 40263969 DOI: 10.1002/anie.202505322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
The increasing demands for modern information communication and storage necessitate the development of near-infrared (NIR) active optical waveguides. However, achieving efficient NIR emission with minimal optical loss remains a critical challenge. Herein, we present a new class of rare earth single-atomic hybrid glasses, synthesized via bottom-up self-assembly, as a solution to these limitations. By harnessing the ultralong phosphorescence of Nd3+-doped complex glasses, these materials achieve NIR-II emission extending to 1.32 µm with a photoluminescence quantum yield (PLQY) of ∼5.7%, setting a new record among state-of-the-art rare-earth-based complexes in the NIR-II region. This exceptional performance stems from the efficient sensitization of Nd3+ ions in hybrid glass, with a phosphorescence energy transfer efficiency of 93.55%. Furthermore, these transparent and flexible hybrid glasses trigger optical waveguiding in Eu3+- and Nd3+-doped microstructures, enabling ultralow-loss coefficients of 0.978 dB mm-1 at 819 nm and 5.1 dB mm-1 at 1048 nm, respectively. Therefore, this work not only demonstrates that metal-organic complex glasses with ultralong phosphorescence can effectively serve as sensitizer matrices for boosting NIR-II emission, but also supports the fabrication of 1D and 2D glassy microstructures with ultralow-loss optical waveguiding for advanced NIR-II photonic applications.
Collapse
Affiliation(s)
- Meiqi Dai
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Bo Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Dongpeng Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| |
Collapse
|
5
|
Lu Y, Fang YG, Chen Y, Xue H, Mao J, Guan B, Liu J, Li J, Li L, Zhu C, Fang WH, Russell TP, Wang J. Sandwiching of MOF nanoparticles between graphene oxide nanosheets among ice grains. Nat Commun 2025; 16:3397. [PMID: 40210641 PMCID: PMC11986133 DOI: 10.1038/s41467-025-56949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/04/2025] [Indexed: 04/12/2025] Open
Abstract
Current strategies to tailor the formation of nanoparticle clusters require specificity and directionality built into the surface functionalization of the nanoparticles by involved chemistries that can alter their properties. Here, we describe a non-disruptive approach to place nanomaterials of different shapes between nanosheets, i.e., nano-sandwiches, absent any pre-modification of the components. We demonstrate this with metal-organic frameworks (MOFs) and silicon oxide (SiO2) nanoparticles sandwiched between graphene oxide (GO) nanosheets, MOF-GO and SiO2-GO, respectively. For the MOF-GO, the MOF shows significantly enhanced conductivity and retains its original crystallinity, even after one-year exposure to aqueous acid/base solutions, where the GO effectively encapsulates the MOF, shielding it from polar molecules and ions. The MOF-GOs are shown to effectively capture CO2 from a high-humidity flue gas while fully maintaining their crystallinities and porosities. Similar behavior is found for other MOFs, including water-sensitive HKUST-1 and MOF-5, promoting the use of MOFs in practical applications. The nanoparticle sandwich strategy provides opportunities for materials science in the design of nanoparticle clusters consisting of different materials and shapes with predetermined spatial arrangements.
Collapse
Affiliation(s)
- Youhua Lu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ye-Guang Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, China
| | - Yang Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, China
| | - Han Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junqiang Mao
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Bo Guan
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, China.
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, China.
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Li W, Ma T, Tang P, Luo Y, Zhang H, Zhao J, Ameloot R, Tu M. Nanoscale Resist-Free Patterning of Halogenated Zeolitic Imidazolate Frameworks by Extreme UV Lithography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415804. [PMID: 40040608 PMCID: PMC12021036 DOI: 10.1002/advs.202415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Advancements in patterning techniques for metal-organic frameworks (MOFs) are crucial for their integration into microelectronics. However, achieving precise nanoscale control of MOF structures remains challenging. In this work, a resist-free method for patterning MOFs is demonstrated using extreme ultraviolet (EUV) lithography with a resolution of 40 nm. The role of halogen atoms in the linker and the effect of humidity are analyzed through in situ and near-ambient pressure synchrotron X-ray photoelectron spectroscopy. In addition to facilitating the integration of MOFs, the results offer valuable insights for developing the highly sought-after positive-tone EUV photoresists.
Collapse
Affiliation(s)
- Weina Li
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianlei Ma
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Pengyi Tang
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunhong Luo
- ShanghaiTech UniversitySchool of physical science and technologyShanghai201210China
| | - Hui Zhang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
- National Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Jun Zhao
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Rob Ameloot
- Centre for Membrane SeparationsAdsorptionCatalysis and SpectroscopyKU LeuvenLeuven3001Belgium
| | - Min Tu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
7
|
Yoon JY, Park J, Lee K, Jafter OF, Jang M, Cheon J, Kim K, Lungerich D. Understanding Electron Beam-Induced Chemical Polymerization Processes of Small Organic Molecules Using Operando Liquid-Phase Transmission Electron Microscopy. ACS NANO 2025; 19:10889-10901. [PMID: 40074541 DOI: 10.1021/acsnano.4c15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Electron beams evolved as important tools for modern technologies that construct and analyze nanoscale architectures. While electron-matter interactions at atomic and macro scales are well-studied, a knowledge gap persists at the molecular to nano level─the scale most relevant to the latest technologies. Here, we employ operando liquid-phase transmission electron microscopy supported by density functional theory calculations and a mathematical random search algorithm to rationalize and quantify electron beam-induced processes at the molecular level. By examining a series of small organic molecules, we identify critical physical and chemical parameters that dictate polymerization rates under continuous electron beam irradiation. Our findings offer a deeper understanding of electron beam-induced reactions, enabling the prediction of molecular reactivities from a classical chemistry perspective. These insights apply equally to other soft matter systems and, thus, are of fundamental interest to scientists and engineers who use electron beams to analyze or to manipulate nanoscale matter.
Collapse
Affiliation(s)
- Jun-Yeong Yoon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Jongseong Park
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Kihyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Orein F Jafter
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Myeongjin Jang
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Kwanpyo Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
8
|
Najafabadi SN, Huang C, Betlem K, van Voorthuizen TA, de Smet LCPM, Ghatkesar MK, van Dongen M, van der Veen MA. Advancements in Inkjet Printing of Metal- and Covalent-Organic Frameworks: Process Design and Ink Optimization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11469-11494. [PMID: 39950749 PMCID: PMC11873967 DOI: 10.1021/acsami.4c15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/28/2025]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) are highly versatile materials based on inorganic modes connected via organic linkers or purely via the connection of organic building blocks, respectively. This results in 3-D nanoporous frameworks, which, due to their combination of high porosity and variability of building blocks, can exhibit exceptional properties that make them attractive. Certain applications (e.g., in electronics and as membranes) require a thin film or even a patterned morphology on various substrates. Inkjet printing of MOFs has emerged as a simple and effective technique for the scalable production of a wide range of MOF (gradient) films and patterns on a wide range of substrates according to specific requirements. This review comprehensively reviews the achievements in inkjet printing of both MOFs and COFs. We discuss the different substrates, ink formulation, and hardware intertwined requirements needed to achieve high-resolution printing and obtain desired properties such as porosity, physical-mechanical characteristics, and uniform thickness. Crucial aspects related to ink formulation, such as colloidal stability and size control of MOFs and COFs, are discussed. Additionally, we highlight potential opportunities for furthering the development of inkjet printing of MOFs/COFs and critically assess the reporting of the printing procedures and characterization of the resultant materials. In this manner, this review aims to contribute to the advancements in understanding and optimization of inkjet printing of MOFs and COFs, as this technique holds great potential for diverse applications and functionalization of MOF/COF films and patterns.
