1
|
Delgado KN, Caimano MJ, Orbe IC, Vicente CF, La Vake CJ, Grassmann AA, Moody MA, Radolf JD, Hawley KL. Immunodominant extracellular loops of Treponema pallidum FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory activities. PLoS Pathog 2024; 20:e1012443. [PMID: 39715273 DOI: 10.1371/journal.ppat.1012443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded β-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). We identified five immunodominant loops from the FadL orthologs TP0856, TP0858 and TP0865 by immunoblotting and ELISA. Rabbits and mice immunized with these five PfTrx constructs produced loop-specific antibodies that promoted opsonophagocytosis of TPA by rabbit peritoneal and murine bone marrow-derived macrophages at levels comparable to IRS and mouse syphilitic serum. Heat-inactivated IRS and loop-specific rabbit and mouse antisera also impaired viability, motility, and cellular attachment of spirochetes during in vitro cultivation. The results support the use of ECL-based vaccines and suggest that loop-specific antibodies promote spirochete clearance via Fc receptor-independent as well as Fc receptor-dependent mechanisms.
Collapse
Affiliation(s)
- Kristina N Delgado
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Research, Connecticut Children's Research Institute, Hartford, Connecticut, United States of America
| | - Isabel C Orbe
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - Crystal F Vicente
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - Carson J La Vake
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
| | - André A Grassmann
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, United States of America
- Department of Research, Connecticut Children's Research Institute, Hartford, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, United States of America
| | - Kelly L Hawley
- Department of Medicine, UConn Health, Farmington, Connecticut, United States of America
- Department of Pediatrics, UConn Health, Farmington, Connecticut, United States of America
- Department of Research, Connecticut Children's Research Institute, Hartford, Connecticut, United States of America
- Department of Immunology, UConn Health, Farmington, Connecticut, United States of America
- Division of Infectious Diseases and Immunology, Connecticut Children's, Hartford, Connecticut, United States of America
| |
Collapse
|
2
|
Golparian D, Rapp E, Hasmats J, Unemo M. Novel approach using automated target enrichment enables culture-independent accurate whole-genome sequencing of Neisseria gonorrhoeae directly from clinical urogenital and extragenital specimens. J Antimicrob Chemother 2024:dkae446. [PMID: 39680110 DOI: 10.1093/jac/dkae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is compromising gonorrhoea treatment, and enhanced N. gonorrhoeae AMR and genome-based epidemiological surveillance is imperative. Molecular tests are replacing N. gonorrhoeae culture internationally, excluding possibilities to perform WGS. We describe and evaluate a novel approach using a custom SureSelectXTHS Target-Enrichment probe panel automated on the Magnis NGS Prep System and Illumina sequencing to generate accurate N. gonorrhoeae genomes directly from clinical urogenital and extragenital specimens. METHODS One hundred thirteen clinical N. gonorrhoeae-positive APTIMA Combo 2 (AC2) specimens (with 89 linked N. gonorrhoeae isolates) were included. DNA was extracted using QIAsymphony DSP Virus/Pathogen kit. Amplisens multiplex RT-PCR assay (AM-PCR) identified 105 (92.9%) of the AC2 specimens as N. gonorrhoeae positive, which were further examined. Sequence libraries for AC2 specimens were prepared on the Magnis NGS Prep System using the Magnis SureSelectXTHS Reagent kit for Illumina paired-end platforms. Paired-end sequencing was performed on Illumina platforms. RESULTS Seventy-four of the 105 (70.5%) AC2 samples remained N. gonorrhoeae positive with a cycle threshold <20 in the AM-PCR and subjected to SureSelectXTHS target enrichment and subsequently Illumina WGS. Seventy-two (97.3%) of all target-enriched specimens were successfully genome-sequenced. All linked AC2 specimens and N. gonorrhoeae isolates from the same anatomical site had identical AMR determinants and molecular epidemiological sequence types. CONCLUSIONS We show that custom SureSelectXTHS target enrichment automated on the Magnis NGS Prep System, followed by Illumina sequencing, enables culture-independent genome-based surveillance of N. gonorrhoeae AMR and molecular epidemiology. This novel methodological advancement provides an efficient and accurate WGS of N. gonorrhoeae directly from clinical urogenital and extragenital NAAT specimens.
Collapse
Affiliation(s)
- Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Örebro University, Örebro, Sweden
| | - Ellionor Rapp
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Johanna Hasmats
- Diagnostics and Genomics Group, Agilent Technologies Sweden AB, Stockholm, Sweden
| | - Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Sexually Transmitted Infections, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| |
Collapse
|
3
|
Yang L, Zhang X, Chen W, Seña AC, Zheng H, Jiang Y, Zhao P, Chen R, Wang L, Ke W, Salazar JC, Parr JB, Tucker JD, Hawley KL, Caimano MJ, Hennelly CM, Aghakanian F, Bettin EB, Zhang F, Chen JS, Moody MA, Radolf JD, Yang B. Clinical Presentation of Early Syphilis and Genomic Sequences of Treponema pallidum Strains in Patient Specimens and Isolates Obtained by Rabbit Inoculation. J Infect Dis 2024; 230:e1322-e1333. [PMID: 38884588 PMCID: PMC11646597 DOI: 10.1093/infdis/jiae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The global resurgence of syphilis necessitates vaccine development. METHODS We collected ulcer exudates and blood from 17 participants with primary syphilis (PS) and skin biopsies and blood from 51 patients with secondary syphilis (SS) in Guangzhou, China, for Treponema pallidum subsp pallidum (TPA) quantitative polymerase chain reaction, whole genome sequencing (WGS), and isolation of TPA in rabbits. RESULTS TPA DNA was detected in 15 of 17 ulcer exudates and 3 of 17 blood PS specimens. TPA DNA was detected in 50 of 51 SS skin biopsies and 27 of 51 blood specimens. TPA was isolated from 47 rabbits with success rates of 71% (12/17) and 69% (35/51), respectively, from ulcer exudates and SS bloods. We obtained paired genomic sequences from 24 clinical samples and corresponding rabbit isolates. Six SS14- and 2 Nichols-clade genome pairs contained rare discordances. Forty-one of the 51 unique TPA genomes clustered within SS14 subgroups largely from East Asia, while 10 fell into Nichols C and E subgroups. CONCLUSIONS Our TPA detection rate was high from PS ulcer exudates and SS skin biopsies and over 50% from SS blood, with TPA isolation in more than two-thirds of samples. Our results support the use of WGS from rabbit isolates to inform vaccine development.
Collapse
Affiliation(s)
- Ligang Yang
- Dermatology Hospital, Southern Medical University
| | | | - Wentao Chen
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Arlene C Seña
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Peizhen Zhao
- Dermatology Hospital, Southern Medical University
| | - Rongyi Chen
- Dermatology Hospital, Southern Medical University
| | - Liuyuan Wang
- Dermatology Hospital, Southern Medical University
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, China
| | - Juan C Salazar
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
| | - Jonathan B Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Joseph D Tucker
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Kelly L Hawley
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
- Department of Medicine, UConn School of Medicine, Farmington
| | - Melissa J Caimano
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
- Department of Medicine, UConn School of Medicine, Farmington
| | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - Farhang Aghakanian
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | | | - Feifei Zhang
- Dermatology Hospital, Southern Medical University
| | - Jane S Chen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill
| | - M Anthony Moody
- Departments of Pediatrics and Integrative Immunobiology, Duke University, Durham, North Carolina
| | - Justin D Radolf
- Department of Pediatrics, UConn School of Medicine, Farmington
- Connecticut Children’s Research Institute, Connecticut Children's, Hartford
- Department of Medicine, UConn School of Medicine, Farmington
| | - Bin Yang
- Dermatology Hospital, Southern Medical University
| |
Collapse
|
4
|
Houston S, Marshall S, Gomez A, Cameron CE. Proteomic analysis of the Treponema pallidum subsp. pallidum SS14 strain: coverage and comparison with the Nichols strain proteome. Front Microbiol 2024; 15:1505893. [PMID: 39723147 PMCID: PMC11668736 DOI: 10.3389/fmicb.2024.1505893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Strains of the syphilis spirochete, Treponema pallidum ssp. pallidum, group into one of two deep-branching clades: the Nichols clade or the globally dominant Street Strain 14 (SS14) clade. To date, in-depth proteome-wide analyses have focused on Nichols clade strains. Methods The T. pallidum SS14 clade reference strain (SS14) proteome was characterized via protein detection and quantification analyses using mass spectrometry, and comparison was made to the Nichols clade reference strain (Nichols) proteome. Results Approximately two thirds of all proteins from T. pallidum SS14 were detected and quantitated, allowing confirmation of expression of 259 proteins for the first time in this strain, including 11 known/putative outer membrane proteins (OMPs). SS14 and Nichols proteome comparative analyses demonstrated similar protein expression/quantification profiles between the two strains, and showed that inter-strain amino acid sequence differences are located primarily within predicted surface-exposed regions in 16 known/putative OMPs. Discussion This study provides the first comparative analyses of the proteomes from the T. pallidum SS14 and Nichols strains. The findings inform syphilis vaccine design by confirming the expression of known/predicted OMP vaccine candidates in SS14 treponemes, and via the finding that most inter-strain variable residues found in OMPs are predicted to be located in surface-exposed, host-facing regions of these proteins.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Steven Marshall
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Kingston M, Apea V, Evans C, Fifer H, Foster K, Patrick P, Grant A, Manns V, Ramsden S, Sinka K, Sukthankar A, Sullivan A, Tyler S. BASHH UK guidelines for the management of syphilis 2024. Int J STD AIDS 2024; 35:1142-1160. [PMID: 39270129 DOI: 10.1177/09564624241280406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The 2024 UK guidelines for the management of syphilis are in line with current evidence and practice within the UK. Key updates are detailed at the start of the article. These guidelines are accompanied by the first UK guidelines for the management of syphilis in pregnant people and children, 2024.
Collapse
Affiliation(s)
- Margaret Kingston
- Consultant Physician Genitourinary Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Vanessa Apea
- Consultant Physician Genitourinary Medicine, Barts Health NHS Trust, London, UK
| | - Ceri Evans
- Senior Sexual Health Advisor, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Helen Fifer
- Consultant Microbiologist, UK Health Security Agency, Newcastle upon Tyne, UK
| | - Kirsty Foster
- Consultant in Health Protection, UK Health Security Agency, Newcastle upon Tyne, UK
| | - Patrick Patrick
- Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Alison Grant
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Vicky Manns
- Advanced Nurse Specialist, Churchill Hospital, Oxford, UK
| | - Sophie Ramsden
- Consultant Physician Genitourinary Medicine, Bolton NHS Foundation Trust, Bolton, UK
| | - Katy Sinka
- Consultant Scientist and Epidemiologist, UK Health Security Agency, Newcastle upon Tyne, UK
| | - Ashish Sukthankar
- Consultant Physician Genitourinary Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ann Sullivan
- BASHH Clinical Effectiveness Group (CEG) Editor, Consultant Physician Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | | |
Collapse
|
6
|
Dong T, Sun G, Liu A. Universal All-In-One Lateral Flow Immunoassay with Triple Signal Amplification for Ultrasensitive and Simple Self-Testing of Treponema pallidum Antibodies. Anal Chem 2024; 96:17537-17545. [PMID: 39312755 DOI: 10.1021/acs.analchem.4c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lateral flow immunoassay (LFIA) is valued for its simplicity and rapidity for on-site screening, however, it experienced false negatives in real sample analysis due to low sensitivity. Although many signal amplification techniques can improve the sensitivity, they usually require additional complicated steps. To address these issues, taking Treponema pallidum (T. pallidum) antibodies as a model detecting target, herein, we report an all-in-one LFIA (AIO-LFIA) with triple-step signal amplification to significantly improve sensitivity while maintaining simplicity. This LFIA utilizes a biotin-streptavidin system for initial signal amplification, followed by introducing a release controller with a specific imprinted structure for timed multicomponent release, which avoids the extra steps when adding components in traditional LFIA. Particularly, a 3D-printed programmed metal in situ growth (MISG) device is integrated to localize signal enhancement at specific sites, overcoming limitations of traditional MISG and substantially reducing reagent usage and assay time, and the nitrocellulose membrane surface was much cleaner than the conventional approach, which facilitates signal readout. After optimization, the proposed AIO-LFIA is capable of visual detection down to 1 pg/mLT. pallidum antibodies in 15 min, 1000-fold lower than the gold nanoparticle-based LFIA. In clinical testing of 152 samples, the AIO-LFIA can distinguish all positive samples, outperforming commercial LFIA which missed those positive samples with relatively low antibody levels. Thus, this study presents a universal ultrasensitive and reliable AIO-LFIA strategy for infectious diseases self-testing, providing an effective promising prospect to address the challenge over emerging infectious diseases in the future.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
- School of Pharmacy, Medical College, Qingdao University, Qingdao 266071, China
| | - Guangze Sun
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology and Biosensing, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Chen W, Zhou C, Su X, Yin X, Yuan W, Hu C, Zhao W. Revealing the Genetic Diversity of Chinese Chlamydia trachomatis Strains Directly From Clinical Samples Through Selective Whole Genome Amplification. J Infect Dis 2024; 230:857-867. [PMID: 38547503 DOI: 10.1093/infdis/jiae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/27/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Chlamydia trachomatis is the causative agent of the most prevalent bacterial sexually transmitted infections globally. Whole genome sequencing is essential for molecular Chlamydia surveillance; however, its application is hampered by the pathogen's low abundance in clinical specimens and the expensive labor-intensive nature of existing enrichment methodologies for Chlamydia. METHODS We developed a targeted whole genome amplification tool termed SWITCH by integrating phi29 DNA polymerase-mediated amplification with meticulously designed primer sets to enrich the C trachomatis genome, followed by whole genome sequencing. This method underwent evaluation through testing synthetic and clinical specimens. RESULTS SWITCH demonstrated robust ability to achieve up to 98.3% genomic coverage of C trachomatis from as few as 26.4 genomic copies present in synthetic specimens, and it exhibited excellent performance across diverse C trachomatis serovars. Utilizing SWITCH, we directly generated 21 Chlamydia genomes from 26 clinical samples, enabling us to gain insights into the genetic relationships and phylogeny of current Chlamydia strains circulating in the country. Remarkably, this study marked the first instance of generating Chinese Chlamydia genomes directly from clinical samples. CONCLUSIONS SWITCH represents a practical cost-efficient approach to enrich the Chlamydia genome directly from clinical specimens, offering an efficient avenue for molecular surveillance of Chlamydia.
