1
|
Chen Y, Ke Z, Wang H, Zhang R, Zhou Y, Marsili E, Mei J. The environmental impact of extracellular matrix preparation. FEBS J 2025. [PMID: 39756012 DOI: 10.1111/febs.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/26/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols. Life cycle assessment (LCA) methodology has been developed to evaluate the environmental impacts of products produced through diverse processes. Despite its widespread application in the pharmaceutical industry, LCA has seldom been utilized to estimate the environmental effects of laboratory protocols. This Viewpoint applies LCA to assess the functionality and environmental impacts of ECM produced via P1, P2, and P3. The results of this assessment indicate that the protocol with the highest impact generates approximately 43 times more CO2-equivalent emissions (CO2 eq) than that with the lowest impact, while the ECM produced using the least impactful protocol demonstrates the highest biocompatibility. Additional environmental indicators such as eutrophication, photochemical oxidation, and acidification also vary among the tested protocols. This work underscores the need to factor environmental impact in the development of novel biomedical materials.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Zihao Ke
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo university, China
| | - Haiyang Wang
- School of Basic Medical Science, Wenzhou Medical University, China
| | - Rui Zhang
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Yingjie Zhou
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, China
| | - Jin Mei
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
- School of Basic Medical Science, Wenzhou Medical University, China
| |
Collapse
|
2
|
Mironov MS, Yakubovsky DI, Ermolaev GA, Khramtsov IA, Kirtaev RV, Slavich AS, Tselikov GI, Vyshnevyy AA, Arsenin AV, Volkov VS, Novoselov KS. Graphene-Inspired Wafer-Scale Ultrathin Gold Films. NANO LETTERS 2024; 24:16270-16275. [PMID: 39667738 DOI: 10.1021/acs.nanolett.4c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
As the trajectory toward the graphene era continues, there is a compelling need to harness 2D technology further for the transformation of three-dimensional (3D) materials production and applications. Here, we resolve this challenge for one of the most widely utilized 3D materials in modern electronics─gold─using graphene-inspired fabrication technology that allows us to develop a multistep production method of ultrathin gold films. Such films demonstrate continuous morphology, low sheet resistance (10 Ω/sq), and high transparency (80%), offering opportunities in a variety of technological and scientific sectors. To this end, we demonstrate smart contact lenses and thermal camouflage based on ultrathin gold. Technologically, the record-breaking characteristics of ultrathin gold films open new horizons for flexible and transparent electrodes for photonics and optoelectronics. Most importantly, the demonstration of transferable wafer-scale ultrathin gold changes the paradigm of the field of 2D crystals and dramatically expands the range of available quasi-2D materials.
Collapse
Affiliation(s)
- Mikhail S Mironov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Dmitry I Yakubovsky
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Georgy A Ermolaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Igor A Khramtsov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Roman V Kirtaev
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Aleksandr S Slavich
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Gleb I Tselikov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Andrey A Vyshnevyy
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Aleksey V Arsenin
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Valentyn S Volkov
- Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates
| | - Kostya S Novoselov
- National Graphene Institute (NGI), University of Manchester, Manchester M13 9PL, U.K
- Department of Materials Science and Engineering, National University of Singapore, Singapore 03-09 EA, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Building S9, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
3
|
Ma H, Chen S, Zhang X, Sun T, Huo P, Cui X, Man B, Yang C, Wei D. Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection. NANO LETTERS 2024; 24:16245-16252. [PMID: 39660777 DOI: 10.1021/acs.nanolett.4c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.
Collapse
Affiliation(s)
- Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, People's Republic of China
| | - Dongmei Wei
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
4
|
Wang M, Chul Kim Y, Meng Y, Chatterjee S, Bakharev P, Luo D, Gong Y, Abadie T, Hyeok Kim M, Sitek J, Kyung Seong W, Lee G, Ruoff RS. Growth Kinetics of Graphene on Cu(111) Foils from Methane, Ethyne, Ethylene, and Ethane. Angew Chem Int Ed Engl 2024; 63:e202412131. [PMID: 39466964 DOI: 10.1002/anie.202412131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 10/30/2024]
Abstract
Chemical vapor deposition of carbon precursors on Cu-based substrates at temperatures exceeding 1000 °C is currently a typical route for the scalable synthesis of large-area high-quality single-layer graphene (SLG) films. Using molecules with higher activities than CH4 may afford lower growth temperatures that might yield fold- and wrinkle-free graphene. The kinetics of growth of graphene using hydrocarbons other than CH4 are of interest to the scientific and industrial communities. We measured the growth rates of graphene islands on Cu(111) foils by using C2H2, C2H4, C2H6 and CH4, respectively (each mixed with H2). From such kinetics data we obtain the activation enthalpy (ΔH≠) of graphene growth as shown in parentheses (C2H2 (0.93±0.09 eV); C2H4 (2.05±0.19 eV); C2H6 (2.50±0.11 eV); CH4 (4.59±0.26 eV)); C2Hy (y=2, 4, 6) show similar growth behavior but CH4 is different. Computational fluid dynamics and density functional theory simulations suggest that C2Hy differs from CH4 due to different values of adsorption energy and the lifetime of relevant carbon precursors on the Cu(111) surface. Combining experimental and simulation results, we find that the rate determining step (RDS) is the dissociation of the first C-H bond of CH4 molecules in the gas phase, while the RDS using C2Hy is the first dehydrogenation of adsorbed C2Hy that happens with assistance of H atoms adsorbed on the Cu(111) surface. By using C2H2 as the carbon precursor, high-quality single-crystal adlayer-free SLG films are achieved on Cu(111) foils at 900 °C.
Collapse
Affiliation(s)
- Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yong Chul Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Yongqiang Meng
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Shahana Chatterjee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Make Materials, M5B, Toronto, Canada
| | - Pavel Bakharev
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Yan Gong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Thomas Abadie
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, United Kingdom
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| | - Min Hyeok Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Jakub Sitek
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Won Kyung Seong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| |
Collapse
|
5
|
Diaz-Arauzo S, Downing JR, Tsai D, Trost J, Hui J, Donahue K, Antonopoulos N, Chaney LE, Dunn JB, Hersam MC. Ultrahigh-throughput cross-flow filtration of solution-processed 2D materials enabled by porous ceramic membranes. MATERIALS HORIZONS 2024; 11:5960-5971. [PMID: 39380318 DOI: 10.1039/d4mh01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Printed electronics is a disruptive technology in multiple applications including environmental and biological sensors, flexible displays, and wearable diagnostic devices. With superlative electronic, optical, mechanical, and chemical properties, two-dimensional (2D) materials are promising candidates for printable electronic inks. While liquid-phase exfoliation (LPE) methods can produce electronic-grade 2D materials, conventional batch separation processes typically rely on centrifugation, which requires significant time and effort to remove incompletely exfoliated bulk powders, hindering the scale-up of 2D ink manufacturing. While cross-flow filtration (CFF) has emerged as a promising continuous flow separation method for solution-processed 2D nanosheets, previously demonstrated polymer CFF membranes necessitate low 2D nanosheet concentrations to avoid fouling, which ultimately limits mass throughput. Here, we demonstrate a fully flow-based, exfoliation-to-ink system for electronic-grade 2D materials using an integrated cross-flow separation and concentration system. To overcome the relatively low-throughput processing concentrations of incumbent polymer CFF membranes, we employ porous ceramic CFF membranes that are tolerant to 10-fold higher nanosheet concentrations and flow rates without compromising separation efficiency. Furthermore, we demonstrate a concentration method via cross-flow ultrafiltration, where the retentate can be directly formulated into printable inks with electronic-grade performance that meets or exceeds centrifugally produced inks. Life cycle assessment and technoeconomic analysis quantitatively confirm the advantages of ceramic versus polymer CFF membranes including reductions of 97%, 96%, 94%, and 93% for greenhouse gas emissions, water consumption, fossil fuel consumption, and specific production costs, respectively. Overall, this work presents an environmentally sustainable and cost-effective solution for the fabrication, separation, and printing of electronic-grade 2D materials.
Collapse
Affiliation(s)
- Santiago Diaz-Arauzo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Daphne Tsai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Jenna Trost
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Janan Hui
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Kevin Donahue
- ALSYS USA, CeraMem, Waltham, Massachusetts 02453, USA
| | | | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
6
|
Lee S, Zhang X, Abdollahi P, Barone MR, Dong C, Yoo YJ, Song MK, Lee D, Ryu JE, Choi JH, Lee JH, Robinson JA, Schlom DG, Kum HS, Chang CS, Seo A, Kim J. Route to Enhancing Remote Epitaxy of Perovskite Complex Oxide Thin Films. ACS NANO 2024; 18:31225-31233. [PMID: 39471046 DOI: 10.1021/acsnano.4c09445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Remote epitaxy is taking center stage in creating freestanding complex oxide thin films with high crystallinity that could serve as an ideal building block for stacking artificial heterostructures with distinctive functionalities. However, there exist technical challenges, particularly in the remote epitaxy of perovskite oxides associated with their harsh growth environments, making the graphene interlayer difficult to survive. Transferred graphene, typically used for creating a remote epitaxy template, poses limitations in ensuring the yield of perovskite films, especially when pulsed laser deposition (PLD) growth is carried out, since graphene degradation can be easily observed. Here, we employ spectroscopic ellipsometry to determine the critical factors that damage the integrity of graphene during PLD by tracking the change in optical properties of graphene in situ. To mitigate the issues observed in the PLD process, we propose an alternative growth strategy based on molecular beam epitaxy to produce single-crystalline perovskite membranes.
Collapse
Affiliation(s)
- Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyuan Zhang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Pooya Abdollahi
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Matthew R Barone
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Chengye Dong
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Young Jin Yoo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Min-Kyu Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Doyoon Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jung-El Ryu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun-Hui Choi
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Hyun Lee
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Hyun S Kum
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Celesta S Chang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ambrose Seo
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Petry R, de Almeida JM, Côa F, Crasto de Lima F, Martinez DST, Fazzio A. Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1297-1311. [PMID: 39498295 PMCID: PMC11533115 DOI: 10.3762/bjnano.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.
