1
|
Veth TS, Sutherland E, Markuson KA, Zhang R, Duboff AG, Huang J, Bergen D, Lee AE, Melani RD, Canterbury JD, Zabrouskov V, McAlister GC, Mullen C, Riley NM. Improvements in Glycoproteomics through Architecture Changes to the Orbitrap Tribrid MS Platform. Anal Chem 2025; 97:11413-11423. [PMID: 40439173 DOI: 10.1021/acs.analchem.4c06370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Hardware changes introduced on the Orbitrap Ascend Tribrid MS include dual ion routing multipoles (IRMs) that enable parallelized accumulation, dissociation, and Orbitrap mass analysis of three separate ion populations. The balance between these instrument functions is especially important in glycoproteomics, where complexities of glycopeptide fragmentation necessitate large precursor ion populations and long ion accumulation times for quality MS/MS spectra. To compound matters further, dissociation methods like electron transfer dissociation (ETD) that benefit glycopeptide characterization come with overhead times that slow down scan acquisition. Here we explored how the Orbitrap Ascend's dual IRM architecture can improve glycopeptide analysis, with a focus on O-glycopeptide characterization using ETD with supplemental collisional activation (EThcD). We found that parallelization of ion accumulation and EThcD fragmentation increased scan acquisition speed without sacrificing spectral quality, subsequently increasing the number of O-glycopeptides identified relative to analyses on the Orbitrap Eclipse (i.e., the previous generation Tribrid MS). Additionally, we systematically evaluated ion-ion reaction times and supplemental activation energies used for EThcD to understand how best to utilize acquisition time. We observed that shorter-than-expected ion-ion reaction times minimized scan overhead time without sacrificing c/z•-fragment ion generation and that higher supplemental collision energies can generate combinations of glycan-retaining and glycan-neutral-loss peptide backbone fragments that benefit O-glycopeptide identification. We also saw improvements in N-glycopeptide analysis using collision-based dissociation, especially with methods using faster scan speeds. Overall, these data show how architectural changes to the Tribrid MS platform benefit glycoproteomic experiments by parallelizing scan functions to minimize overhead time and improve sensitivity.
Collapse
Affiliation(s)
- Tim S Veth
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Emmajay Sutherland
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Kayla A Markuson
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Ruby Zhang
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Anna G Duboff
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| | - Jingjing Huang
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | - David Bergen
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | - Amanda E Lee
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | - Rafael D Melani
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | | | - Vlad Zabrouskov
- Thermo Fisher Scientific, San Jose 95134, California, United States
| | | | | | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle 98195, Washington, United States
| |
Collapse
|
2
|
Dong X, Wang H, Cai J, Wang Y, Chai D, Sun Z, Chen J, Li M, Xiao T, Shan C, Zhang JV, Yu M. ST6GALNAC1-mediated sialylation in uterine endometrial epithelium facilitates the epithelium-embryo attachment. J Adv Res 2025; 72:197-212. [PMID: 39111624 DOI: 10.1016/j.jare.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Embryo implantation requires synergistic interaction between the embryo and the receptive endometrium. Glycoproteins and glycan-binding proteins are involved in endometrium-embryo attachment. Sialyl Tn (sTn), a truncated O-glycan, is catalyzed by ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 1 (ST6GALNAC1) and can be detected by specific Sialic-acid-binding immunoglobulin-like lectins (Siglecs). Whether the sTn-Siglecs axis supports embryo implantation remains unknown. OBJECTIVES This paper aims to study the role of ST6GALNAC1/sTn-Siglecs axis in embryo implantation. METHODS ST6GALNAC1 and sTn in human endometrium were analyzed by immunohistochemistry. An in vitro implantation model was conducted to evaluate the effects of ST6GALNAC1/sTn on the receptivity of human endometrial AN3CA cells to JAR spheroids. Immunoprecipitation combined with mass spectrometry analysis was carried out to identify the key proteins modified by sTn in endometrial cells. Siglec-6 in human embryos was analyzed by published single-cell RNA sequencing (scRNA-seq) datasets. Protein interaction assay was applied to verify the bond between the Siglec-6 with sTn-modified CD44. St6galnac1 siRNAs and anti-sTn antibodies were injected into the uterine horn of the mouse at the pre-implantation stage to evaluate the role of endometrial St6galnac1/sTn in embryo implantation. Siglec-G in murine embryos was analyzed by immunofluorescence staining. The function of Siglec-G is evidenced by uterine horn injection and protein interaction assay. RESULTS Both human and murine endometrium at the receptive stage exhibit higher ST6GALNAC1 and sTn levels compared to the non-receptive stage. Overexpression of ST6GALNAC1 significantly enhanced the receptivity of AN3CA cells to JAR spheroids. Inhibition of endometrial ST6GALNAC1/sTn substantially impaired embryo implantation in vivo. CD44 was identified as a carrier for sTn in the endometrial cells of both species. Siglec-6 and Siglec-G, expressed in the embryonic trophectoderm, were found to promote embryo attachment, which may be achieved through binding with sTn-modified CD44. CONCLUSION ST6GALNAC1-regulated sTn in the endometrium aids in embryo attachment through interaction with trophoblastic Siglecs.
Collapse
Affiliation(s)
- Xinyue Dong
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jinxuan Cai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Yichun Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Department of Medical Oncology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dezhi Chai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Zichen Sun
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jie Chen
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Mengxia Li
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Tianxia Xiao
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Chunhua Shan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Ming Yu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| |
Collapse
|
3
|
Jain M, Jadhav IM, Dangat SV, Singuru SR, Sethi G, Yuba E, Gupta RK. Overcoming the novel glycan-lectin checkpoints in tumor microenvironments for the success of the cross-presentation-based immunotherapy. Biomater Sci 2025. [PMID: 40421610 DOI: 10.1039/d4bm01732c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
In pursuit of meeting the ever-rising demand for cancer therapies, cross-presentation-based glyconanovaccines (GNVs) targeting C-type lectin receptors (CLRs) on DCs have shown significant potential as cutting-edge cancer immunotherapy. GNVs are an attractive approach to induce anti-cancer cytotoxic T lymphocyte responses. Despite immune checkpoints (ICs) being well established and an obstacle to the success of GNVs, glycan-lectin circuits are emerging as unique checkpoints due to their immunomodulatory functions. Given the role of aberrant tumor glycosylation in promoting immune evasion, mitigating these effects is crucial for the efficacy of GNVs. Lectins, such as siglecs and galectins, are detrimental to the tumor immune landscape as they promote an immunosuppressive TME. From this perspective, this review aims to explore glycan-lectin ICs and their influence on the efficacy of GNVs. We aim to discuss various ICs in the TME followed by drawbacks of immune checkpoint inhibitors (ICIs). We will also emphasize the altered glycosylation profile of tumors, addressing their immunosuppressive nature along with ways in which CLRs, siglecs, and galectins contribute to immune evasion and cancer progression. Considering the resistance towards ICIs, current and prospective approaches for targeting glycan-lectin circuits and future prospects of these endeavors in harnessing the full potential of GNVs will also be highlighted.
Collapse
Affiliation(s)
- Mannat Jain
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Isha M Jadhav
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Suyash Vinayak Dangat
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Srinivasa Rao Singuru
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Eiji Yuba
- Department of Chemistry & Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-city, Osaka 558-8585, Japan.
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, Maharashtra, India.
| |
Collapse
|
4
|
Guo C, Si FY, Wang CH, Wang N, Hu XL, James TD, Li J, Wang C, He XP. A BODIPY-tagged trivalent glycocluster for receptor-targeting fluorescence imaging of live cells. Chem Sci 2025:d4sc08472a. [PMID: 40438166 PMCID: PMC12109605 DOI: 10.1039/d4sc08472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
Multivalent glycoclusters have been extensively used as a targeting agent for drug delivery. However, tools capable of investigating their dynamic interactions with a target receptor remain elusive. Here, we synthesized fluorescently-tagged galactoclusters for the fluorescence imaging of cells that overly express the asialoglycoprotein receptor (ASGPr). A trivalent galactoside was synthesized, to which a boron dipyrromethene (BODIPY) dye was conjugated. The resulting fluorescent glycocluster was used for the targeted fluorescence imaging of liver cancer cells with a high ASGPr expression level. The trivalent probe was also demonstrated to be applicable for super-resolution imaging of ASGPr-mediated ligand endocytosis and the dynamic intracellular translocation to the lysosomes. As such, this study provides a suitable chemical tool for the study of receptor dynamics using fluorescently tagged glycoclusters.
Collapse
Affiliation(s)
- Chen Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint, Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Fang-Yu Si
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint, Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Chen-Han Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint, Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, National Center for Liver Cancer Shanghai 200438 China
| | - Ning Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint, Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint, Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint, Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint, Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd Shanghai 200237 China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, National Center for Liver Cancer Shanghai 200438 China
| |
Collapse
|
5
|
Chu Q, He X, Tan X, Gu Z, Luo Y, Huang Z, Zheng M, Cheng X. GlycanInsight: an open platform for carbohydrate-binding pocket prediction and characterization. Chem Sci 2025:d5sc02262b. [PMID: 40438170 PMCID: PMC12110341 DOI: 10.1039/d5sc02262b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
Carbohydrate-protein interactions underlie key physiological and pathological processes, yet identification of glycan-binding sites remains challenging due to the complexity of glycans and a lack of dedicated computational tools. We present GlycanInsight, a deep learning-based open platform that predicts carbohydrate-binding pockets on protein structures. On the benchmark dataset of experimental structures, GlycanInsight achieves a high Matthews correlation coefficient (MCC) of 0.63, outperforming existing tools, and maintains robust performance on AlphaFold2-predicted structures (MCC = 0.53). GlycanInsight clusters predicted residues into three-dimensional carbohydrate-binding pockets for detailed structural inspection, quantitatively analyzes pocket characteristics, searches for other proteins with similar pockets, and suggests putative binding ligands for the predicted pockets. By integrating precise prediction with automated structural annotation and ligand retrieval, GlycanInsight facilitates mechanistic studies and rational design of glycan-targeted therapeutics. The platform is freely accessible at https://www.glycaninsight.cn/.
Collapse
Affiliation(s)
- Qinyu Chu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study Hangzhou 330106 China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xinheng He
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xinyi Tan
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Zhiyong Gu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study Hangzhou 330106 China
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Yin Luo
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Zifu Huang
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study Hangzhou 330106 China
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xi Cheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
- State Key Laboratory of Drug Research and Information Management Office, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science Beijing 100049 China
| |
Collapse
|
6
|
Liao KS, Zhou Y, Chung C, Kung CC, Ren CT, Wu CY, Lou YW, Chuang PK, Imre B, Hsieh YSY, Wong CH. Chemical and Enzymatic Synthesis of DisialylGb5 and Other Sialosides for Glycan Array Assembly and Evaluation of Siglec-Mediated Immune Checkpoint Inhibition. Molecules 2025; 30:2264. [PMID: 40509155 PMCID: PMC12156072 DOI: 10.3390/molecules30112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 06/18/2025] Open
Abstract
Aberrant glycosylation, especially sialylation, on cell surface is often associated with cancer progression and immunosuppression. Over-sialylation of stage-specific embryonic antigen-4 (SSEA-4) to generate disialylGb5 (DSGb5) was reported to trigger Siglec-7 recognition and suppress NK-mediated target killing. In this study, efficient chemo-enzymatic and programmable one-pot methods were explored for the synthesis of DSGb5 and related sialosides for assembly of glycan microarrays and evaluation of binding specificity toward Siglecs-7, 9, 10, and 15 associated with immune checkpoint inhibition. The result showed weak binding of DSGb5 to these Siglecs; however, a truncated glycolyl glycan was identified to bind Siglec-10 strongly with a dissociation constant of 50 nM and exhibited a significant inhibition of Siglec-10 interacting with breast cancer cells.