Collapse
Affiliation(s)
- Wentao Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chuchan Zhou
- Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Xin Su
- Department of Clinical Laboratory, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weixi Yuan
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, China
| | - Chuncai Hu
- Department of Clinical Laboratory, Lecong Hospital of Shunde, Foshan, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Nadal-Barón P, Trejo-Zahinos J, Arando M, Barberan-Masegosa A, Bernat-Sole M, Pérez-Ugarte A, Villatoro AM, Alcubilla P, Sulleiro E, Gonzalez-López JJ, Antón A, Alberny M, Mitjà O, Larrosa MN, Hoyos-Mallecot Y. High increase of Nichols-like clade circulating Treponema pallidum subsp. pallidum in Barcelona from 2021 to 2023. Sci Rep 2024; 14:23419. [PMID: 39379557 PMCID: PMC11461962 DOI: 10.1038/s41598-024-74355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Worldwide, more than 90% of contemporary syphilis strains belong to SS14-like clade. This study aimed to describe the molecular profile of circulating Treponema pallidum subsp. pallidum (TPA) strains in Barcelona, Spain, from 2021 to 2023 building upon our report in 2015 which showed that 94.8% of typed strains belonged to the SS14 clade. Multilocus sequence typing (MLST) was conducted on TPA-positive samples obtained from swab samples by sequencing the tp0136, tp0548, and tp0705 loci. Strains were classified as Nichols-like or SS14-like clade. Macrolide and tetracycline resistance‑associated mutations were determined through analysis of 23S rDNA and 16S rRNA gene sequences. Of the 96 typeable samples, 47.9% belonged to SS14-like and 52.1% to the Nichols-like. Fourteen haplotypes were identified, with ST26 representing 43.8% of the samples, distributed across 11 haplotypes in the SS14-like and 3 haplotypes in the Nichols-like. All the samples showed macrolide resistance-associated mutations, while none exhibited tetracycline-associated mutations. Our findings revealed a substantial shift in the proportion of TPA clades within the Barcelona population from 2021 to 2023, characterized by a higher proportion of Nichols-like strains compared to 2015 and international trends. The varying temporal and geographical trends underscore the need for regular surveillance to understand regional variations in syphilis and strengthen control programs.
Collapse
Affiliation(s)
- Patricia Nadal-Barón
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain.
| | - Jesus Trejo-Zahinos
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Maider Arando
- STI Unit Vall d'Hebron Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Marta Bernat-Sole
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Arantxa Pérez-Ugarte
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ana Maria Villatoro
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Pilar Alcubilla
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Elena Sulleiro
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
- Infectious Diseases CIBER (CIBERINFEC), Carlos III Health, Madrid, Spain
| | - Juan José Gonzalez-López
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
- Infectious Diseases CIBER (CIBERINFEC), Carlos III Health, Madrid, Spain
| | - Andrés Antón
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
- Infectious Diseases CIBER (CIBERINFEC), Carlos III Health, Madrid, Spain
| | - Mireia Alberny
- Medical Management of Primary Care Services, Catalan Health Institute (ICS), Barcelona, Spain
| | - Oriol Mitjà
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Germans Trias i Pujol University Hospital, Badalona, Spain
- Fight Infectious Diseases Foundation, Badalona, Spain
- Disease Control and Surveillance Branch, National Department of Health, Port Moresby, Papua New Guinea
| | - Maria Nieves Larrosa
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autonoma de Barcelona, Barcelona, Spain
- Infectious Diseases CIBER (CIBERINFEC), Carlos III Health, Madrid, Spain
| | - Yannick Hoyos-Mallecot
- Department of Microbiology and Parasitology, Clinical Laboratories, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| |
Collapse
|
9
|
Pillay A, Vilfort K, Debra A, Katz SS, Thurlow CM, Joseph SJ, Lundy S, Ji A, Jaeyoung H, Workowski KA, Barrow RY, Danavall D, Pettus K, Chi KH, Kersh EN, Cao W, Chen CY. Molecular investigation of Treponema pallidum strains associated with ocular syphilis in the United States, 2016-2020. Microbiol Spectr 2024; 12:e0058124. [PMID: 39162489 PMCID: PMC11448083 DOI: 10.1128/spectrum.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Ocular syphilis is a serious complication of Treponema pallidum infection that can occur at any stage of syphilis and affect any eye structure. It remains unknown if certain T. pallidum strains are associated with ocular infections; therefore, we performed genotyping and whole genome sequencing (WGS) to characterize strains from patients with ocular syphilis. Seventy-five ocular or non-ocular specimens from 55 ocular syphilis patients in 14 states within the United States were collected between February 2016 and November 2020. Sufficient T. pallidum DNA was available from nine patients for genotyping and three for WGS. Genotyping was done using the augmented Centers for Disease Control and Prevention typing scheme, and WGS was performed on Illumina platforms. Multilocus sequence typing allelic profiles were predicted from whole genome sequence data. T. pallidum DNA was detected in various specimens from 17 (30.9%) of the 55 patients, and typing was done on samples from 9 patients. Four complete strain types (14d10/g, 14b9/g, 14d9/g, and 14e9/f) and five partial types were identified. WGS was successful on samples from three patients and all three strains belonged to the SS14 clade of T. pallidum. Our data reveal that multiple strain types are associated with ocular manifestations of syphilis. While genotyping and WGS were challenging due to low amounts of T. pallidum DNA in specimens, we successfully performed WGS on cerebrospinal fluid, vitreous fluid, and whole blood.IMPORTANCESyphilis is caused by the spirochete Treponema pallidum. Total syphilis rates have increased significantly over the past two decades in the United States, and the disease remains a public health concern. In addition, ocular syphilis cases has also been on the rise, coinciding with the overall increase in syphilis rates. We conducted a molecular investigation utilizing traditional genotyping and whole genome sequencing over a 5-year period to ascertain if specific T. pallidum strains are associated with ocular syphilis. Genotyping and phylogenetic analysis show that multiple T. pallidum strain types are associated with ocular syphilis in the United States.
Collapse
Affiliation(s)
- Allan Pillay
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kendra Vilfort
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa Debra
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Samantha S. Katz
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Charles M. Thurlow
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephanie Lundy
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andrew Ji
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hong Jaeyoung
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberly A. Workowski
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Roxanne Y. Barrow
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Damien Danavall
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Pettus
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kai-Hua Chi
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ellen N. Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Weiping Cao
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheng Y. Chen
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - OS Surveillance Working Group
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Duarte G, Melli PPDS, Miranda AE, Milanez HMBPM, Menezes ML, Travassos AG, Kreitchmann R. Syphilis and pregnancy. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-FPS09. [PMID: 39380581 PMCID: PMC11460428 DOI: 10.61622/rbgo/2024fps09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
•Although congenital syphilis has a known etiological agent, accessible diagnosis and low-cost, effective treatment with low fetal toxicity, it continues to challenge obstetric and antenatal care services. •The increasing rates of syphilis in the general population have direct repercussions on the increase in cases of congenital syphilis, a situation of objective interest for public health. •Although transforming the recording of syphilis and congenital syphilis into notifiable diseases improved the records and has made it possible to measure the occurrence of these diseases and create solutions, no effects on reducing their frequency have been reached yet. •The failure to control syphilis/congenital syphilis is multifactorial, and associates variables that range from the deficiency in teaching about these diseases in schools and in the training system of the various health professional segments, as well as the lack of rigid policies for quality control from antenatal care until the clinical follow-up of children exposed to Treponema pallidum during pregnancy. •To date, benzathine penicillin is the only antimicrobial accepted as effective by the main health authorities on the planet for the treatment of syphilis in pregnant women. •The fear of anaphylaxis in response to the treatment of syphilis with benzathine penicillin is an important factor hindering the prompt and correct treatment of pregnant women with syphilis, even though health authorities have made efforts to face the problem with solid arguments, still insufficient to resolve the question. •Although specific protocols are published, the failure to control the treatment of syphilis in pregnant women is still observed with high frequency, indicating and reinforcing a failure in the quality control of these care principles. The National Specialized Commission on Infectious Diseases of the Brazilian Federation of Gynecology and Obstetrics Associations (Febrasgo) endorses this document. Content production is based on scientific evidence on the proposed topic and the results presented contribute to clinical practice.
Collapse
Affiliation(s)
- Geraldo Duarte
- Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão PretoSP Brazil Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Patrícia Pereira Dos Santos Melli
- Hospital das Clínicas Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão PretoSP Brazil Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Angélica Espinosa Miranda
- Faculdade de Medicina Universidade Federal do Espírito Santo VitóriaES Brazil Faculdade de Medicina, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Helaine Maria Besteti Pires Mayer Milanez
- Faculdade de Ciências Médicas Universidade Estadual de Campinas CampinasSP Brazil Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Maria Luiza Menezes
- Faculdade de Ciências Médicas Universidade de Pernambuco RecifePE Brazil Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife, PE, Brazil
| | - Ana Gabriela Travassos
- Faculdade de Medicina Universidade do Estado da Bahia SalvadorBA Brazil Faculdade de Medicina, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | - Regis Kreitchmann
- Universidade Federal de Ciências da Saúde de Porto Alegre Porto AlegreRS Brazil Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Seña AC, Matoga MM, Yang L, Lopez-Medina E, Aghakhanian F, Chen JS, Bettin EB, Caimano MJ, Chen W, Garcia-Luna JA, Hennelly CM, Jere E, Jiang Y, Juliano JJ, Pospíšilová P, Ramirez L, Šmajs D, Tucker JD, Vargas Cely F, Zheng H, Hoffman IF, Yang B, Moody MA, Hawley KL, Salazar JC, Radolf JD, Parr JB. Clinical and genomic diversity of Treponema pallidum subspecies pallidum to inform vaccine research: an international, molecular epidemiology study. THE LANCET. MICROBE 2024; 5:100871. [PMID: 39181152 PMCID: PMC11371664 DOI: 10.1016/s2666-5247(24)00087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We aimed to explore Treponema pallidum subspecies pallidum (TPA) molecular epidemiology essential for vaccine research by analysing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. METHODS In this multicentre, cross-sectional, molecular epidemiology study, we enrolled patients with primary, secondary, or early latent syphilis from clinics in China, Colombia, Malawi, and the USA between Nov 28, 2019, and May 27, 2022. Participants aged 18 years or older with laboratory confirmation of syphilis by direct detection methods or serological testing, or both, were included. Patients were excluded from enrolment if they were unwilling or unable to give informed consent, did not understand the study purpose or nature of their participation, or received antibiotics active against syphilis in the past 30 days. TPA detection and WGS were conducted on lesion swabs, skin biopsies, skin scrapings, whole blood, or rabbit-passaged isolates. We compared our WGS data to publicly available genomes and analysed TPA populations to identify mutations associated with lineage and geography. FINDINGS We screened 2802 patients and enrolled 233 participants, of whom 77 (33%) had primary syphilis, 154 (66%) had secondary syphilis, and two (1%) had early latent syphilis. The median age of participants was 28 years (IQR 22-35); 154 (66%) participants were cisgender men, 77 (33%) were cisgender women, and two (1%) were transgender women. Of the cisgender men, 66 (43%) identified as gay, bisexual, or other sexuality. Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants showed a predominance of SS14-lineage strains with geographical clustering. Phylogenomic analyses confirmed that Nichols-lineage strains were more genetically diverse than SS14-lineage strains and clustered into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models showed population-specific substitutions, some in outer membrane proteins (OMPs) of interest. INTERPRETATION Our study substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains is vital for vaccine development and understanding syphilis pathogenesis on a population level. FUNDING US National Institutes of Health National Institute for Allergy and Infectious Disease, the Bill & Melinda Gates Foundation, Connecticut Children's, and the Czech Republic National Institute of Virology and Bacteriology.