Collapse
Affiliation(s)
- Seyyed
Abbas Noorian Najafabadi
- Chemical
Engineering Department, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Chunyu Huang
- Chemical
Engineering Department, Delft University
of Technology, 2629 HZ Delft, The
Netherlands
| | - Kaï Betlem
- Department
of Microelectronics, Delft University of
Technology, 2628 CD Delft,The Netherlands
- Department
of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, The
Netherlands
| | - Thijmen A. van Voorthuizen
- Laboratory
of Organic Chemistry, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Murali Krishna Ghatkesar
- Department
of Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft, The
Netherlands
| | - Martijn van Dongen
- Research Group Applied Natural Sciences, Fontys University of Applied Sciences, 5600 AH Eindhoven, The Netherlands
| | | |
Collapse
|
9
|
Suremann NF, Ott S. Pseudomorphic replication for surface patterning with porphyrinic metal-organic frameworks. Chem Commun (Camb) 2025; 61:3732-3735. [PMID: 39917812 DOI: 10.1039/d4cc05547k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
An unexplored strategy for controlled surface patterning with porphyrinic metal-organic frameworks (MOFs), integrating atomic layer deposition (ALD) and pseudomorphic replication (PMR), is presented. Surface patterning with a sub-micrometer size resolution is enabled by translating ALD-patterned Al2O3 into a MOF pattern in the presence of a porphyrinic linker.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Sascha Ott
- Department of Chemistry Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
10
|
Lv Z, Lin R, Yang Y, Lan K, Hung CT, Zhang P, Wang J, Zhou W, Zhao Z, Wang Z, Zou J, Wang T, Zhao T, Xu Y, Chao D, Tan W, Yan B, Li Q, Zhao D, Li X. Uniform single-crystal mesoporous metal-organic frameworks. Nat Chem 2025; 17:177-185. [PMID: 39762625 DOI: 10.1038/s41557-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/07/2024] [Indexed: 01/18/2025]
Abstract
The synthesis of mesoporous metal-organic frameworks (meso-MOFs) is desirable as these materials can be used in various applications. However, owing to the imbalance in structural tension at the micro-scale (MOF crystallization) and the meso-scales (assembly of micelles with MOF subunits), the formation of single-crystal meso-MOFs is challenging. Here we report the preparation of uniform single-crystal meso-MOF nanoparticles with ordered mesopore channels in microporous frameworks with definite arrangements, through a cooperative assembly method co-mediated by strong and weak acids. These nanoparticles feature a truncated octahedron shape with variable size and well-defined two-dimensional hexagonally structured (p6mm) columnar mesopores. Notably, the match between the crystallization kinetics of MOFs and the assembly kinetics of micelles is critical for forming the single-crystal meso-MOFs. On the basis of this strategy, we have constructed a library of meso-MOFs with tunable large pore sizes, controllable mesophases, various morphologies and multivariate components.
Collapse
Affiliation(s)
- Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Runfeng Lin
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Yi Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Chin-Te Hung
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Jinxiu Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Wanhai Zhou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Zhongyao Wang
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Jiawen Zou
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Taoyang Wang
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Yifei Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Weimin Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Qiaowei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
11
|
Lee DT, Ahmad M, Corkery P, Anibal Boscoboinik J, Fairbrother DH, Tsapatsis M. Modification of ZIF-8 Membranes for Gas Separation Using X-ray Radiation. Angew Chem Int Ed Engl 2025; 64:e202419532. [PMID: 39479993 DOI: 10.1002/anie.202419532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
We report an X-ray radiation-induced modification of the structure and gas permeation behavior of ZIF-8 membranes. With 300 min irradiation time, CO2 permeance decreases by only 9 %, while N2 and CH4 permeances reduce by 75 and 65 %, respectively, leading to 3.7- and 2.6-fold enhancements in ideal selectivity for CO2/N2 and CO2/CH4.
Collapse
Affiliation(s)
- Dennis T Lee
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mueed Ahmad
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - J Anibal Boscoboinik
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| |
Collapse
|
12
|
Banerjee P, Kollmannsberger KL, Fischer RA, Jinschek JR. Mechanism of Electron-Beam-Induced Structural Degradation in ZIF-8 and its Electron Dose Tolerance. J Phys Chem A 2024; 128:10440-10451. [PMID: 39565713 DOI: 10.1021/acs.jpca.4c06391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Zeolitic-imidazolate frameworks (ZIFs) are crystalline microporous materials with promising potential for gas adsorption and catalysis application. Further research advances include studies on integrating ZIFs into nanodevice concepts. In detail for the application, e.g., electron-beam-assisted structural modifications or patterning, there is a need to understand potential structural degradation processes caused by such electron beams. Advanced transmission electron microscopy (TEM) has demonstrated its ability to study structures at the nanoscale. Here, we systematically investigated electron-beam-induced loss in crystallinity in ZIF-8 under various experimental conditions, using as measure the attenuation of the relative intensity and the relative displacement of electron diffraction Bragg planes with increasing cumulative electron dose. The {110} Bragg planes reflect the overall stability of the ZIF-8 unit-cell structure, while the {431} Bragg planes assess the stability of its micropore structure. We considered a relative loss of Bragg plane intensity of 37% as the threshold for determining the critical electron dose, which varied for different Bragg planes, with 35.6 ± 8.4 e-Å-2 for {110} and 11.4 ± 3.0 e-Å-2 for {431}. However, the critical dose per breakage of N-Zn bonds in a ZnN4 tetrahedra per different Bragg plane was found to be ∼3 e-Å-2, which indicates continuous, simultaneous breakage of N-Zn bonds throughout the crystal, confirming radiolysis as the dominant damage mechanism. In addition, we investigated the effects of TEM experiment parameters, including acceleration voltage, electron dose rate, cryogenic sample temperature, in situ sample drying, and change in conductivity of the sample substrate (e.g., graphene). Our results unravel the degradation mechanisms in ZIF-8 and provide threshold parameters for maximizing resolution in electron-beam-assisted experiments and processes.
Collapse
Affiliation(s)
- Pritam Banerjee
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Kathrin L Kollmannsberger
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D- 85748 Garching, Germany
| | - Roland A Fischer
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D- 85748 Garching, Germany
| | - Joerg R Jinschek
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Carbonell C, Linares-Moreau M, Borisov SM, Falcaro P. Multimaterial Digital-Light Processing of Metal-Organic Framework (MOF) Composites: A Versatile Tool for the Rapid Microfabrication of MOF-Based Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408770. [PMID: 39252650 DOI: 10.1002/adma.202408770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Patterning Metal-Organic Frameworks (MOFs) is essential for their use in sensing, electronics, photonics, and encryption technologies. However, current lithography methods are limited in their ability to pattern more than two MOFs, hindering the potential for creating advanced multifunctional surfaces. Additionally, balancing design flexibility, simplicity, and cost often results in compromises. This study addresses these challenges by combining Digital-Light Processing (DLP) with a capillary-assisted stop-flow system to enable multimaterial MOF patterning. It demonstrates the desktop fabrication of multiplexed arbitrary micropatterns across cm-scale areas while preserving the MOF's pore accessibility. The ink, consisting of a MOF crystal suspension in a low volatile solvent, a mixture of high molecular weight oligomers, and a photoinitiator, is confined by capillarity in the DLP projection area and quickly exchanged using syringe pumps. The versatility of this method is demonstrated by the direct printing of a ZIF-8-based luminescent oxygen sensor, a 5-component dynamic information concealment method, and a PCN-224-based colorimetric sensor for amines, covering disparate pore and analyte sizes. The multi-MOF capabilities, simplicity, and accessibility of this strategy pave the way for the facile exploration of MOF materials across a wide range of applications, with the potential to significantly accelerate the design-to-application cycle of MOF-based devices.