Collapse
Affiliation(s)
- Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
| | - Yixuan Zhou
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
| | - Cinya Chung
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
| | - Chih-Chuan Kung
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
| | - Yi-Wei Lou
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
| | - Po-Kai Chuang
- Department of Chemistry, The Scripps Research Institute, San Diego, CA 92037, USA;
| | - Balázs Imre
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (B.I.); (Y.S.Y.H.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (B.I.); (Y.S.Y.H.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Center, SE10691 Stockholm, Sweden
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (K.-S.L.); (Y.Z.); (C.C.); (C.-C.K.); (C.-T.R.); (C.-Y.W.); (Y.-W.L.)
- Department of Chemistry, The Scripps Research Institute, San Diego, CA 92037, USA;
| |
Collapse
|
7
|
Shin S, Mugnai ML, Thirumalai D. Water-Mediated Interactions between Glycans Are Weakly Repulsive and Unexpectedly Long-Ranged. J Am Chem Soc 2025; 147:17448-17458. [PMID: 40357734 DOI: 10.1021/jacs.5c04126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Glycans on the cell surface play an essential role in mediating cell-cell interactions and immune response. Despite their importance, the interactions between them have not been fully characterized. Here, we reveal, using all-atom molecular dynamics simulations and free energy calculations, that water-mediated interactions between a pair of N-glycans without a net charge are weakly repulsive with a range that exceeds their sizes. Unexpectedly, the effective glycan-glycan interactions decay logarithmically as the separation between them increases. Strikingly, this finding coincides exactly with the predicted interaction, which is entropic in origin, between two star polymers consisting of long flexible polymers grafted onto colloidal particles. The weak repulsive interaction, which extends beyond the size of a glycan, is sensitive to the relative orientation of the glycans. The effective long-range repulsive interaction vanishes if the charges on water are turned off, thus establishing that electrostatic interactions, arising in part due to the persistent hydrogen bonds between water and the glycans, are responsible for the interglycan repulsion.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauro L Mugnai
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, District of Columbia 20057, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Pinho SS, Rabinovich GA. The glycoimmune landscape in health and disease. Semin Immunol 2025; 78:101965. [PMID: 40398097 DOI: 10.1016/j.smim.2025.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Emerging observations at the molecular, cellular, and organismal levels have unveiled critical roles for glycans in regulating a broad range of innate and adaptive immune cell processes. Through interactions with various families of glycan-binding proteins, including galectins, C-type lectins, and siglecs, glycans shape the nature, the fate and the function of immune cell types, modulating processes such as immune cell development, activation, differentiation, trafficking, exhaustion, and survival. Furthermore, dysregulated glycosylation pathways and altered glycan-binding receptor functions are associated with several pathological conditions, including infection, autoimmunity, and cancer. This special issue highlights the most recent updates and current challenges on the multifunctional roles of glycans and glycan-binding proteins in orchestrating, amplifying, or inhibiting immune responses. This collection seeks to enhance awareness of the significance of glycans in immunobiology and immunopathology from cellular, molecular, and evolutionary perspectives into clinical applications, underscoring their relevance as promising biomarkers and targets for designing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina; CaixaResearch Institute, Barcelona 08022, Spain.
| |
Collapse
|
9
|
Hutton E, Uno Y, Scott E, Robson C, Fascione MA, Signoret N. A general and accessible approach to enrichment and characterisation of natural anti-Neu5Gc antibodies from human samples. RSC Chem Biol 2025:d5cb00073d. [PMID: 40416449 PMCID: PMC12100518 DOI: 10.1039/d5cb00073d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
N-Glycolylneuraminic acid (Neu5Gc) is a non-human sialic acid which is presented on the surface of human cells following uptake from dietary sources. Antibodies against Neu5Gc have implications for many aspects of human health such as inflammation, xenograft rejection and cancer. However, current methods to detect and study anti-Neu5Gc antibodies require complex synthesis of glycan structures, animal handling expertise, or access to expensive reagents and equipment. Here, we outline a simple workflow to enrich and detect anti-Neu5Gc antibodies from small volume human serological samples. This strategy involves a micro-scale affinity purification step, followed by an indirect ELISA detection step which uses CMAH-transfected human cells as a source of Neu5Gc-containing human glycans in their native context. Parental wild type cells are also used as a paired Neu5Gc-negative control. Using this workflow, Neu5Gc-specific antibodies could be enriched from intravenous immunoglobulin (IVIG) and individual plasma specimens from ten healthy donors. Anti-Neu5Gc antibodies were detected in all donors, regardless of age or sex. The lysate ELISA assay was also sufficiently sensitive to observe reproducible individual differences in the anti-Neu5Gc reactivity of each donor specimen. Importantly, despite this individual variation, enriched antibodies from all donor specimens bound effectively to Neu5Gc-containing glycans presented on the surface of whole human cells, highlighting the potential physiological relevance of these antibodies.
Collapse
Affiliation(s)
- Esme Hutton
- Department of Chemistry, University of York York UK
- Hull York Medical School, University of York York UK
| | - Yumiko Uno
- Department of Chemistry, University of York York UK
- Hull York Medical School, University of York York UK
| | - Emma Scott
- Newcastle University, Centre for Cancer Newcastle UK
| | - Craig Robson
- Newcastle University, Centre for Cancer Newcastle UK
| | | | | |
Collapse
|
10
|
Blidner AG, Bach CA, García PA, Merlo JP, Cagnoni AJ, Bannoud N, Manselle Cocco MN, Pérez Sáez JM, Pinto NA, Torres NI, Sarrias L, Dalotto-Moreno T, Gatto SG, Morales RM, Giribaldi ML, Stupirski JC, Cerliani JP, Bellis SL, Salatino M, Troncoso MF, Mariño KV, Abba MC, Croci DO, Rabinovich GA. Glycosylation-driven programs coordinate immunoregulatory and pro-angiogenic functions of myeloid-derived suppressor cells. Immunity 2025:S1074-7613(25)00190-6. [PMID: 40381622 DOI: 10.1016/j.immuni.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2024] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor progression by suppressing antitumor immunity and inducing angiogenesis; however, the mechanisms linking these processes remain uncertain. Here, we identified a glycosylation-dependent program driven by galectin-1 (GAL1) that imparted both immunoregulatory and pro-angiogenic functions to MDSCs through shared receptor signaling pathways. GAL1 expression was associated with enhanced MDSC phenotypes and poor prognosis in diverse human cancers. Analysis of monocytic and polymorphonuclear MDSCs from tumor-bearing mice revealed niche-specific glycan signatures that selectively regulated GAL1 binding. Through glycosylation-dependent interactions with the CD18-CD11b-CD177 receptor complex and STAT3 signaling, GAL1 simultaneously orchestrated immunosuppressive and pro-angiogenic programs in MDSCs, driving tumor growth in vivo. Myeloid-specific deletion of β-galactoside α(2,6)-sialyltransferase 1, which prevented α(2,6)-linked sialic acid incorporation, enhanced GAL1-driven regulatory circuits and accelerated tumor progression, effects that were mitigated by GAL1-neutralizing antibodies. Thus, targeting GAL1-glycan interactions may offer opportunities to reprogram MDSCs and enhance the efficacy of immunotherapeutic and anti-angiogenic strategies.
Collapse
Affiliation(s)
- Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina.
| | - Camila A Bach
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Pablo A García
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina
| | - Joaquín P Merlo
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), 1073 Ciudad de Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina
| | - Nadia Bannoud
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan M Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Nicolás A Pinto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Luciana Sarrias
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad de Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Sabrina G Gatto
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Rosa M Morales
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - M Laura Giribaldi
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan C Stupirski
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Juan P Cerliani
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Mariana Salatino
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina
| | - María F Troncoso
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad de Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, IBYME, CONICET, 1428 Ciudad de Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), 1073 Ciudad de Buenos Aires, Argentina
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Diego O Croci
- Laboratorio de Glicobiología y Biología Vascular, Instituto de Histología y Embriología de Mendoza (IHEM), CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1428 Ciudad de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina; Universidad de San Andrés, Victoria, Provincia de Buenos Aires 1644, Argentina.
| |
Collapse
|
11
|
Yu J, Li L, Kraithong S, Zou L, Zhang X, Huang R. Comprehensive review on human Milk oligosaccharides: Biosynthesis, structure, intestinal health benefits, immune regulation, neuromodulation mechanisms, and applications. Food Res Int 2025; 209:116328. [PMID: 40253162 DOI: 10.1016/j.foodres.2025.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/15/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
This review provides a comprehensive analysis of the biosynthetic pathways of various oligosaccharides in Escherichia coli, structural characteristics, and bioactive mechanisms of human milk oligosaccharides (HMOs), with a particular emphasis on their roles in gut health, immune modulation, and neurodevelopment. HMOs primarily function as prebiotics, facilitating the growth of beneficial bacteria such as Bifidobacterium to maintain microbial homeostasis, with a discussion on the synergistic role of carbohydrate-binding modules (CBMs). In immune modulation, HMOs interact with lectins on immune and epithelial cells, influencing immune responses via pathways such as Toll-like receptors (TLRs). Additionally, HMOs have been linked to enhanced cognitive, motor, and language development in infants, influencing genes such as GABRB2, SLC1A7, GLRA4, and CHRM3. The review also examines commercially available HMO-containing products and highlights future research directions and potential applications in nutrition and healthcare.
Collapse
Affiliation(s)
- Jieting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Lingshan Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Bastian K, Orozco‐Moreno M, Thomas H, Hodgson K, Visser EA, Rossing E, Pijnenborg JFA, Eerden N, Wilson L, Saravannan H, Hanley O, Grimsley G, Frame F, Peng Z, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Maitland NJ, Heer R, Wang N, Goddard‐Borger ED, Guerrero RH, Boltje TJ, Drake RR, Scott E, Elliott DJ, Munkley J. FUT8 Is a Critical Driver of Prostate Tumour Growth and Can Be Targeted Using Fucosylation Inhibitors. Cancer Med 2025; 14:e70959. [PMID: 40387385 PMCID: PMC12086987 DOI: 10.1002/cam4.70959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND An unmet clinical need requires the discovery of new treatments for men facing advanced prostate cancer. Aberrant glycosylation is a universal feature of cancer cells and plays a key role in tumour growth, immune evasion and metastasis. Alterations in tumour glycosylation are closely associated with prostate cancer progression, making glycans promising therapeutic targets. Fucosyltransferase 8 (FUT8) drives core fucosylation by adding α1,6-fucose to the innermost GlcNAc residue on N-glycans. While FUT8 is recognised as a crucial factor in cancer progression, its role in prostate cancer remains poorly understood. METHODS & RESULTS Here, we demonstrate using multiple independent clinical cohorts that FUT8 is upregulated in high grade and metastatic prostate tumours, and in the blood of prostate cancer patients with aggressive disease. Using novel tools, including PhosL lectin immunofluorescence and N-glycan MALDI mass spectrometry imaging (MALDI-MSI), we find FUT8 underpins the biosynthesis of malignant core fucosylated N-glycans in prostate cancer cells and using both in vitro and in vivo models, we find FUT8 promotes prostate tumour growth, cell motility and invasion. Mechanistically we show FUT8 regulates the expression of genes and signalling pathways linked to prostate cancer progression. Furthermore, we find that fucosylation inhibitors can inhibit the activity of FUT8 in prostate cancer to suppress the growth of prostate tumours. CONCLUSIONS Our study cements FUT8-mediated core fucosylation as an important driver of prostate cancer progression and suggests targeting FUT8 activity for prostate cancer therapy as an exciting area to explore.