Collapse
Affiliation(s)
- Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| | - James M de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Felipe Crasto de Lima
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adalberto Fazzio
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| |
Collapse
|
8
|
Kostrzanowska-Siedlarz A, Musioł K, Ponikiewski T, Janas D, Kampik M. Facile Incorporation of Carbon Nanotubes into the Concrete Matrix Using Lignosulfonate Surfactants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4972. [PMID: 39459676 PMCID: PMC11509148 DOI: 10.3390/ma17204972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024]
Abstract
One of the ways to turn concrete into smart concrete involves the incorporation of conductive fillers. These fillers should be evenly distributed in the matrix to enable the charge propagation necessary for sensing. To homogenize the mixture, typical surface-active chemical compounds are routinely employed. Unfortunately, their presence often negatively impacts the characteristics of concrete. In this work, we show that conductive multi-walled carbon nanotubes (MWCNTs) can be included in the concrete matrix by using off-the-shelf lignosulfonate-based plasticizers. These plasticizers showed a much-improved capability to disperse MWCNTs compared to other routinely used surfactants. They also prevented a significant deterioration of the consistency of the mixture and inhibited the acceleration of the hydration process by MWCNTs. In concretes with MWCNTs and lignosulfonate-based plasticizers, the mechanical properties were largely preserved, while the nanocomposite became electrically conductive. Consequently, it enabled evaluation of the condition of the material by electrical impedance measurements.
Collapse
Affiliation(s)
| | - Krzysztof Musioł
- Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10, 44-100 Gliwice, Poland
| | - Tomasz Ponikiewski
- Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
| | - Dawid Janas
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Marian Kampik
- Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10, 44-100 Gliwice, Poland
| |
Collapse
|
9
|
Padinjareveetil AKK, Pykal M, Bakandritsos A, Zbořil R, Otyepka M, Pumera M. Real Time Tracking of Nanoconfined Water-Assisted Ion Transfer in Functionalized Graphene Derivatives Supercapacitor Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307583. [PMID: 39107963 PMCID: PMC11497090 DOI: 10.1002/advs.202307583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/24/2024] [Indexed: 10/25/2024]
Abstract
Water molecules confined in nanoscale spaces of 2D graphene layers have fascinated researchers worldwide for the past several years, especially in the context of energy storage applications. The water molecules exchanged along with ions during the electrochemical process can aid in wetting and stabilizing the layered materials resulting in an anomalous enhancement in the performance of supercapacitor electrodes. Engineering of 2D carbon electrode materials with various functionalities (oxygen (─O), fluorine (─F), nitrile (─C≡N), carboxylic (─COOH), carbonyl (─C═O), nitrogen (─N)) can alter the ion/water organization in graphene derivatives, and eventually their inherent ion storage ability. Thus, in the current study, a comparative set of functionalized graphene derivatives-fluorine-doped cyanographene (G-F-CN), cyanographene (G-CN), graphene acid (G-COOH), oxidized graphene acid (G-COOH (O)) and nitrogen superdoped graphene (G-N) is systematically evaluated toward charge storage in various aqueous-based electrolyte systems. Differences in functionalization on graphene derivatives influence the electrochemical properties, and the real-time mass exchange during the electrochemical process is monitored by electrochemical quartz crystal microbalance (EQCM). Electrogravimetric assessment revealed that oxidized 2D acid derivatives (G-COOH (O)) are shown to exhibit high ion storage performance along with maximum water transfer during the electrochemical process. The complex understanding of the processes gained during supercapacitor electrode charging in aqueous electrolytes paves the way toward the rational utilization of graphene derivatives in forefront energy storage applications.
Collapse
Affiliation(s)
- Akshay Kumar K. Padinjareveetil
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Martin Pykal
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomouc783 71Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomouc783 71Czech Republic
- Nanotechnology CentreCentre for Energy and Environmental TechnologiesVŠB–Technical University of Ostrava17. listopadu 2172/15Ostrava‐Poruba708 00Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomouc783 71Czech Republic
- Nanotechnology CentreCentre for Energy and Environmental TechnologiesVŠB–Technical University of Ostrava17. listopadu 2172/15Ostrava‐Poruba708 00Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University OlomoucOlomouc783 71Czech Republic
- IT4InnovationsVŠB–Technical University of Ostrava17. listopadu 2172/15Ostrava‐Poruba708 00Czech Republic
| | - Martin Pumera
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
- Advanced Nanorobots & Multiscale Robotics LaboratoryFaculty of Electrical Engineering and Computer ScienceVSB – Technical University of Ostrava17. listopadu 2172/15Ostrava708 00Czech Republic
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐ro, Seodaemun‐guSeoul03722South Korea
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityNo. 91 Hsueh‐Shih RoadTaichung40402Taiwan
| |
Collapse
|
10
|
Liu G, Li X, Li C, Zheng Q, Wang Y, Xiao R, Huang F, Tian H, Wang C, Chen X, Shao J. Efficient Fabrication of Disordered Graphene with Improved Ion Accessibility, Ion Conductivity, and Density for High-Performance Compact Capacitive Energy Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405155. [PMID: 39120479 PMCID: PMC11481205 DOI: 10.1002/advs.202405155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/12/2024] [Indexed: 08/10/2024]
Abstract
High-performance compact capacitive energy storage is vital for many modern application fields, including grid power buffers, electric vehicles, and portable electronics. However, achieving exceptional volumetric performance in supercapacitors is still challenging and requires effective fabrication of electrode films with high ion-accessible surface area and fast ion diffusion capability while simultaneously maintaining high density. Herein, a facile, efficient, and scalable method is developed for the fabrication of dense, porous, and disordered graphene through spark-induced disorderly opening of graphene stacks combined with mechanical compression. The obtained disordered graphene achieves a high density of 1.18 g cm-3, sixfold enhanced ion conductivity compared to common laminar graphene, and an ultrahigh volumetric capacitance of 297 F cm-3 in ionic liquid electrolyte. The fabricated stack cells deliver a volumetric energy density of 94.2 Wh L-1 and a power density of 13.7 kW L-1, representing a critical breakthrough in capacitive energy storage. Moreover, the proposed disordered graphene electrodes are assembled into ionogel-based all-solid-state pouch cells with high mechanical stability and multiple optional outputs, demonstrating great potential for flexible energy storage in practical applications.
Collapse
Affiliation(s)
- Gangqiang Liu
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiangming Li
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Congming Li
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Qinwen Zheng
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Yingche Wang
- Xi'an Institute of Electromechanical Information TechnologyXi'anShaanxi710065China
| | - Ronglin Xiao
- Shaanxi Coal Chemical Industry Technology Research Institute Co., LtdXi'anShaanxi710075China
| | - Fei Huang
- Shaanxi Coal Chemical Industry Technology Research Institute Co., LtdXi'anShaanxi710075China
| | - Hongmiao Tian
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chunhui Wang
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiaoliang Chen
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Jinyou Shao
- Micro‐/Nano‐Technology Research CenterState Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| |
Collapse
|
11
|
Liu R, Yang F, Cheng S, Yue X, Liang F, Li W, Wang J, Zhang Q, Zou L, Yuan H, Yang Y, Zheng K, Liu L, Liu M, Gu W, Tu C, Mao X, Wang X, Qi Y, Liu Z. Controllable preparation of graphene glass fiber fabric towards mass production and its application in self-adaptive thermal management. Sci Bull (Beijing) 2024; 69:2712-2722. [PMID: 39060214 DOI: 10.1016/j.scib.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Direct synthesis of graphene on nonmetallic substrates via chemical vapor deposition (CVD) has become a frontier research realm targeting transfer-free applications of CVD graphene. However, the stable mass production of graphene with a favorable growth rate and quality remains a grand challenge. Herein, graphene glass fiber fabric (GGFF) was successfully developed through the controllable growth of graphene on non-catalytic glass fiber fabric, employing a synergistic binary-precursor CVD strategy to alleviate the dilemma between growth rate and quality. The binary precursors consisted of acetylene and acetone, where acetylene with high decomposition efficiency fed rapid graphene growth while oxygen-containing acetone was adopted for improving the layer uniformity and quality. Notably, the bifurcating introducing-confluent premixing (BI-CP) system was self-built for the controllable introduction of gas and liquid precursors, enabling the stable production of GGFF. GGFF features solar absorption and infrared emission properties, based on which the self-adaptive dual-mode thermal management film was developed. This film can automatically switch between heating and cooling modes by spontaneously perceiving the temperature, achieving excellent thermal management performances with heating and cooling power of ∼501.2 and ∼108.6 W m-2, respectively. These findings unlock a new strategy for the large-scale batch production of graphene materials and inspire advanced possibilities for further applications.
Collapse
Affiliation(s)
- Ruojuan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Fan Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Shuting Cheng
- Beijing Graphene Institute (BGI), Beijing 100095, China; State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Xianghe Yue
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fushun Liang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Wenjuan Li
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jingnan Wang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Qinchi Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Liangyu Zou
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Hao Yuan
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yuyao Yang
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Kangyi Zheng
- Beijing Graphene Institute (BGI), Beijing 100095, China; Soochow Institute for Energy and Materials Innovations (SIEMIS), College of Energy, Soochow University, Suzhou 215006, China
| | - Longfei Liu
- Beijing Graphene Institute (BGI), Beijing 100095, China; Academy for Advanced Interdisciplinary Research, North University of China, Taiyuan 030051, China
| | - Mengxiong Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Wei Gu
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Ce Tu
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xinyu Mao
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Xiaobai Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yue Qi
- Beijing Graphene Institute (BGI), Beijing 100095, China.
| | - Zhongfan Liu
- Centre for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Graphene Institute (BGI), Beijing 100095, China.
| |
Collapse
|
12
|
Koepfli SM, Baumann M, Gadola R, Nashashibi S, Koyaz Y, Rieben D, Güngör AC, Doderer M, Keller K, Fedoryshyn Y, Leuthold J. Controlling photothermoelectric directional photocurrents in graphene with over 400 GHz bandwidth. Nat Commun 2024; 15:7351. [PMID: 39187480 PMCID: PMC11347599 DOI: 10.1038/s41467-024-51599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Photodetection in the near- and mid-infrared spectrum requires a suitable absorbing material able to meet the respective targets while ideally being cost-effective. Graphene, with its extraordinary optoelectronic properties, could provide a material basis simultaneously serving both regimes. The zero-band gap offers almost wavelength independent absorption which lead to photodetectors operating in the infrared spectrum. However, to keep noise low, a detection mechanism with fast and zero bias operation would be needed. Here, we show a self-powered graphene photodetector with a > 400 GHz frequency response. The device combines a metamaterial perfect absorber architecture with graphene, where asymmetric resonators induce photothermoelectric directional photocurrents within the graphene channel. A quasi-instantaneous response linked to the photothermoelectric effect is found. Typical drift/diffusion times optimization are not needed for a high-speed response. Our results demonstrate that these photothermoelectric directional photocurrents have the potential to outperform the bandwidth of many other graphene photodetectors and most conventional technologies.