Collapse
Affiliation(s)
- Carlos Carbonell
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Institute of Microelectronics of Barcelona (IMB-CNM-CSIC), Barcelona, 08193, Spain
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
14
|
Al-Ghazzawi F, Conte L, Potts MW, Richardson C, Wagner P. Reactive Extrusion Printing of Zeolitic Imidazolate Framework Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44270-44277. [PMID: 39109965 DOI: 10.1021/acsami.4c08609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
An outstanding challenge for the field of metal-organic frameworks (MOFs) is structuring to form forms with greater useability. Reactive extrusion printing (REP) is a technique for the direct formation of films from their molecular components on-demand and on-location. Here we apply REP for the first time to zeolitic imidazolate frameworks (ZIFs) and study the interplay of solvent and molarity ratio on the phase distribution between ZIF-8 and ZIF-L in reactive printed films. Our results show that REP controllably directs phase formation between ZIF-L and ZIF-8 and that REP also gives control over crystal size and that high-quality ZIF-8 films, in particular, are produced in low-dispersity interconnected nanoparticulate form. Importantly, we show that REP is responsive to established surface-functionalization techniques to control important printing parameters of line width and thickness. This work expands the repertoire of REP to the important class of ZIFs.
Collapse
Affiliation(s)
- Fatimah Al-Ghazzawi
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
- Al-Nasiriyah Technical Institute, Southern Technical University, Nasiriyah, Thi-Qar 64001, Iraq
| | - Luke Conte
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael W Potts
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| |
Collapse
|
15
|
Luo H, Wei Y, Pyrialakos GG, Khajavikhan M, Christodoulides DN. Guiding charged particles in vacuum via Lagrange points. Nat Commun 2024; 15:6882. [PMID: 39128899 PMCID: PMC11317533 DOI: 10.1038/s41467-024-51083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
We propose a method for guiding charged particles such as electrons and protons, in vacuum, by employing the exotic properties of Lagrange points. This leap is made possible by the dynamics unfolding around these equilibrium points, which stably capture such particles, akin to the way Trojan asteroids are held in Jupiter's orbit. Unlike traditional methodologies that allow for either focusing or three-dimensional storage of charged particles, the proposed scheme can guide both non-relativistic and relativistic electrons and protons in small cross-sectional areas in an invariant fashion over long distances without any appreciable loss in energy - in a manner analogous to photon transport in optical fibers. Here, particle guiding is achieved by employing twisted electrostatic potentials that in turn induce stable Lagrange points in vacuum. In principle, guidance can be realized within the fundamental mode of the resulting waveguide, thereby presenting a prospect for manipulating these particles in the quantum domain. Our findings may be useful in a wide range of applications in both scientific and technological pursuits. These applications could encompass electron microscopies and lithographies, particle accelerators, quantum and classical communication/sensing systems, as well as methods for shuttling entangled qubits between nodes within a quantum network.
Collapse
Affiliation(s)
- Haokun Luo
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yunxuan Wei
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Georgios G Pyrialakos
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mercedeh Khajavikhan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Demetrios N Christodoulides
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
16
|
Koseki Y, Okada K, Hashimoto S, Hirouchi S, Fukatsu A, Takahashi M. Improved optical quality of heteroepitaxially grown metal-organic framework thin films by modulating the crystal growth. NANOSCALE 2024; 16:14101-14107. [PMID: 39007332 DOI: 10.1039/d4nr01885k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Fabricating high-quality thin films of metal-organic frameworks (MOFs) is important for integrating MOFs in various applications. Specifically, optical/electrical devices require MOF thin films that are crystallographically oriented, with closely packed crystals and smooth surfaces. Although the heteroepitaxial growth approach of MOFs on metal hydroxides has been demonstrated to control the orientation of the three crystallographic axes, the fabrication of MOF thin films with both three-dimensional crystallographic orientation and smooth surfaces remains a challenge. In this study, we report the fabrication of high-quality thin films of MOFs with closely packed MOF crystals, smooth surfaces, optical transparency, and crystal alignment by modulating the crystal growth of MOFs using the heteroepitaxial growth approach. High-quality thin films of Cu-paddlewheel-based pillar-layered MOFs are fabricated on oriented Cu(OH)2 thin films via epitaxial growth using acetate ions as modulators to control the crystal morphology. Increasing the modulator concentration results in a uniform crystal shape with a relatively long one-dimensional pore direction and uniform heterogeneous nucleation over the entire film. The MOF thin films fabricated using the modulator exhibit high optical transparency. High-quality MOF thin films with dense and flat surfaces will pave the way for integrating MOFs into sophisticated optical and electrical devices.
Collapse
Affiliation(s)
- Yuka Koseki
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Shotaro Hashimoto
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shun Hirouchi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
17
|
Zhu Z, Li F, Li J, Chen Q, Li W, Tang Z, Xu W, Shen W, Tao TH, Sun L, Fu Y, Tu M. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. ACS NANO 2024. [PMID: 38988308 DOI: 10.1021/acsnano.4c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials constructed from organic linkers and inorganic building blocks. Coordinative competition labilizes some MOFs under harsh chemical conditions because of their weak bonding. However, instability is not always a negative property of a material. In this study, we demonstrated the use of the acidic lability of MOFs for direct optical patterning. The controllable acid release from the photoacid generator at the exposed area causes bond cleavage between the linkers and metal ions/clusters, leading to solubility changes and pattern formation after development. This process avoids redundant steps and possible contamination in traditional photolithography, while maintaining the original properties of patterned MOFs. The preserved porosity and crystallinity promoted the development of MOFs for gas sensors and solid displays.
Collapse
Affiliation(s)
- Zhaohui Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Fu Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jinwen Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Qiran Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Weina Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyuan Tang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxing Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Wei Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200030, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, Guangdong, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai 201107, China
- Neuroxess Co., Ltd. (Jiangxi), Nanchang330029, Jiangxi, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Fu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Tu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Zhang Y, Yu H, Wang L, Wu X, He J, Huang W, Ouyang C, Chen D, Keshta BE. Advanced lithography materials: From fundamentals to applications. Adv Colloid Interface Sci 2024; 329:103197. [PMID: 38781827 DOI: 10.1016/j.cis.2024.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The semiconductor industry has long been driven by advances in a nanofabrication technology known as lithography, and the fabrication of nanostructures on chips relies on an important coating, the photoresist layer. Photoresists are typically spin-coated to form a film and have a photolysis solubility transition and etch resistance that allow for rapid fabrication of nanostructures. As a result, photoresists have attracted great interest in both fundamental research and industrial applications. Currently, the semiconductor industry has entered the era of extreme ultraviolet lithography (EUVL) and expects photoresists to be able to fabricate sub-10 nm structures. In order to realize sub-10 nm nanofabrication, the development of photoresists faces several challenges in terms of sensitivity, etch resistance, and molecular size. In this paper, three types of lithographic mechanisms are reviewed to provide strategies for designing photoresists that can enable high-resolution nanofabrication. The discussion of the current state of the art in optical lithography is presented in depth. Practical applications of photoresists and related recent advances are summarized. Finally, the current achievements and remaining issues of photoresists are discussed and future research directions are envisioned.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Xudong Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jiawen He
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Wenbing Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chengaung Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Dingning Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
19
|
Tian X, Li F, Tang Z, Wang S, Weng K, Liu D, Lu S, Liu W, Fu Z, Li W, Qiu H, Tu M, Zhang H, Li J. Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography. Nat Commun 2024; 15:2920. [PMID: 38575569 PMCID: PMC10995132 DOI: 10.1038/s41467-024-47293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.