Collapse
Affiliation(s)
- Kayla Bastian
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Margarita Orozco‐Moreno
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Kirsty Hodgson
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Eline A. Visser
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | | | | | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Hasvini Saravannan
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Oliver Hanley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Grace Grimsley
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Fiona Frame
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Ziqian Peng
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Bridget Knight
- NIHR Exeter Clinical Research FacilityRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Paul McCullagh
- Department of PathologyRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - John McGrath
- Exeter Surgical Health Services Research UnitRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Malcolm Crundwell
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Norman J. Maitland
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical MedicineThe University of SheffieldSheffieldUK
- Leicester Cancer Research Centre, Department of Genetics, Genomics, and Cancer SciencesUniversity of LeicesterLeicesterUK
| | - Ethan D. Goddard‐Borger
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ramon Hurtado Guerrero
- University of ZaragozaZaragozaSpain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Thomas J. Boltje
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Richard R. Drake
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Emma Scott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - David J. Elliott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Jennifer Munkley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| |
Collapse
|
13
|
Slater AS, McDonald AG, Hickey RM, Davey GP. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing. Front Mol Biosci 2025; 12:1587602. [PMID: 40370521 PMCID: PMC12074965 DOI: 10.3389/fmolb.2025.1587602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of complex carbohydrates that play crucial roles in infant health, promoting a beneficial gut microbiota, modulating immune responses, and protecting against pathogens. Central to the synthesis of HMOs are glycosyltransferases, a specialized class of enzymes that catalyse the transfer of sugar moieties to form the complex glycan structures characteristic of HMOs. This review provides an in-depth analysis of glycosyltransferases, beginning with their classification based on structural and functional characteristics. The catalytic activity of these enzymes is explored, highlighting the mechanisms by which they facilitate the precise addition of monosaccharides in HMO biosynthesis. Structural insights into glycosyltransferases are also discussed, shedding light on how their conformational features enable specific glycosidic bond formations. This review maps out the key biosynthetic pathways involved in HMO production, including the synthesis of lactose, and subsequent fucosylation and sialylation processes, all of which are intricately regulated by glycosyltransferases. Industrial methods for HMO synthesis, including chemical, enzymatic, and microbial approaches, are examined, emphasizing the role of glycosyltransferases in these processes. Finally, the review discusses future directions in glycosyltransferase research, particularly in enhancing the efficiency of HMO synthesis and developing advanced analytical techniques to better understand the structural complexity and biological functions of HMOs.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Chi JJ, Xie P, Cheng MH, Zhu Y, Cui X, Watson J, Zeng L, Uddin A, Nguyen H, Li L, Moremen K, Reedy A, Wyatt M, Marcus A, Dai M, Paulos CM, Cristofanilli M, Gradishar WJ, Zhao S, Kalinsky K, Hung MC, Bahar I, Zhang B, Wan Y. MGAT1-Guided complex N-Glycans on CD73 regulate immune evasion in triple-negative breast cancer. Nat Commun 2025; 16:3552. [PMID: 40229283 PMCID: PMC11997035 DOI: 10.1038/s41467-025-58524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Despite the widespread application of immunotherapy, treating immune-cold tumors remains a significant challenge in cancer therapy. Using multiomic spatial analyses and experimental validation, we identify MGAT1, a glycosyltransferase, as a pivotal factor governing tumor immune response. Overexpression of MGAT1 leads to immune evasion due to aberrant elevation of CD73 membrane translocation, which suppresses CD8+ T cell function, especially in immune-cold triple-negative breast cancer (TNBC). Mechanistically, addition of N-acetylglucosamine to CD73 by MGAT1 enables the CD73 dimerization necessary for CD73 loading onto VAMP3, ensuring membrane fusion. We further show that THBS1 is an upstream etiological factor orchestrating the MGAT1-CD73-VAMP3-adenosine axis in suppressing CD8+ T cell antitumor activity. Spatial transcriptomic profiling reveals spatially resolved features of interacting malignant and immune cells pertaining to expression levels of MGAT1 and CD73. In preclinical models of TNBC, W-GTF01, an inhibitor specifically blocked the MGAT1-catalyzed CD73 glycosylation, sensitizing refractory tumors to anti-PD-L1 therapy via restoring capacity to elicit a CD8+ IFNγ-producing T cell response. Collectively, our findings uncover a strategy for targeting the immunosuppressive molecule CD73 by inhibiting MGAT1.
Collapse
Affiliation(s)
- Junlong Jack Chi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- DGP graduate program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Ping Xie
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Cui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Lidan Zeng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amad Uddin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Hoang Nguyen
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, USA
| | - Kelley Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - April Reedy
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Megan Wyatt
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery/Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Marcus
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingji Dai
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Chrystal M Paulos
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery/Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - William J Gradishar
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mine-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ivet Bahar
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Bin Zhang
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Guan Z, Zhang Z, Wang K, Qiao S, Ma T, Wu L. Targeting myeloid cells for hematological malignancies: the present and future. Biomark Res 2025; 13:59. [PMID: 40205623 PMCID: PMC11983845 DOI: 10.1186/s40364-025-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
Hematological malignancies are a diverse group of cancers that originate in the blood and bone marrow and are characterized by the abnormal proliferation and differentiation of hematopoietic cells. Myeloid blasts, which are derived from normal myeloid progenitors, play a central role in these diseases by disrupting hematopoiesis and driving disease progression. In addition, other myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, adapt dynamically to the tumor microenvironment, where they can promote immune evasion and resistance to treatment. This review explores the unique characteristics and pathogenic mechanisms of myeloid blasts, the immunosuppressive roles of myeloid cells, and their complex interactions within the TME. Furthermore, we highlight emerging therapeutic approaches targeting myeloid cells, focusing on strategies to reprogram their functions, inhibit their suppressive effects, or eliminate pathological populations altogether, as well as the latest preclinical and clinical trials advancing these approaches. By integrating insights from these studies, we aim to provide a comprehensive understanding of the roles of myeloid cells in hematological malignancies and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Zihui Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Peking University First Hospital, Beijing, 100034, China
| | - Zhengqi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Kaiyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shukai Qiao
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Teng Ma
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
16
|
Ren T, Zhang Y, Tong Y, Zhang Q, Wang T, Wang Y, Yang C, Xu Z. FRET imaging of glycoRNA on small extracellular vesicles enabling sensitive cancer diagnostics. Nat Commun 2025; 16:3391. [PMID: 40210865 PMCID: PMC11985951 DOI: 10.1038/s41467-025-58490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
Glycosylated RNAs (glycoRNAs), a recently discovered class of membrane-associated glyco-molecules, remain poorly understood in function and clinical value due to limited detection methods. Here, we show a dual recognition Förster resonance energy transfer (drFRET) strategy using nucleic acid probes to detect N-acetylneuraminic acid-modified RNAs, enabling sensitive, selective profiling of glycoRNAs on small extracellular vesicles (sEVs) from minimal biofluids (10 μl initial biofluid). Using drFRET, we identify 5 prevalent sEV glycoRNAs derived from 7 cancer cell lines. In a 100-patient cohort (6 cancer types and non-cancer controls), sEV glycoRNA profiles achieve 100% accuracy (95% confidence interval) in distinguishing cancers from non-cancer cases and 89% accuracy in classifying specific cancer types. Furthermore, drFRET reveal that sEV glycoRNAs specifically interact with Siglec proteins and P-selectin, which is critical for sEV cellular internalization. The drFRET strategy provides a versatile and sensitive platform for the imaging and functional analysis of sEV glycoRNAs, with promising implications for clinical applications.
Collapse
Affiliation(s)
- Tingju Ren
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Yingzhi Zhang
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuxiao Tong
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Qi Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Tianhao Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Yue Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China.
| |
Collapse
|
17
|
Piyadasa H, Oberlton B, Ribi M, Ranek JS, Averbukh I, Leow K, Amouzgar M, Liu CC, Greenwald NF, McCaffrey EF, Kumar R, Ferrian S, Tsai AG, Filiz F, Fullaway CC, Bosse M, Varra SR, Kong A, Sowers C, Gephart MH, Nuñez-Perez P, Yang E, Travers M, Schachter MJ, Liang S, Santi MR, Bucktrout S, Gherardini PF, Connolly J, Cole K, Barish ME, Brown CE, Oldridge DA, Drake RR, Phillips JJ, Okada H, Prins R, Bendall SC, Angelo M. Multi-omic landscape of human gliomas from diagnosis to treatment and recurrence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642624. [PMID: 40161803 PMCID: PMC11952471 DOI: 10.1101/2025.03.12.642624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gliomas are among the most lethal cancers, with limited treatment options. To uncover hallmarks of therapeutic escape and tumor microenvironment (TME) evolution, we applied spatial proteomics, transcriptomics, and glycomics to 670 lesions from 310 adult and pediatric patients. Single-cell analysis shows high B7H3+ tumor cell prevalence in glioblastoma (GBM) and pleomorphic xanthoastrocytoma (PXA), while most gliomas, including pediatric cases, express targetable tumor antigens in less than 50% of tumor cells, potentially explaining trial failures. Longitudinal samples of isocitrate dehydrogenase (IDH)-mutant gliomas reveal recurrence driven by tumor-immune spatial reorganization, shifting from T-cell and vasculature-associated myeloid cell-enriched niches to microglia and CD206+ macrophage-dominated tumors. Multi-omic integration identified N-glycosylation as the best classifier of grade, while the immune transcriptome best predicted GBM survival. Provided as a community resource, this study opens new avenues for glioma targeting, classification, outcome prediction, and a baseline of TME composition across all stages.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Oberlton
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Mikaela Ribi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jolene S. Ranek
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Inna Averbukh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ke Leow
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Meelad Amouzgar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Candace C. Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah F. Greenwald
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin F. McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rashmi Kumar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Selena Ferrian
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Albert G. Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ferda Filiz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marc Bosse
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Alex Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cameron Sowers
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Pablo Nuñez-Perez
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - EnJun Yang
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mike Travers
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Samantha Liang
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria R. Santi
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Pier Federico Gherardini
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - John Connolly
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kristina Cole
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Michael E. Barish
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Christine E. Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Derek A. Oldridge
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, PA, USA
| | - Richard R. Drake
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Joanna J. Phillips
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Robert Prins
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Neurosurgery, UCLA, Los Angeles, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
18
|
She Y, Li J, Qin Y, Qi Y, Liu H, Wu N, Liu J, Liu J, Fu W, Wang J, Han C, Xie H, Wang X, Jia Y, Zeng D. Sialylated glycoproteins bind to Siglec-9 in a cis manner on platelets to suppress platelet activation. J Thromb Haemost 2025:S1538-7836(25)00207-7. [PMID: 40204021 DOI: 10.1016/j.jtha.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND The endogenous negative regulation of platelets is important in preventing spontaneous thrombosis, while the mechanism of homeostasis is incompletely understood. OBJECTIVES In this study, we aimed to explore whether Siglec-9 plays a negative regulative role and identify the ligand of Siglec-9 on platelets. METHODS To determine the role of Siglec-9 on platelets, platelet factor 4-cre:Siglec-Eflox/flox knockout mouse model and human platelet in vitro culture system were used. Furthermore, recombinant glycoprotein (GP) of Siglec-9 ligand on platelets was expressed and used. RESULTS We found that Siglec-E conditional knockout can lead to significant increase in platelet coagulation activities both in vivo and in vitro, which strongly suggests that Siglec-9/E plays an inhibitory physiological role in platelet activation. Siglec-9 ligand is an O-link GP with an α2,3-linked sialic acid terminal structure, and the protein carrier of the ligand is mucin-like region of GPIbα. Our data further showed that the ligands on platelets could not engage Siglec-9 on other cells via trans-binding, which indicates that the ligands on platelets play a self-modulation role. Furthermore, we provided evidence that the activation of Siglec-9 pathway with exogenous specific ligands could inhibit the activity of platelets. These data demonstrate a previously unanticipated role for GPIbα in inhibiting platelet activation and provide a novel mechanism for the homeostasis of platelets. CONCLUSIONS We conclude that the cis-binding between mucin-like region of GPIbα and Siglec-9 acts as a "parking brake" on platelet activation. This finding provides a potential druggable target for novel antiplatelet medicine.