Collapse
Affiliation(s)
- Arlene C Seña
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Ligang Yang
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - Eduardo Lopez-Medina
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia; Department of Pediatrics, Universidad del Valle, Cali, Colombia
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane S Chen
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, CT, USA; Department of Pediatrics, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China; BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health, Southern Medical University, Guangzhou, China
| | - Jonny A Garcia-Luna
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia; Universidad Icesi, Cali, Colombia; Division of Dermatology, Department of Internal Medicine, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward Jere
- UNC Project Malawi, Tidziwe Centre, Lilongwe, Malawi
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - Jonathan J Juliano
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Lady Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia; Universidad Icesi, Cali, Colombia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Joseph D Tucker
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fabio Vargas Cely
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - Irving F Hoffman
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - M Anthony Moody
- Department of Pediatrics, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA; Department of Integrative Immunology, Duke University Medical Center, Durham, NC, USA; Duke Human Vaccine Institute, Durham, NC, USA
| | - Kelly L Hawley
- Department of Medicine, UConn Health, Farmington, CT, USA; Department of Pediatrics, UConn Health, Farmington, CT, USA; Department of Immunology, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Juan C Salazar
- Department of Pediatrics, UConn Health, Farmington, CT, USA; Department of Immunology, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, CT, USA; Department of Pediatrics, UConn Health, Farmington, CT, USA; Department of Immunology, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Jonathan B Parr
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Liu Z, Zhang X, Xiong S, Huang S, Ding X, Xu M, Yao J, Liu S, Zhao F. Endothelial dysfunction of syphilis: Pathogenesis. J Eur Acad Dermatol Venereol 2024; 38:1478-1490. [PMID: 38376088 DOI: 10.1111/jdv.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Treponema pallidum is the causative factor of syphilis, a sexually transmitted disease (STD) characterized by perivascular infiltration of inflammatory cells, vascular leakage, swelling and proliferation of endothelial cells (ECs). The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of T. pallidum. In this review, we focus on how T. pallidum establish intimate interactions with ECs, triggering endothelial dysfunction such as endothelial inflammation, abnormal repairment and damage of ECs. In addition, we summarize that migration and invasion of T. pallidum across vascular ECs may occur through two pathways. These two mechanisms of transendothelial migration are paracellular and cholesterol-dependent, respectively. Herein, clarifying the relationship between T. pallidum and endothelial dysfunction is of great significance to provide novel strategies for diagnosis and prevention of syphilis, and has a great potential prospect of clinical application.
Collapse
Affiliation(s)
- Zhaoping Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shun Xiong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shaobin Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Ding
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Man Xu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Jiangchen Yao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangquan Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
13
|
Delgado KN, Caimano MJ, Orbe IC, Vicente CF, La Vake CJ, Grassmann AA, Moody MA, Radolf JD, Hawley KL. Immunodominant extracellular loops of Treponema pallidum FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605823. [PMID: 39131275 PMCID: PMC11312542 DOI: 10.1101/2024.07.30.605823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies (Abs) against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded β-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). Five ECLs from the FadL orthologs TP0856, TP0858 and TP0865 were immunodominant. Rabbits and mice immunized with these five PfTrx constructs produced ECL-specific Abs that promoted opsonophagocytosis of TPA by rabbit peritoneal and murine bone marrow-derived macrophages at levels comparable to IRS and mouse syphilitic serum. ECL-specific rabbit and mouse Abs also impaired viability, motility, and cellular attachment of spirochetes during in vitro cultivation. The results support the use of ECL-based vaccines and suggest that ECL-specific Abs promote spirochete clearance via Fc receptor-independent as well as Fc receptor-dependent mechanisms.
Collapse
Affiliation(s)
- Kristina N. Delgado
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
| | - Isabel C. Orbe
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | | | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, CT, United States
| | - André A. Grassmann
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, Connecticut, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Research, Connecticut Children’s Research Institute, Hartford, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, CT, United States
| |
Collapse
|
14
|
Vrbová E, Pospíšilová P, Dastychová E, Kojanová M, Kreidlová M, Rob F, Vašků V, Mosio P, Strnadel R, Faustmannová O, Kuklová I, Heroldová MD, Zákoucká H, Šmajs D. Majority of Treponema pallidum ssp. pallidum MLST allelic profiles in the Czech Republic (2004-2022) belong to two SS14-like clusters. Sci Rep 2024; 14:17463. [PMID: 39075238 PMCID: PMC11286942 DOI: 10.1038/s41598-024-68656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
Syphilis is a multistage sexually transmitted disease caused by Treponema pallidum ssp. pallidum. In the Czech Republic, there are around 700-800 new syphilis cases annually, continuously increasing since 2012. This study analyzed a total of 1228 samples from 2004 to 2022. Of the PCR-positive typeable samples (n = 415), 68.7% were fully-typed (FT), and 31.3% were partially-typed. Most of the identified isolates belonged to the SS14-clade and only 6.3% were the Nichols-like cluster. While in the beginning of sample collection isolates have been macrolide-susceptible, recent isolates are completely resistant to macrolides. Among the FT samples, 34 different allelic profiles (APs) were found. Most of the profiles (n = 27) appeared just once in the Czech population, while seven profiles were detected more than twice. The most frequent APs belonged to two separate groups of SS14-like isolates, including group of 1.3.1 (ST 1) and 1.26.1 (ST 25) profiles, and the second group containing 1.1.8 (ST 3), 1.1.1 (ST 2), and 1.1.3 (ST 11) (representing 57.5%, and 25.3% of all detected APs, respectively). Both groups consistently differed in 6 nucleotide positions in five genes (TP0150, TP0324, TP0515, TP0548, and TP0691) coding amino-acid replacements suggesting that one or more of these differences could be involved in the higher success of the first group.
Collapse
Affiliation(s)
- Eliška Vrbová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliška Dastychová
- First Department of Dermatovenereology, St. Annes Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Kojanová
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Miluše Kreidlová
- Institute of Medical Biochemistry and Laboratory Diagnostics of the General University Hospital and of the First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Filip Rob
- Department of Dermatovenerology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Vašků
- First Department of Dermatovenereology, St. Annes Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Mosio
- National Reference Laboratory for Diagnostics of Syphilis, National Institute for Public Health, Prague, Czech Republic
| | - Radim Strnadel
- Department of Dermatovenerology, University Hospital, Brno, Czech Republic
| | - Olga Faustmannová
- Department of Dermatovenerology, University Hospital, Brno, Czech Republic
| | - Ivana Kuklová
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Monika Dvořáková Heroldová
- Department of Medical Microbiology, Faculty of Medicine, St. Anne's Hospital and Masaryk University, Brno, Czech Republic
| | - Hana Zákoucká
- National Reference Laboratory for Diagnostics of Syphilis, National Institute for Public Health, Prague, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
15
|
Salazar JC, Vargas-Cely F, García-Luna JA, Ramirez LG, Bettin EB, Romero-Rosas N, Amórtegui MF, Silva S, Oviedo O, Vigil J, La Vake CJ, Galindo X, Ramirez JD, Martínez-Valencia AJ, Caimano MJ, Hennelly CM, Aghakhanian F, Moody MA, Seña AC, Parr JB, Hawley KL, López-Medina E, Radolf JD. Treponema pallidum genetic diversity and its implications for targeted vaccine development: A cross-sectional study of early syphilis cases in Southwestern Colombia. PLoS One 2024; 19:e0307600. [PMID: 39028747 PMCID: PMC11259262 DOI: 10.1371/journal.pone.0307600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Venereal syphilis, caused by the spirochete Treponema pallidum subsp. pallidum (TPA), is surging worldwide, underscoring the need for a vaccine with global efficacy. Vaccine development requires an understanding of syphilis epidemiology and clinical presentation as well as genomic characterization of TPA strains circulating within at-risk populations. The aim of this study was to describe the clinical, demographic, and molecular features of early syphilis cases in Cali, Colombia. METHODS AND FINDINGS We conducted a cross-sectional study to identify individuals with early syphilis (ES) in Cali, Colombia through a city-wide network of public health centers, private sector HIV clinics and laboratory databases from public health institutions. Whole blood (WB), skin biopsies (SB), and genital and oral lesion swabs were obtained for measurement of treponemal burdens by polA quantitative polymerase chain reaction (qPCR) and for whole-genome sequencing (WGS). Among 1,966 individuals screened, 128 participants met enrollment criteria: 112 (87%) with secondary (SS), 15 (12%) with primary (PS) and one with early latent syphilis; 66/128 (52%) self-reported as heterosexual, while 48 (38%) were men who have sex with men (MSM). Genital ulcer swabs had the highest polA copy numbers (67 copies/μl) by qPCR with a positivity rate (PR) of 73%, while SS lesions had 42 polA copies/μl with PR of 62%. WB polA positivity was more frequent in SS than PS (42% vs 7%, respectively; p = 0.009). Isolation of TPA from WB by rabbit infectivity testing (RIT) was achieved in 5 (56%) of 9 ES WB samples tested. WGS from 33 Cali patient samples, along with 10 other genomic sequences from South America (9 from Peru, 1 from Argentina) used as comparators, confirmed that SS14 was the predominant clade, and that half of all samples had mutations associated with macrolide (i.e., azithromycin) resistance. Variability in the outer membrane protein (OMP) and vaccine candidate BamA (TP0326) was mapped onto the protein's predicted structure from AlphaFold. Despite the presence of mutations in several extracellular loops (ECLs), ECL4, an immunodominant loop and proven opsonic target, was highly conserved in this group of Colombian and South American TPA isolates. CONCLUSIONS This study offers new insights into the sociodemographic and clinical features of venereal syphilis in a highly endemic area of Colombia and illustrates how genomic sequencing of regionally prevalent TPA strains can inform vaccine development.
Collapse
Affiliation(s)
- Juan C. Salazar
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Division of Infectious Diseases, Connecticut Children’s, Hartford, CT, United States of America
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Fabio Vargas-Cely
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Jonny A. García-Luna
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad ICESI, Cali, Colombia
- Division of Dermatology, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Lady G. Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad ICESI, Cali, Colombia
| | - Everton B. Bettin
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Nelson Romero-Rosas
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - María F. Amórtegui
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Sebastián Silva
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Oscar Oviedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Julie Vigil
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Carson J. La Vake
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | | | - Jose D. Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Alvaro J. Martínez-Valencia
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad ICESI, Cali, Colombia
| | - Melissa J. Caimano
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States of America
| | - Christopher M. Hennelly
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States of America
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, NC, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States of America
- Department of Integrative Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Arlene C. Seña
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jonathan B. Parr
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kelly L. Hawley
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Division of Infectious Diseases, Connecticut Children’s, Hartford, CT, United States of America
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Eduardo López-Medina
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Centro de Estudios en Infectología Pediátrica (CEIP), Cali, Colombia
| | - Justin D. Radolf
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States of America
| |
Collapse
|
16
|
da Silva TPR, Schreck RSC, de Oliveira DCB, Mascarenhas LV, Luvisaro BMO, Camargo BTS, Martins EF, de Freitas GL, Matozinhos FP. Spatial and trend analysis of gestational syphilis cases in Brazil from 2011 to 2020: an ecological study. BMC Public Health 2024; 24:1859. [PMID: 38992653 PMCID: PMC11241899 DOI: 10.1186/s12889-024-19286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES To analyze the rate of gestational syphilis (GS) based on temporal trends over 11 years, as well as the spatial distribution of GS in Brazil, based on the identification of spatial clusters. METHODOLOGY An ecological, using Brazil and its regions as an analysis unit, based on gestational syphilis data reported in the Notifiable Diseases Information System (SINAN), from 2011 to 2020. Thematic maps were built for spatial data analysis, and the Prais-Winsten autoregressive model was used to verify the trend. Spatial analysis identified the distribution of clusters (high-high; low-low; high-low and low-high) of distribution of GS across Brazilian municipalities, using a 5% significance level. RESULTS Gestational syphilis experienced a considerable increase in cases during the studied period, with a peak of 37,436 cases in 2018. The spatial distribution of the disease is heterogeneous in the country. A growing trend was observed in all states of Brazil, except for Espírito Santo, where it remained stationary, with a monthly variation of 10.32%. CONCLUSION The spatial and temporal trend analysis point to syphilis as an important public health problem. The numbers are alarming and show the urgent need for measures to prevent and control syphilis during pregnancy.
Collapse
Affiliation(s)
- Thales Philipe Rodrigues da Silva
- Department of Women's Health Nursing, Escola Paulista de Enfermagem, Universidade Federal de São Paulo, São Paulo, Brazil
- Graduate Nursing Program, School of Nursing, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela Siqueira Costa Schreck
- Department of Maternal and Child Nursing and Public Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, CEP: 30130-100, Brazil
| | | | | | | | | | - Eunice Francisca Martins
- Department of Maternal and Child Nursing and Public Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, CEP: 30130-100, Brazil
| | - Giselle Lima de Freitas
- Department of Maternal and Child Nursing and Public Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, CEP: 30130-100, Brazil
| | - Fernanda Penido Matozinhos
- Department of Maternal and Child Nursing and Public Health, School of Nursing, Universidade Federal de Minas Gerais, Avenida Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG, CEP: 30130-100, Brazil.
| |
Collapse
|
17
|
Jensen JS, Unemo M. Antimicrobial treatment and resistance in sexually transmitted bacterial infections. Nat Rev Microbiol 2024; 22:435-450. [PMID: 38509173 DOI: 10.1038/s41579-024-01023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Sexually transmitted infections (STIs) have been part of human life since ancient times, and their symptoms affect quality of life, and sequelae are common. Socioeconomic and behavioural trends affect the prevalence of STIs, but the discovery of antimicrobials gave hope for treatment, control of the spread of infection and lower rates of sequelae. This has to some extent been achieved, but increasing antimicrobial resistance and increasing transmission in high-risk sexual networks threaten this progress. For Neisseria gonorrhoeae, the only remaining first-line treatment (with ceftriaxone) is at risk of becoming ineffective, and for Mycoplasma genitalium, for which fewer alternative antimicrobial classes are available, incurable infections have already been reported. For Chlamydia trachomatis, in vitro resistance to first-line tetracyclines and macrolides has never been confirmed despite decades of treatment of this highly prevalent STI. Similarly, Treponema pallidum, the cause of syphilis, has remained susceptible to first-line penicillin.
Collapse
Affiliation(s)
- Jorgen S Jensen
- Department of Bacteria, Parasites and Fungi, Research Unit for Reproductive Microbiology, Statens Serum Institut, Copenhagen, Denmark.