Collapse
Affiliation(s)
- Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Fu Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenyuan Tang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhong Fu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Min Tu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Beijing Institute of Life Science and Technology, Beijing, 102206, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Füredi M, Manzano CV, Marton A, Fodor B, Alvarez-Fernandez A, Guldin S. Beyond the Meso/Macroporous Boundary: Extending Capillary Condensation-Based Pore Size Characterization in Thin Films Through Tailored Adsorptives. J Phys Chem Lett 2024; 15:1420-1427. [PMID: 38290522 PMCID: PMC10860133 DOI: 10.1021/acs.jpclett.3c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
The characterization of thin films containing nanopores with diameters exceeding 50 nm poses significant challenges, especially when deploying sorption-based techniques. Conventional volumetric physisorption or mercury intrusion methods have limited applicability in thin films due to constraints in sample preparation and nondestructive testing. In this context, ellipsometric porosimetry represents a viable alternative, leveraging its optical sensitivity to thin films. With existing setups relying on the capillary condensation of volatile compounds such as water, applicability is typically restricted to pore dimensions <50 nm. In this study, we introduce two high-molar-mass hydrocarbon adsorptives, namely ethylbenzene and n-nonane. These adsorptives exhibit substantial potential in improving the accuracy of physisorption measurements beyond mesoporosity (i.e., >50 nm). Specifically, with n-nonane, applicability is extended up to 80 nm pores. Our measurement guidelines propose a nondestructive, expeditious (<60 min), low-pressure (<0.03 bar) approach to investigate nanoporous thin films with potential adaptability to diverse structural architectures.
Collapse
Affiliation(s)
- Máté Füredi
- Department
of Chemical Engineering, University College
London, Torrington Place, London, WC1E 7JE, United Kingdom
- Semilab
Co. Ltd., Prielle Kornélia u. 2, H-1117 Budapest, Hungary
| | - Cristina V. Manzano
- Instituto
de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760 Madrid, Spain
| | - András Marton
- Semilab
Co. Ltd., Prielle Kornélia u. 2, H-1117 Budapest, Hungary
| | - Bálint Fodor
- Semilab
Co. Ltd., Prielle Kornélia u. 2, H-1117 Budapest, Hungary
| | - Alberto Alvarez-Fernandez
- Centro
de Física de Materiales (CFM) (CSIC−UPV/EHU) −
Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Stefan Guldin
- Department
of Chemical Engineering, University College
London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
21
|
Sun Y, Fan W, Li Y, Sui NLD, Zhu Z, Zhou Y, Lee JM. Tuning Coordination Structures of Zn Sites Through Symmetry-Breaking Accelerates Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306687. [PMID: 37649133 DOI: 10.1002/adma.202306687] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Manipulating the coordination environment of individual active sites in a precise manner remains an important challenge in electrocatalytic reactions. Herein, inspired by theoretical predictions, a facile procedure to synthesize a series of symmetry-breaking zinc metal-organic framework (Zn-MOF) catalysts with well-defined structures is presented. Benefiting from the optimized coordination microenvironment regulated by symmetry-breaking, Zn-N2 S2 -MOF exhibits the best performance of nitrogen (N2 ) reduction reaction (NRR) with NH3 yield rate of 25.07 ± 1.57 µg h-1 cm-2 and Faradaic efficiency of 44.57 ± 2.79% compared with reported Zn-based NRR catalysts. X-ray absorption near-edge structure shows that the symmetry-breaking distorts the coordination environment and modulates the delocalized electrons around the Zn sites, which favors the formation of unpaired low-valence Znδ+ , thereby facilitating the adsorption/activation of N2 . Theoretical calculations elucidate that low-valence Znδ+ in Zn-N2 S2 -MOF can effectively lower the energy barrier of potential determining step, promoting the kinetics and boosting the NRR activity. This work highlights the relationship between the precise coordination environment of metal sites and the catalytic activity, which offers insightful guidance for rationally designing high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Nicole L D Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Zhouhao Zhu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
22
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
23
|
Lee GH, Kim K, Kim Y, Yang J, Choi MK. Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes. NANO-MICRO LETTERS 2023; 16:45. [PMID: 38060071 PMCID: PMC10704014 DOI: 10.1007/s40820-023-01254-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.
Collapse
Affiliation(s)
- Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kiwook Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yunho Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Moon Kee Choi
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Baek S, Jeong S, Ban HW, Ryu J, Kim Y, Gu DH, Son C, Yoon TS, Lee J, Son JS. Nanoscale Vertical Resolution in Optical Printing of Inorganic Nanoparticles. ACS NANO 2023. [PMID: 38044586 DOI: 10.1021/acsnano.3c09787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Direct optical printing of functional inorganics shows tremendous potential as it enables the creation of intricate two-dimensional (2D) patterns and affordable design and production of various devices. Although there have been recent advancements in printing processes using short-wavelength light or pulsed lasers, the precise control of the vertical thickness in printed 3D structures has received little attention. This control is vital to the diverse functionalities of inorganic thin films and their devices, as they rely heavily on their thicknesses. This lack of research is attributed to the technical intricacy and complexity involved in the lithographic processes. Herein, we present a generalized optical 3D printing process for inorganic nanoparticles using maskless digital light processing. We develop a range of photocurable inorganic nanoparticle inks encompassing metals, semiconductors, and oxides, combined with photolinkable ligands and photoacid generators, enabling the direct solidification of nanoparticles in the ink medium. Our process creates complex and large-area patterns with a vertical resolution of ∼50 nm, producing 50-nm-thick 2D films and several micrometer-thick 3D architectures with no layer height difference via layer-by-layer deposition. Through fabrication and operation of multilayered switching devices with Au electrodes and Ag-organic resistive layers, the feasibility of our process for cost-effective manufacturing of multilayered devices is demonstrated.
Collapse
Affiliation(s)
- Seongheon Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sanggyun Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeong Woo Ban
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiyeon Ryu
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yoonkyum Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Da Hwi Gu
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Changil Son
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Sik Yoon
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jiseok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| |
Collapse
|
25
|
Liu Q, Miao Y, Villalobos LF, Li S, Chi HY, Chen C, Vahdat MT, Song S, Babu DJ, Hao J, Han Y, Tsapatsis M, Agrawal KV. Unit-cell-thick zeolitic imidazolate framework films for membrane application. NATURE MATERIALS 2023; 22:1387-1393. [PMID: 37735526 PMCID: PMC10627807 DOI: 10.1038/s41563-023-01669-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are a subset of metal-organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn2+ and Co2+) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in ångström-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness-down to just one unit cell-are highly desired. However, the state-of-the-art methods yield membranes where ZIF films have thickness exceeding 50 nm. Here we report a crystallization method from ultradilute precursor mixtures, which exploits registry with the underlying crystalline substrate, yielding (within minutes) crystalline ZIF films with thickness down to that of a single structural building unit (2 nm). The film crystallized on graphene has a rigid aperture made of a six-membered zinc imidazolate coordination ring, enabling high-permselective H2 separation performance. The method reported here will probably accelerate the development of two-dimensional metal-organic framework films for efficient membrane separation.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yurun Miao
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA
| | - Shaoxian Li
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammad Tohidi Vahdat
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Shuqing Song
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Deepu J Babu
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jian Hao
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.
| |
Collapse
|
26
|
Chen J, Zhang M, Shu J, Liu S, Dong X, Li C, He L, Yuan M, Wu Y, Xu J, Zhang D, Ma F, Wu G, Chai Z, Wang S. Radiation-Induced De Novo Defects in Metal-Organic Frameworks Boost CO 2 Sorption. J Am Chem Soc 2023; 145:23651-23658. [PMID: 37859406 DOI: 10.1021/jacs.3c07778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Defects in metal-organic frameworks (MOFs) can significantly change their local microstructures, thus notably leading to an alteration-induced performance in sorption or catalysis. However, achieving de novo defect engineering in MOFs under ambient conditions without the scarification of their crystallinity remains a challenge. Herein, we successfully synthesize defective ZIF-7 through 60Co gamma ray radiation under ambient conditions. The obtained ZIF-7 is defect-rich but also has excellent crystallinity, enhanced BET surface area, and hierarchical pore structure. Moreover, the amount and structure of these defects within ZIF-7 were determined from the two-dimensional (2D) 13C-1H frequency-switched Lee-Goldburg heteronuclear correlation (FSLG-HETCOR) spectra, continuous rotation electron diffraction (cRED), and high-resolution transmission electron microscopy (HRTEM). Interestingly, the defects in ZIF-7 all strongly bind to CO2, leading to a remarkable enhancement of the CO2 sorption capability compared with that synthesized by the solvothermal method.