Collapse
Affiliation(s)
- Yuanting She
- Department of Haematology, Daping Hospital, Army Medical University, Chongqing, China; Division of Daping Hospital, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Jin Li
- Department of Pharmaceutics, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Yiyu Qin
- Department of Pharmaceutics, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Yan Qi
- Department of Haematology, Daping Hospital, Army Medical University, Chongqing, China; Division of Daping Hospital, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Hongmei Liu
- Department of Pharmaceutics, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Niting Wu
- Department of Haematology, Daping Hospital, Army Medical University, Chongqing, China; Division of Daping Hospital, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Jie Liu
- Department of Pharmaceutics, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Juanjuan Liu
- Department of Pharmaceutics, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Wenying Fu
- Department of Pharmaceutics, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Jin Wang
- Department of Haematology, Daping Hospital, Army Medical University, Chongqing, China; Division of Daping Hospital, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Changhao Han
- Department of Haematology, Daping Hospital, Army Medical University, Chongqing, China; Division of Daping Hospital, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Huan Xie
- Department of Haematology, Daping Hospital, Army Medical University, Chongqing, China; Division of Daping Hospital, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Xiao Wang
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu, China
| | - Yi Jia
- Department of Pharmaceutics, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China.
| | - Dongfeng Zeng
- Department of Haematology, Daping Hospital, Army Medical University, Chongqing, China; Division of Daping Hospital, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China.
| |
Collapse
|
19
|
Feng Z, Fu Y, Yang S, Zhao H, Lin M, Liu C, Huang W, He X, Chen Y, Chen J, Shen Y, Li Z, Chen Q. Siglec-15 is a putative receptor for porcine epidemic diarrhea virus infection. Cell Mol Life Sci 2025; 82:136. [PMID: 40172660 PMCID: PMC11965083 DOI: 10.1007/s00018-025-05672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant losses in the pork industry, but the mechanism of PEDV infection is still unclear. On the basis of our RNA-Seq data and due to the potential role of sialic acid as a coreceptor, we investigated the function of sialic acid-binding Ig-like lectin 15 (Siglec-15) to determine its role as a receptor in PEDV infection. We found that Siglec-15 enhances PEDV infection by promoting viral adsorption to host cells. Coimmunoprecipitation and immunofluorescence assays revealed that Siglec-15 binds to the S1 subunit and M protein of PEDV. PEDV infectivity was significantly reduced in Siglec-15 knockout mice. In addition, we developed a monoclonal antibody targeting Siglec-15 that can effectively inhibit PEDV infection both in vitro and in vivo. Overall, our study suggests that Siglec-15 may be a receptor for PEDV infection, which is important for related mechanistic studies and reveals a novel target for anti-PEDV therapeutic development.
Collapse
Affiliation(s)
- Zhihua Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, 350117, China
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Sheng Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Minhua Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Chuancheng Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Weili Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Xinyan He
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Yao Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, 350117, China
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, 350013, China.
| | - Qi Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, 350117, China.
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China.
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian Province, 350117, China.
| |
Collapse
|
20
|
Wang K, Ma W, Meng X, Xu Z, Zhao W, Li T. Chemoenzymatic Synthesis of Core-Fucosylated Asymmetrical N-Glycans with Different-Length Oligo-N-Acetyllactosamine Motifs and Their Sialylated Extensions. Chemistry 2025; 31:e202500183. [PMID: 40079522 DOI: 10.1002/chem.202500183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical N-glycans bearing different lengths of oligo-N-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated N-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary N-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.
Collapse
Affiliation(s)
- Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Sojitra M, Schmidt EN, Lima GM, Carpenter EJ, McCord KA, Atrazhev A, Macauley MS, Derda R. Measuring carbohydrate recognition profile of lectins on live cells using liquid glycan array (LiGA). Nat Protoc 2025; 20:989-1019. [PMID: 39415074 DOI: 10.1038/s41596-024-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
Glycans constitute a significant fraction of biomolecular diversity on cellular surfaces across all kingdoms of life. As the structure of glycans is not directly encoded by the organism's DNA, it is impossible to use high-throughput DNA technologies to study the role of cellular glycosylation or to understand how glycocalyx is recognized by glycan-binding proteins (GBPs). To address this gap, we recently described a liquid glycan array (LiGA) platform that allows profiling of glycan-GBP interactions on the surface of live cells in vitro and in vivo using next-generation sequencing. LiGA is a library of DNA-barcoded bacteriophages, where each clonal bacteriophage displays 5-1,500 copies of a glycan and the distinct DNA barcode inside each bacteriophage clone encodes the structure and density of the displayed glycans. Deep sequencing of the glycophages associated with live cells yields a glycan-binding profile of GBPs expressed on the surface of cells. This protocol provides detailed instructions for how to use LiGA to probe cell surface receptors and includes information on the preparation of glycophages, analysis by MALDI-TOF mass spectrometry, the assembly of a LiGA library and its deep sequencing. Using this protocol, we measure glycan-binding profiles of the immunomodulatory sialic acid-binding immunoglobulin-like lectins‑1, -2, -6, -7 and -9 expressed on the surface of different cell types. Compared with existing methods that require complex specialist equipment, this method allows users with basic molecular biology expertise to measure the precise glycan-binding profile of GBPs on the surface of any cell type expressing exogenous GBP within 2-3 d.
Collapse
Affiliation(s)
- Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Angerstein AO, Young LEA, Thanasupawat T, Vriend J, Grimsley G, Lun X, Senger DL, Sinha N, Beiko J, Pitz M, Hombach-Klonisch S, Drake RR, Klonisch T. Distinct spatial N-glycan profiles reveal glioblastoma-specific signatures. J Pathol 2025; 265:486-501. [PMID: 39967571 DOI: 10.1002/path.6401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025]
Abstract
This study explored the complex interactions between glycosylation patterns, tumour biology, and therapeutic responses to temozolomide (TMZ) in human malignant glioma, specifically CNS WHO grade 3 oligodendroglioma (ODG) and glioblastoma (GB). Using spatial imaging of N-glycans in formalin-fixed paraffin-embedded (FFPE) tissue sections via MALDI-MSI, we analysed the N-glycome in primary and recurrent GB tissues and orthotopic xenografts of patient-derived brain tumour-initiating cells (BTIC) sensitive or resistant to TMZ. We identified unique N-glycosylation profiles, with nontumor brain (NTB) and ODG showing higher levels of bisecting and tri-antennary structures, while GB exhibited more tetra-antennary and sialylated N-glycans. Distinctive sialylation patterns were observed, with specific α2,6 and α2,3 isomeric linkages significantly altered in GB. Moreover, comparative analysis of primary and recurrent GB tissues revealed elevated high mannose N-glycans in primary GB and fucosylated bi- and tri-antennary N-glycans in recurrent GB tissues. Next, in the orthotopic xenografts of TMZ-sensitive and TMZ-resistant patient brain tumour initiating cells (BTIC), we identified potential N-glycan markers for TMZ treatment response and resistance. Finally, we found significantly altered expression of genes involved in N-glycan biosynthesis in malignant glioma, highlighting the crucial role of N-glycans in glioma and therapy resistance. This study lays the foundation for developing glycosylation-based diagnostic biomarkers and targeted therapies, potentially improving clinical outcomes for GB patients. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Aaron O Angerstein
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Lyndsay E A Young
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Xueqing Lun
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Donna L Senger
- Cumming School of Medicine, Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Namita Sinha
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Jason Beiko
- Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Marshall Pitz
- Department of Internal Medicine, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Kumariya R, Sun J, Lusvarghi S, O'Dell S, Zhao G, Doria-Rose NA, Bewley CA. An engineered antibody-lectin conjugate targeting the HIV glycan shield protects humanized mice against HIV challenge. Mol Ther 2025:S1525-0016(25)00213-8. [PMID: 40156187 DOI: 10.1016/j.ymthe.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/19/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Enveloped viruses responsible for global health pandemics often display a glycan shield on their surface envelope glycoproteins. In HIV, the glycan shield is formed by clusters of high-mannose glycans and plays essential roles in viral fitness and immune evasion. A few mannose-binding lectins potently inactivate HIV but have not been fully exploited due to poor pharmacokinetics and short serum half-lives. To address this, we engineered an antibody-lectin conjugate comprising the anti-HIV lectin griffithsin (GRFT) to the Fc region of human IgG1, with the aim of extending its serum half-life and augmenting anti-HIV activity by inducing immune effector responses. Engineered mGRFT-Fc produced in bacteria exhibited picomolar anti-HIV activity and an extended serum half-life, and mGRFT-Fc produced in mammalian cells (mGRFT-Fcglyc) elicited immune effector responses. In HIV-infected CD34+-humanized mice, both GRFT and mGRFT-Fcglyc effectively suppressed viral loads for up to 8 weeks after a single dose. Significantly, mGRFT-Fcglyc prevented HIV infection by neutralizing HIV and provided sustained protection from break-through infections via Fc-mediated immune effector responses, exhibiting a dual mode of protection. This study demonstrates the successful engineering of a lectin-based biologic and provides early evidence that a glycan-targeting agent alone can confer protection from viral infection in vivo.