Collapse
Affiliation(s)
- Stefan M Koepfli
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland.
| | - Michael Baumann
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Robin Gadola
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Shadi Nashashibi
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Yesim Koyaz
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
- EPFL, Photonic Systems Laboratory (PHOSL), Lausanne, Switzerland
| | - Daniel Rieben
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Arif Can Güngör
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Michael Doderer
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Killian Keller
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Yuriy Fedoryshyn
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland
| | - Juerg Leuthold
- ETH Zurich, Institute of Electromagnetic Fields (IEF), Zurich, Switzerland.
| |
Collapse
|
13
|
Lee J, Woo G, Lee G, Jeon J, Lee S, Wang Z, Shin H, Lee GW, Kim YJ, Lee DH, Kim MJ, Kim E, Seok H, Cho J, Kang B, No YS, Jang WJ, Kim T. Ultrastable 3D Heterogeneous Integration via N-Heterocyclic Carbene Self-Assembled Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35505-35515. [PMID: 38935928 DOI: 10.1021/acsami.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The commercialization of 3D heterogeneous integration through hybrid bonding has accelerated, and accordingly, Cu-polymer bonding has gained significant attention as a means of overcoming the limitations of conventional Cu-SiO2 hybrid bonding, offering high compatibility with other fabrication processes. Polymers offer robust bonding strength and a low dielectric constant, enabling high-speed signal transmission with high reliability, but suffer from low thermomechanical stability. Thermomechanical stability of polymers was not achieved previously because of thermal degradation and unstable anchoring. To overcome these limitations, wafer-scale Cu-polymer bonding via N-heterocyclic carbene (NHC) nanolayers was presented for 3D heterogeneous integration, affording ultrastable packing density, crystallinity, and thermal properties. NHC nanolayers were deposited on copper electrodes via electrochemical deposition, and wafer-scale 3D heterogeneous integration was achieved by adhesive bonding at 170 °C for 1 min. Ultrastable conductivity and thermomechanical properties were observed by the spatial mapping of conductivity, work function, and force-distance curves. With regard to the characterization of NHC nanolayers, low-temperature bonding, robust corrosion inhibition, enhanced electrical conductivity, back-end-of-line process compatibility, and fabrication process reduction, NHC Cu/polymer bonding provides versatile advances in 3D heterogeneous integration, indicating that NHC Cu/polymer bonding can be utilized as a platform for future 3D vertical chip architectures.
Collapse
Affiliation(s)
- Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gyuyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jongyeong Jeon
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Seunghwan Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Ziyang Wang
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Hyelim Shin
- Department of Semiconductor Convergence Engineering, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Gil-Woo Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeon-Ji Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Hyun Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Jae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eungchul Kim
- AVP Process Development Team, Samsung Electronics, Chungcheongnam-do, Cheonan-si 31086, South Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - You-Shin No
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Won-Jun Jang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Semiconductor Convergence Engineering, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
14
|
Kim KS, Kwon J, Ryu H, Kim C, Kim H, Lee EK, Lee D, Seo S, Han NM, Suh JM, Kim J, Song MK, Lee S, Seol M, Kim J. The future of two-dimensional semiconductors beyond Moore's law. NATURE NANOTECHNOLOGY 2024; 19:895-906. [PMID: 38951597 DOI: 10.1038/s41565-024-01695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/14/2024] [Indexed: 07/03/2024]
Abstract
The primary challenge facing silicon-based electronics, crucial for modern technological progress, is difficulty in dimensional scaling. This stems from a severe deterioration of transistor performance due to carrier scattering when silicon thickness is reduced below a few nanometres. Atomically thin two-dimensional (2D) semiconductors still maintain their electrical characteristics even at sub-nanometre scales and offer the potential for monolithic three-dimensional (3D) integration. Here we explore a strategic shift aimed at addressing the scaling bottleneck of silicon by adopting 2D semiconductors as new channel materials. Examining both academic and industrial viewpoints, we delve into the latest trends in channel materials, the integration of metal contacts and gate dielectrics, and offer insights into the emerging landscape of industrializing 2D semiconductor-based transistors for monolithic 3D integration.
Collapse
Affiliation(s)
- Ki Seok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junyoung Kwon
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Huije Ryu
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Changhyun Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Hyunseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eun-Kyu Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea
| | - Doyoon Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seunghwan Seo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ne Myo Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jekyung Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Min-Kyu Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minsu Seol
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea.
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon, Korea.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Wu Y, Wang Y, Bao D, Deng X, Zhang S, Yu-Chun L, Ke S, Liu J, Liu Y, Wang Z, Ham P, Hanna A, Pan J, Hu X, Li Z, Zhou J, Wang C. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:146. [PMID: 38951490 PMCID: PMC11217405 DOI: 10.1038/s41377-024-01486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuqi Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Di Bao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lin Yu-Chun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jianing Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yingjie Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zeli Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Pingren Ham
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Andrew Hanna
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jiaming Pan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xinyue Hu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhengcao Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China.
| |
Collapse
|
16
|
Vogel U. Acute, controlled inhalation of thin graphene oxide nanosheets in humans with null cardiorespiratory effects. NATURE NANOTECHNOLOGY 2024; 19:582-583. [PMID: 38589573 DOI: 10.1038/s41565-024-01639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
17
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Thakur S, Hussin MH, Brosse N, Thakur VK. A comprehensive review on processing, characteristics, and applications of cellulose nanofibrils/graphene hybrid-based nanocomposites: Toward a synergy between two-star nanomaterials. Int J Biol Macromol 2024; 268:131633. [PMID: 38641279 DOI: 10.1016/j.ijbiomac.2024.131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Nanostructured materials are fascinating since they are promising for intensely enhancing materials' performance, and they can offer multifunctional features. Creating such high-performance nanocomposites via effective and mild approaches is an inevitable requirement for sustainable materials engineering. Nanocomposites, which combine two-star nanomaterials, namely, cellulose nanofibrils (CNFs) and graphene derivatives (GNMs), have recently revealed interesting physicochemical properties and excellent performance. Despite numerous studies on the production and application of such systems, there is still a lack of concise information on their practical uses. In this review, recent progress in the production, modification, properties, and emerging uses of CNFs/GNMs hybrid-based nanocomposites in various fields such as flexible energy harvesting and storage, sensors, adsorbents, packaging, and thermal management, among others, are comprehensively examined and described based on recent investigations. Nevertheless, numerous challenges and gaps need to be addressed to successfully introduce such nanomaterials in large-scale industrial applications. This review will certainly help readers understand the design approaches and potential applications of CNFs/GNMs hybrid-based nanocomposites for which new research directions in this emerging topic are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500 Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, Edinburgh EH9 3JG, UK
| |
Collapse
|
18
|
Zhu X, Lin L, Pang M, Jia C, Xia L, Shi G, Zhang S, Lu Y, Sun L, Yu F, Gao J, He Z, Wu X, Li A, Wang L, Wang M, Cao K, Fu W, Chen H, Li G, Zhang J, Wang Y, Yang Y, Zhu YG. Continuous and low-carbon production of biomass flash graphene. Nat Commun 2024; 15:3218. [PMID: 38622151 PMCID: PMC11018853 DOI: 10.1038/s41467-024-47603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China.
| | - Litao Lin
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Mingyue Pang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Chao Jia
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute and State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai, 200444, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yuanda Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liming Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Fengbo Yu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Gao
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhelin He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xuan Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Aodi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liang Wang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Meiling Wang
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Kai Cao
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Weiguo Fu
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Huakui Chen
- Institute of Intelligent Machines Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China
| | - Gang Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210018, China.
| | - Yi Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
| |
Collapse
|
19
|
Sun L, Zhao S, Tang X, Yu Q, Gao F, Liu J, Wang Y, Zhou Y, Yi H. Recent advances in catalytic oxidation of VOCs by two-dimensional ultra-thin nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170748. [PMID: 38340848 DOI: 10.1016/j.scitotenv.2024.170748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Catalytic oxidation, an end-of-pipe treatment technology for effectively purifying volatile organic compounds (VOCs), has received widespread attention. The crux of catalytic oxidation lies in the development of efficient catalysts, with their optimization necessitating a comprehensive analysis of the catalytic reaction mechanism. Two-dimensional (2D) ultra-thin nanomaterials offer significant advantages in exploring the catalytic oxidation mechanism of VOCs due to their unique structure and properties. This review classifies strategies for regulating catalytic properties and typical applications of 2D materials in VOCs catalytic oxidation, in addition to their characteristics and typical characterization techniques. Furthermore, the possible reaction mechanism of 2D Co-based and Mn-based oxides in the catalytic oxidation of VOCs is analyzed, with a special focus on the synergistic effect between oxygen and metal vacancies. The objective of this review is to provide valuable references for scholars in the field.