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
18
|
Cao Q, Li Y, Hu Y, He B, Tang Y, Cao T, Peng B, Zhou X, Liu S. Serofast status in syphilis: Pathogenesis to therapeutics. Clin Chim Acta 2024; 560:119754. [PMID: 38815665 DOI: 10.1016/j.cca.2024.119754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Syphilis, a sexually transmitted infection caused by Treponema pallidum, has been experiencing a rise in prevalence in recent years. "Syphilis serofast" describes a unique serological reaction in patients with syphilis whose clinical symptoms have resolved following consistent anti-syphilitic therapy, but the non-Treponema pallidum antigen serologic test is still positive. Syphilis serofast is a risk factor for syphilis recurrence, neurosyphilis, and multisystem involvement. Considering the current lack of comprehensive knowledge about the epidemiological characteristics, pathogenesis, and therapies of syphilis serofast, we conducted an online search of research relating to syphilis serofast over the last twenty years. Previous research has shown that the pathogenesis of syphilis serofast is mainly related to clinical factors, immune factors, syphilis subtypes, and T.pallidum membrane protein repeat gene antigen. There are two distinct viewpoints on the treatment of serofast: no excessive treatment and active treatment. In addition, serofast patients also showed two clinical outcomes: syphilis recurrence and persistent serofast status. This article systematically reviews the related factors, treatment, and clinical outcomes of syphilis serofast, provides a theoretical basis for its research, diagnosis, and treatment, and helps clinicians develop a follow-up treatment management plan for syphilis serofast.
Collapse
Affiliation(s)
- Qian Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yue Li
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Binfeng Peng
- Center of Laboratory Medicine and Pathology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China.
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
19
|
Slyk A, Hedman M, Wikström A. A Rare Case of Widely Disseminated Syphilis. Acta Derm Venereol 2024; 104:adv27983. [PMID: 38813741 PMCID: PMC11161808 DOI: 10.2340/actadv.v104.27983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/22/2024] [Indexed: 05/31/2024] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Agnieszka Slyk
- Department of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Hedman
- Department of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Arne Wikström
- Department of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Bosák J, Mikalová L, Hrala M, Pospíšilová P, Faldyna M, Šmajs D. Treponema pallidum subsp. pallidum strains DAL-1 and Philadelphia 1 differ in generation times in vitro as well as during experimental rabbit infection. PLoS One 2024; 19:e0304033. [PMID: 38787868 PMCID: PMC11125495 DOI: 10.1371/journal.pone.0304033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In this work, we determined that Treponema pallidum subsp. pallidum (TPA) DAL-1 (belonging to Nichols-like group of TPA strains) grew 1.53 (± 0.08) times faster compared to TPA Philadelphia 1 (SS14-like group) during in vitro cultivations. In longitudinal individual propagation in rabbit testes (n = 12, each TPA strain), infection with DAL-1 manifested clinical symptoms (induration, swelling, and erythema of testes) sooner than Philadelphia 1 infection, which resulted in a significantly shorter period of the experimental passages for DAL-1 (median = 15.0 and 23.5 days, respectively; p < 0.01). To minimize the confounding conditions during rabbit experiments, the growth characteristics of DAL-1 and Philadelphia 1 strains were determined during TPA co-infection of rabbit testes (n = 20, including controls). During two weeks of intratesticular co-infection, DAL-1 overgrew Philadelphia 1 in all twelve testes, regardless of inoculation ratio and dose (median of relative excess DAL-1 multiplication = 84.85×). Moreover, higher DAL-1 to Philadelphia 1 inoculum ratios appeared to increase differences in growth rates, suggesting direct competition between strains for available nutrients during co-infection. These experiments indicate important physiological differences between the two TPA strains and suggest growth differences between Nichols-like and SS14-like strains that are potentially linked to their virulence and pathogenicity.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Pires CDP, Mareto LK, de Medeiros MJ, de Oliveira EF. Associated factors, incidence, and management of gestational and congenital syphilis in a Brazilian state capital: a cross-sectional study. Rev Inst Med Trop Sao Paulo 2024; 66:e21. [PMID: 38656037 PMCID: PMC11027491 DOI: 10.1590/s1678-9946202466021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/22/2024] [Indexed: 04/26/2024] Open
Abstract
Maternal and child health remains an enduring global challenge, having occupied a prominent position on international agendas since the dawn of the 21st century. During pregnancy, syphilis emerges as the second most prevalent cause of stillbirth on a global scale, potentially leading to a range of adverse outcomes. This study aimed to describe the clinical and epidemiological profile of cases of gestational and congenital syphilis and the hospital care provided for newborns in Campo Grande municipality, Mato Grosso do Sul State, Brazil, from 2013 to 2018. This is a cross-sectional study based on data from Brazilian Notifiable Diseases Surveillance System (SINAN) and hospital medical records. Chi-square or Fisher's exact test and logistic regression analysis were used to assess the associations and relationships between the child's clinical outcome at birth and the mother's clinical-obstetric and epidemiological characteristics. Cumulative detection rate of gestational syphilis was 174.3 cases per 1,000 live births and cumulative incidence of congenital syphilis was 47.7 cases per 1,000 live births. Alcoholism, prenatal care, number of prenatal visits, maternal treatment regimen, and timing of maternal diagnosis were associated with child's clinical outcome at birth and considered in the regression model. Prenatal visits showed a protective effect against the signs and symptoms of congenital syphilis (odds ratio = 0.37; 95% confidence interval = 0.17-0.77). Medical assistance was considered inadequate in 62.3% of cases. Prenatal consultations should be encouraged among pregnant women. There is a need for better education of health personnel on the treatment and diagnosis of syphilis.
Collapse
Affiliation(s)
- Cássia de Paula Pires
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Programa de Pós-Graduação Stricto Sensu em Doenças Infecciosas e Parasitárias, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lisany Krug Mareto
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Programa de Pós-Graduação Stricto Sensu em Doenças Infecciosas e Parasitárias, Campo Grande, Mato Grosso do Sul, Brazil
| | - Márcio José de Medeiros
- Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Falcão de Oliveira
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Programa de Pós-Graduação Stricto Sensu em Doenças Infecciosas e Parasitárias, Campo Grande, Mato Grosso do Sul, Brazil
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
22
|
Lieberman NAP, Avendaño CC, Bakhash SAKM, Nunley E, Xie H, Giacani L, Berzkalns A, Soge OO, Reid TB, Golden MR, Greninger AL. Genomic Epidemiology of Treponema pallidum and Circulation of Strains With Diminished tprK Antigen Variation Capability in Seattle, 2021-2022. J Infect Dis 2024; 229:866-875. [PMID: 37769216 PMCID: PMC10938213 DOI: 10.1093/infdis/jiad368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The incidence of syphilis continues to increase in the United States, yet little is known about Treponema pallidum genomic epidemiology within American metropolitan areas. METHODS We performed whole-genome sequencing and tprK deep sequencing of 28 T. pallidum-containing specimens, collected mostly from remnant Aptima swab specimens from 24 individuals from Seattle Sexual Health Clinic during 2021-2022. RESULTS All 12 individuals infected with Nichols-lineage strains were men who have sex with men, while a specific SS14 cluster (mean, 0.33 single-nucleotide variant) included 1 man who has sex with women and 5 women. All T. pallidum strains sequenced were azithromycin resistant via 23S ribosomal RNA A2058G mutation. Identical T. pallidum genomic sequences were found in pharyngeal and rectal swab specimens taken concurrently from the same individuals. The tprK sequences were less variable between patient-matched specimens and between epidemiologically linked clusters. We detected a 528-base pair deletion in the tprK donor site locus, eliminating 9 donor sites, in T. pallidum genomes of 3 individuals with secondary syphilis, associated with diminution of TprK diversity. CONCLUSIONS We developed an end-to-end workflow for public health genomic surveillance of T. pallidum from remnant Aptima swab specimens. tprK sequencing may assist in linking cases beyond routine T. pallidum genome sequencing. T. pallidum strains with deletions in tprK donor sites currently circulate and are associated with diminished TprK antigenic diversity.
Collapse
Affiliation(s)
- Nicole A P Lieberman
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Carlos C Avendaño
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Shah A K Mohamed Bakhash
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Ethan Nunley
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Lorenzo Giacani
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Anna Berzkalns
- Public Health—Seattle & King County HIV/STD Program, Seattle, Washington, USA
| | - Olusegun O Soge
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Center for AIDS and STD, University of Washington, Seattle, Washington, USA
| | - Tara B Reid
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Matthew R Golden
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
- Public Health—Seattle & King County HIV/STD Program, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Center for AIDS and STD, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
23
|
Majander K, Pla-Díaz M, du Plessis L, Arora N, Filippini J, Pezo-Lanfranco L, Eggers S, González-Candelas F, Schuenemann VJ. Redefining the treponemal history through pre-Columbian genomes from Brazil. Nature 2024; 627:182-188. [PMID: 38267579 PMCID: PMC10917687 DOI: 10.1038/s41586-023-06965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
The origins of treponemal diseases have long remained unknown, especially considering the sudden onset of the first syphilis epidemic in the late 15th century in Europe and its hypothesized arrival from the Americas with Columbus' expeditions1,2. Recently, ancient DNA evidence has revealed various treponemal infections circulating in early modern Europe and colonial-era Mexico3-6. However, there has been to our knowledge no genomic evidence of treponematosis recovered from either the Americas or the Old World that can be reliably dated to the time before the first trans-Atlantic contacts. Here, we present treponemal genomes from nearly 2,000-year-old human remains from Brazil. We reconstruct four ancient genomes of a prehistoric treponemal pathogen, most closely related to the bejel-causing agent Treponema pallidum endemicum. Contradicting the modern day geographical niche of bejel in the arid regions of the world, the results call into question the previous palaeopathological characterization of treponeme subspecies and showcase their adaptive potential. A high-coverage genome is used to improve molecular clock date estimations, placing the divergence of modern T. pallidum subspecies firmly in pre-Columbian times. Overall, our study demonstrates the opportunities within archaeogenetics to uncover key events in pathogen evolution and emergence, paving the way to new hypotheses on the origin and spread of treponematoses.
Collapse
Affiliation(s)
- Kerttu Majander
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Marta Pla-Díaz
- Unidad Mixta Infección y Salud Pública, FISABIO/Universidad de Valencia-I2SysBio, Valencia, Spain
- CIBER in Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne, Switzerland
| | - Natasha Arora
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Jose Filippini
- Department of Genetic and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Luis Pezo-Lanfranco
- Department of Genetic and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
- Institute of Environmental Science and Technology (ICTA) and Prehistory Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sabine Eggers
- Department of Genetic and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública, FISABIO/Universidad de Valencia-I2SysBio, Valencia, Spain.
- CIBER in Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
25
|
Zvenigorosky V, Gonzalez A, Veith G, Close-Koenig T, Cannet C, Fausser JL, Wenger A, Toutous-Trellu L, Keyser C, Bonah C. Evaluation of whole-genome enrichment and sequencing of T. pallidum from FFPE samples after 75 years. iScience 2024; 27:108651. [PMID: 38155769 PMCID: PMC10753063 DOI: 10.1016/j.isci.2023.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
The recent developments in genomic sequencing have permitted the publication of many new complete genome sequences of Treponema pallidum pallidum, the bacterium responsible for syphilis, which has led to a new understanding of its phylogeny and diversity. However, few archived samples are available, because of the degradability of the bacterium and the difficulties in preservation. We present a complete genome obtained from a Formalin-Fixed Paraffin-Embedded (FFPE) organ sample from 1947, kept at the Strasbourg Faculty of Medicine. This is the preliminary, proof-of concept study of this collection/biobank of more than 1.5 million FFPE samples and the evaluation of the feasibility of genomic analyses. We demonstrate here that even degraded DNA from fragile bacteria can be recovered from 75-year-old FFPE samples and therefore propose that such collections as this one can function as sources of biological material for genetic studies of pathogens, cancer, or even the historical human population itself.
Collapse
Affiliation(s)
| | | | - Gilles Veith
- Strasbourg Institute of Legal Medicine, Strasbourg, France
| | | | | | | | - Alexandre Wenger
- Interfaculty Centre for Bioethics and Medical Humanities, University of Geneva, Geneva, Switzerland
| | | | - Christine Keyser
- Strasbourg Institute of Legal Medicine, Strasbourg, France
- BABEL Laboratory, CNRS UMR 8045, Paris, France
| | | |
Collapse
|
26
|
Knauf S, Hisgen L, Ågren EO, Barlow AM, Faehndrich M, Voigt U, Fischer L, Grillová L, Hallmaier-Wacker LK, Kik MJL, Klink JC, Křenová J, Lavazza A, Lüert S, Nováková M, Čejková D, Pacioni C, Trogu T, Šmajs D, Roos C. High prevalence and genetic diversity of Treponema paraluisleporidarum isolates in European lagomorphs. Microbiol Spectr 2024; 12:e0177423. [PMID: 38095473 PMCID: PMC10783078 DOI: 10.1128/spectrum.01774-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/17/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Syphilis is an ancient disease of humans and lagomorphs caused by two distinct but genetically closely related bacteria (>98% sequence identity based on the whole genome) of the genus Treponema. While human syphilis is well studied, little is known about the disease in the lagomorph host. Yet, comparative studies are needed to understand mechanisms in host-pathogen coevolution in treponematoses. Importantly, Treponema paraluisleporidarum-infected hare populations provide ample opportunity to study the syphilis-causing pathogen in a naturally infected model population without antibiotic treatment, data that cannot be obtained from syphilis infection in humans. We provide data on genetic diversity and are able to highlight various types of repetitions in one of the two hypervariable regions at the tp0548 locus that have not been described in the human syphilis-causing sister bacterium Treponema pallidum subsp. pallidum.