Collapse
Affiliation(s)
- Rashmi Kumariya
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jiadong Sun
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sabrina Lusvarghi
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gengxiang Zhao
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Carole A Bewley
- Natural Products Chemistry Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Ahuja P, Singh M, Ujjain SK. Advancements in Electrochemical Biosensors for Comprehensive Glycosylation Assessment of Biotherapeutics. SENSORS (BASEL, SWITZERLAND) 2025; 25:2064. [PMID: 40218579 PMCID: PMC11991509 DOI: 10.3390/s25072064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
Proteins represent a significant portion of the global therapeutics market, surpassing hundreds of billions of dollars annually. Among the various post-translational modifications, glycosylation plays a crucial role in influencing protein structure, stability, and function. This modification is especially important in biotherapeutics, where the precise characterization of glycans is vital for ensuring product efficacy and safety. Although mass spectrometry-based techniques have become essential tools for glycomic analysis due to their high sensitivity and resolution, their complexity and lengthy processing times limit their practical application. In contrast, electrochemical methods provide a rapid, cost-effective, and sensitive alternative for glycosylation assessment, enabling the real-time analysis of glycan structures on biotherapeutic proteins. These electrochemical techniques, often used in conjunction with complementary methods, offer valuable insights into the glycosylation profiles of both isolated glycoproteins and intact cells. This review examines the latest advancements in electrochemical biosensors for glycosylation analysis, highlighting their potential in enhancing the characterization of biotherapeutics and advancing the field of precision medicine.
Collapse
Affiliation(s)
- Preety Ahuja
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Manpreet Singh
- Department of Mechanical Engineering, College of Engineering and Information Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Sanjeev Kumar Ujjain
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| |
Collapse
|
25
|
Kothlow K, Schramm HM, Markuson KA, Russell JH, Sutherland E, Veth TS, Zhang R, Duboff AG, Tejus VR, McDermott LE, Dräger LS, Riley NM. Extracting informative glycan-specific ions from glycopeptide MS/MS spectra with GlyCounter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645139. [PMID: 40196649 PMCID: PMC11974806 DOI: 10.1101/2025.03.24.645139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Glycopeptide tandem mass spectra typically contain numerous glycan-specific fragments that can inform several features of glycan modifications, including glycan class, composition, and structure. While these fragment ions are often straightforward to observe by eye, few tools exist to systemically explore these common glycopeptide spectral features or explore their relationships to each other. Instead, most studies rely on manual inspection to understand glycan-informative ion content in their data, or they are restricted to evaluating the presence of these ions only in the small fraction of spectra that are identified by glycopeptide search algorithms. Here we introduce GlyCounter as a freely available, open-source tool to rapidly extract oxonium, Y-type, and custom ion information from raw data files. We highlight GlyCounter's utility by evaluating glycan-specific fragments in a diverse selection of publicly available datasets to demonstrate how others in the field can make immediate use of this software. In several cases, we show how conclusions drawn in these publications are evident simply through GlyCounter's extracted ion information without requiring database searches or experiment-specific programs. Although one of our goals is to decouple spectral evaluation from glycopeptide identification, we also show that evaluating oxonium ion content with GlyCounter can supplement a database search as valuable spectral evidence to validate conclusions. In all, we present GlyCounter as a user-friendly platform that can be easily incorporated into most glycoproteomic workflows to refine sample preparation, data acquisition, and post-acquisition identification methods through straightforward evaluation of the glycan content of glycoproteomic data. Software and instructions are available at https://github.com/riley-research/GlyCounter.
Collapse
Affiliation(s)
- Kathryn Kothlow
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Haley M Schramm
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Kayla A Markuson
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Jacob H Russell
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | | | - Tim S Veth
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Ruby Zhang
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Anna G Duboff
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Vishnu R Tejus
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Leah E McDermott
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Laura S Dräger
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| |
Collapse
|
26
|
De Chiara S, De Simone Carone L, Cirella R, Andretta E, Silipo A, Molinaro A, Mercogliano M, Di Lorenzo F. Beyond the Toll-Like Receptor 4. Structure-Dependent Lipopolysaccharide Recognition Systems: How far are we? ChemMedChem 2025; 20:e202400780. [PMID: 39752323 PMCID: PMC11911305 DOI: 10.1002/cmdc.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
With an enormous potential in immunology and vaccinology, lipopolysaccharides (LPSs) are among the most extensively studied bacteria-derived molecules. LPS centered studies are countless, and their results reverberate in all areas of the life sciences, including chemistry, biology, genetics, biophysics, and medicine. Most of these research activities are focused on the LPS-induced immune response activation by means of Myeloid Differentiation protein-2/Toll Like Receptor 4 (MD-2/TLR4) complex, which currently is the most largely explored LPS sensing pathway. However, the enormous structural variability of LPS allows interactions with numerous other receptors involved in a wide range of equally important immunological scenarios. In this review, we explore these additional LPS recognition systems, which operate within interconnected signaling cascades, highlighting their role in maintaining physiological homeostasis and their involvement in the development of severe human diseases. Understanding these pathways, their interconnections, and the crosstalk between them and TLR4/MD-2 is essential for guiding the development of pharmacologically active molecules that could specifically modulate the inflammatory response, paving the way to new strategies for combating immune-mediated diseases and resistant infections.
Collapse
Affiliation(s)
- Stefania De Chiara
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Luca De Simone Carone
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Roberta Cirella
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Emanuela Andretta
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Alba Silipo
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
| | - Antonio Molinaro
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
- Department of ChemistrySchool of ScienceOsaka University1-1 Osaka University MachikaneyamaToyonakaOsaka560-0043Japan
| | - Marcello Mercogliano
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
| | - Flaviana Di Lorenzo
- Department of chemical sciencesUniversity of Naples Federico IIvia Cinthia 480126NaplesItaly
- CEINGE, Istituto di Biotecnologie avanzateVia Gaetano Salvatore, 48680131NaplesItaly
| |
Collapse
|
27
|
Radu KR, Baek KH. Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2025; 26:2233. [PMID: 40076855 PMCID: PMC11900591 DOI: 10.3390/ijms26052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell-cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy.
Collapse
Affiliation(s)
- Kimberley Rinai Radu
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
- Department of Bioconvergence, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
28
|
Rodriguez E. Tumor Glycosylation: A Main Player in the Modulation of Immune Responses. Eur J Immunol 2025; 55:e202451318. [PMID: 40071681 PMCID: PMC11898543 DOI: 10.1002/eji.202451318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025]
Abstract
Tumor immune escape refers to the process by which cancer cells evade detection and destruction by the immune system. Glycosylation, a post-translational modification that is altered in almost all cancer types, plays a crucial role in this process by modulating immune responses. This review examines our current understanding of how aberrant tumor glycosylation contributes to a tolerogenic microenvironment, focusing on specific glycosylation signatures-fucosylation, truncated O-glycans, and sialylation-and the immune receptors involved. Additionally, the clinical significance of tumor glycosylation is discussed, emphasizing its potential in developing novel therapeutic approaches aimed at improving immune system recognition and targeting of cancer cells. The review underscores the importance of ongoing research in this area to identify effective strategies for countering tumor immune escape and enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC location Vrije Universiteit AmsterdamMolecular Cell Biology and ImmunologyAmsterdamThe Netherlands
- Cancer Center AmsterdamCancer Biology and ImmunologyAmsterdamThe Netherlands
- Amsterdam Institute for Infection and ImmunityCancer ImmunologyAmsterdamThe Netherlands
| |
Collapse
|
29
|
MacDonald E, Forrester A, Valades-Cruz CA, Madsen TD, Hetmanski JHR, Dransart E, Ng Y, Godbole R, Shp AA, Leconte L, Chambon V, Ghosh D, Pinet A, Bhatia D, Lombard B, Loew D, Larsen MR, Leffler H, Lefeber DJ, Clausen H, Blangy A, Caswell P, Shafaq-Zadah M, Mayor S, Weigert R, Wunder C, Johannes L. Growth factor-triggered de-sialylation controls glycolipid-lectin-driven endocytosis. Nat Cell Biol 2025; 27:449-463. [PMID: 39984654 DOI: 10.1038/s41556-025-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2025] [Indexed: 02/23/2025]
Abstract
Glycolipid-lectin-driven endocytosis controls the formation of clathrin-independent carriers and the internalization of various cargos such as β1 integrin. Whether this process is regulated in a dynamic manner remained unexplored. Here we demonstrate that, within minutes, the epidermal growth factor triggers the galectin-driven endocytosis of cell-surface glycoproteins, such as integrins, that are key regulators of cell adhesion and migration. The onset of this process-mediated by the Na+/H+ antiporter NHE1 as well as the neuraminidases Neu1 and Neu3-requires the pH-triggered enzymatic removal of sialic acids whose presence otherwise prevents galectin binding. De-sialylated glycoproteins are then retrogradely transported to the Golgi apparatus where their glycan make-up is reset to regulate EGF-dependent invasive-cell migration. Further evidence is provided for a role of neuraminidases and galectin-3 in acidification-dependent bone resorption. Glycosylation at the cell surface thereby emerges as a dynamic and reversible regulatory post-translational modification that controls a highly adaptable trafficking pathway.
Collapse
Affiliation(s)
- Ewan MacDonald
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Montpellier Cell Biology Research Center, CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Alison Forrester
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- WEL Research Institute, Wavre, Belgium
- Université de Namur ASBL, Namur, Belgium
| | - Cesar A Valades-Cruz
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Joseph H R Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance, Brunel University London, London, UK
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rashmi Godbole
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Ananthan Akhil Shp
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ludovic Leconte
- SERPICO Project Team, Inria-UMR144 CNRS Institut Curie, PSL Research University, Paris, France
- SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Rennes, France
| | - Valérie Chambon
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Debarpan Ghosh
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Alexis Pinet
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Dhiraj Bhatia
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, Université PSL, Paris, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Clausen
- Department for Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Blangy
- Montpellier Cell Biology Research Center (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Patrick Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France
| | - Satyajit Mayor
- Cellular Organization and Signaling Group, National Centre for Biological Sciences, Bangalore, India
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Warwick, UK
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Paris, France.
- SAIRPICO Project Team, Inria Center at University of Rennes, U1143 INSERM, Institut Curie, UMR3666 CNRS, PSL Research University, Paris, France.
| |
Collapse
|
30
|
Pan Y, Sun H, Gu X, Li S, Yang S, Zhang L, Mao H, Wang P, Yang S, Yin R, Zuo Z, Zhao J. Oligosaccharide-assisted resolution of holothurian fucosylated chondroitin sulfate for fine structure and P-selectin inhibition. Carbohydr Polym 2025; 351:123145. [PMID: 39778981 DOI: 10.1016/j.carbpol.2024.123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Fucosylated chondroitin sulfate (FCS) from Holothuria mexicana (FCSHm) was selected for investigation because of its intriguing branch features. Selective β-eliminative depolymerization and the bottom-up assembly were performed to unravel that FCSHm consisted of a {D-GlcA-β1,3-D-GalNAc4S6S} backbone and branches of alternating FucS (55 %) and D-GalNAcS-α1,2-L-FucS (45 %), the highest proportion of disaccharide branch reported to date. In branches, sulfation could occur at every free -OH site except O-3 of GalNAc, being the most complex and various structure features of natural FCS. Detailed structure-activity relationship analyses showed that FCSHm and its depolymerized products (>8 kDa) effectively competed with SLeX and PSGL-1 to bind with P-sel at nano-molar level and the inhibition potency increased with Mw increasing. For the structural trisaccharide unit, di-O-sulfation of the FucS (Fuc2S4S and Fuc3S4S) was almost 10-fold more potent than mono-O-sulfation (Fuc4S). Unexpectedly, higher sulfation of the disaccharide-branched tetrasaccharide unit reduced inhibition. The reversal may attribute to fewer interactions with P-sel by molecular docking study. These results suggested that the specific configuration underpinned the potent inhibition, whereas the size and sulfate number of branches were not the key factors for the specific binding. dHmF4 (8.0 kDa) potently blocked the platelet-leukocyte aggregates formation, further verifying the potential value in use.