Collapse
Affiliation(s)
- Long Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qingjun Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ya Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
20
|
Zhu Y, Zhang J, Cheng T, Tang J, Duan H, Hu Z, Shao J, Wang S, Wei M, Wu H, Li A, Li S, Balci O, Shinde SM, Ramezani H, Wang L, Lin L, Ferrari AC, Yakobson BI, Peng H, Jia K, Liu Z. Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308802. [PMID: 37878366 DOI: 10.1002/adma.202308802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.
Collapse
Affiliation(s)
- Yeshu Zhu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ting Cheng
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Jilin Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Hongwei Duan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Zhaoning Hu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiaxin Shao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Shiwei Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Mingyue Wei
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haotian Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ang Li
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Sheng Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Osman Balci
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Sachin M Shinde
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Hamideh Ramezani
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Luda Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Li Lin
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Boris I Yakobson
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaicheng Jia
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
21
|
Park BI, Kim J, Lu K, Zhang X, Lee S, Suh JM, Kim DH, Kim H, Kim J. Remote Epitaxy: Fundamentals, Challenges, and Opportunities. NANO LETTERS 2024; 24:2939-2952. [PMID: 38477054 DOI: 10.1021/acs.nanolett.3c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Advanced heterogeneous integration technologies are pivotal for next-generation electronics. Single-crystalline materials are one of the key building blocks for heterogeneous integration, although it is challenging to produce and integrate these materials. Remote epitaxy is recently introduced as a solution for growing single-crystalline thin films that can be exfoliated from host wafers and then transferred onto foreign platforms. This technology has quickly gained attention, as it can be applied to a wide variety of materials and can realize new functionalities and novel application platforms. Nevertheless, remote epitaxy is a delicate process, and thus, successful execution of remote epitaxy is often challenging. Here, we elucidate the mechanisms of remote epitaxy, summarize recent breakthroughs, and discuss the challenges and solutions in the remote epitaxy of various material systems. We also provide a vision for the future of remote epitaxy for studying fundamental materials science, as well as for functional applications.
Collapse
Affiliation(s)
- Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jekyung Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kuangye Lu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyuan Zhang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyunseok Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Labed M, Park BI, Kim J, Park JH, Min JY, Hwang HJ, Kim J, Rim YS. Ultrahigh Photoresponsivity of W/Graphene/β-Ga 2O 3 Schottky Barrier Deep Ultraviolet Photodiodes. ACS NANO 2024; 18:6558-6569. [PMID: 38334310 DOI: 10.1021/acsnano.3c12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The integration of graphene with semiconductor materials has been studied for developing advanced electronic and optoelectronic devices. Here, we propose ultrahigh photoresponsivity of β-Ga2O3 photodiodes with a graphene monolayer inserted in a W Schottky contact. After inserting the graphene monolayer, we found a reduction in the leakage current and ideality factor. The Schottky barrier height was also shown to be about 0.53 eV, which is close to an ideal value. This was attributed to a decrease in the interfacial state density and the strong suppression of metal Fermi-level pinning. Based on a W/graphene/β-Ga2O3 structure, the responsivity and external quantum efficiency reached 14.49 A/W and 7044%, respectively. These values were over 100 times greater than those of the W contact alone. The rise and delay times of the W/graphene/β-Ga2O3 Schottky barrier photodiodes significantly decreased to 139 and 200 ms, respectively, compared to those obtained without a graphene interlayer (2000 and 3000 ms). In addition, the W/graphene/β-Ga2O3 Schottky barrier photodiode was highly stable, even at 150 °C.
Collapse
Affiliation(s)
- Madani Labed
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jekyung Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jang Hyeok Park
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Ji Young Min
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Hee Jae Hwang
- Biomaterials Research Center, Korea Institution of Science and Technology, Seoul 02792, Republic of Korea
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - You Seung Rim
- Department of Semiconductor Systems Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
McGarrity M, Zhao F. Graphene-Based Chemiresistor Sensors for Drinking Water Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:9828. [PMID: 38139674 PMCID: PMC10747892 DOI: 10.3390/s23249828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Monitoring the quality of drinking water is a crucial responsibility for all water infrastructure networks, as it guarantees access to clean water for the communities they serve. With water infrastructure deteriorating due to age and neglect, drinking water violations are on the rise in the US, underscoring the need for improved monitoring capabilities. Among the different sensor technologies, graphene-based chemiresistors have emerged as a promising technology for water quality monitoring due to advantages such as simple design, sensitivity, and selectivity. This review paper provides an overview of recent advances in the development of graphene-based chemiresistors for water quality monitoring, including principles of chemiresistive sensing, sensor design and functionalization, and performance of devices reported in the literature. The paper also discusses challenges and opportunities in the field and highlights future research directions. The development of graphene-based chemiresistors has the potential to revolutionize water quality monitoring by providing highly sensitive and cost-effective sensors that can be integrated into existing infrastructure for real-time monitoring.
Collapse
Affiliation(s)
| | - Feng Zhao
- Micro/Nanoelectronic and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
| |
Collapse
|
24
|
Yu W, Zhao W, Liu X. Pulsed laser welding of macroscopic 3D graphene materials. MATERIALS HORIZONS 2023; 10:5597-5606. [PMID: 37772446 DOI: 10.1039/d3mh01148h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Welding is a key missing manufacturing technique in graphene science. Due to the infusibility and insolubility, reliable welding of macroscopic graphene materials is impossible using current diffusion-bonding methods. This work reports a pulsed laser welding (PLW) strategy allowing for directly and rapidly joining macroscopic 3D porous graphene materials under ambient conditions. Central to the concept is introducing a laser-induced graphene solder converted from a designed unique precursor to promote joining. The solder shows an electrical conductivity of 6700 S m-1 and a mechanical strength of 7.3 MPa, over those of most previously reported porous graphene materials. Additionally, the PLW technique enables the formation of high-quality welded junctions, ensuring the structural integrity of weldments. The welding mechanism is further revealed, and two types of connections exist between solder and base structures, i.e., intermolecular force and covalent bonding. Finally, an array of complex 3D graphene architectures, including lateral heterostructures, Janus structures, and 3D patterned geometries, are fabricated through material joining, highlighting the potential of PLW to be a versatile approach for multi-level assembly and heterogeneous integration. This work brings graphene into the laser welding club and paves the way for the future exploration of the exciting opportunities inherent in material integration and repair.
Collapse
Affiliation(s)
- Wenjie Yu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Xiaoqing Liu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
25
|
Zhong H, He T, Meng Y, Xiao Q. Photonic Bound States in the Continuum in Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7112. [PMID: 38005042 PMCID: PMC10672634 DOI: 10.3390/ma16227112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Bound states in the continuum (BIC) have garnered considerable attention recently for their unique capacity to confine electromagnetic waves within an open or non-Hermitian system. Utilizing a variety of light confinement mechanisms, nanostructures can achieve ultra-high quality factors and intense field localization with BIC, offering advantages such as long-living resonance modes, adaptable light control, and enhanced light-matter interactions, paving the way for innovative developments in photonics. This review outlines novel functionality and performance enhancements by synergizing optical BIC with diverse nanostructures, delivering an in-depth analysis of BIC designs in gratings, photonic crystals, waveguides, and metasurfaces. Additionally, we showcase the latest advancements of BIC in 2D material platforms and suggest potential trajectories for future research.
Collapse
Affiliation(s)
| | | | | | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China; (H.Z.); (T.H.); (Y.M.)
| |
Collapse
|
26
|
Mohammedture M, Rajput N, Perez-Jimenez AI, Matouk Z, AlZadjali S, Gutierrez M. Impact of probe sonication and sulfuric acid pretreatment on graphene exfoliation in water. Sci Rep 2023; 13:18523. [PMID: 37898662 PMCID: PMC10613256 DOI: 10.1038/s41598-023-45874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023] Open
Abstract
Graphene is a 2D material with promising commercial applications due to its physicochemical properties. Producing high-quality graphene economically and at large scales is currently of great interest and demand. Here, the potential of producing high-quality graphene at a large scale via water-phase exfoliation methods is investigated. By altering exfoliation parameters, the production yield of graphene and flake size are evaluated. Pretreatment of the precursor graphite powder using acidic solutions of H2SO4 at different concentrations is found to increase further the yield and structural quality of the exfoliated graphene flakes. These findings are confirmed through various spectroscopy and surface characterization techniques. Controlling flake size, thickness, and yield are demonstrated via optimization of the sonication process, centrifuge time, and H2SO4 pretreatment.
Collapse
Affiliation(s)
- Meriam Mohammedture
- Advanced Materials Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE.
| | - Nitul Rajput
- Advanced Materials Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE
| | - Ana Isabel Perez-Jimenez
- Advanced Materials Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE
| | - Zineb Matouk
- Advanced Materials Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE
| | - Shroq AlZadjali
- Advanced Materials Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE
| | - Monserrat Gutierrez
- Advanced Materials Research Center, Technology Innovation Institute, PO Box 9639, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
27
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
28
|
Dmitriev V, de Oliveira RMS, Paiva RR, Rodrigues NRNM. Multifunctional THz Graphene Antenna with 360 ∘ Continuous ϕ-Steering and θ-Control of Beam. SENSORS (BASEL, SWITZERLAND) 2023; 23:6900. [PMID: 37571680 PMCID: PMC10422558 DOI: 10.3390/s23156900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
A novel graphene antenna composed of a graphene dipole and four auxiliary graphene sheets oriented at 90∘ to each other is proposed and analyzed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas has been completed. Through electric field control of the chemical potentials of the graphene elements, the antenna can provide a quasi-omnidirectional diagram, a one- or two-directional beam regime, dynamic control of the beam width and, due to the vertical orientation of the dipole with respect to the base substrate, a 360∘ beam steering in the azimuth plane. An additional graphene layer on the base permits control of the radiation pattern in the θ-direction. Radiation patterns in different working states of the antenna are considered using symmetry arguments. We discuss the antenna parameters such as input reflection coefficient, total efficiency, front-to-back ratio, and gain. An equivalent circuit of the antenna is suggested. The proposed antenna operates at frequencies between 1.75 THz and 2.03 THz. Depending on the active regime defined by the chemical potentials set on the antenna graphene elements, the maximum gain varies from 0.86 to 1.63.