Collapse
Affiliation(s)
- Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
- Infection Biology Unit, Deutsches Primatenzentrum GmbH, Leibniz Institute for Primate Research, Göttingen, Germany
- Professorship for International Animal Health/One Health, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Linda Hisgen
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
- Infection Biology Unit, Deutsches Primatenzentrum GmbH, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Erik O. Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Alexander M. Barlow
- Wildlife Network for Disease Surveillance, Bristol Veterinary School, Langford, Somerset, United Kingdom
| | - Marcus Faehndrich
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hanover, Foundation, Hanover, Germany
| | - Ulrich Voigt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hanover, Foundation, Hanover, Germany
| | - Luisa Fischer
- Wildlife Research Institute, State Agency for Nature, Environment and Consumer Protection North Rhine-Westphalia, Bonn, Germany
| | - Linda Grillová
- Department of Biology, Masaryk University, Brno, Czechia
| | - Luisa K. Hallmaier-Wacker
- Infection Biology Unit, Deutsches Primatenzentrum GmbH, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Marja J. L. Kik
- Pathology Division, Department of Biomedical Health Sciences, Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jana C. Klink
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hanover, Foundation, Hanover, Germany
| | - Jitka Křenová
- Department of Biology, Masaryk University, Brno, Czechia
| | - Antonio Lavazza
- Department of Animal Health and Welfare – Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Simone Lüert
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
- Infection Biology Unit, Deutsches Primatenzentrum GmbH, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Darina Čejková
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia
| | - Carlo Pacioni
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria, Australia
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Australia
| | - Tiziana Trogu
- Department of Animal Health and Welfare – Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - David Šmajs
- Department of Biology, Masaryk University, Brno, Czechia
| | - Christian Roos
- Primate Genetics Laboratory, Deutsches Primatenzentrum GmbH, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates, Deutsches Primatenzentrum GmbH, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
27
|
Moseley P, Bamford A, Eisen S, Lyall H, Kingston M, Thorne C, Piñera C, Rabie H, Prendergast AJ, Kadambari S. Resurgence of congenital syphilis: new strategies against an old foe. THE LANCET. INFECTIOUS DISEASES 2024; 24:e24-e35. [PMID: 37604180 DOI: 10.1016/s1473-3099(23)00314-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 08/23/2023]
Abstract
Congenital syphilis is a major global cause of fetal loss, stillbirth, neonatal death, and congenital infection. In 2020, the global rate of congenital syphilis was 425 cases per 100 000 livebirths-substantially higher than WHO's elimination target of 50 cases per 100 000 livebirths. Case rates are rising in many high-income countries, but remain low compared with those in low-income and middle-income settings. This Review aims to summarise the current epidemiology and knowledge on transmission and treatment of syphilis in pregnancy, and proposes measures to reduce the rising incidence seen worldwide. We also describe emerging diagnostic and treatment tools to prevent vertical transmission and improve management of congenital syphilis. Finally, we outline a programme of public health priorities, which include research, clinical, and preventive strategies.
Collapse
Affiliation(s)
- Philip Moseley
- University of Queensland Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| | - Alasdair Bamford
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Great Ormond Street Institute of Child Health, London, UK
| | - Sarah Eisen
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Claire Thorne
- University College London Great Ormond Street Institute of Child Health, London, UK
| | | | - Helena Rabie
- Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa; Tygerberg Academic Hospital, Cape Town, South Africa
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Blizard Institute, Queen Mary University of London, London, UK
| | - Seilesh Kadambari
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University College London Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
28
|
Newbery GM, Henricks CE, Vircks JA, Colina A, Mundy DC. A Rare Case of Neurosyphilis with Calvaria Osteitis Presenting in Pregnancy. Case Rep Obstet Gynecol 2023; 2023:8856775. [PMID: 38148995 PMCID: PMC10751170 DOI: 10.1155/2023/8856775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 12/28/2023] Open
Abstract
Background The incidence of syphilis throughout the world is increasing. Rates in pregnancy are similarly rising, presenting risks of an untreated syphilis infection that can be detrimental to the mother and fetus. Although routine screening for syphilis infections is recommended at the initial prenatal visit, there is a lack of universal agreement on rescreening pregnant people and approximately 50% of syphilis cases are asymptomatic in the general population. Furthermore, some symptoms of syphilis can overlap with nonspecific pregnancy-related symptoms. Meanwhile, Treponema pallidum can spread to various maternal and fetoplacental tissues quickly after infection and occur at any stage of syphilis. Case A 26-year-old gravida 5 para 2 presented with a new onset headache and visual and auditory changes at 23 weeks of gestation. A computerized tomography scan revealed numerous ill-defined lytic lesions throughout the calvarium, suspicious for syphilitic osteitis. She tested positive for syphilis antibodies with a rapid plasma reagin (RPR) titer of 1 : 32. Cerebrospinal fluid evaluation from a lumbar puncture resulted in reactive fluorescent treponemal antibody (FTA) testing. She was diagnosed with secondary syphilis with osteitis and neuro and otic components. She completed 14 days of intravenous aqueous crystalline penicillin G with additional benzathine penicillin G 2.4 million units intramuscular weekly for two weeks. There was no evidence of congenital syphilis on neonatal examination. Conclusion Syphilitic osteitis and neuro, otic, or ocular syphilis infections occur rarely in the nonpregnant population, and therefore, little data in pregnancy is available to inform outcomes in these specific disease states. It is of paramount importance to complete appropriate syphilis screening, recognize symptoms, and consider utilizing rescreen protocols to ensure prompt infection identification and treatment. For neuro, otic, and ocular syphilis, aqueous crystalline penicillin G (as opposed to benzathine penicillin G) is required to achieve treponemicidal concentrations in those physiologic compartments. There is no agreement as to the appropriate treatment regimen for the rare finding of syphilitic osteitis.
Collapse
Affiliation(s)
- Gisella M. Newbery
- University of Missouri-Kansas City School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Christine E. Henricks
- University of Missouri-Kansas City School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Julie A. Vircks
- University of Missouri-Kansas City School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Andreina Colina
- University of Missouri-Kansas City School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - David C. Mundy
- University of Missouri-Kansas City School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
- University Health, 2301 Holmes Street, Kansas City, Missouri 64108, USA
| |
Collapse
|
29
|
Zhang X, Duan J, Wang Y, Xie B, Zhou J, Zhao S, Yin W, Liu P, Zhao F. Insight into the invasion process and immune-protective evaluation of Tp0971, a membrane lipoprotein from Treponema pallidum. Microbiol Spectr 2023; 11:e0004723. [PMID: 37855609 PMCID: PMC10714829 DOI: 10.1128/spectrum.00047-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE The past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum (T. pallidum) subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation "the stealth pathogen." There are many hurdles to studying syphilis pathogenesis, most notably the difficulty of culturing and genetically manipulating T. pallidum, as well as the absence of an effective vaccine for T. pallidum prevention. T. pallidum infection in humans is a complex and lengthy process. In this study, we investigated the invasion process and the function of the infection-dependent antigen Tp0971 as an immunogen to inhibit the dissemination of T. pallidum in an animal infection model. This enables a better understanding of the specific pathogenic mechanism of this pathogen, syphilis pathogenesis, and vaccine research.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Department of Clinical Laboratory Medicine of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Junxia Duan
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Department of Clinical Laboratory Medicine of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yali Wang
- Department of Clinical Medicine Undergraduate, Hengyang Medical College, University of South China, Hengyang, China
| | - Bibo Xie
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Department of Clinical Laboratory Medicine of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Jie Zhou
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Department of Clinical Laboratory Medicine of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Sisi Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Department of Clinical Laboratory Medicine of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Weiguo Yin
- Laboratory Department, Qingyuan People’s Hospital, Qingyuan, China
| | - Peng Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Department of Clinical Laboratory Medicine of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Department of Clinical Laboratory Medicine of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
30
|
Mitjà O, Padovese V, Folch C, Rossoni I, Marks M, Rodríguez i Arias MA, Telenti A, Ciuffi A, Blondeel K, Mårdh O, Casabona J. Epidemiology and determinants of reemerging bacterial sexually transmitted infections (STIs) and emerging STIs in Europe. THE LANCET REGIONAL HEALTH. EUROPE 2023; 34:100742. [PMID: 37927427 PMCID: PMC10625005 DOI: 10.1016/j.lanepe.2023.100742] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
In this scoping review, we offer a comprehensive understanding of the current and recent epidemiology, challenges, and emerging issues related to bacterial sexually transmitted infections (STIs) in the WHO European Region. We endeavour in collating data from both EU/EEA and non- EU/EEA countries, thereby giving a complete picture of the region which highlights the higher notification rates in Northern and Western countries than other regions, likely due to differences in testing, access to testing, and surveillance capacity. We provide an up-to-date review on the current knowledge of determinants and persistent inequities in key populations as well as the use of molecular epidemiology for identifying transmission networks in gonorrhoea and syphilis, and detecting chlamydia mutations that evade molecular diagnosis. Finally, we explore the emerging STIs in the region and the evolving transmission routes of food and waterborne diseases into sexual transmission. Our findings call for harmonized STI surveillance systems, proactive strategies, and policies to address social factors, and staying vigilant for emerging STIs.
Collapse
Affiliation(s)
- Oriol Mitjà
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Hospital Universitari Germans Trías i Pujol, Badalona, Spain
- Fight Infectious Diseases Foundation, Badalona, Spain
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Valeska Padovese
- Genitourinary Clinic, Department of Dermatology and Venereology, Mater Dei Hospital, Msida, Malta
| | - Cinta Folch
- Centre of Epidemiological Studies of HIV/AIDS and STI of Catalonia (CEEISCAT), Health Department, Generalitat de Catalunya, Badalona, Spain
- Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Isotta Rossoni
- Van Vollenhoven Institute for Law, Governance and Society, Leiden University, Netherland
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom
- Division of Infection and Immunology, University College London, London, UK
- Hospital for Tropical Diseases, University College London Hospital, London, UK
| | - Miquel Angel Rodríguez i Arias
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Hospital Universitari Germans Trías i Pujol, Badalona, Spain
- Fight Infectious Diseases Foundation, Badalona, Spain
| | | | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Karel Blondeel
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Otilia Mårdh
- STI, Blood Borne Viruses and TB Section, Disease Programmes Unit, European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Jordi Casabona
- Centre of Epidemiological Studies of HIV/AIDS and STI of Catalonia (CEEISCAT), Health Department, Generalitat de Catalunya, Badalona, Spain
- Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
31
|
Jun T, Zhimin L, Xi D, Hua W, Huilong S, Jiaofeng P, Kang Z, Xie Q. Immunisation with the glycolytic enzyme enolase inhibits dissemination of Treponema pallidum in C57BL/6 mice. Microb Pathog 2023; 184:106374. [PMID: 37802159 DOI: 10.1016/j.micpath.2023.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Treponema pallidum (T. pallidum), an obligate extracellular bacterium, is the causative agent of sexually transmitted bacterial diseases. In this study, the glycolytic enzyme enolase (Tp Eno) of T. pallidum were injected intramuscularly into C57BL/6 mice, resulting in higher levels of specific anti-Tp Eno antibodies and Tp Eno-specific splenocyte proliferation than those in the mice immunized with recombinant protein Tp Eno. Cytokine (IL-4, IL-6, IL-10, IFN-γ, and TNF-α) analysis of splenocytes showed that the Tp Eno could slightly trigger the Th1-biased immune response. Furthermore, immunization of mice with Tp Eno elicited a significant production of IFN-γ by CD4+ T-cells in the spleen. Subsequently, mice were inoculated intradermally (between the scapulae), intraperitoneally, intrarectally and via the corpora cavernosa with 2.5 × 106 organisms per site (1 × 107 total organisms). The bacterial organ burden detected in the blood, spleen, liver, testes or brain of immunized mice suggested that Tp Eno enhances protective immunity to inhibit T. pallidum colonization in distal tissues. Therefore, Tp Eno vaccination enhances Tp Eno-specific immunogenicity and provides protection against T. pallidum dissemination.
Collapse
Affiliation(s)
- Tang Jun
- Department of Laboratory Medicine, Hunan People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, HuNan, China
| | - Liu Zhimin
- Clinical Laboratory, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), 12# Yancheng Road, Hengyang, 421001, Hunan, China
| | - Deng Xi
- Clinical Laboratory, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), 12# Yancheng Road, Hengyang, 421001, Hunan, China
| | - Wu Hua
- Clinical Laboratory, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), 12# Yancheng Road, Hengyang, 421001, Hunan, China
| | - Shen Huilong
- Clinical Laboratory, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), 12# Yancheng Road, Hengyang, 421001, Hunan, China
| | - Peng Jiaofeng
- Clinical Laboratory, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), 12# Yancheng Road, Hengyang, 421001, Hunan, China
| | - Zheng Kang
- Clinical Laboratory, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), 12# Yancheng Road, Hengyang, 421001, Hunan, China.
| | - Qinghua Xie
- The Affiliated Changsha Central Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Changsha, 410004, HuNan, China.
| |
Collapse
|
32
|
Yang L, Zhang X, Chen W, Seña AC, Zheng H, Jiang Y, Zhao P, Chen R, Wang L, Ke W, Salazar JC, Parr JB, Tucker JD, Hawley KL, Caimano MJ, Hennelly CM, Aghakanian F, Zhang F, Chen JS, Moody MA, Radolf JD, Yang B. Early syphilis in Guangzhou, China: presentation, molecular detection of Treponema pallidum , and genomic sequences in clinical specimens and isolates obtained by rabbit infectivity testing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.17.23297169. [PMID: 37905017 PMCID: PMC10614984 DOI: 10.1101/2023.10.17.23297169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The global resurgence of syphilis requires novel prevention strategies. Whole genome sequencing (WGS) of Treponema pallidum ( TPA ) using different specimen types is essential for vaccine development. Methods Patients with primary (PS) and secondary (SS) syphilis were recruited in Guangzhou, China. We collected ulcer exudates and blood from PS participants, and skin biopsies and blood from SS participants for TPA polA polymerase chain reaction (PCR); ulcer exudates and blood were also used to isolate TPA strains by rabbit infectivity testing (RIT). TPA WGS was performed on 52 ulcer exudates and biopsy specimens and 25 matched rabbit isolates. Results We enrolled 18 PS and 51 SS participants from December 2019 to March 2022. Among PS participants, TPA DNA was detected in 16 (89%) ulcer exudates and three (17%) blood specimens. Among SS participants, TPA DNA was detected in 50 (98%) skin biopsies and 27 (53%) blood specimens. TP A was isolated from 48 rabbits, with a 71% (12/17) success rate from ulcer exudates and 69% (36/52) from SS bloods. Twenty-three matched SS14 clade genomes were virtually identical, while two Nichols clade pairs had discordant tprK sequences. Forty-two of 52 unique TPA genomes clustered in an SS14 East Asia subgroup, while ten fell into two East Asian Nichols subgroups. Conclusions Our TPA detection rate was high from PS ulcer exudates and SS skin biopsies and over 50% from SS whole blood, with RIT isolation in over two-thirds of samples. Our results support the use of WGS from rabbit isolates to inform vaccine development. Summary We performed Treponema pallidum molecular detection and genome sequencing from multiple specimens collected from early syphilis patients and isolates obtained by rabbit inoculation. Our results support the use of whole genome sequencing from rabbit isolates to inform syphilis vaccine development.