Collapse
Affiliation(s)
- Ying Pan
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huifang Sun
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xi Gu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shengtao Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Liang Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hui Mao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Pin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Shasha Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Jinhua Zhao
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
31
|
Li Z, Wang Y, Zhao X, Meng Q, Ma G, Xie L, Jiang X, Liu Y, Huang D. Advances in bacterial glycoprotein engineering: A critical review of current technologies, emerging challenges, and future directions. Biotechnol Adv 2025; 79:108514. [PMID: 39755221 DOI: 10.1016/j.biotechadv.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Protein glycosylation, which involves the addition of carbohydrate chains to amino acid side chains, imparts essential properties to proteins, offering immense potential in synthetic biology applications. Despite its importance, natural glycosylation pathways present several limitations, highlighting the need for new tools to better understand glycan structures, recognition, metabolism, and biosynthesis, and to facilitate the production of biologically relevant glycoproteins. The field of bacterial glycoengineering has gained significant attention due to the ongoing discovery and study of bacterial glycosylation systems. By utilizing protein glycan coupling technology, a wide range of valuable glycoproteins for clinical and diagnostic purposes have been successfully engineered. This review outlines the recent advances in bacterial protein glycosylation from the perspective of synthetic biology and metabolic engineering, focusing on the development of new glycoprotein therapeutics and vaccines. We provide an overview of the production of high-value, customized glycoproteins using prokaryotic glycosylation platforms, with particular emphasis on four key elements: (i) glycosyltransferases, (ii) carrier proteins, (iii) glycosyl donors, and (iv) host bacteria. Optimization of these elements enables precise control over glycosylation patterns, thus enhancing the potential of the resulting products. Finally, we discuss the challenges and future prospects of leveraging synthetic biology technologies to develop microbial glyco-factories and cell-free systems for efficient glycoprotein production.
Collapse
Affiliation(s)
- Ziyu Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Yujie Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Xiaojing Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China
| | - Qing Meng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Guozhen Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Lijie Xie
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; Nankai International Advanced Research Institute, Nankai University, Shenzhen, China.
| |
Collapse
|
32
|
Zuliani JP, Kwasniewski FH, Ikenohuchi YJ, Monteiro WM, Sartim MA. Snake venom galactoside-binding lectin from Bothrops jararacussu: Special role in leukocytes activation and function. Int J Biol Macromol 2025; 296:139742. [PMID: 39798729 DOI: 10.1016/j.ijbiomac.2025.139742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Snake venom galactoside-binding lectins (SVgalLs) comprise a group of toxins with the ability to bind specifically, reversibly, and non-covalently to galactose-containing carbohydrates in a Ca2+-dependent manner. Several SVgalLs have been identified and isolated from Bothrops snake venoms, presenting highly similar structures and biological functions. BjcuL is a galactoside binding C-type lectin isolated from the venom of South America Bothrops jararacussu and consists of the most investigated lectin. Previous studies have deeply investigated the participation of BjcuL in physiopathological events, especially involving its participation in inflammation. The lectin has been demonstrated as a pro-inflammatory agent, capable of triggering inflammatory events related to local and systemic leukocyte function. This activity is mediated by its binding to galactose-containing glycans on the cell surface to trigger different intracellular signaling and promote functional activation as rolling, adhesion, and migration of leukocytes, production of inflammatory mediators, and a killing profile of phagocytes. Furthermore, this review highlights not only the current understanding of snake venom lectins in pathophysiology and inflammation research but also explores potential future advancements, including the application of emerging technologies such as structural bioinformatics, high-throughput screening, and advanced omics approaches to uncover novel therapeutic targets and biotechnological applications.
Collapse
Affiliation(s)
- Juliana P Zuliani
- Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Laboratório de Imunologia Celular Aplicada à Saúde, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil.
| | | | - Yoda Janaina Ikenohuchi
- Fundação Oswaldo Cruz-Rondônia (FIOCRUZ-RO), Laboratório de Imunologia Celular Aplicada à Saúde, Porto Velho, RO, Brazil
| | - Wuelton M Monteiro
- Universidade do Estado do Amazonas, Manaus, AM, Brazil; Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Marco Aurélio Sartim
- Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil.
| |
Collapse
|
33
|
Ma Y, Liu Y, Cao C, Peng J, Jiang Y, Li T. Host-Guest Chemistry-Mediated Biomimetic Chemoenzymatic Synthesis of Complex Glycosphingolipids. J Am Chem Soc 2025; 147:6974-6982. [PMID: 39933159 DOI: 10.1021/jacs.4c17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Glycosphingolipids (GSLs) are amphipathic complex biomolecules constituted of hydrophilic glycans covalently linked to hydrophobic lipids via glycosidic bonds. GSLs are widely distributed in cells and tissues, where they play crucial roles in various biological functions and disease processes. However, the heterogeneity and complexity of GSLs make it difficult to explore their precise biofunctions due to obstacles in obtaining well-defined structures. Herein, we report a host-guest-chemistry-mediated biomimetic chemoenzymatic approach for the efficient synthesis of diverse complex GSLs. A key feature of this approach is that the use of methyl-β-cyclodextrin enables amphipathic glycolipids forming water-soluble inclusion complexes to improve their solubility in aqueous media, thereby facilitating enzyme-catalyzed reactions. The power and applicability of our approach are demonstrated by the streamlined synthesis of biologically important globo-, ganglio-, neolacto-, and lacto-series GSLs library containing 20 neutral and acidic glycolipids with different fucosylation and sialylation patterns. The developed method will open new avenues to easily access a wide range of complex GSLs for biomedical applications.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiarong Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
34
|
Zhang G, Huang X, Liu S, Xu Y, Wang N, Yang C, Zhu Z. Demystifying EV heterogeneity: emerging microfluidic technologies for isolation and multiplexed profiling of extracellular vesicles. LAB ON A CHIP 2025; 25:1228-1255. [PMID: 39775292 DOI: 10.1039/d4lc00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers carrying complex molecular cargoes, including proteins, nucleic acids, glycans, etc. These vesicles are closely associated with specific physiological characteristics, which makes them invaluable in the detection and monitoring of various diseases. However, traditional isolation methods are often labour-intensive, inefficient, and time-consuming. In addition, single biomarker analyses are no longer accurate enough to meet diagnostic needs. Routine isolation and molecular analysis of high-purity EVs in clinical applications is even more challenging. In this review, we discuss a promising solution, microfluidic-based techniques, that combine efficient isolation and multiplex detection of EVs, to further demystify EV heterogeneity. These microfluidic-based EV multiplexing platforms will hopefully facilitate development of liquid biopsies and offer promising opportunities for personalised therapy.
Collapse
Affiliation(s)
- Guihua Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaodan Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yiling Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Nan Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
35
|
Gao F, Wang JH, Ma H, Xia B, Wen L, Long YT, Ying YL. Identification of Oligosaccharide Isomers Using Electrostatically Asymmetric OmpF Nanopore. Angew Chem Int Ed Engl 2025; 64:e202422118. [PMID: 39856493 DOI: 10.1002/anie.202422118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and possess rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. These unique features, including charge heterogeneity and structural complexity, pose significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore. The natural electroosmotic flow within OmpF generates a robust driving force for unlabeled neutral oligosaccharides, enabling detection at a concentration as low as 6.4 μM. Furthermore, the asymmetric constriction zone of OmpF was employed to construct a stereoselective recognition site, enabling sensitive identification of glycosidic bond differences in cell lysate samples. With the assistance of machine learning algorithms, the OmpF nanopore achieved a recognition accuracy of 99.9 % for tetrasaccharides differing in only one glycosidic bond was achieved. This nanopore sensor provides a highly sensitive analytical tool with a broad dynamic range. It enables chiral recognition of oligosaccharides at low concentrations and is suitable for analysing both low-abundance and practical samples.
Collapse
Affiliation(s)
- Fan Gao
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Hong Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hui Ma
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
36
|
Tholen MME, Riera R, Izquierdo-Lozano C, Albertazzi L. Multiplexed Lectin-PAINT super-resolution microscopy enables cell glycotyping. Commun Biol 2025; 8:267. [PMID: 39979385 PMCID: PMC11842763 DOI: 10.1038/s42003-025-07626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Glycosylation profoundly influences cellular function, yet deciphering its intricate patterns remains a formidable challenge. Current techniques often compromise sensitivity, multiplexing, or the ability to capture in-situ cell-to-cell variations. To address these limitations, we introduce 'Lectin-PAINT,' a super-resolution imaging method enabling multiplexed live-cell visualization of the cellular glycocalyx at the single-cell and single-molecule levels. Lectin-PAINT leverages the reversible binding of lectins to specific carbohydrate families to perform point accumulation in nanoscale topography (PAINT), enabling the identification, mapping, and tracking of carbohydrates with a resolution beyond the diffraction limit. Our technique harnesses a tailored lectin library, spanning key carbohydrate recognition, offering insights into their abundance, affinity, and mobility. Through 8-color super-resolution imaging, we extract more than 350 glycosylation parameters with single-cell resolution, creating a cell's 'glycotype' or glycan fingerprint. We showcase the power of this approach by glycotyping and categorizing a diverse set of cancer cell types, shedding light on the heterogeneity and variability of the glycocalyx in cancer. In the future, this research will contribute to the more fundamental understanding of changes in the glycocalyx due to disease.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Roger Riera
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612AZ, The Netherlands.
| |
Collapse
|
37
|
Bains RK, Liu F, Nasseri SA, Wardman JF, Withers SG. Streamlining Sulfated Oligosaccharide and Glycan Synthesis with Engineered Mutant 6-SulfoGlcNAcases. J Am Chem Soc 2025; 147:5554-5559. [PMID: 39928485 DOI: 10.1021/jacs.4c14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Sulfation is a common, but poorly understood, post-glycosylational modification (PGM) used to modulate biological function. To deepen our understanding of the roles of various sulfated glycoforms and their relevant binding proteins, we must expand our enzymatic toolkit for their synthesis. Here, we bypass the need for both sulfotransferases and glycosyltransferases by engineering a series of mutants of a 6-SulfoGlcNAcase, from Streptococcus pneumoniae, to directly and efficiently synthesize not only the ubiquitous 6S-GlcNAc-β-1,3-Gal linkage prevalent within host glycans, but also the 6S-GlcNAc-β-1,6-GalNAc commonly observed within core-6 O-glycans, and the more exotic 6S-GlcNAc-β-1,4-GalNAc linkage. We further elaborate these into complex sulfated N-glycan and O-glycan structures of biological relevance. By utilizing the cost-effective activated donor pNP-6S-GlcNAc in conjunction with mutant GH185 6-SulfoGlcNAcases we demonstrate a simple yet powerful in vitro method for generating well-defined sulfated oligosaccharides and glycoforms for use in a variety of applications including glycan arrays, glycan remodeling, and specificity studies with carbohydrate binding proteins such as lectins.