Collapse
Affiliation(s)
- Victor Dmitriev
- Graduate Program in Electrical Engineering (PPGEE), Institute of Technology (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01, Belém 66075-110, PA, Brazil; (R.R.P.); (N.R.N.M.R.)
| | - Rodrigo M. S. de Oliveira
- Graduate Program in Electrical Engineering (PPGEE), Institute of Technology (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01, Belém 66075-110, PA, Brazil; (R.R.P.); (N.R.N.M.R.)
| | | | | |
Collapse
|
29
|
Koepfli SM, Baumann M, Koyaz Y, Gadola R, Güngör A, Keller K, Horst Y, Nashashibi S, Schwanninger R, Doderer M, Passerini E, Fedoryshyn Y, Leuthold J. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science 2023; 380:1169-1174. [PMID: 37319195 DOI: 10.1126/science.adg8017] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Although graphene has met many of its initially predicted optoelectronic, thermal, and mechanical properties, photodetectors with large spectral bandwidths and extremely high frequency responses remain outstanding. In this work, we demonstrate a >500 gigahertz, flat-frequency response, graphene-based photodetector that operates under ambient conditions across a 200-nanometer-wide spectral band with center wavelengths adaptable from <1400 to >4200 nanometers. Our detector combines graphene with metamaterial perfect absorbers with direct illumination from a single-mode fiber, which breaks with the conventional miniaturization of photodetectors on an integrated photonic platform. This design allows for much higher optical powers while still allowing record-high bandwidths and data rates. Our results demonstrate that graphene photodetectors can outperform conventional technologies in terms of speed, bandwidth, and operation across a large spectral range.
Collapse
Affiliation(s)
- Stefan M Koepfli
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Michael Baumann
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Yesim Koyaz
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Robin Gadola
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Arif Güngör
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Killian Keller
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Yannik Horst
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Shadi Nashashibi
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | | | - Michael Doderer
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Elias Passerini
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Yuriy Fedoryshyn
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| | - Juerg Leuthold
- Institute of Electromagnetic Fields (IEF), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
30
|
Downing JR, Diaz-Arauzo S, Chaney LE, Tsai D, Hui J, Seo JWT, Cohen DR, Dango M, Zhang J, Williams NX, Qian JH, Dunn JB, Hersam MC. Centrifuge-Free Separation of Solution-Exfoliated 2D Nanosheets via Cross-Flow Filtration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212042. [PMID: 36934307 DOI: 10.1002/adma.202212042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Indexed: 06/16/2023]
Abstract
Solution-processed graphene is a promising material for numerous high-volume applications including structural composites, batteries, sensors, and printed electronics. However, the polydisperse nature of graphene dispersions following liquid-phase exfoliation poses major manufacturing challenges, as incompletely exfoliated graphite flakes must be removed to achieve optimal properties and downstream performance. Incumbent separation schemes rely on centrifugation, which is highly energy-intensive and limits scalable manufacturing. Here, cross-flow filtration (CFF) is introduced as a centrifuge-free processing method that improves the throughput of graphene separation by two orders of magnitude. By tuning membrane pore sizes between microfiltration and ultrafiltration length scales, CFF can also be used for efficient recovery of solvents and stabilizing polymers. In this manner, life cycle assessment and techno-economic analysis reveal that CFF reduces greenhouse gas emissions, fossil energy usage, water consumption, and specific production costs of graphene manufacturing by 57%, 56%, 63%, and 72%, respectively. To confirm that CFF produces electronic-grade graphene, CFF-processed graphene nanosheets are formulated into printable inks, leading to state-of-the-art thin-film conductivities exceeding 104 S m-1 . This CFF methodology can likely be generalized to other van der Waals layered solids, thus enabling sustainable manufacturing of the diverse set of applications currently being pursued for 2D materials.
Collapse
Affiliation(s)
- Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Santiago Diaz-Arauzo
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Daphne Tsai
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Janan Hui
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Jung-Woo T Seo
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | | | - Michael Dango
- Cytiva, 100 Results Way, Marlborough, MA, 01752, USA
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Nicholas X Williams
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Justin H Qian
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| |
Collapse
|
31
|
Zheng Z, Halifu A, Ma J, Liu L, Fu Q, Yi B, Du E, Tian D, Xu Y, Zhang Z, Zhu J. Low-dose graphene oxide promotes tumor cells proliferation by activating PI3K-AKT-mTOR signaling via cellular membrane protein integrin αV. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121817. [PMID: 37182579 DOI: 10.1016/j.envpol.2023.121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Along with the increasing production and application of graphene oxide (GO), its environmental health and safety (EHS) risks have become a global concern. Numerous studies have investigated the biosafety and toxicity mechanisms associated with GO, however, the majority of previous studies were based on its direct toxic dose, which could not reflect the realistic state of environmental exposure of GO with an indirect toxic dose (low dose). Meanwhile, the effects of low-dose GO on the progression of tumors are still unclearly. Herein, we found that GO can promote multiple types of tumor cell proliferation under its low-dose treatment. Moreover, the lateral size of GO has no obvious distinction on its promoting effect on tumor proliferation. The mechanistic investigation revealed that low-dose GO treatment increased the expression level of integrin αV protein, a cell membrane receptor, and further lead to the constitutively activated PI3K/AKT/mTOR signaling pathway and promoted mitotic progression. Collectively, these findings increased our understanding of the detrimental effects of GO in promoting tumor proliferation, as well as improved our biosafety assessment at its realistic exposure doses.
Collapse
Affiliation(s)
- Zhiwen Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Abuduliaizezi Halifu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Leyi Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qingfeng Fu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bocun Yi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - E Du
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dawei Tian
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianqiang Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
32
|
Roh I, Goh SH, Meng Y, Kim JS, Han S, Xu Z, Lee HE, Kim Y, Bae SH. Applications of remote epitaxy and van der Waals epitaxy. NANO CONVERGENCE 2023; 10:20. [PMID: 37120780 PMCID: PMC10149550 DOI: 10.1186/s40580-023-00369-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Epitaxy technology produces high-quality material building blocks that underpin various fields of applications. However, fundamental limitations exist for conventional epitaxy, such as the lattice matching constraints that have greatly narrowed down the choices of available epitaxial material combinations. Recent emerging epitaxy techniques such as remote and van der Waals epitaxy have shown exciting perspectives to overcome these limitations and provide freestanding nanomembranes for massive novel applications. Here, we review the mechanism and fundamentals for van der Waals and remote epitaxy to produce freestanding nanomembranes. Key benefits that are exclusive to these two growth strategies are comprehensively summarized. A number of original applications have also been discussed, highlighting the advantages of these freestanding films-based designs. Finally, we discuss the current limitations with possible solutions and potential future directions towards nanomembranes-based advanced heterogeneous integration.
Collapse
Affiliation(s)
- Ilpyo Roh
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA
- R&D CENTER, M.O.P Co., Ltd, Seoul, 07281, South Korea
| | - Seok Hyeon Goh
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Yuan Meng
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA
| | - Justin S Kim
- The Institution of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Sangmoon Han
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA
| | - Zhihao Xu
- The Institution of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Yeongin Kim
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Sang-Hoon Bae
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA.
- The Institution of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
33
|
Ye X, Du Y, Wang M, Liu B, Liu J, Jafri SHM, Liu W, Papadakis R, Zheng X, Li H. Advances in the Field of Two-Dimensional Crystal-Based Photodetectors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1379. [PMID: 37110964 PMCID: PMC10146229 DOI: 10.3390/nano13081379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) materials have sparked intense interest among the scientific community owing to their extraordinary mechanical, optical, electronic, and thermal properties. In particular, the outstanding electronic and optical properties of 2D materials make them show great application potential in high-performance photodetectors (PDs), which can be applied in many fields such as high-frequency communication, novel biomedical imaging, national security, and so on. Here, the recent research progress of PDs based on 2D materials including graphene, transition metal carbides, transition-metal dichalcogenides, black phosphorus, and hexagonal boron nitride is comprehensively and systematically reviewed. First, the primary detection mechanism of 2D material-based PDs is introduced. Second, the structure and optical properties of 2D materials, as well as their applications in PDs, are heavily discussed. Finally, the opportunities and challenges of 2D material-based PDs are summarized and prospected. This review will provide a reference for the further application of 2D crystal-based PDs.
Collapse
Affiliation(s)
- Xiaoling Ye
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Yining Du
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Mingyang Wang
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Benqing Liu
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Jiangwei Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China;
| | - Syed Hassan Mujtaba Jafri
- Department of Electrical Engineering, Mirpur University of Science and Technology (MUST), Mirpur Azad Jammu and Kashmir 10250, Pakistan;
| | - Wencheng Liu
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Raffaello Papadakis
- Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden;
- TdB Labs AB, Uppsala Business Park, 75450 Uppsala, Sweden
| | - Xiaoxiao Zheng
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
| | - Hu Li
- Shandong Technology Centre of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan 250101, China; (X.Y.); (Y.D.); (M.W.); (B.L.); (W.L.)
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
- Department of Materials Science and Engineering, Uppsala University, 75121 Uppsala, Sweden
| |
Collapse
|
34
|
Xu L, Zhan K, Ding S, Zhu J, Liu M, Fan W, Duan P, Luo K, Ding B, Liu B, Liu Y, Cheng HM, Qiu L. A Malleable Composite Dough with Well-Dispersed and High-Content Boron Nitride Nanosheets. ACS NANO 2023; 17:4886-4895. [PMID: 36802511 DOI: 10.1021/acsnano.2c11826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aggregation of two-dimensional (2D) nanosheet fillers in a polymer matrix is a prevalent problem when the filler loading is high, leading to degradation of physical and mechanical properties of the composite. To avoid aggregation, a low-weight fraction of the 2D material (<5 wt %) is usually used to fabricate the composite, limiting performance improvement. Here, we develop a mechanical interlocking strategy where well-dispersed high filling content (up to 20 wt %) of boron nitride nanosheets (BNNSs) can be incorporated into a polytetrafluoroethylene (PTFE) matrix, resulting in a malleable, easy-to-process and reusable BNNS/PTFE composite dough. Importantly, the well-dispersed BNNS fillers can be rearranged into a highly oriented direction due to the malleable nature of the dough. The resultant composite film has a high thermal conductivity (4408% increase), low dielectric constant/loss, and excellent mechanical properties (334%, 69%, 266%, and 302% increases for tensile modulus, strength, toughness, and elongation, respectively), making it suitable for thermal management applications in the high-frequency areas. The technique is useful for the large-scale production of other 2D material/polymer composites with a high filler content for different applications.