Collapse
Affiliation(s)
- Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiao Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yutian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahui Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuyin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Tao P, Wang Q, Vockenhuber M, Zhu D, Liu T, Wang X, Hu Z, Wang Y, Wang J, Tang Y, Ekinci Y, Xu H, He X. Charge Shielding-Oriented Design of Zinc-Based Nanoparticle Liquids for Controlled Nanofabrication. J Am Chem Soc 2023; 145:23609-23619. [PMID: 37856831 DOI: 10.1021/jacs.3c07595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Metal-containing nanoparticles possess nanoscale sizes, but the exploitation of their nanofeatures in nanofabrication processes remains challenging. Herein, we report the realization of a class of zinc-based nanoparticle liquids and their potential for applications in controlled nanofabrication. Utilizing the metal-core charge shielding strategy, we prepared nanoparticles that display glass-to-liquid transition behavior with glass transition temperature far below room temperature (down to -50.9 °C). Theoretical calculations suggest the outer surface of these unusual nanoparticles is almost neutral, thus leading to interparticle interactions weak enough to give them liquefaction characteristics. Such features endow them with extraordinarily high dispersibility and excellent film-forming capabilities. Twenty-two types of nanoparticles synthesized by this strategy have all shown good lithographic properties in the mid-ultraviolet, electron beam, or extreme ultraviolet light, and these nanoparticle liquids have achieved controlled top-down nanofabrication with predesigned 18 or 16 nm patterns. This proposed strategy is synthetically scalable and structurally extensible and is expected to inspire the design of entirely new forms of nanomaterials.
Collapse
Affiliation(s)
- Peipei Tao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Qianqian Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | | | - Da Zhu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Tianqi Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiaolin Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Ziyu Hu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yimeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yaping Tang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yasin Ekinci
- Paul Scherrer Institute, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Yao MS, Otake KI, Koganezawa T, Ogasawara M, Asakawa H, Tsujimoto M, Xue ZQ, Li YH, Flanders NC, Wang P, Gu YF, Honma T, Kawaguchi S, Kubota Y, Kitagawa S. Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms. Proc Natl Acad Sci U S A 2023; 120:e2305125120. [PMID: 37748051 PMCID: PMC10556592 DOI: 10.1073/pnas.2305125120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
Conductive metal-organic frameworks (cMOFs) manifest great potential in modern electrical devices due to their porous nature and the ability to conduct charges in a regular network. cMOFs applied in electrical devices normally hybridize with other materials, especially a substrate. Therefore, the precise control of the interface between cMOF and a substrate is particularly crucial. However, the unexplored interface chemistry of cMOFs makes the controlled synthesis and advanced characterization of high-quality thin films, particularly challenging. Herein, we report the development of a simplified synthesis method to grow "face-on" and "edge-on" cMOF nanofilms on substrates, and the establishment of operando characterization methodology using atomic force microscopy and X-ray, thereby demonstrating the relationship between the soft structure of surface-mounted oriented networks and their characteristic conductive functions. As a result, crystallinity of cMOF nanofilms with a thickness down to a few nanometers is obtained, the possible growth mechanisms are proposed, and the interesting anisotropic softness-dependent conducting properties (over 2 orders of magnitude change) of the cMOF are also illustrated.
Collapse
Affiliation(s)
- Ming-Shui Yao
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
- State Key Laboratory of Mesoscience and Low Carbon Processes (State Key Laboratory of Multi-phase Complex Systems), Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Ken-ichi Otake
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | | | - Moe Ogasawara
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
| | - Hitoshi Asakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa920-1192, Japan
- Nanomaterials Research Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Masahiko Tsujimoto
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Zi-Qian Xue
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Yan-Hong Li
- State Key Laboratory of Mesoscience and Low Carbon Processes (State Key Laboratory of Multi-phase Complex Systems), Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Nathan C. Flanders
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Ping Wang
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Yi-Fan Gu
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Kouto, Hyogo679-5198, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute, Kouto, Hyogo679-5198, Japan
| | - Yoshiki Kubota
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, Osaka558-8585, Japan
| | - Susumu Kitagawa
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
29
|
Liu Y, Liu X, Zhang Z, Lu J, Wang Y, Xu K, Zhu H, Wang B, Lin L, Xue W. Experimental and fluid flow simulation studies of laser-electrochemical hybrid manufacturing of micro-nano symbiotic superamphiphobic surfaces. J Chem Phys 2023; 159:114702. [PMID: 37712795 DOI: 10.1063/5.0166375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Micro-nano symbiotic superamphiphobic surfaces can prevent liquids from adhering to metal surfaces and, as a result, improve their corrosion resistance, self-cleaning performance, pollution resistance, and ice resistance. However, the fabrication of stable and controllable micro-nano symbiotic superamphiphobic structures on metal surfaces commonly used in industry remains a significant challenge. In this study, a laser-electrochemical hybrid subtractive-additive manufacturing method was proposed and developed for preparing copper superamphiphobic surfaces. Both experimental and fluid simulation studies were carried out. Utilizing this novel hybrid method, the controllable preparation of superamphiphobic micro-nano symbiotic structures was realized. The experimental results showed that the prepared surfaces had excellent superamphiphobic properties following subsequent modification with low surface energy substances. The contact angles of water droplets and oil droplets on the surface following electrodeposition treatment reached values of 161 ± 4° and 151 ± 4°, respectively, which showed that the prepared surface possessed perfect superamphiphobicity. Both the fabrication method and the test results provided useful insights for the preparation of stable and controllable superamphiphobic structures on metal surfaces in the future.
Collapse
Affiliation(s)
- Yang Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoyang Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinzhong Lu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yufeng Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kun Xu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hao Zhu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bo Wang
- Department of Materials Science and Engineering, Saarland University, Saarbrucken 66123, German
| | - Liqu Lin
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| | - Wei Xue
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
30
|
Lu Y, Zhang X, Zhao L, Liu H, Yan M, Zhang X, Mochizuki K, Yang S. Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications. Nat Commun 2023; 14:5860. [PMID: 37730799 PMCID: PMC10511444 DOI: 10.1038/s41467-023-41563-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
The templating method holds great promise for fabricating surface nanopatterns. To enhance the manufacturing capabilities of complex surface nanopatterns, it is important to explore new modes of the templates beyond their conventional masking and molding modes. Here, we employed the metal-organic framework (MOF) microparticles assembled monolayer films as templates for metal electrodeposition and revealed a previously unidentified guiding growth mode enabling the precise growth of metallic films exclusively underneath the MOF microparticles. The guiding growth mode was induced by the fast ion transportation within the nanochannels of the MOF templates. The MOF template could be repeatedly used, allowing for the creation of identical metallic surface nanopatterns for multiple times on different substrates. The MOF template-guided electrochemical growth mode provided a robust route towards cost-effective fabrication of complex metallic surface nanopatterns with promising applications in metamaterials, plasmonics, and surface-enhanced Raman spectroscopy (SERS) sensing fields.