Collapse
Affiliation(s)
- Rajneesh K Bains
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Feng Liu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seyed A Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jacob F Wardman
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
38
|
Zhang P, Wang L, Liu H, Lin S, Guo D. Unveiling the crucial role of glycosylation modification in lung adenocarcinoma metastasis through artificial neural network-based spatial multi-omics single-cell analysis and Mendelian randomization. BMC Cancer 2025; 25:249. [PMID: 39948531 PMCID: PMC11823056 DOI: 10.1186/s12885-025-13650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Investigations into the intricacies of glycosylation modifications, a prevalent post-translational alteration observed in neoplasms, especially remain elusive in the context of lung adenocarcinoma. Through the integration of multiple omics approaches, the investigation aimed to delineate the significance of glycosylation in lung adenocarcinoma, with an objective to pinpoint viable biological targets. METHODS Initial steps involved the identification of genes differentially expressed in relation to glycosylation at the aggregate transcriptome level within lung adenocarcinoma tissues. This was followed by analyses of localization and function employing both single-cell and spatial transcriptomics to provide a more nuanced understanding. In pursuit of elucidating functional disparities in glycosylation patterns, a predictive framework employing artificial neural networks was constructed. To ascertain causal relationships between specific genes and lung adenocarcinoma, Mendelian randomization was applied, culminating in the experimental validation of these genes' roles. RESULTS Analysis at the single-cell level uncovered marked glycosylation modification expressions in metastatic tissues of lung adenocarcinoma. Moreover, tissues of lung adenocarcinoma with elevated expression of genes associated with glycosylation displayed enhanced differentiation and activation across signaling pathways including TGF-β, oxidative stress, and WNT. Through spatial transcriptomics, zones of intense glycosylation modification were pinpointed within tumor nests and proximate to tumor-associated blood vessels. An artificial neural network-derived prognostic model demonstrated outstanding predictive capability, with AUC scores achieving 0.84, 0.83, and 0.89 for 1, 3, and 5-year forecasts, respectively. The group identified as high-risk was characterized by pronounced immunosuppression and diminished responsiveness to immunotherapy. Mendelian randomization analysis pinpointed GLANT2 (OR = 1.3654, p < 0.05) and GYS1 (OR = 1.2668, p < 0.05) as genes contributing to the pathogenesis of lung adenocarcinoma. Cell assays have reaffirmed that the inhibition of GYS1 significantly reduces proliferation and invasion in lung adenocarcinoma cell lines, while also decreasing glycogen storage and the formation of glycosylation end products, indicating suppression of glycosylation processes. These findings identify GYS1 as a prospective glycosylation-linked biological target for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Penngcheng Zhang
- Department of General Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Lexin Wang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Western Institute of Digital-Intelligent Medicine, Chongqing, China
| | - Hanwen Liu
- Department of General Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengyou Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zheiiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| | - Dechao Guo
- Department of General Surgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Miller WD, Mishra AK, Sheedy CJ, Bond A, Gardner BM, Montell DJ, Morrissey MA. CD47 prevents Rac-mediated phagocytosis through Vav1 dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637707. [PMID: 39990418 PMCID: PMC11844498 DOI: 10.1101/2025.02.11.637707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
CD47 is expressed by viable cells to protect against phagocytosis. CD47 is recognized by SIRPα, an inhibitory receptor expressed by macrophages and other myeloid cells. Activated SIRPα recruits SHP-1 and SHP-2 phosphatases but the inhibitory signaling cascade downstream of these phosphatases is not clear. In this study, we used time lapse imaging to measure how CD47 impacts the kinetics of phagocytosis. We found that targets with IgG antibodies were primarily phagocytosed through a Rac-based reaching mechanism. Targets also containing CD47 were only phagocytosed through a less frequent Rho-based sinking mechanism. Hyperactivating Rac2 eliminated the suppressive effect of CD47, suggesting that CD47 prevents activation of Rac and reaching phagocytosis. During IgG-mediated phagocytosis, the tyrosine kinase Syk phosphorylates the GEF Vav, which then activates the GTPase Rac to drive F-actin rearrangement and target internalization. CD47 inhibited Vav1 phosphorylation without impacting Vav1 recruitment to the phagocytic synapse or Syk phosphorylation. Macrophages expressing a hyperactive Vav1 were no longer sensitive to CD47. Together this data suggests that Vav1 is a key target of the CD47 signaling pathway.
Collapse
Affiliation(s)
- Wyatt D Miller
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Abhinava K Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Connor J Sheedy
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Brooke M Gardner
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Denise J Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| |
Collapse
|
40
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
41
|
Kim S, Zhang J, Cheng T, Li Q, Bolton EE. Glycoscience data content in the NCBI Glycans and PubChem. Anal Bioanal Chem 2025; 417:865-878. [PMID: 39134728 PMCID: PMC11782412 DOI: 10.1007/s00216-024-05459-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 01/31/2025]
Abstract
Studying glycans and their functions in the body aids in the understanding of disease mechanisms and developing new treatments. This necessitates resources that provide comprehensive glycan data integrated with relevant information from other scientific fields such as genomics, genetics, proteomics, metabolomics, and chemistry. The present paper describes two resources at the U.S. National Center for Biotechnology Information (NCBI), the NCBI Glycans and PubChem, which provide glycan-related information useful for the glycoscience research community. The NCBI Glycans ( https://www.ncbi.nlm.nih.gov/glycans/ ) is a dedicated website for glycobiology data content at NCBI and provides quick access to glycan-related information scattered across multiple NCBI databases as well as other information resources external to NCBI. Importantly, the NCBI Glycans hosts the official web page for the symbol nomenclature for glycans (SNFG), which is the standard graphical representation of glycan structures recommended for scientific publication. On the other hand, PubChem ( https://pubchem.ncbi.nlm.nih.gov ) is a research-focused, large-scale public chemical database, containing a substantial number of glycan-containing records and is integrated with important glycoscience resources like GlyTouCan, GlyCosmos, and GlyGen. PubChem organizes glycan-related information within multiple data collections (i.e., Substance, Compound, Protein, Gene, Pathway, and Taxonomy) and provides various tools and services that allow users to access them both interactively through a web browser and programmatically through a REST-ful interface, including PUG-View. The NCBI Glycans and PubChem highlight glycan-related data and improve their accessibility, helping scientists exploit these data in their research.
Collapse
Affiliation(s)
- Sunghwan Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
42
|
Krishnamoorthy V, Daly J, Kim J, Piatnitca L, Yuen KA, Kumar B, Taherzadeh Ghahfarrokhi M, Bui TQT, Azadi P, Vu LP, Wisnovsky S. The glycosyltransferase ST3GAL4 drives immune evasion in acute myeloid leukemia by synthesizing ligands for the glyco-immune checkpoint receptor Siglec-9. Leukemia 2025; 39:346-359. [PMID: 39551873 PMCID: PMC11794148 DOI: 10.1038/s41375-024-02454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Immunotherapy has demonstrated promise as a treatment for acute myeloid leukemia (AML). However, there is still an urgent need to identify new molecules that inhibit the immune response to AML. Most prior research in this area has focused on protein-protein interaction interfaces. While carbohydrates also regulate immune recognition, the role of cell-surface glycans in driving AML immune evasion is comparatively understudied. The Siglecs, for example, are an important family of inhibitory, glycan-binding signaling receptors that have emerged as prime targets for cancer immunotherapy in recent years. In this study, we find that AML cells express ligands for the receptor Siglec-9 at high levels. Integrated CRISPR genomic screening and clinical bioinformatic analysis identified ST3GAL4 as a potential driver of Siglec-9 ligand expression in AML. Depletion of ST3GAL4 by CRISPR-Cas9 knockout (KO) dramatically reduced the expression of Siglec-9 ligands in AML cells. Mass spectrometry analysis of cell-surface glycosylation in ST3GAL4 KO cells revealed that Siglec-9 primarily binds N-linked sialoglycans on these cell types. Finally, we found that ST3GAL4 KO enhanced the sensitivity of AML cells to phagocytosis by Siglec-9-expressing macrophages. This work reveals a novel axis of immune evasion and implicates ST3GAL4 as a possible target for immunotherapy in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Sialyltransferases/metabolism
- Sialyltransferases/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Ligands
- Immune Evasion
- Antigens, CD/metabolism
- beta-Galactoside alpha-2,3-Sialyltransferase
- Glycosylation
- Cell Line, Tumor
- CRISPR-Cas Systems
Collapse
Affiliation(s)
- Vignesh Krishnamoorthy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jimmy Kim
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lidia Piatnitca
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katie A Yuen
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Tom Q T Bui
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Zuliani A, Ramos V, Escudero A, Khiar N. "Sweet MOFs": exploring the potential and restraints of integrating carbohydrates with metal-organic frameworks for biomedical applications. NANOSCALE HORIZONS 2025; 10:258-278. [PMID: 39560345 DOI: 10.1039/d4nh00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The unique features of metal-organic frameworks (MOFs) such as biodegradability, reduced toxicity and high surface area offer the possibility of developing smart nanosystems for biomedical applications through the simultaneous functionalization of their structure with biologically relevant ligands and the loading of biologically active cargos, ranging from small drugs to large biomacromolecules, into their pores. Aiming to develop efficient, naturally inspired biocompatible systems, recent research has combined organic and materials chemistry to design innovative composites that exploit carbohydrate chemistry for the functionalization and structural modification of MOFs. Scientific investigation in the field has seen a significant rise in the past five years, and it is becoming crucial to acknowledge both the limits and benefits of this approach for future investigation. In this review, the latest research results merging carbohydrates and MOFs are discussed, with a particular emphasis on the advances in the field and the remaining challenges, including addressing sustainability and real-case applicability.
Collapse
Affiliation(s)
- Alessio Zuliani
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
| | - Victor Ramos
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
| | - Alberto Escudero
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
- Inorganic Chemistry Department, University of Seville, Calle Profesor García González 1, 41012 Seville, Spain
| | - Noureddine Khiar
- Asymmetric Synthesis and Nanosystems Group (Art&Fun), Institute for Chemical Research (IIQ), CSIC-University of Seville, 41092 Seville, Spain.
| |
Collapse
|
44
|
Wang G, Zhang L, Sugawara A, Hsu YI, Asoh TA, Uyama H. Development of Citric-Acid-Modified Cellulose Monolith for Enriching Glycopeptides. Anal Chem 2025; 97:1125-1134. [PMID: 39772436 DOI: 10.1021/acs.analchem.4c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions. We demonstrated the efficacy of CCM as a hydrophilic interaction liquid chromatography (HILIC) medium for the efficient enrichment of glycopeptides. It exhibited remarkable selectivity in enriching glycopeptides from trypsin-digested immunoglobulin G (IgG), serving as a model protein, even in the presence of a significant amount of non-glycopeptide contaminants from bovine serum albumin (BSA) at a ratio of BSA/IgG of 1000/1. Additionally, CCM showed a low detection limit (0.25 fmol μL-1) and commendable reusability in glycopeptide enrichment, successfully enriching 35 glycopeptides from IgG. Additionally, 641 unique N-glycosylation sites of 698 unique glycopeptides from 393 glycosylated proteins were identified from the triplicate analysis of 900 μg of human hepatocellular carcinoma tissue. Therefore, CCM holds significant promise as an eco-friendly stationary phase for hydrophilic interaction liquid chromatography aimed at glycopeptide enrichment.