Collapse
Affiliation(s)
- Lanshu Xu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Ke Zhan
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Siyuan Ding
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Jiuyi Zhu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Minsu Liu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
- Monash Suzhou Research Institute (MSRI), Monash University, Suzhou 215000, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - Weiren Fan
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
| | - Pei Duan
- vivo Mobile Communication Co., Ltd., Dongguan 523860, China
| | - Kai Luo
- vivo Mobile Communication Co., Ltd., Dongguan 523860, China
| | - Baofu Ding
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ling Qiu
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (TSIGS), Tsinghua University, Shenzhen 51805, China
| |
Collapse
|
35
|
Yap PL, Farivar F, Jämting ÅK, Coleman VA, Gnaniah S, Mansfield E, Pu C, Landi SM, David MV, Flahaut E, Aizane M, Barnes M, Gallerneault M, Locatelli MD, Jacquinot S, Slough CG, Menzel J, Schmölzer S, Ren L, Pollard AJ, Losic D. International Interlaboratory Comparison of Thermogravimetric Analysis of Graphene-Related Two-Dimensional Materials. Anal Chem 2023; 95:5176-5186. [PMID: 36917706 DOI: 10.1021/acs.analchem.2c03575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Research on graphene-related two-dimensional (2D) materials (GR2Ms) in recent years is strongly moving from academia to industrial sectors with many new developed products and devices on the market. Characterization and quality control of the GR2Ms and their properties are critical for growing industrial translation, which requires the development of appropriate and reliable analytical methods. These challenges are recognized by International Organization for Standardization (ISO 229) and International Electrotechnical Commission (IEC 113) committees to facilitate the development of these methods and standards which are currently in progress. Toward these efforts, the aim of this study was to perform an international interlaboratory comparison (ILC), conducted under Versailles Project on Advanced Materials and Standards (VAMAS) Technical Working Area (TWA) 41 "Graphene and Related 2D Materials" to evaluate the performance (reproducibility and confidence) of the thermogravimetric analysis (TGA) method as a potential new method for chemical characterization of GR2Ms. Three different types of representative and industrially manufactured GR2Ms samples, namely, pristine few-layer graphene (FLG), graphene oxide (GO), and reduced graphene oxide (rGO), were used and supplied to ILC participants to complete the study. The TGA method performance was evaluated by a series of measurements of selected parameters of the chemical and physical properties of these GR2Ms including the number of mass loss steps, thermal stability, temperature of maximum mass change rate (Tp) for each decomposition step, and the mass contents (%) of moisture, oxygen groups, carbon, and impurities (organic and non-combustible residue). TGA measurements determining these parameters were performed using the provided optimized TGA protocol on the same GR2Ms by 12 participants across academia, industry stakeholders, and national metrology institutes. This paper presents these results with corresponding statistical analysis showing low standard deviation and statistical conformity across all participants that confirm that the TGA method can be satisfactorily used for characterization of these parameters and the chemical characterization and quality control of GR2Ms. The common measurement uncertainty for each parameter, key contribution factors were identified with explanations and recommendations for their elimination and improvements toward their implementation for the development of the ISO/IEC standard for chemical characterization of GR2Ms.
Collapse
Affiliation(s)
- Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Farzaneh Farivar
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Åsa K Jämting
- National Measurement Institute Australia (NMIA), Lindfield, Sydney, NSW 2070, Australia
| | - Victoria A Coleman
- National Measurement Institute Australia (NMIA), Lindfield, Sydney, NSW 2070, Australia
| | - Sam Gnaniah
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Elisabeth Mansfield
- National Institute of Standards and Technology (NIST), Boulder, Colorado 80305, United States
| | - Cheng Pu
- National Institute of Metrology, Chaoyang District, Beijing 100029, China
| | - Sandra Marcela Landi
- National Institute of Metrology, Quality and Technology (INMETRO), Sao Paolo, RJ CEP: 25250-020, Brazil
| | - Marcus Vinícius David
- National Institute of Metrology, Quality and Technology (INMETRO), Sao Paolo, RJ CEP: 25250-020, Brazil
| | - Emmanuel Flahaut
- CIRIMAT, CNRS-INP-UPS, Université Toulouse 3 Paul Sabatier, 118 route de Narbonne, Toulouse cedex 9 F-31062, France
| | - Mohammed Aizane
- CIRIMAT, CNRS-INP-UPS, Université Toulouse 3 Paul Sabatier, 118 route de Narbonne, Toulouse cedex 9 F-31062, France
| | - Michael Barnes
- National Research Council of Canada (NRC-CNRC), Ottawa, Ontario K1A 0R6, Canada
| | - Mary Gallerneault
- National Research Council of Canada (NRC-CNRC), Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | - Lingling Ren
- National Institute of Metrology, Chaoyang District, Beijing 100029, China
| | - Andrew J Pollard
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,ARC Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
36
|
Oh Y, Kwon DS, Jo E, Kang Y, Sim S, Kim J. Formation of sub-100-nm suspended nanowires with various materials using thermally adjusted electrospun nanofibers as templates. MICROSYSTEMS & NANOENGINEERING 2023; 9:15. [PMID: 36817329 PMCID: PMC9935917 DOI: 10.1038/s41378-022-00459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 06/18/2023]
Abstract
The air suspension and location specification properties of nanowires are crucial factors for optimizing nanowires in electronic devices and suppressing undesirable interactions with substrates. Although various strategies have been proposed to fabricate suspended nanowires, placing a nanowire in desired microstructures without material constraints or high-temperature processes remains a challenge. In this study, suspended nanowires were formed using a thermally aggregated electrospun polymer as a template. An elaborately designed microstructure enables an electrospun fiber template to be formed at the desired location during thermal treatment. Moreover, the desired thickness of the nanowires is easily controlled with the electrospun fiber templates, resulting in the parallel formation of suspended nanowires that are less than 100 nm thick. Furthermore, this approach facilitates the formation of suspended nanowires with various materials. This is accomplished by evaporating various materials onto the electrospun fiber template and by removing the template. Palladium, copper, tungsten oxide (WO3), and tin oxide nanowires are formed as examples to demonstrate the advantage of this approach in terms of nanowire material selection. Hydrogen (H2) and nitrogen dioxide (NO2) gas sensors comprising palladium and tungsten oxide, respectively, are demonstrated as exemplary devices of the proposed method.
Collapse
Affiliation(s)
- Yongkeun Oh
- School of Mechanical Engineering, Yonsei University, Seoul, 03722 Republic of Korea
| | - Dae-Sung Kwon
- School of Mechanical Engineering, Yonsei University, Seoul, 03722 Republic of Korea
| | - Eunhwan Jo
- School of Mechanical Engineering, Yonsei University, Seoul, 03722 Republic of Korea
| | - Yunsung Kang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722 Republic of Korea
| | - Sangjun Sim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722 Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul, 03722 Republic of Korea
| |
Collapse
|
37
|
Raza S, Ghasali E, Orooji Y, Lin H, Karaman C, Dragoi EN, Erk N. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. ENVIRONMENTAL RESEARCH 2023; 219:114998. [PMID: 36481367 DOI: 10.1016/j.envres.2022.114998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An efficient solution to the global freshwater dilemma is desalination. MXene, Molybdenum Disulfide (MoS2), Graphene Oxide, Hexagonal Boron Nitride, and Phosphorene are just a few examples of two-dimensional (2D) materials that have shown considerable promise in the development of 2D materials for water desalination. However, other promising materials for desalinating water are biomaterials. The benefits of bio-materials are their wide distribution, lack of toxicity, and superior capacity for water desalination. METHODS For the rational use of water and the advancement of sustainable development, it is of the utmost importance to research 2D-dimensional materials and biomaterials that are effective for water desalination. The scientific community has concentrated on wastewater remediation using bio-derived materials, such as nanocellulose, chitosan, bio-char, bark, and activated charcoal generated from plant sources, among the various endeavors to enhance access to clean water. Moreover, the 2D-materials and biomaterials may have ushered in a new age in the production of desalination materials and created a promising future. RESULTS The present review article focuses on and reviews the progress of 2D materials and biomaterials for water desalination. Their properties, surface, and structure, combined with water desalination applications, are highlighted. Further, the practicability and potential future directions of 2D materials and biomaterials are proposed. Thus, the current work provides information and discernments for developing novel 2D materials and biomaterials for wastewater desalination. Moreover, it aims to promote the contribution and advancement of materials for water desalination, fabrication, and industrial production.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ceren Karaman
- Departmen of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron No 73, 700050, Iasi, Romania.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
38
|
Korejwo D, Chortarea S, Louka C, Buljan M, Rothen-Rutishauser B, Wick P, Buerki-Thurnherr T. Gene expression profiling of human macrophages after graphene oxide and graphene nanoplatelets treatment reveals particle-specific regulation of pathways. NANOIMPACT 2023; 29:100452. [PMID: 36717017 DOI: 10.1016/j.impact.2023.100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Graphene and its derivatives are attractive materials envisaged to enable a wealth of novel applications in many fields including energy, electronics, composite materials or health. A comprehensive understanding of the potential adverse effects of graphene-related materials (GRM) in humans is a prerequisite to the safe use of these promising materials. Here, we exploited gene expression profiling to identify transcriptional responses and toxicity pathways induced by graphene oxide (GO) and graphene nanoplatelets (GNP) in human macrophages. Primary human monocyte-derived macrophages (MDM) and a human macrophage cell line, i.e. differentiated THP-1 cells, were exposed to 5 or 20 μg/mL GO and GNP for 6 and 24 h to capture early and more persistent acute responses at realistic or slightly overdose concentrations. GO and GNP induced time-, dose- and macrophage type-specific differential expression of a substantial number of genes with some overlap between the two GRM types (up to 384 genes (9.6%) or 447 genes (20.4%) in THP-1 or MDM, respectively) but also a high number of genes exclusively deregulated from each material type. Furthermore, GRM responses on gene expression were highly different from those induced by inflammogenic material crystalline quartz (maximum of 64 (2.3%) or 318 (11.3%) common genes for MDM treated with 20 μg/mL GO and GNP, respectively). Further bioinformatics analysis revealed that GNP predominantly activated genes controlling inflammatory and apoptotic pathways whereas GO showed only limited inflammatory responses. Interestingly, both GRM affected the expression of genes related to antigen processing and presentation and in addition, GO activated pathways of neutrophil activation, degranulation and immunity in MDM. Overall, this study provides an extensive resource of potential toxicity mechanisms for future safety assessment of GRM in more advanced model systems to verify if the observed changes in gene expression in human macrophages could lead to long-term consequences on human health.