Collapse
Affiliation(s)
- Youyou Lu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liyan Zhao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hong Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mi Yan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Baotou Research Institute of Rare Earths, Baotou, 014030, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kenji Mochizuki
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Shikuan Yang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Baotou Research Institute of Rare Earths, Baotou, 014030, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
31
|
Li S, Zhang Y, Wang Z, Wang D, Tang S, Zhang J, Shi F, Jiao G, Cheng H, Hao G. Enhanced blue-green response of nanoarray AlGaAs photocathodes for underwater low-light detection. OPTICS EXPRESS 2023; 31:26014-26026. [PMID: 37710472 DOI: 10.1364/oe.495599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023]
Abstract
Underwater optical communication and low-light detection are usually realized via blue-green laser sources and blue-green light-sensitive detectors. Negative-electron-affinity AlGaAs photocathode is an ideal photosensitive material for ocean exploration due to its adjustable spectrum range, long working lifetime, and easy epitaxy of materials. However, compared with other photocathodes, the main problem of AlGaAs photocathode is its low quantum efficiency. Based on Spicer's three-step photoemission model, nanoarray structures are designed on the surface of AlGaAs photocathode to improve its quantum efficiency from two aspects of optical absorption and photoelectron transport. Through simulation, it is concluded that the cylinder with diameter of 120 nm and height of 600 nm is the best nanoarray structure, and its absorptance is always greater than 90% in the 445∼532 nm range. Moreover, the absorptance and quantum efficiency of the cylinder nanoarray AlGaAs photocathode are less affected by the incident angle. When the angle of incident light reaches 70°, the minimum absorptance and quantum efficiency are still 64.6% and 24.9%. In addition, the square or hexagonal arrangement pattern of the nanoarray has little effect on the absorptance, however, a reduction in the overall emission layer thickness will decrease the absorptance near 532 nm.
Collapse
|
32
|
Huang Q, Yang Y, Qian J. Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
33
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
34
|
Okada K, Mashita R, Fukatsu A, Takahashi M. Polarization-dependent plasmonic heating in epitaxially grown multilayered metal-organic framework thin films embedded with Ag nanoparticles. NANOSCALE ADVANCES 2023; 5:1795-1801. [PMID: 36926578 PMCID: PMC10012874 DOI: 10.1039/d2na00882c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The development of metal-organic framework (MOF) thin films with various functionalities has paved the way for research into a wide variety of applications. MOF-oriented thin films can exhibit anisotropic functionality in the not only out-of-plane but also in-plane directions, making it possible to utilize MOF thin films for more sophisticated applications. However, the functionality of oriented MOF thin films has not been fully exploited, and finding novel anisotropic functionality in oriented MOF thin films should be cultivated. In the present study, we report the first demonstration of polarization-dependent plasmonic heating in a MOF oriented film embedded with Ag nanoparticles (AgNPs), pioneering an anisotropic optical functionality in MOF thin films. Spherical AgNPs exhibit polarization-dependent plasmon-resonance absorption (anisotropic plasmon damping) when incorporated into an anisotropic lattice of MOFs. The anisotropic plasmon resonance results in a polarization-dependent plasmonic heating behavior; the highest elevated temperature was observed in case the polarization of incident light is parallel to the crystallographic axis of the host MOF lattice favorable for the larger plasmon resonance, resulting in polarization-controlled temperature regulation. Such spatially and polarization selective plasmonic heating offered by the use of oriented MOF thin films as a host can pave the way for applications such as efficient reactivation in MOF thin film sensors, partial catalytic reactions in MOF thin film devices, and soft microrobotics in composites with thermo-responsive materials.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Risa Mashita
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Arisa Fukatsu
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| |
Collapse
|
35
|
Li H, Shi H, Chen X, Ren Z, Shen Y, Wu P, Fan Y, Zhang X, Shi W, Liao H, Zhang S, Zhang W, Huo F. Construction of Metal-Organic Framework Films via Crosslinking-Induced Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209777. [PMID: 36493462 DOI: 10.1002/adma.202209777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The construction of metal-organic framework (MOF) films is a crucial step for integrating them into technical applications. However, due to the crystallization nature, it is difficult to grow most MOFs spontaneously or process them into films. Here, a convenient strategy is demonstrated for constructing MOF films by using modulators to achieve homogeneous assembly of MOF clusters. Small clusters in the early growth steps of MOFs can be stabilized by modulators to form fluidic precursors with good processibility. Then, simple removal of modulators will trigger the crosslinking of MOF clusters and lead to the formation of continuous films. This strategy is universal for the fabrication of several types of MOF films with large scale and controllable thickness, which can be deposited on a variety of substrates as well as can be patterned in micro/nano resolution. Additionally, versatile composite MOF films can be easily synthesized by introducing functional materials during the crosslinking process, which brings them broader application prospects.
Collapse
Affiliation(s)
- Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Haohao Shi
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Xinyi Chen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Peng Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Yun Fan
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
36
|
Franciosi A, Kiskinova M. Elettra-Sincrotrone Trieste: present and future. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:79. [PMID: 36712550 PMCID: PMC9872737 DOI: 10.1140/epjp/s13360-023-03654-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
We present an overview of the Elettra-Sincrotrone Trieste research center, which hosts synchrotron and free-electron laser light sources. We review the current status, provide examples of recent achievements in basic and applied research and discuss the upgrade programs of the facility.
Collapse
Affiliation(s)
- Alfonso Franciosi
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| | - Maya Kiskinova
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, 34149 Trieste, Italy
| |
Collapse
|
37
|
Cao LM, Hu CG, Li HH, Huang HB, Ding LW, Zhang J, Wu JX, Du ZY, He CT, Chen XM. Molecule-Enhanced Electrocatalysis of Sustainable Oxygen Evolution Using Organoselenium Functionalized Metal-Organic Nanosheets. J Am Chem Soc 2023; 145:1144-1154. [PMID: 36538569 DOI: 10.1021/jacs.2c10823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Remolding the reactivity of metal active sites is critical to facilitate renewable electricity-powered water electrolysis. Doping heteroatoms, such as Se, into a metal crystal lattice has been considered an effective approach, yet usually suffers from loss of functional heteroatoms during harsh electrocatalytic conditions, thus leading to the gradual inactivation of the catalysts. Here, we report a new heteroatom-containing molecule-enhanced strategy toward sustainable oxygen evolution improvement. An organoselenium ligand, bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide containing robust C-Se-C covalent bonds equipped in the precatalyst of ultrathin metal-organic nanosheets Co-SeMON, is revealed to significantly enhance the catalytic mass activity of the cobalt site by 25 times, as well as extend the catalyst operation time in alkaline conditions by 1 or 2 orders of magnitude compared with these reported metal selenides. A combination of various in situ/ex situ spectroscopic techniques, ab initio molecular dynamics, and density functional theory calculations unveiled the organoselenium intensified mechanism, in which the nonclassical bonding of Se to O-containing intermediates endows adsorption-energy regulation beyond the conventional scaling relationship. Our results showcase the great potential of molecule-enhanced catalysts for highly efficient and economical water oxidation.