Collapse
|
33
|
Beale MA, Thorn L, Cole MJ, Pitt R, Charles H, Ewens M, French P, Guiver M, Page EE, Smit E, Vera JH, Sinka K, Hughes G, Marks M, Fifer H, Thomson NR. Genomic epidemiology of syphilis in England: a population-based study. THE LANCET. MICROBE 2023; 4:e770-e780. [PMID: 37722404 PMCID: PMC10547597 DOI: 10.1016/s2666-5247(23)00154-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Syphilis is a sexually transmitted bacterial infection caused by Treponema pallidum subspecies pallidum. Since 2012, syphilis rates have risen dramatically in many high-income countries, including England. Although this increase in syphilis prevalence is known to be associated with high-risk sexual activity in gay, bisexual, and other men who have sex with men (GBMSM), cases are rising in heterosexual men and women. The transmission dynamics within and between sexual networks of GBMSM and heterosexual people are not well understood. We aimed to investigate if whole genome sequencing could be used to supplement or enhance epidemiological insights around syphilis transmission. METHODS We linked national patient demographic, geospatial, and behavioural metadata to whole T pallidum genome sequences previously generated from patient samples collected from across England between Jan 1, 2012, and Oct 31, 2018, and performed detailed phylogenomic analyses. FINDINGS Of 497 English samples submitted for sequencing, we recovered 240 genomes (198 from the UK Health Security Agency reference laboratory and 42 from other laboratories). Three duplicate samples (same patient and collection date) were included in the main phylogenies, but removed from further analyses of English populations, leaving 237 genomes. 220 (92·8%) of 237 samples were from men, nine (3·8%) were from women, and eight (3·4%) were of unknown gender. Samples were mostly from London (n=118 [49·8%]), followed by southeast England (n=29 [12·2%]), northeast England (n=24 [10·1%]), and southwest England (n=15 [6·3%]). 180 (76·0%) of 237 genomes came from GBMSM, compared with 25 (10·5%) from those identifying as men who have sex with women, 15 (6·3%) from men with unrecorded sexual orientation, nine (3·8%) from those identifying as women who have sex with men, and eight (3·4%) from people of unknown gender and sexual orientation. Phylogenomic analysis and clustering revealed two dominant T pallidum sublineages in England. Sublineage 1 was found throughout England and across all patient groups, whereas sublineage 14 occurred predominantly in GBMSM older than 34 years and was absent from samples sequenced from the north of England. These different spatiotemporal trends, linked to demography or behaviour in the dominant sublineages, suggest they represent different sexual networks. By focusing on different regions of England we were able to distinguish a local heterosexual transmission cluster from a background of transmission in GBMSM. INTERPRETATION These findings show that, despite extremely close genetic relationships between T pallidum genomes globally, genomics can still be used to identify putative transmission clusters for epidemiological follow-up. This could be of value for deconvoluting putative outbreaks and for informing public health interventions. FUNDING Wellcome funding to the Sanger Institute, UK Research and Innovation, National Institute for Health and Care Research, European and Developing Countries Clinical Trials Partnership, and UK Health Security Agency.
Collapse
Affiliation(s)
- Mathew A Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| | - Louise Thorn
- Blood Safety, Hepatitis, STI & HIV Division, UK Health Security Agency, London, UK
| | - Michelle J Cole
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, UK
| | - Rachel Pitt
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, UK
| | - Hannah Charles
- Blood Safety, Hepatitis, STI & HIV Division, UK Health Security Agency, London, UK
| | - Michael Ewens
- Brotherton Wing Clinic, Brotherton Wing, Leeds General Infirmary, Leeds, UK
| | - Patrick French
- The Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Malcolm Guiver
- Laboratory Network, Manchester, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Emma E Page
- Virology Department, Old Medical School, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Erasmus Smit
- Clinical Microbiology Department, Queen Elizabeth Hospital, Birmingham, UK; Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Katy Sinka
- Blood Safety, Hepatitis, STI & HIV Division, UK Health Security Agency, London, UK
| | - Gwenda Hughes
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael Marks
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK; Division of Infection and Immunity, University College London, London, UK
| | - Helen Fifer
- Blood Safety, Hepatitis, STI & HIV Division, UK Health Security Agency, London, UK.
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
34
|
Liu D, Chen R, Wang YJ, Li W, Liu LL, Lin LR, Yang TC, Tong ML. Insights into the protective immune response by immunization with full-length recombinant TprK protein: cellular and humoral responses. NPJ Vaccines 2023; 8:146. [PMID: 37773233 PMCID: PMC10542339 DOI: 10.1038/s41541-023-00748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Syphilis has resurged in many countries, which has called attention to vaccine development. Based on the immunization-based rabbit model of infection with the Nichols strain, this study explored the protective immune response of a controversial syphilis vaccine candidate, TprK, and found that immunization with full-length rTprK was effective in attenuating lesion development and accelerating lesion resolution, which could reduce the probability of the pathogen spreading to distant tissue sites to prevent the progression of the disease to some extent. Furthermore, the results revealed that immunization with rTprK not only rapidly induced a strong Th1-like cellular response but also elicited a humoral immune response to produce opsonic antibodies to enhance macrophage-mediated opsonophagocytosis. Although complete protection against infection was not achieved, the study provided a comprehensive and in-depth exploration of the immunogenicity of TprK and highlighted the importance of TprK as a promising syphilis vaccine component.
Collapse
Affiliation(s)
- Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Rui Chen
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-Jing Wang
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Li
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
35
|
Javed H, Bano A, Fatima W, Khan R, Akhtar A. Sexually transmitted infections and associated risk factors among the transgender population of Pakistan. BMC Infect Dis 2023; 23:618. [PMID: 37726701 PMCID: PMC10510130 DOI: 10.1186/s12879-023-08591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Transgender (TG) people are key drivers for sexually transmitted infections (STIs) all over the world. There is substantial evidence that STIs are associated with an increased likelihood of risky sexual behavior however little is known about the prevalence of STIs (HIV, HBV, HCV, and Syphilis) among HIV infected transgender population in Pakistan. METHODS The current study investigated the seroprevalence of four STIs and associated socio-demographic risk factors among TGs of Punjab, Pakistan from July 2019 to June 2021. The samples were tested serologically and final confirmation was done through PCR for HIV, HBV, and HCV. RESULTS A total of 1,562 transgenders cross-sectional descriptive records of the Punjab AIDS Control Program (PACP) were reviewed during the period from July 2019 to June 2021. The serological results evidenced that 533 (34.1%) had one pathogen, 309 (19.8%) had two or more (multiple) infections. The most predominant mono-infection among the transgender population was Syphilis 324 (20.7%) followed by HCV 114 (7.3%), HIV 69 (4.4%), and HBV 26 (1.7%). The highest proportions of Infections were found in TG residing in urban areas (68.6%) as compared to rural areas (31.4%). The seropositivity of all STIs was predominantly increased in Sex worker TGs i-e 55%, 46.5%, 38.5%, and 41.8% in HIV, HBV, HCV, and Syphilis respectively. Among 280 HIV-infected Transgender, 177 (63.2%) had Syphilis co-infections. While 87 (31%) and 47 (16.8%) HIV-infected individuals had HC and HBV co-infection respectively. CONCLUSION Transgender is neglected population group in society. All STIs were predominantly common among sex worker transgenders, Illiterate educational groups, and TGs residing in urban areas. There is a need to spread awareness about STIs, preventive strategies, and facilitation to health care programs in this high-risk population group.
Collapse
Affiliation(s)
- Hasnain Javed
- Provincial Public Health Reference Lab, Punjab AIDS Control Program, Lahore, Pakistan.
| | - Abida Bano
- Provincial Public Health Reference Lab, Punjab AIDS Control Program, Lahore, Pakistan
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Warda Fatima
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Rimsha Khan
- Provincial Public Health Reference Lab, Punjab AIDS Control Program, Lahore, Pakistan
| | - Asma Akhtar
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
36
|
Seña AC, Matoga MM, Yang L, Lopez-Medina E, Aghakanian F, Chen JS, Bettin EB, Caimano MJ, Chen W, Garcia-Luna JA, Hennelly CM, Jiang Y, Juliano JJ, Pospíšilová P, Ramirez L, Šmajs D, Tucker JD, Cely FV, Zheng H, Hoffman IF, Yang B, Moody MA, Hawley KL, Salazar JC, Radolf JD, Parr JB. Clinical and genomic diversity of Treponema pallidum subsp. pallidum: A global, multi-center study of early syphilis to inform vaccine research. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.19.23291250. [PMID: 37546832 PMCID: PMC10402240 DOI: 10.1101/2023.07.19.23291250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background The continuing increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We conducted a multi-center, observational study to explore Treponema pallidum subsp. pallidum ( TPA ) molecular epidemiology essential for vaccine research by analyzing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. Methods We enrolled patients with primary (PS), secondary (SS) or early latent (ELS) syphilis from clinics in China, Colombia, Malawi and the United States between November 2019 - May 2022. Inclusion criteria included age ≥18 years, and syphilis confirmation by direct detection methods and/or serological testing. TPA detection and WGS were conducted on lesion swabs, skin biopsies/scrapings, whole blood, and/or rabbit-passaged isolates. We compared our WGS data to publicly available genomes, and analysed TPA populations to identify mutations associated with lineage and geography. Findings We screened 2,820 patients and enrolled 233 participants - 77 (33%) with PS, 154 (66%) with SS, and two (1%) with ELS. Median age of participants was 28; 66% were cis -gender male, of which 43% reported identifying as "gay", "bisexual", or "other sexuality". Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants demonstrated a predominance of SS14-lineage strains with geographic clustering. Phylogenomic analysis confirmed that Nichols-lineage strains are more genetically diverse than SS14-lineage strains and cluster into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models demonstrated population-specific substitutions, some in outer membrane proteins (OMPs) of interest. Interpretation Our study involving participants from four countries substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains will be vital for vaccine development and improved understanding of syphilis pathogenesis on a population level. Funding National Institutes of Health, Bill and Melinda Gates Foundation.
Collapse
|
37
|
Feng Y, Zhu Z, Xu J, Sun L, Zhang H, Xu H, Zhang F, Wang W, Han G, Jiang J, Liu Y, Zhou S, Zhang Y, Ji Y, Mao N, Xu W. Molecular Evolution of Human Parainfluenza Virus Type 2 Based on Hemagglutinin-Neuraminidase Gene. Microbiol Spectr 2023; 11:e0453722. [PMID: 37039701 PMCID: PMC10269610 DOI: 10.1128/spectrum.04537-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023] Open
Abstract
To understand the molecular evolution of human parainfluenza virus type 2 (HPIV2), 21 Hemagglutinin-Neuraminidase (HN) gene sequences covering seven Chinese provinces in 2011 and 2017 to 2021 were combined with 90 published HN sequences worldwide for phylogenetic analysis. The result showed that global HPIV2 could be classified into two distinct clusters (I and II), five lineages (IA to IIE), and four sublineages (IB1 and 2, and IIE1 and 2). The minimum genetic distances between different clusters and lineages were 0.049 and 0.014, respectively. In the last decade, one lineage (IID) and three sublineages (IB1, IB2, and IIE1) have been cocirculating in China, with the sublineages IB2 and IIE1 dominating, while sublineages IB1 and IIE1 are dominant globally. In addition, the spread of HPIV2 had relative spatial clustering, and sublineage IB2 has only been detected in China thus far. The overall evolution rate of HPIV2 was relatively low, on the order of 10-4 substitutions/site/year, except for sublineage IB2 at 10-3 substitutions/site/year. Furthermore, human-animal transmission was observed, suggesting that the HPIV2 might have jumped out of animal reservoirs in approximately 1922, the predicted time of a common ancestor. The entire HN protein was under purifying/negative selection, and the specific amino acid changes and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 were mostly located in the globular head region of the HN protein. In this study, preliminary evolutionary characteristics of HPIV2 based on the HN gene were obtained, increasing the recognition of the evolution and adaptation of HPIV2. IMPORTANCE The phylogenetic analysis showed that global HPIV2 could be classified into two distinct clusters (I and II) and five lineages (IA to IIE) with at least 0.049 and 0.014 genetic distances between clusters and lineages, respectively. Furthermore, lineages IB and IIE could be further divided into two sublineages (IB1-2 and IIE1-2). All China sequences belong to one lineage and three sublineages (IB1, IB2, IID, and IIE1), among which sublineages IB2 and IIE1 are predominant and cocirculating in China, while sublineages IB1 and IIE1 are dominant globally. The overall evolution rate of HPIV2 is on the order of 10-4 substitutions/site/year, with the highest rate of 2.18 × 10-3 for sublineage IB2. The entire HN protein is under purifying/negative selection, and the specific amino acid substitutions and two novel N-glycosylation sites (N316 and N517) in sublineages IB1, IB2, and IIE1 are mostly located in the globular head region of the HN protein.