Collapse
Affiliation(s)
- Daria Korejwo
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland; Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland
| | - Savvina Chortarea
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Chrysovalanto Louka
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Marija Buljan
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | | | - Peter Wick
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
39
|
Lee JY, Lim J, Choi JH, Lee BH. Can a wonder material be a popular item? A hype cycle of shifts in the sentiment of the interested public about graphene. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2022. [DOI: 10.1080/09537325.2022.2136068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Ji Yeon Lee
- Department of Science and Technology Management Policy, University of Science and Technology, Daejeon, Korea
- NTIS Center, Korea Institute of Science and Technology Information, Daejeon, Korea
| | - Jeongsub Lim
- School of Media, Arts, and Science, Sogang University, Seoul, Korea
| | - Jae-Hak Choi
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, Korea
| | - Byeong-Hee Lee
- Department of Science and Technology Management Policy, University of Science and Technology, Daejeon, Korea
- NTIS Center, Korea Institute of Science and Technology Information, Daejeon, Korea
| |
Collapse
|
40
|
Urade AR, Lahiri I, Suresh KS. Graphene Properties, Synthesis and Applications: A Review. JOM (WARRENDALE, PA. : 1989) 2022; 75:614-630. [PMID: 36267692 PMCID: PMC9568937 DOI: 10.1007/s11837-022-05505-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
We have evaluated some of the most recent breakthroughs in the synthesis and applications of graphene and graphene-based nanomaterials. This review includes three major categories. The first section consists of an overview of the structure and properties, including thermal, optical, and electrical transport. Recent developments in the synthesis techniques are elaborated in the second section. A number of top-down strategies for the synthesis of graphene, including exfoliation and chemical reduction of graphene oxide, are discussed. A few bottom-up synthesis methods for graphene are also covered, including thermal chemical vapor deposition, plasma-enhanced chemical vapor deposition, thermal decomposition of silicon, unzipping of carbon nanotubes, and others. The final section provides the recent innovations in graphene applications and the commercial availability of graphene-based devices.
Collapse
Affiliation(s)
- Akanksha R. Urade
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - Indranil Lahiri
- Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667 India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| | - K. S. Suresh
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667 India
| |
Collapse
|
41
|
Lee G, Oh Y, Nam JT, Ji S, Jang AR, Jeong DW, Kang M, Lee SS, Chae S, Cho D, Hwang JY, Lee K, Lee JO. Multifunctional-high resolution imaging plate based on hydrophilic graphene for digital pathology. NANOTECHNOLOGY 2022; 33:505101. [PMID: 36095982 DOI: 10.1088/1361-6528/ac9143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we showed that hydrophilic graphene can serve as an ideal imaging plate for biological specimens. Graphene being a single-atom-thick semi-metal with low secondary electron emission, array tomography analysis of serial sections of biological specimens on a graphene substrate showed excellent image quality with improvedz-axis resolution, without including any conductive surface coatings. However, the hydrophobic nature of graphene makes the placement of biological specimens difficult; graphene functionalized with polydimethylsiloxane oligomer was fabricated using a simple soft lithography technique and then processed with oxygen plasma to provide hydrophilic graphene with minimal damage to graphene. High-quality scanning electron microscopy images of biological specimens free from charging effects or distortion were obtained, and the optical transparency of graphene enabled fluorescence imaging of the specimen; high-resolution correlated electron and light microscopy analysis of the specimen became possible with the hydrophilic graphene plate.
Collapse
Affiliation(s)
- Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Gajeongro 141, Daejeon, Republic of Korea
| | - Yuna Oh
- Korea Institute of Science and Technology, 5. Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Jung Tae Nam
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk, 55324, Republic of Korea
| | - Seulgi Ji
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Gajeongro 141, Daejeon, Republic of Korea
| | - A-Rang Jang
- Division of Electrical, Electronic and Control Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Du Won Jeong
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Gajeongro 141, Daejeon, Republic of Korea
| | - MinSoung Kang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Gajeongro 141, Daejeon, Republic of Korea
| | - Sun Sook Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Gajeongro 141, Daejeon, Republic of Korea
| | - Soosang Chae
- Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, D-01069, Dresden, Germany
| | - Donghwi Cho
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Gajeongro 141, Daejeon, Republic of Korea
| | - Jun Yeon Hwang
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk, 55324, Republic of Korea
| | - Kyungeun Lee
- Korea Institute of Science and Technology, 5. Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Gajeongro 141, Daejeon, Republic of Korea
| |
Collapse
|
42
|
Rodriguez RD, Fatkullin M, Garcia A, Petrov I, Averkiev A, Lipovka A, Lu L, Shchadenko S, Wang R, Sun J, Li Q, Jia X, Cheng C, Kanoun O, Sheremet E. Laser-Engineered Multifunctional Graphene-Glass Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206877. [PMID: 36038983 DOI: 10.1002/adma.202206877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Glass electronics inspire the emergence of smart functional surfaces. To evolve this concept to the next level, developing new strategies for scalable, inexpensive, and electrically conductive glass-based robust nanocomposites is crucial. Graphene is an attractive material as a conductive filler; however, integrating it firmly into a glass with no energy-intensive sintering, melting, or harsh chemicals has not been possible until now. Moreover, these methods have very limited capability for fabricating robust patterns for electronic circuits. In this work, a conductive (160 OΩ sq-1 ) and resilient nanocomposite between glass and graphene is achieved via single-step laser-induced backward transfer (LIBT). Beyond conventional LIBT involving mass transfer, this approach simultaneously drives chemical transformations in glass including silicon compound formation and graphene oxide (GO) reduction. These processes take place together with the generation and transfer of the highest-quality laser-reduced GO (rGO) reported to date (Raman intensity ratio ID /IG = 0.31) and its integration into the glass. The rGO-LIBT nanocomposite is further functionalized with silver to achieve a highly sensitive (10-9 m) dual-channel plasmonic optical and electrochemical sensor. Besides the electrical circuit demonstration, an electrothermal heater is fabricated that reaches temperatures above 300 °C and continuously operates for over 48 h.
Collapse
Affiliation(s)
- Raul D Rodriguez
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Maxim Fatkullin
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Aura Garcia
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Andrey Averkiev
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Anna Lipovka
- Tomsk Polytechnic University, Lenin ave. 30, Tomsk, 634050, Russia
| | - Liliang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P. R. China
| | | | - Ranran Wang
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Sun
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | | |
Collapse
|
43
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Hussin MH, Brosse N, Thakur VK. Cellulose nanofibrils-graphene hybrids: recent advances in fabrication, properties, and applications. NANOSCALE 2022; 14:12515-12546. [PMID: 35983896 DOI: 10.1039/d2nr01967a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the fast-developing social economy and the acceleration of industrialization, seeking effective renewable, sustainable, and environmentally friendly resources that show promising properties is an urgent task and a crucial means to achieve sustainable progress in the face of the growing depletion of non-renewable resources and the deterioration of environmental issues. Cellulose nanofibrils (CNFs) are natural polymeric nanomaterials with excellent biocompatibility, biodegradability, good mechanical features, high strength, low density, high specific surface area, and tunable chemistry. Their combination with other nanomaterials, such as graphene derivatives (GNMs), has been demonstrated to be effective since they produce hybrids with outstanding physicochemical properties, tailorable functionality, and high performance. In this review, recent advances in the preparation, modification, and emerging application of CNFs/GNMs hybrids are described and discussed using the latest studies. First, the concise background of nanocellulose and graphene derivatives is provided, followed by the interfacial interactions between CNFs and GNMs. The different hybrids exhibit great promise in separation, adsorption, optics, flexible electronics, energy storage, thermal management, barrier and packaging, and electromagnetic shielding. The main challenges that inhibit the applicability of these hybrids are finally highlighted, and some perspectives for future research directions are provided.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Propulsion Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500, Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007 Uttarakhand, India
- Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| |
Collapse
|
44
|
Chortarea S, Kuru OC, Netkueakul W, Pelin M, Keshavan S, Song Z, Ma B, Gómes J, Abalos EV, Luna LAVD, Loret T, Fordham A, Drummond M, Kontis N, Anagnostopoulos G, Paterakis G, Cataldi P, Tubaro A, Galiotis C, Kinloch I, Fadeel B, Bussy C, Kostarelos K, Buerki-Thurnherr T, Prato M, Bianco A, Wick P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129053. [PMID: 35650742 DOI: 10.1016/j.jhazmat.2022.129053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.