Collapse
Affiliation(s)
- Li-Ming Cao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chang-Guo Hu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hai-Hong Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hui-Bin Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Li-Wen Ding
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zi-Yi Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chun-Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
38
|
Rubio-Giménez V, Arnauts G, Wang M, Oliveros Mata ES, Huang X, Lan T, Tietze ML, Kravchenko DE, Smets J, Wauteraerts N, Khadiev A, Novikov DV, Makarov D, Dong R, Ameloot R. Chemical Vapor Deposition and High-Resolution Patterning of a Highly Conductive Two-Dimensional Coordination Polymer Film. J Am Chem Soc 2023; 145:152-159. [PMID: 36534059 DOI: 10.1021/jacs.2c09007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crystalline coordination polymers with high electrical conductivities and charge carrier mobilities might open new opportunities for electronic devices. However, current solvent-based synthesis methods hinder compatibility with microfabrication standards. Here, we describe a solvent-free chemical vapor deposition method to prepare high-quality films of the two-dimensional conjugated coordination polymer Cu-BHT (BHT = benzenehexanothiolate). This approach involves the conversion of a metal oxide precursor into Cu-BHT nanofilms with a controllable thickness (20-85 nm) and low roughness (<10 nm) through exposure to the vaporized organic linker. Moreover, the restricted metal ion mobility during the vapor-solid reaction enables high-resolution patterning via both bottom-up lithography, including the fabrication of micron-sized Hall bar and electrode patterns to accurately evaluate the conductivity and mobility values of the Cu-BHT films.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giel Arnauts
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eduardo Sergio Oliveros Mata
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Xing Huang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Tianshu Lan
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Max L Tietze
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dmitry E Kravchenko
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jorid Smets
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Nathalie Wauteraerts
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Azat Khadiev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Dmitri V Novikov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
39
|
Paras, Yadav K, Kumar P, Teja DR, Chakraborty S, Chakraborty M, Mohapatra SS, Sahoo A, Chou MMC, Liang CT, Hang DR. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:160. [PMID: 36616070 PMCID: PMC9824826 DOI: 10.3390/nano13010160] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 09/02/2023]
Abstract
The development of modern cutting-edge technology relies heavily on the huge success and advancement of nanotechnology, in which nanomaterials and nanostructures provide the indispensable material cornerstone. Owing to their nanoscale dimensions with possible quantum limit, nanomaterials and nanostructures possess a high surface-to-volume ratio, rich surface/interface effects, and distinct physical and chemical properties compared with their bulk counterparts, leading to the remarkably expanded horizons of their applications. Depending on their degree of spatial quantization, low-dimensional nanomaterials are generally categorized into nanoparticles (0D); nanorods, nanowires, and nanobelts (1D); and atomically thin layered materials (2D). This review article provides a comprehensive guide to low-dimensional nanomaterials and nanostructures. It begins with the classification of nanomaterials, followed by an inclusive account of nanofabrication and characterization. Both top-down and bottom-up fabrication approaches are discussed in detail. Next, various significant applications of low-dimensional nanomaterials are discussed, such as photonics, sensors, catalysis, energy storage, diverse coatings, and various bioapplications. This article would serve as a quick and facile guide for scientists and engineers working in the field of nanotechnology and nanomaterials.
Collapse
Affiliation(s)
- Paras
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Kushal Yadav
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Prashant Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Dharmasanam Ravi Teja
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Sudipto Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Monojit Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Abanti Sahoo
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Mitch M. C. Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
40
|
Chen H, Chen J, Li M, You M, Chen Q, Lin M, Yang H. Recent advances in metal-organic frameworks for X-ray detection. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Rodríguez-Hermida S, Kravchenko DE, Wauteraerts N, Ameloot R. Vapor-Assisted Powder Synthesis and Oriented MOF-CVD Thin Films of the Metal–Organic Framework HKUST-1. Inorg Chem 2022; 61:17927-17931. [DOI: 10.1021/acs.inorgchem.2c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sabina Rodríguez-Hermida
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Dmitry E. Kravchenko
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Nathalie Wauteraerts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| |
Collapse
|
42
|
Cheng F, Peng X, Hu L, Yang B, Li Z, Dong CL, Chen JL, Hsu LC, Lei L, Zheng Q, Qiu M, Dai L, Hou Y. Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production. Nat Commun 2022; 13:6486. [PMID: 36309525 DOI: 10.1038/s41467-022-34278-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Two-dimensional metal-organic frameworks (MOFs) have been explored as effective electrocatalysts for hydrogen evolution reaction (HER). However, the sluggish water activation kinetics and structural instability under ultrahigh-current density hinder their large-scale industrial applications. Herein, we develop a universal ligand regulation strategy to build well-aligned Ni-benzenedicarboxylic acid (BDC)-based MOF nanosheet arrays with S introducing (S-NiBDC). Benefiting from the closer p-band center to the Fermi level with strong electron transferability, S-NiBDC array exhibits a low overpotential of 310 mV to attain 1.0 A cm-2 with high stability in alkaline electrolyte. We speculate the newly-constructed triangular "Ni2-S1" motif as the improved HER active region based on detailed mechanism analysis and structural characterization, and the enhanced covalency of Ni-O bonds by S introducing stabilizes S-NiBDC structure. Experimental observations and theoretical calculations elucidate that such Ni sites in "Ni2-S1" center distinctly accelerate the water activation kinetics, while the S site readily captures the H atom as the optimal HER active site, boosting the whole HER activity.
Collapse
Affiliation(s)
- Fanpeng Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyun Peng
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Lingzi Hu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ming Qiu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China.
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China. .,School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China. .,Donghai Laboratory, Zhoushan, China.
| |
Collapse
|
43
|
Generalised optical printing of photocurable metal chalcogenides. Nat Commun 2022; 13:5262. [PMID: 36071063 PMCID: PMC9452581 DOI: 10.1038/s41467-022-33040-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials. Optical 3D printing techniques are low-cost mask-less patterning methods, but their application is limited by the number of printable materials. Here, the authors report a generalized optical method to print 2D or micrometre-thick 2.5D architectures based on metal chalcogenides inks, showing the realization of micro-scale thermoelectric generators.
Collapse
|
44
|
Mezenov YA, Bruyere S, Krasilin A, Khrapova E, Bachinin SV, Alekseevskiy PV, Shipiloskikh S, Boulet P, Hupont S, Nomine A, Vigolo B, Novikov AS, Belmonte T, Milichko VA. Insights into Solid-To-Solid Transformation of MOF Amorphous Phases. Inorg Chem 2022; 61:13992-14003. [PMID: 36001002 DOI: 10.1021/acs.inorgchem.2c01978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have been recently explored as crystalline solids for conversion into amorphous phases demonstrating non-specific mechanical, catalytic, and optical properties. The real-time control of such structural transformations and their outcomes still remain a challenge. Here, we use in situ high-resolution transmission electron microscopy with 0.01 s time resolution to explore non-thermal (electron induced) amorphization of a MOF single crystal, followed by transformation into an amorphous nanomaterial. By comparing a series of M-BTC (M: Fe3+, Co3+, Co2+, Ni2+, and Cu2+; BTC: 1,3,5-benzentricarboxylic acid), we demonstrate that the topology of a metal cluster of the parent MOFs determines the rate of formation and the chemistry of the resulting phases containing an intact ligand and metal or metal oxide nanoparticles. Confocal Raman and photoluminescence spectroscopies further confirm the integrity of the BTC ligand and coordination bond breaking, while high-resolution imaging with chemical and structural analysis over time allows for tracking the dynamics of solid-to-solid transformations. The revealed relationship between the initial and resulting structures and the stability of the obtained phase and its photoluminescence over time contribute to the design of new amorphous MOF-based optical nanomaterials.