Collapse
Affiliation(s)
- Guan Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Luwei Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Akihide Sugawara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
45
|
Yao G, Xia B, Wei F, Wang J, Yang Y, Ma S, Ke W, Li T, Cheng X, Wen L, Long YT, Gao Z. Glycan Sequencing Based on Glycosidase-Assisted Nanopore Sensing. J Am Chem Soc 2025; 147:1721-1731. [PMID: 39745005 DOI: 10.1021/jacs.4c12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanopores are promising sensors for glycan analysis with the accurate identification of complex glycans laying the foundation for nanopore-based sequencing. However, their applicability toward continuous glycan sequencing has not yet been demonstrated. Here, we present a proof-of-concept of glycan sequencing by combining nanopore technology with glycosidase-hydrolyzing reactions. By continuously monitoring the changes in the characteristic current generated by the translocation of glycan hydrolysis products through a nanopore, the glycan sequence can be accurately identified based on the specificity of glycosidases. With machine learning, we improved the sequencing accuracy to over 98%, allowing for the reliable determination of consecutive building blocks and glycosidic linkages of glycan chains while reducing the need for operator expertise. This approach was validated on real glycan samples, with accuracy calibrated using hydrophilic interaction chromatography-high-performance liquid chromatography (HILIC-HPLC) and mass spectrometry (MS). We achieved the sequencing of ten consecutive units in natural glycan chains, which provided the first evidence for the feasibility of a nanopore-glycosidase-compatible system in glycan sequencing. Compared to traditional methods, this strategy enhances sequencing efficiency by over 5-fold. Additionally, we introduced the concept of 'inverse sequencing', which focuses on electrical signal changes rather than monosaccharide identification. This eliminates the reliance on glycan fingerprint libraries typically required in putative 'forward hydrolysis' strategies. When the challenges in both 'forward and inverse hydrolysis sequencing strategies' are addressed, this approach will pave the way for establishing a glycan sequencing technology at a single-molecule level.
Collapse
Affiliation(s)
- Guangda Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyu Wei
- University of Chinese Academy of Sciences, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiahong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuting Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengzhou Ma
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiehai Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 330106, China
| | - Liuqing Wen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi-Tao Long
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
46
|
Usama M, Hsu YC, Safaei M, Chen CY, Han KH, Ho YS, Yamaguchi H, Li YC, Hung MC, Wong CH, Lin CW. Antibody-drug conjugates targeting SSEA-4 inhibits growth and migration of SSEA-4 positive breast cancer cells. Cancer Lett 2025; 611:217453. [PMID: 39798832 DOI: 10.1016/j.canlet.2025.217453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Although breast cancer treatment has evolved significantly in recent years, drug resistance remains a major challenge. To identify new targets for breast cancer, we found that stage-specific embryonic antigen 4 (SSEA-4) is expressed in all subtypes of breast cancer cell lines, and the increased expression of the associated enzymes β3GalT5 and ST3Gal2 correlates with poor recurrence-free survival (RFS) in breast cancer. We also found that SSEA-4 antibodies can be rapidly internalized into breast cancer cells, a property that makes SSEA-4 an attractive target for antibody-drug conjugates (ADCs). Furthermore, the SSEA-4 antibody conjugated to the anticancer agents showed efficacy against SSEA-4-positive breast cancer cells, including those resistant to PARP inhibitor, trastuzumab, and CDK7 inhibitor. In addition, SSEA-4 ADCs showed no efficacy in β3GalT5-knockout MDA-MB-231 cells, highlighting the essential role of SSEA-4 as the target antigen for ADCs activity. Our work shows that SSEA-4-ADCs could be a therapeutic option for breast cancers.
Collapse
Affiliation(s)
- Muhammad Usama
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Yu-Chieh Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Mahdieh Safaei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, 34054, Daejeon, Republic of Korea
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Cell Biology, China Medical University, Taichung, 406040, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406040, Taiwan
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chih-Wei Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
47
|
Liu Q, Xing H, Xiong M, Zhang XB. Specifically Editing Cancer Sialoglycans for Enhanced In Vivo Immunotherapy through Aptamer-Enzyme Chimeras. Angew Chem Int Ed Engl 2025; 64:e202414327. [PMID: 39324841 DOI: 10.1002/anie.202414327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint blockade (ICB) therapies have demonstrated remarkable clinical success in treating cancer. However, their objective response rate remains suboptimal because current therapies rely on limited immune checkpoints that fail to cover the multiple immune evasion pathways of cancer. To explore potential ICB strategies, we propose a glycoimmune checkpoint elimination (glycoICE) therapy based on targeted editing of sialoglycans on the tumor cell surface using an aptamer-enzyme chimera (ApEC). The ApEC can be readily generated via a one-step bioorthogonal procedure, allowing for large-scale and uniform production. It specifically targets and desialylates cancer cells, disrupting the sialoglycan-Siglec axis to activate immune cells and enhance immunotherapy efficacy, while its high tumor selectivity minimizes side effects from indiscriminate desialylation of normal tissues. Furthermore, the ApEC has the potential to be a versatile platform for specific editing of sialoglycans in different tumor models by adjusting the aptamer sequences to target specific protein markers. This research not only introduces a novel molecular tool for the effective editing of sialoglycans in complex environments, but also provides valuable insights for advancing DNA-based drugs towards in vivo and clinical applications.
Collapse
Affiliation(s)
- Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
48
|
Fritsche S, Möckl L. A framework for the simulation of individual glycan coordinates to analyze spatial relationships within the glycocalyx. Front Cell Dev Biol 2025; 12:1519831. [PMID: 39839671 PMCID: PMC11747212 DOI: 10.3389/fcell.2024.1519831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
The glycocalyx is a dense and dynamic layer of glycosylated species that covers every cell in the human body. It plays crucial roles in various cellular processes in health and disease, such as cancer immune evasion, cancer immune therapy, blastocyst implantation, and functional attenuation of membrane protein diffusion. In addition, alterations in glycocalyx structure may play an important role in ocular surface diseases, e.g., dry eye disease. Despite the emerging importance of the glycocalyx, various aspects of its functional organization remain elusive to date. A central reason for this elusiveness is the nanoscale dimension of the glycocalyx in conjunction with its high structural complexity, which is not accessible to observation with conventional light microscopy. Recent advances in super-resolution microscopy have enabled resolutions down to the single-digit nanometer range. In order to fully leverage the potential of these novel methods, computational frameworks that allow for contextualization of the resulting experimental data are required. Here, we present a simulation-based approach to analyze spatial relationships of glycan components on the cell membrane based on known geometrical parameters. We focus on sialic acids in this work, but the technique can be adapted to any glycan component of interest. By integrating data from mass spectrometry and quantitative biological studies, these simulations aim to model possible experimental outcomes, which can then be used for further analysis, such as spatial point statistics. Importantly, we include various experimental considerations, such as labeling and detection efficiency. This approach may contribute to establishing a new standard of connection between geometrical and molecular-resolution data in service of advancing our understanding of the functional role of the glycocalyx in biology as well as its clinical potential.
Collapse
Affiliation(s)
- Sarah Fritsche
- Department of Physics, Faculty of Sciences, FAU Erlangen-Nuremberg, Erlangen, Germany
- Max Plank Institute for the Science of Light, Erlangen, Germany
| | - Leonhard Möckl
- Department of Physics, Faculty of Sciences, FAU Erlangen-Nuremberg, Erlangen, Germany
- Max Plank Institute for the Science of Light, Erlangen, Germany
- Department of Medicine/CITABLE, FAU Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
49
|
Jiang W, Liu M, Su T, Jin Y, Ling Y, Liu CH, Tang H, Wu D, Zhang Y. GlycoPCT: Pressure Cycling Technology-Based Quantitative Glycoproteomics Reveals Distinctive N-Glycosylation in Human Liver Biopsy Samples of Nonalcoholic Fatty Liver Disease. J Proteome Res 2025; 24:202-209. [PMID: 39600157 DOI: 10.1021/acs.jproteome.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein N-glycosylation is vital in the human liver and influences functions such as lipid metabolism, apoptosis, and inflammation. However, site-specific N-glycosylation patterns and variations in liver biopsy samples between healthy individuals and those with nonalcoholic fatty liver disease (NAFLD) remain incompletely characterized, primarily due to the limitations of current clinical glycoproteomic methods, including a large demand for clinical samples, low efficiency of tissue protein extraction, and a low recovery rate of intact N-glycopeptides (IGPs). To address this issue, we developed GlycoPCT, a quantitative glycoproteomic method based on pressure cycling technology. It enables efficient recovery of IGPs and accurate analysis of trace liver biopsy samples. Our research revealed a total of 4,459 unique IGPs and 361 glycans from 758 glycoproteins. High-mannose type, complex type, fucosylation type, and sialylation type N-glycans were significantly upregulated in the NAFLD group (p < 0.001, t test). Notably, we also identified 182 upregulated IGPs from 67 proteins (p < 0.05, FC > 1.50) and 108 downregulated IGPs from 44 proteins (p < 0.05, FC < 0.67) in the NAFLD group. Furthermore, we highlighted an essential acute phase glycoprotein, alpha-1-acid glycoprotein 1 (A1TA), which is synthesized in the liver and plays a significant role in NAFLD progression. These novel glyco-signatures provide crucial clues for the diagnosis and pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youmei Jin
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Ling
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Liu
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Center of Infectious Diseases and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Lavrador P, Moura BS, Almeida-Pinto J, Gaspar VM, Mano JF. Engineered nascent living human tissues with unit programmability. NATURE MATERIALS 2025; 24:143-154. [PMID: 39117911 DOI: 10.1038/s41563-024-01958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/25/2024] [Indexed: 08/10/2024]
Abstract
Leveraging human cells as materials precursors is a promising approach for fabricating living materials with tissue-like functionalities and cellular programmability. Here we describe a set of cellular units with metabolically engineered glycoproteins that allow cells to tether together to function as macrotissue building blocks and bioeffectors. The generated human living materials, termed as Cellgels, can be rapidly assembled in a wide variety of programmable three-dimensional configurations with physiologically relevant cell densities (up to 108 cells per cm3), tunable mechanical properties and handleability. Cellgels inherit the ability of living cells to sense and respond to their environment, showing autonomous tissue-integrative behaviour, mechanical maturation, biological self-healing, biospecific adhesion and capacity to promote wound healing. These living features also enable the modular bottom-up assembly of multiscale constructs, which are reminiscent of human tissue interfaces with heterogeneous composition. This technology can potentially be extended to any human cell type, unlocking the possibility for fabricating living materials that harness the intrinsic biofunctionalities of biological systems.
Collapse
Affiliation(s)
- Pedro Lavrador
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Beatriz S Moura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - José Almeida-Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|