Collapse
Affiliation(s)
- Yi Feng
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Liwei Sun
- Changchun Children's Hospital, Changchun, China
| | - Hui Zhang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Hongmei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Zhang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Wenyang Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Guangyue Han
- Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jie Jiang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Liu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanshan Zhou
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yixin Ji
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Naiying Mao
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- National Health Commission (NHC) Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
38
|
Zondag HC, Zwezerijnen-Jiwa FH, de Vries HJ, De Baetselier I, Bruisten SM. Treponema pallidum Strains Among Women and Men Who Have Sex With Women in Amsterdam, the Netherlands and Antwerp, Belgium Between 2014 and 2020. Sex Transm Dis 2023; 50:e5-e7. [PMID: 36749853 PMCID: PMC10184795 DOI: 10.1097/olq.0000000000001779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
ABSTRACT The Treponema pallidum strain distribution among men who have sex with women were similar to the strain distribution men who have sex with men. The most prevalent strains and percentage of strains belonging to the Nichols lineage are similar to previous studies in Amsterdam focusing on men who have sex with men.
Collapse
Affiliation(s)
- Hélène C.A. Zondag
- From the Department of Infectious Diseases, Public Health Service Amsterdam
- Departments of Medical Microbiology
| | | | - Henry J.C. de Vries
- From the Department of Infectious Diseases, Public Health Service Amsterdam
- Dermatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Irith De Baetselier
- Department of Clinical Sciences, Clinical Reference Laboratory, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sylvia M. Bruisten
- From the Department of Infectious Diseases, Public Health Service Amsterdam
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
39
|
A contemporary and inflammatory triangle at the mucosa: HIV, antibodies and bacterial STIs. AIDS 2023; 37:841-843. [PMID: 36919788 DOI: 10.1097/qad.0000000000003498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
40
|
Joseph SJ, Bommana S, Ziklo N, Kama M, Dean D, Read TD. Patterns of within-host spread of Chlamydia trachomatis between vagina, endocervix and rectum revealed by comparative genomic analysis. Front Microbiol 2023; 14:1154664. [PMID: 37056744 PMCID: PMC10086254 DOI: 10.3389/fmicb.2023.1154664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, commonly causes sexually transmitted infections (STIs). Little is known about C. trachomatis transmission within the host, which is important for understanding disease epidemiology and progression. Methods We used RNA-bait enrichment and whole-genome sequencing to compare rectal, vaginal and endocervical samples collected at the same time from 26 study participants who attended Fijian Ministry of Health and Medical Services clinics and tested positive for C. trachomatis at each anatomic site. Results The 78 C. trachomatis genomes from participants resolved into two major clades of the C. trachomatis phylogeny (the "prevalent urogenital and anorectal" clade and "non-prevalent urogenital and anorectal" clade). For 21 participants, genome sequences were almost identical in each anatomic site. For the other five participants, two distinct C. trachomatis strains were present in different sites; in two cases, the vaginal sample was a mixture of strains. Discussion The absence of large numbers of fixed SNPs between C. trachomatis genomes within many of the participants could indicate recent acquisition of infection prior to the clinic visit without sufficient time to accumulate significant genetic variation in different body sites. This model suggests that many C. trachomatis infections may be resolved relatively quickly in the Fijian population, possibly reflecting common prescription or over-the-counter antibiotics usage.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sankhya Bommana
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
| | - Noa Ziklo
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Deborah Dean
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Joint Graduate Program, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Joint Graduate Program, University of California, Berkeley, Berkeley, CA, United States
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
41
|
Edmondson DG, De Lay BD, Hanson BM, Kowis LE, Norris SJ. Clonal isolates of Treponema pallidum subsp. pallidum Nichols provide evidence for the occurrence of microevolution during experimental rabbit infection and in vitro culture. PLoS One 2023; 18:e0281187. [PMID: 36917571 PMCID: PMC10013896 DOI: 10.1371/journal.pone.0281187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/17/2023] [Indexed: 03/15/2023] Open
Abstract
The recent development of a system for long-term in vitro culture of the syphilis spirochete, Treponema pallidum subsp. pallidum, has introduced the possibility of detailed genetic analysis of this bacterium. In this study, the in vitro culture system was used to isolate and characterize clonal populations of T. pallidum subsp. pallidum Nichols, the most widely studied strain. In limiting dilutions experiments, it was possible to establish cultures with inocula as low as 0.5 T. pallidum per well despite the long generation time (~35 to 40 hours) of this organism. Six Nichols strain clones isolated by limiting dilution were characterized in detail. All clones exhibited indistinguishable morphology and motility, highly similar in vitro multiplication rates, and comparable infectivity in the rabbit model (ID50 ≤ 100 bacteria). Genomic sequencing revealed sequence heterogeneity in the form of insertions or deletions at 5 sites, single nucleotide variations at 20 sites, and polynucleotide (polyG/C) tract length differences at 22 locations. Genomic sequences of the uncloned Nichols strain preparations propagated in rabbits or in vitro cultures exhibited substantial heterogeneity at these locations, indicating coexistence of many varied 'clonotypes' within these populations. Nearly all genetic variations were specific for the Nichols strain and were not detected in the >280 T. pallidum genomic sequences that are currently available. We hypothesize that these Nichols strain-specific sequence variations arose independently either during human infection or within the 110 years since the strain's initial isolation, and thus represent examples of microevolution and divergence.
Collapse
Affiliation(s)
- Diane G. Edmondson
- Department of Pathology & Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Bridget D. De Lay
- Department of Pathology & Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Blake M. Hanson
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- Department of Epidemiology, Human Genetics & Environmental Sciences, Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lindsay E. Kowis
- Houston Methodist Research Institute, Infectious Disease, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology & Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- Department of Microbiology & Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
42
|
Joseph SJ, Bommana S, Ziklo N, Kama M, Dean D, Read TD. Patterns of within-host spread of Chlamydia trachomatis between vagina, endocervix and rectum revealed by comparative genomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525576. [PMID: 36747780 PMCID: PMC9901013 DOI: 10.1101/2023.01.25.525576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chlamydia trachomatis , a gram-negative obligate intracellular bacterium, commonly causes sexually transmitted infections (STIs). Little is known about C. trachomatis transmission within the host, which is important for understanding disease epidemiology and progression. We used RNA-bait enrichment and whole-genome sequencing to compare rectal, vaginal and endocervical samples collected at the same time from 26 study participants who attended Fijian Ministry of Health and Medical Services clinics and tested positive for C. trachomatis at each anatomic site. The 78 C. trachomatis genomes from participants were from two major clades of the C. trachomatis phylogeny (the "prevalent urogenital and anorecta"l clade and "non-prevalent urogenital and anorectal" clade). For 21 participants, genome sequences were almost identical in each anatomic site. For the other five participants, two distinct C. trachomatis strains were present in different sites; in two cases, the vaginal sample was a mixture of strains. The absence of large numbers of fixed SNPs between C. trachomatis strains within many of the participants could indicate recent acquisition of infection prior to the clinic visit without sufficient time to accumulate significant variation in the different body sites. This model suggests that many C. trachomatis infections may be resolved relatively quickly in the Fijian population, possibly reflecting common prescription or over-the-counter antibiotics usage. Importance Chlamydia trachomatis is a bacterial pathogen that causes millions of sexually transmitted infections (STIs) annually across the globe. Because C. trachomatis lives inside human cells, it has historically been hard to study. We know little about how the bacterium spreads between body sites. Here, samples from 26 study participants who had simultaneous infections in their vagina, rectum and endocervix were genetically analyzed using an improved method to extract C. trachomatis DNA directly from clinical samples for genome sequencing. By analyzing patterns of mutations in the genomes, we found that 21 participants shared very similar C. trachomatis strains in all three anatomic sites, suggesting recent infection and spread. For five participants two C. trachomatis strains were evident, indicating multiple infections. This study is significant in that improved enrichment methods for genome sequencing provides robust data to genetically trace patterns of C. trachomatis infection and transmission within an individual for epidemiologic and pathogenesis interrogations.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sankhya Bommana
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Noa Ziklo
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Deborah Dean
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA,Department of Medicine, University of California San Francisco, San Francisco, California, USA,Department of Bioengineering, Joint Graduate Program, University of California San Francisco and University of California Berkeley, San Francisco, California, USA,Bixby Center for Global Reproductive Health, University of California San Francisco, San Francisco, California, USA,Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, California, USA,Corresponding authors, contributed equally, DD: , TDR:
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA,Corresponding authors, contributed equally, DD: , TDR:
| |
Collapse
|
43
|
Mathematical modelling Treponema infection in free-ranging Olive baboons (Papio anubis) in Tanzania. Epidemics 2022; 41:100638. [PMID: 36283270 DOI: 10.1016/j.epidem.2022.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
Yaws is a chronic infection caused by the bacterium Treponema pallidum susp. pertenue (TPE) that was thought to be an exclusive human pathogen but was recently found and confirmed in nonhuman primates. In this paper, we develop the first compartmental ODE model for TPE infection with treatment of wild olive baboons. We solve for disease-free and endemic equilibria and give conditions on local and global stability of the disease-free equilibrium. We calibrate the model based on the data from Lake Manyara National Park in Tanzania. We use the model to help the park managers devise an effective strategy for treatment. We show that an increasing treatment rate yields a decrease in disease prevalence. This indicates that TPE can be eliminated through intense management in closed population. Specifically, we show that if the whole population is treated at least once every 5-6 years, a disease-free equilibrium can be reached. Furthermore, we demonstrate that to see a substantial decrease of TPE infection to near-elimination levels within 15 years, the whole population needs to be treated every 2-3 years.
Collapse
|
44
|
Sethuraman A. Teaching computational genomics and bioinformatics on a high performance computing cluster-a primer. Biol Methods Protoc 2022; 7:bpac032. [PMID: 36561335 PMCID: PMC9767868 DOI: 10.1093/biomethods/bpac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The burgeoning field of genomics as applied to personalized medicine, epidemiology, conservation, agriculture, forensics, drug development, and other fields comes with large computational and bioinformatics costs, which are often inaccessible to student trainees in classroom settings at universities. However, with increased availability of resources such as NSF XSEDE, Google Cloud, Amazon AWS, and other high-performance computing (HPC) clouds and clusters for educational purposes, a growing community of academicians are working on teaching the utility of HPC resources in genomics and big data analyses. Here, I describe the successful implementation of a semester-long (16 week) upper division undergraduate/graduate level course in Computational Genomics and Bioinformatics taught at San Diego State University in Spring 2022. Students were trained in the theory, algorithms and hands-on applications of genomic data quality control, assembly, annotation, multiple sequence alignment, variant calling, phylogenomic analyses, population genomics, genome-wide association studies, and differential gene expression analyses using RNAseq data on their own dedicated 6-CPU NSF XSEDE Jetstream virtual machines. All lesson plans, activities, examinations, tutorials, code, lectures, and notes are publicly available at https://github.com/arunsethuraman/biomi609spring2022.
Collapse
Affiliation(s)
- Arun Sethuraman
- Correspondence address. Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA. E-mail:
| |
Collapse
|
45
|
Huang X, Ying S, Luo L, Li L, Li D, Xie Y. Intrathecal immunoglobin synthesis and its role in patients with neurosyphilis. Front Public Health 2022; 10:1008595. [PMID: 36419997 PMCID: PMC9677103 DOI: 10.3389/fpubh.2022.1008595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Background Intrathecal protein synthesis (ITS) occurs in various central nervous system disorders, but few quantitative studies have focused on ITS for neurosyphilis (NS) in southwestern China. We made a study to quantitatively assess the ITS in patients with NS and to investigate the association between ITS and the stages of NS. Methods CSF-serum specimen pairs from 142 patients (66 NS and 76 non-NS/syphilis) were collected for routine CSF and serum tests. The NS group was divided into slight and severe subgroups according to the NS stages. Three formulas for the quantitative determination of the intrathecal synthesis were calculated to characterize the specimens, including the Ig index (QIg/Qalb), Ig extended index (Ig_EI), and intrathecally synthesized fraction (IgIF) using the hyperbolic function. The role of QTPPA/QIgG as an antibody index (AI = Q specific Ig/QIgG) was also explored. Results Sero_TRUST titres (1:16, 1:1-1:256), sero_TPPA titres (1:163840, 1:1280-1:1310720), total protein (MTP), and CSF_Igs (p < 0.05) were found to be significantly elevated in the NS group. Intrathecal Ig synthesis can be identified using all three formulas in the NS group. The pattern of Ig intrathecal synthesis was IgIF-G (48.62%) > IgIF-A = IgIF-M (p < 0.05), with the dominant intrathecal fraction being IgG (median, 48.62%), which was also verified by QIgG> Qalb> QIgM = QIgA. In the slight NS group, the intrathecal fractions of IgM (>0 in 4 out of 20 cases) and IgG (>0 in 16 out of 20) were lower than the intrathecal fractions of IgM (>0 in 19 out of 35 cases) and IgG (>0 in 33 out of 38) in the severe group (p < 0.05). The area under the curve (AUC) of the CSF_TPPA antibody index was 0.867 (0.792, 0.922), with an optimal cutoff point of 0.81, providing a sensitivity of 88.91% and specificity of 84.62%. Conclusion Although the intrathecal synthesis pattern is IgG dominant in patients with NS, brain-derived IgM and IgA can also be found. Moreover, intrathecal IgM and IgG were associated with a parenchymatous type of neurosyphilis. Syphilis-specific antibodies are a new potential tool for NS diagnosis.