Collapse
Affiliation(s)
- Yuri A Mezenov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Stephanie Bruyere
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | | | | | - Semyon V Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Pavel V Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Sergei Shipiloskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia
| | - Pascal Boulet
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Sebastien Hupont
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Alexandre Nomine
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Brigitte Vigolo
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, St. Petersburg 198504 Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198 Russia
| | - Thierry Belmonte
- Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101 Russia.,Institut Jean Lamour, Universite de Lorraine, UMR CNRS 7198, Nancy 54011 France
| |
Collapse
|
45
|
Han D, Wei Y. Achieving high aspect ratio in plasmonic lithography for practical applications with sub-20 nm half pitch. OPTICS EXPRESS 2022; 30:20589-20604. [PMID: 36224800 DOI: 10.1364/oe.457995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/15/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic lithography, which exploits a bowtie nanoaperture (BNA) for the purpose of subwavelength near-field focusing, has the capability of high-resolution patterning. However, the ultra-small feature size is achieved at the price of sharply decay of the surface plasmon waves (SPWs) in the photoresist (PR) layer, which directly leads to some unfavorable patterning issues, such as non-uniformity and shallow pattern depth even over small exposure areas. In this work, a special hybrid plasmonic waveguide (HPW) patterning system, which is composed of the plasmonic BNA-PR layer-silver reflector, is designed to facilitate high spatial frequency selection and amplify the evanescent field in the PR layer. Theoretical calculations indicate that the antisymmetric coupled SPWs and plasmonic waveguide modes excited by the HPW structure can remove the exponential decay and ensure uniform exposure over the entire depth of the PR layer. Importantly, the hyperbolic decaying characteristic of the SPWs in the PR layer plays a noticeable role in the improvement of achievable resolution, depth-of-field, and line array pattern profile. It is worth to note that the uniform periodic patterns in sub-20 nm feature can be achieved with high aspect ratio. Additionally, further numerical simulation results are presented to demonstrate the achievement of spatial frequency selection of high-k mode in HPW structure by controlling the PR thickness and gap size. Our findings may provide a new perspective on the manufacture of surface nanostructures and broaden the potential promising applications of plasmonic lithography in nanoscale patterning.
Collapse
|
46
|
Xu S, Huang Q, Xue J, Yang Y, Mao L, Huang S, Qian J. Morphologically Controlled Metal-Organic Framework-Derived FeNi Oxides for Efficient Water Oxidation. Inorg Chem 2022; 61:8909-8919. [PMID: 35656800 DOI: 10.1021/acs.inorgchem.2c01035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex oxygen evolution reaction (OER) is recognized as the most studied and explored electrochemical conversion, which plays a crucial role in energy-related applications. In this work, a series of metal-organic framework (MOF)-derived FeNi oxides from a barrel-shaped Ni-based BMM-10 precursor are conveniently obtained to show an excellent OER performance. Under mild Fe(III) etching, a type of core-shell Fe0.5-BMM-10 can be well preserved and the coordination bond of the middle frame structure is decomposed. Furthermore, the Fex-BMM-10-T series is successfully synthesized with a well-preserved morphology compared to precursors after direct oxidation. Finally, followed by initial electrochemical activation, the decomposition of FeNi oxides generates active Fe-doped nickel oxyhydroxides for efficient water oxidation. The improved OER performance stems from the high specific surface area and abundant exposed active centers, as well as the significant synergistic effect between iron and nickel, which is further verified by the theoretical calculation. This approach can be extended to precisely adjust the morphology of MOFs and their derivatives that can result in superior electrocatalytic properties in terms of energy conversion and storage applications.
Collapse
Affiliation(s)
- Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Qi Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Jinhang Xue
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Yuandong Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| |
Collapse
|
47
|
Dorneles de Mello M, Ahmad M, Lee DT, Dimitrakellis P, Miao Y, Zheng W, Nykypanchuk D, Vlachos DG, Tsapatsis M, Boscoboinik JA. In Situ Tracking of Nonthermal Plasma Etching of ZIF-8 Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19023-19030. [PMID: 35416642 DOI: 10.1021/acsami.2c00259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface characterization is critical for understanding the processes used for preparing catalysts, sorbents, and membranes. Nonthermal plasma (NTP) is a process that achieves high reactivity at low temperatures and is used to tailor the surface properties of materials. In this work, we combine the capabilities of infrared reflection absorption spectroscopy (IRRAS) with NTP for the in situ interrogation of zeolitic imidazolate framework-8 (ZIF-8) thin films to probe modifications in the material induced by oxygen and nitrogen plasmas. The IRRAS measurements in oxygen plasma reveal etching of organic ligands with sequential removal of the methyl group and imidazole ring and with the formation of carbonyl moieties (C═O). In contrast, nitrogen plasma induces mild etching and grafting of nitrile groups (-C≡N). Scanning electron microscopy imaging shows that oxygen plasma, at prolonged times, significantly degrades the ZIF-8 film at the grain boundaries. Treatment of ZIF-8 membranes using mild plasma conditions yields a fivefold enhancement for H2/N2 and CO2/CH4 ideal selectivities and an eightfold enhancement for CO2/N2 ideal selectivity. Additionally, the new tools described here can be used for spectroscopic in situ tracking of plasma-induced chemistry on thin films in general.
Collapse
Affiliation(s)
- Matheus Dorneles de Mello
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mueed Ahmad
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Dennis T Lee
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Panagiotis Dimitrakellis
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716 United States
| | - Yurun Miao
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716 United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716 United States
| | - Michael Tsapatsis
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 21218, United States
| | - Jorge Anibal Boscoboinik
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
48
|
Jadhav A, Phatangare A, Ganesapandy T, Bholane G, Sonawane A, Khantwal N, Kamble P, Mondal P, Dhamgaye V, Dahiwale S, Phase D, Bhoraskar V, Dhole S. Synchrotron X-ray assisted degradation of industrial wastewater by advanced oxidation process. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Möslein A, Tan JC. Vibrational Modes and Terahertz Phenomena of the Large-Cage Zeolitic Imidazolate Framework-71. J Phys Chem Lett 2022; 13:2838-2844. [PMID: 35324212 PMCID: PMC9084598 DOI: 10.1021/acs.jpclett.2c00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The zeolitic imidazole framework ZIF-71 has the potential to outperform other well-studied metal-organic frameworks due to its intrinsic hydrophobicity and relatively large pore size. However, a detailed description of its complex physical phenomena and structural dynamics has been lacking thus far. Herein, we report the complete assignment of the vibrational modes of ZIF-71 using high-resolution inelastic neutron scattering measurements and synchrotron radiation infrared spectroscopy, corroborated by density functional theory (DFT) calculations. With its 816 atoms per unit cell, ZIF-71 is the largest system yet for which frequency calculations have been accomplished employing the CRYSTAL17 DFT code. We discover low-energy terahertz dynamics such as gate-opening and shearing modes that are central to the functions and stability of the ZIF-71 framework structure. Nanoscale analytical methods based on atomic force microscopy (near-field infrared spectroscopy and AFM nanoindentation) further unravel the local chemical and mechanical properties of ZIF-71 single crystals.
Collapse
|
50
|
Bharti A, Turchet A, Marmiroli B. X-Ray Lithography for Nanofabrication: Is There a Future? FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.835701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
X-ray lithography has been first proposed almost 50 years ago, and the related LIGA process around 25 years ago. It is therefore a good time to make an analysis of the technique, with its pros and cons. In this perspective article, we describe X-ray lithography’s latest advancements. First, we report the improvement in the fabrication of the high aspect ratio and high-resolution micro/nanostructures. Then, we present the radiation-assisted synthesis and processing of novel materials for the next generation of functional devices. We finally draw our conclusion on the future prospects of the technique.
Collapse
|