Collapse
Affiliation(s)
- Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Ogul Can Kuru
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Woranan Netkueakul
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandeep Keshavan
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Julio Gómes
- Avanzare Innovacion Tecnologica S.L. 26370 Navarrete, Spain
| | - Elvira Villaro Abalos
- Instituto de Tecnologías Químicas de La Rioja (InterQuímica), 26370 Navarrete, Spain
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Alexander Fordham
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Matthew Drummond
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nikolaos Kontis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Pietro Cataldi
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece; Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ian Kinloch
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Barcelona 08193, Spain
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
45
|
Netkueakul W, Chortarea S, Kulthong K, Li H, Qiu G, Jovic M, Gaan S, Hannig Y, Buerki-Thurnherr T, Wick P, Wang J. Airborne emissions from combustion of graphene nanoplatelet/epoxy composites and their cytotoxicity on lung cells via air-liquid interface cell exposure in vitro. NANOIMPACT 2022; 27:100414. [PMID: 35961501 DOI: 10.1016/j.impact.2022.100414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Graphene nanoplatelet (GNP) as a nanofiller improves the mechanical strength, electrical conductivity, and flame retardancy of the polymers significantly. With an increasing number of GNP-reinforced products, a careful safety assessment is needed to avoid social and economic setbacks. However, no study has addressed the effects of combustion-generated emissions from GNP-reinforced products in the lung, the most sensitive exposure route to airborne particles. Therefore, we studied the influence of GNP as a nanofiller on the emitted particles and polycyclic aromatic hydrocarbons (PAHs), and cytotoxicity of the emissions from the combustion of pure epoxy (EP) and GNP-reinforced epoxy (EP-GNP). GNP was not detected in the airborne emissions. PAHs were found in airborne particles of both emissions from EP and EP-GNP, with some differences in their concentrations. A first hazard assessment was performed on human alveolar epithelial cells exposed to the airborne emissions at air-liquid interface conditions. At 24 h and 96 h after the exposure, similar responses were observed between EP and EP-GNP except an acute transient decrease in mitochondrial activity after exposure to the emissions from EP-GNP. Both emissions from EP and EP-GNP had no acute effects on membrane integrity, cell morphology or expression of anti-oxidative stress markers (HMOX1 and SOD2 genes). Meanwhile, both emissions induced the activation of the aryl hydrocarbon receptor (CYP1A1 gene) and a transient (pro-) inflammatory response (MCP-1), but the effects between EP and EP-GNP were not significantly different.
Collapse
Affiliation(s)
- Woranan Netkueakul
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland; Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Savvina Chortarea
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Kornphimol Kulthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 12120 Pathum Thani, Thailand
| | - Hao Li
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Milijana Jovic
- Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Sabyasachi Gaan
- Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Yvette Hannig
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Particles-Biology Interactions Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich 8093, Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
46
|
Liang Z, Chen J, Tian W, Liu Y, Chen M, Cao D. Preparation of multi-function graphene materials through electrode-distance controlled electrochemical exfoliation. NANOTECHNOLOGY 2022; 33:375601. [PMID: 35679784 DOI: 10.1088/1361-6528/ac7730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Preparation of graphene materials with different microstructures is of great significance for the specific applications in various areas. Here, a modified electrochemical exfoliation method with controlled electrode distance is proposed to prepare exfoliated graphene, graphene quantum dots, and graphene oxide (EGr, EGQD, and EGO). Compared with electrolysis at a fixed location, the modified electrode distance can effectively tune the insertion speed and direction, as well as the kinetic rates of exfoliation processes. Specifically, at a short electrode distance of 3 cm, it produced high-quality EGr with the size above 5μm and thickness below 5 layers; when the electrode distance increased to 30 cm, EGQD with the size below 5 nm was produced. Further, the distance between 3 and 30 cm facilitates producing EGO with ca. 15% O content. In addition, it is found that the reaction temperature, optimized electrolyte, and controlled potential can further optimize the exfoliation processes, which can achieve a high exfoliation rate of ca. 2000, 140, and 1500 g h-1for EGr, EGQD, and EGO preparation in an industrial-scale system, respectively. These modified graphene materials can be directly applied in various areas. For example, EGr can act as an effective component to increase one order of the dielectric property of PVDF; EGQD can effectively generate a PL spectrum at ca. 550 nm; EGO can facilely form a conductive and flexible film through self-assembly.
Collapse
Affiliation(s)
- Zhiwei Liang
- College of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jie Chen
- College of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Sinosteel New Materials Co., Ltd, Sinosteel Nanjing Advanced Materials Research Institute Co., Ltd, Maanshan 243000, People's Republic of China
| | - Wensheng Tian
- College of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Liu
- College of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingming Chen
- College of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dawei Cao
- College of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
47
|
Yu W, Gao X, Yuan Z, Liu H, Wang X, Zhang X. Facial fabrication of few-layer functionalized graphene with sole functional group through Diels-Alder reaction by ball milling. RSC Adv 2022; 12:17990-18003. [PMID: 35765334 PMCID: PMC9204711 DOI: 10.1039/d2ra01668k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
The widespread use of graphene as a next-generation material in various applications requires developing an environmentally friendly and efficient method for fabricating functionalized graphene. Chemically, graphene can be used as an electron donor or attractor. Here, graphite was successfully exfoliated, and an in situ Diels–Alder reaction (D–A) was carried out to fabricate functionalized graphene with sole functional groups via mechanochemical ball milling. The reactivities of graphene acting as a diene or a dienophile were investigated. Few-layer (≤2 layers) graphene specimens were obtained by wet ball milling, heating in a nitrogen atmosphere, and solvent ultrasonic treatment. The ball-milling method was more effective than heating in a nitrogen atmosphere, and the [2 + 4] D–A of graphene was more dominant than the [4 + 2] D–A in the ball-milling process. The surface tension of functionalized graphene decreased, which provided a theoretical basis for the dispersion and exfoliation of graphite in a suitable solvent. Functionalized graphene still had a high electrical conductivity, which has far-reaching significance for functionalized graphene to be applied in electronic semiconductors and related applications. Meanwhile, functionalized graphene was applied to polymer composite fibers, the tensile strength and the Young's modulus could reach 780 MPa and 19 GPa. The volume resistivity was two orders of magnitude lower than that of pure fiber. Thus, the use of ball milling to efficiently exfoliate and in situ functionalize graphite will help to develop a strategy that can be widely used to manufacture nanomaterials for various application fields. The widespread use of graphene as a next-generation material in various applications requires developing an environmentally friendly and efficient method for fabricating functionalized graphene.![]()
Collapse
Affiliation(s)
- Wenguang Yu
- School of Material Science and Engineering, Tiangong University Tianjin 300387 China .,Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology Tianjin 300387 China
| | - Xuefeng Gao
- School of Material Science and Engineering, Tiangong University Tianjin 300387 China .,Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology Tianjin 300387 China
| | - Zhicheng Yuan
- School of Material Science and Engineering, Tiangong University Tianjin 300387 China .,Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology Tianjin 300387 China
| | - Haihui Liu
- School of Material Science and Engineering, Tiangong University Tianjin 300387 China .,Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology Tianjin 300387 China
| | - Xuechen Wang
- School of Material Science and Engineering, Tiangong University Tianjin 300387 China .,Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology Tianjin 300387 China
| | - Xingxiang Zhang
- School of Material Science and Engineering, Tiangong University Tianjin 300387 China .,Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology Tianjin 300387 China
| |
Collapse
|
48
|
Gungor AC, Koepfli SM, Baumann M, Ibili H, Smajic J, Leuthold J. Modeling Hydrodynamic Charge Transport in Graphene. MATERIALS 2022; 15:ma15124141. [PMID: 35744200 PMCID: PMC9228317 DOI: 10.3390/ma15124141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Graphene has exceptional electronic properties, such as zero band gap, massless carriers, and high mobility. These exotic carrier properties enable the design and development of unique graphene devices. However, traditional semiconductor solvers based on drift-diffusion equations are not capable of modeling and simulating the charge distribution and transport in graphene, accurately, to its full extent. The effects of charge inertia, viscosity, collective charge movement, contact doping, etc., cannot be accounted for by the conventional Poisson-drift-diffusion models, due to the underlying assumptions and simplifications. Therefore, this article proposes two mathematical models to analyze and simulate graphene-based devices. The first model is based on a modified nonlinear Poisson’s equation, which solves for the Fermi level and charge distribution electrostatically on graphene, by considering gating and contact doping. The second proposed solver focuses on the transport of the carriers by solving a hydrodynamic model. Furthermore, this model is applied to a Tesla-valve structure, where the viscosity and collective motion of the carriers play an important role, giving rise to rectification. These two models allow us to model unique electronic properties of graphene that could be paramount for the design of future graphene devices.
Collapse
|
49
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Bianco GV, Sacchetti A, Grande M, D'Orazio A, Milella A, Bruno G. Effective hole conductivity in nitrogen-doped CVD-graphene by singlet oxygen treatment under photoactivation conditions. Sci Rep 2022; 12:8703. [PMID: 35610345 PMCID: PMC9130222 DOI: 10.1038/s41598-022-12696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen substitutional doping in the π-basal plane of graphene has been used to modulate the material properties and in particular the transition from hole to electron conduction, thus enlarging the field of potential applications. Depending on the doping procedure, nitrogen moieties mainly include graphitic-N, combined with pyrrolic-N and pyridinic-N. However, pyridine and pyrrole configurations of nitrogen are predominantly introduced in monolayer graphene:N lattice as prepared by CVD. In this study, we investigate the possibility of employing pyridinic-nitrogen as a reactive site as well as activate a reactive center at the adjacent carbon atoms in the functionalized C-N bonds, for additional post reaction like oxidation. Furthermore, the photocatalytic activity of the graphene:N surface in the production of singlet oxygen (1O2) is fully exploited for the oxidation of the graphene basal plane with the formation of pyridine N-oxide and pyridone structures, both having zwitterion forms with a strong p-doping effect. A sheet resistance value as low as 100 Ω/□ is reported for a 3-layer stacked graphene:N film.
Collapse
Affiliation(s)
- Giuseppe Valerio Bianco
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy.
| | - Alberto Sacchetti
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
| | - Marco Grande
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico Di Bari, via Orabona,4, 70123, Bari, Italy
| | - Antonella D'Orazio
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico Di Bari, via Orabona,4, 70123, Bari, Italy
| | - Antonella Milella
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
| | - Giovanni Bruno
- Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy
| |
Collapse
|