Collapse
Affiliation(s)
- Xiyue Huang
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Ying
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China,Department of Laboratory Medicine, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Lan Luo
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lixin Li
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dongdong Li
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Dongdong Li
| | - Yi Xie
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Morando N, Vrbová E, Melgar A, Rabinovich RD, Šmajs D, Pando MA. High frequency of Nichols-like strains and increased levels of macrolide resistance in Treponema pallidum in clinical samples from Buenos Aires, Argentina. Sci Rep 2022; 12:16339. [PMID: 36175452 PMCID: PMC9522787 DOI: 10.1038/s41598-022-20410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, 94% of Treponema pallidum subsp. pallidum (TPA) clinical strains belong to the SS14-like group and 6% to the Nichols-like group, with a prevalence of macrolide resistance of 90%. Our goal was to determine whether local TPA strain distribution and macrolide resistance frequency have changed significantly since our last report, which revealed that Buenos Aires had a high frequency of Nichols-like strains (27%) and low levels of macrolide resistance (14%). Swab samples from patients with suspected syphilis were collected during 2015–2019 and loci TP0136, TP0548, TP0705 were sequenced in order to perform multilocus sequence typing. Strains were classified as Nichols-like or SS14-like. The presence of macrolide resistance-associated mutations was determined by examination of the 23S rDNA gene sequence. Of 46 typeable samples, 37% were classified as Nichols-like and 63% as SS14-like. Macrolide resistance prevalence was 45.7%. Seven allelic profiles were found, five were SS14-like and two were Nichols-like. The frequency of Nichols-like strains increased between studies (26.8% vs. 37%, p = 0.36). A dramatic increase was found in the frequency of macrolide resistant strains between studies (14.3% vs. 45.7%, p = 0.005). Our results are in agreement with international trends and underscore the need to pursue further TPA molecular typing studies in South America.
Collapse
Affiliation(s)
- Nicolas Morando
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Eliška Vrbová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Asunta Melgar
- Programa de Enfermedades de Transmisión Sexual (PETS), Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roberto Daniel Rabinovich
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - María A Pando
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina.
| |
Collapse
|
47
|
Lieberman NAP, Armstrong TD, Chung B, Pfalmer D, Hennelly CM, Haynes A, Romeis E, Wang QQ, Zhang RL, Kou CX, Ciccarese G, Conte ID, Cusini M, Drago F, Nakayama SI, Lee K, Ohnishi M, Konda KA, Vargas SK, Eguiluz M, Caceres CF, Klausner JD, Mitja O, Rompalo A, Mulcahy F, Hook EW, Hoffman IF, Matoga MM, Zheng H, Yang B, Lopez-Medina E, Ramirez LG, Radolf JD, Hawley KL, Salazar JC, Lukehart SA, Seña AC, Parr JB, Giacani L, Greninger AL. High-throughput nanopore sequencing of Treponema pallidum tandem repeat genes arp and tp0470 reveals clade-specific patterns and recapitulates global whole genome phylogeny. Front Microbiol 2022; 13:1007056. [PMID: 36204625 PMCID: PMC9531955 DOI: 10.3389/fmicb.2022.1007056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Sequencing of most Treponema pallidum genomes excludes repeat regions in tp0470 and the tp0433 gene, encoding the acidic repeat protein (arp). As a first step to understanding the evolution and function of these genes and the proteins they encode, we developed a protocol to nanopore sequence tp0470 and arp genes from 212 clinical samples collected from ten countries on six continents. Both tp0470 and arp repeat structures recapitulate the whole genome phylogeny, with subclade-specific patterns emerging. The number of tp0470 repeats is on average appears to be higher in Nichols-like clade strains than in SS14-like clade strains. Consistent with previous studies, we found that 14-repeat arp sequences predominate across both major clades, but the combination and order of repeat type varies among subclades, with many arp sequence variants limited to a single subclade. Although strains that were closely related by whole genome sequencing frequently had the same arp repeat length, this was not always the case. Structural modeling of TP0470 suggested that the eight residue repeats form an extended α-helix, predicted to be periplasmic. Modeling of the ARP revealed a C-terminal sporulation-related repeat (SPOR) domain, predicted to bind denuded peptidoglycan, with repeat regions possibly incorporated into a highly charged β-sheet. Outside of the repeats, all TP0470 and ARP amino acid sequences were identical. Together, our data, along with functional considerations, suggests that both TP0470 and ARP proteins may be involved in T. pallidum cell envelope remodeling and homeostasis, with their highly plastic repeat regions playing as-yet-undetermined roles.
Collapse
Affiliation(s)
- Nicole A. P. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Thaddeus D. Armstrong
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Benjamin Chung
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Daniel Pfalmer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Christopher M. Hennelly
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Austin Haynes
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Emily Romeis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Qian-Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China
| | - Rui-Li Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cai-Xia Kou
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China
| | - Giulia Ciccarese
- Section of Dermatology, Department of Health Sciences, San Martino University Hospital, Genoa, Italy
| | - Ivano Dal Conte
- Sexual Health Center, Department of Prevention, ASL Città di Torino, Turin, Italy
| | - Marco Cusini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Drago
- Section of Dermatology, Department of Health Sciences, San Martino University Hospital, Genoa, Italy
| | - Shu-ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kelika A. Konda
- Unit of Health, Sexuality and Human Development, Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Silver K. Vargas
- Unit of Health, Sexuality and Human Development, Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
- School of Public Health and Administration “Carlos Vidal Layseca”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Eguiluz
- Unit of Health, Sexuality and Human Development, Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Carlos F. Caceres
- Unit of Health, Sexuality and Human Development, Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Jeffrey D. Klausner
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Oriol Mitja
- Fight Aids and Infectious Diseases Foundation, Hospital Germans Trias i Pujol, Barcelona, Spain
- Lihir Medical Centre, International SOS, Londolovit, Papua New Guinea
| | - Anne Rompalo
- Department of Infectious Diseases, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Fiona Mulcahy
- Department of Genito Urinary Medicine and Infectious Diseases, St. James’s Hospital, Dublin, Ireland
| | - Edward W. Hook
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irving F. Hoffman
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Project-Malawi, Lilongwe, Malawi
| | - Mitch M. Matoga
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Project-Malawi, Lilongwe, Malawi
| | - Heping Zheng
- Dermatology Hospital of Southern Medical University, Guangzhou, China
- Institute for Global Health and Sexually Transmitted Infections, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
- Institute for Global Health and Sexually Transmitted Infections, Guangzhou, China
| | - Eduardo Lopez-Medina
- Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Cali, Colombia
- Centro de Estudios en Infectología Pediátrica (CEIP), Cali, Colombia
| | - Lady G. Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Medicas (CIDEIM), Cali, Colombia
- Universidad ICESI, Cali, Colombia
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, CT, United States
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Division of Infectious Diseases and Immunology, Connecticut Children’s Medical Center, Hartford, CT, United States
| | - Juan C. Salazar
- Department of Pediatrics, UConn Health, Farmington, CT, United States
- Department of Immunology, UConn Health, Farmington, CT, United States
- Division of Infectious Diseases and Immunology, Connecticut Children’s Medical Center, Hartford, CT, United States
| | - Sheila A. Lukehart
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | - Arlene C. Seña
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan B. Parr
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lorenzo Giacani
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
48
|
Delgado KN, Montezuma-Rusca JM, Orbe IC, Caimano MJ, La Vake CJ, Luthra A, Hennelly CM, Nindo FN, Meyer JW, Jones LD, Parr JB, Salazar JC, Moody MA, Radolf JD, Hawley KL. Extracellular Loops of the Treponema pallidum FadL Orthologs TP0856 and TP0858 Elicit IgG Antibodies and IgG +-Specific B-Cells in the Rabbit Model of Experimental Syphilis. mBio 2022; 13:e0163922. [PMID: 35862766 PMCID: PMC9426418 DOI: 10.1128/mbio.01639-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The resurgence of syphilis in the new millennium has called attention to the importance of a vaccine for global containment strategies. Studies with immune rabbit serum (IRS) indicate that a syphilis vaccine should elicit antibodies (Abs) that promote opsonophagocytosis of treponemes by activated macrophages. The availability of three-dimensional models for Treponema pallidum's (Tp) repertoire of outer membrane proteins (OMPs) provides an architectural framework for identification of candidate vaccinogens with extracellular loops (ECLs) as the targets for protective Abs. Herein, we used Pyrococcus furiosus thioredoxin (PfTrx) as a scaffold to display Tp OMP ECLs to interrogate sera and peripheral blood mononuclear cells (PBMCs) from immune rabbits for ECL-specific Abs and B cells. We validated this approach using a PfTrx scaffold presenting ECL4 from BamA, a known opsonic target. Using scaffolds displaying ECLs of the FadL orthologs TP0856 and TP0858, we determined that ECL2 and ECL4 of both proteins are strongly antigenic. Comparison of ELISA and immunoblot results suggested that the PfTrx scaffolds present conformational and linear epitopes. We then used the FadL ECL2 and ECL4 PfTrx constructs as "hooks" to confirm the presence of ECL-specific B cells in PBMCs from immune rabbits. Our results pinpoint immunogenic ECLs of two newly discovered OMPs, while advancing the utility of the rabbit model for circumventing bottlenecks in vaccine development associated with large-scale production of folded OMPs. They also lay the groundwork for production of rabbit monoclonal Abs (MAbs) to characterize potentially protective ECL epitopes at the atomic level. IMPORTANCE Recent identification and structural modeling of Treponema pallidum's (Tp) repertoire of outer membrane proteins (OMPs) represent a critical breakthrough in the decades long quest for a syphilis vaccine. However, little is known about the antigenic nature of these β-barrel-forming OMPs and, more specifically, their surface exposed regions, the extracellular loops (ECLs). In this study, using Pyrococcus furiosus thioredoxin (PfTrx) as a scaffold to display Tp OMP ECLs, we interrogated immune rabbit sera and peripheral blood mononuclear cells for the presence of antibodies (Abs) and circulating rare antigen-specific B cells. Our results pinpoint immunogenic ECLs of two newly discovered OMPs, while advancing the utility of the rabbit model for surveying the entire Tp OMPeome for promising OMP vaccinogens. This work represents a major advancement toward characterizing potentially protective OMP ECLs and future vaccine studies. Additionally, this strategy could be applied to OMPs of nonspirochetal bacterial pathogens.
Collapse
Affiliation(s)
| | - Jairo M. Montezuma-Rusca
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
| | - Isabel C. Orbe
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Christopher M. Hennelly
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Fredrick N. Nindo
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacob W. Meyer
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | | | - Jonathan B. Parr
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juan C. Salazar
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, Connecticut, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA
| | - Kelly L. Hawley
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics, UConn Health, Farmington, Connecticut, USA
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, Connecticut, USA
| |
Collapse
|
49
|
Chen W, Luo H, Zeng L, Pan Y, Parr JB, Jiang Y, Cunningham CH, Hawley KL, Radolf JD, Ke W, Ou J, Yang J, Yang B, Zheng H. A suite of PCR-LwCas13a assays for detection and genotyping of Treponema pallidum in clinical samples. Nat Commun 2022; 13:4671. [PMID: 35945210 PMCID: PMC9362966 DOI: 10.1038/s41467-022-32250-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
The performance of commonly used assays for diagnosis of syphilis varies considerably depending on stage of infection and sample type. In response to the need for improved syphilis diagnostics, we develop assays that pair PCR pre-amplification of the tpp47 gene of Treponema pallidum subsp. pallidum with CRISPR-LwCas13a. The PCR-LwCas13a assay achieves an order of magnitude better analytical sensitivity than real-time PCR with equivalent specificity. When applied to a panel of 216 biological specimens, including 135 clinically confirmed primary and secondary syphilis samples, the PCR-LwCas13a assay demonstrates 93.3% clinical sensitivity and 100% specificity, outperforming tpp47 real-time PCR and rabbit-infectivity testing. We further adapt this approach to distinguish Treponema pallidum subsp. pallidum lineages and identify genetic markers of macrolide resistance. Our study demonstrates the potential of CRISPR-based approaches to improve diagnosis and epidemiological surveillance of syphilis.
Collapse
Affiliation(s)
- Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Hao Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Lihong Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Yuying Pan
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Clark H Cunningham
- Division of Infectious Diseases, Department of Medicine, and Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Kelly L Hawley
- Division of Infectious Diseases, Connecticut Children's, Hartford, CT, USA
- Department of Medicine, UConn Health, Farmington, CT, USA
- Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, CT, USA
- Department of Pediatrics, UConn Health, Farmington, CT, USA
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Department of Immunology, UConn Health, Farmington, CT, USA
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Jiangli Ou
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Jianjiang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China.
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China.
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, P. R. China.
- Guangzhou Key Laboratory for Sexually Transmitted Diseases Control, Guangzhou, P. R. China.
| |
Collapse
|
50
|
Grillová L. Putting a twist in syphilis vaccine development. Nat Rev Microbiol 2022; 20:577. [PMID: 35902764 PMCID: PMC9332037 DOI: 10.1038/s41579-022-00784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Linda Grillová
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|