1
|
Minami A, Asai T, Tachibana T, Tanaka Y, Nakajima M, Tamura S, Nakazawa M, Tsuru Y, Fujiyama Y, Tagawa YI, Kuzuyama T, Kakuta S, Ogawa T. Establishment of the improved colonization of Escherichia coli laboratory strain in the intestine mediated by single gene deletion. Biochem Biophys Res Commun 2024; 734:150448. [PMID: 39094368 DOI: 10.1016/j.bbrc.2024.150448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
In light of the emerging importance of the gut microbiome in human health, there is a need to improve the colonization efficiency of therapeutic bacteria called probiotics. Despite their recognized potential, artificially administered bacteria exhibit poor colonization in the intestine, limiting their therapeutic efficacy. Addressing this challenge requires innovative strategies; however, reported examples are limited. In nature, including in the intestinal tract, bacteria live via biofilm formation. Recently, it has been reported that RNase I, a member of the RNase T2 family conserved among almost all species, including bacteria, inhibits biofilm formation in Escherichia coli. In this study, we focus on these results and investigate the relationship between high biofilm formation and intestinal attachment using a non-settling E. coli laboratory strain as a probiotic model. The intestinal colonization abilities were evaluated through a microfluidic device mimicking the intestinal tract and through oral administration to mice. The in vitro and in vivo experiments showed that the E. coli strain lacking RNase I exhibited remarkable stability in intestinal colonization. We investigated the observation of colonization using fluorescence in situ hybridization, and inoculated E. coli cells were aggregated with the gut microbiome in the cecum and colon. This study proposes a technique to improve the intestinal colonization of bacteria by simply manipulating a single gene disruption, and it is expected to contribute to future research on the colonization of useful bacteria.
Collapse
Affiliation(s)
- Atsushi Minami
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Asai
- Department of Veterinary Medical Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tsuyoshi Tachibana
- Department of Veterinary Medical Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu Tanaka
- Department of Veterinary Medical Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Mitsuyuki Nakajima
- Department of Veterinary Medical Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shiori Tamura
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Morihiro Nakazawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yoshiharu Tsuru
- Life Science Laboratory, Primetech Corporation, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoichi Fujiyama
- Technology Research Laboratory, Shimadzu Corporation, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Yoh-Ichi Tagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tomohisa Kuzuyama
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute of Innovative Microbiology, The University of Tokyo, Japan
| | - Shigeru Kakuta
- Department of Veterinary Medical Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute of Innovative Microbiology, The University of Tokyo, Japan; Research Center for Food Safety, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute of Innovative Microbiology, The University of Tokyo, Japan.
| |
Collapse
|
2
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
3
|
Jandl B, Dighe S, Baumgartner M, Makristathis A, Gasche C, Muttenthaler M. Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies. Gastroenterology 2024; 167:1098-1112.e5. [PMID: 38876174 DOI: 10.1053/j.gastro.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Valiei A, Dickson AM, Aminian-Dehkordi J, Mofrad MRK. Bacterial community dynamics as a result of growth-yield trade-off and multispecies metabolic interactions toward understanding the gut biofilm niche. BMC Microbiol 2024; 24:441. [PMID: 39472801 PMCID: PMC11523853 DOI: 10.1186/s12866-024-03566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Bacterial communities are ubiquitous, found in natural ecosystems, such as soil, and within living organisms, like the human microbiome. The dynamics of these communities in diverse environments depend on factors such as spatial features of the microbial niche, biochemical kinetics, and interactions among bacteria. Moreover, in many systems, bacterial communities are influenced by multiple physical mechanisms, such as mass transport and detachment forces. One example is gut mucosal communities, where dense, closely packed communities develop under the concurrent influence of nutrient transport from the lumen and fluid-mediated detachment of bacteria. In this study, we model a mucosal niche through a coupled agent-based and finite-volume modeling approach. This methodology enables us to model bacterial interactions affected by nutrient release from various sources while adjusting individual bacterial kinetics. We explored how the dispersion and abundance of bacteria are influenced by biochemical kinetics in different types of metabolic interactions, with a particular focus on the trade-off between growth rate and yield. Our findings demonstrate that in competitive scenarios, higher growth rates result in a larger share of the niche space. In contrast, growth yield plays a critical role in neutralism, commensalism, and mutualism interactions. When bacteria are introduced sequentially, they cause distinct spatiotemporal effects, such as deeper niche colonization in commensalism and mutualism scenarios driven by species intermixing effects, which are enhanced by high growth yields. Moreover, sub-ecosystem interactions dictate the dynamics of three-species communities, sometimes yielding unexpected outcomes. Competitive, fast-growing bacteria demonstrate robust colonization abilities, yet they face challenges in displacing established mutualistic systems. Bacteria that develop a cooperative relationship with existing species typically obtain niche residence, regardless of their growth rates, although higher growth yields significantly enhance their abundance. Our results underscore the importance of bacterial niche dynamics in shaping community properties and succession, highlighting a new approach to manipulating microbial systems.
Collapse
Affiliation(s)
- Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Andrew M Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Yu LCH. Gastrointestinal pathophysiology in long COVID: Exploring roles of microbiota dysbiosis and serotonin dysregulation in post-infectious bowel symptoms. Life Sci 2024; 358:123153. [PMID: 39454992 DOI: 10.1016/j.lfs.2024.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered an unprecedented public health crisis known as the coronavirus disease 2019 (COVID-19) pandemic. Gastrointestinal (GI) symptoms develop in patients during acute infection and persist after recovery from airway distress in a chronic form of the disease (long COVID). A high incidence of irritable bowel syndrome (IBS) manifested by severe abdominal pain and defecation pattern changes is reported in COVID patients. Although COVID is primarily considered a respiratory disease, fecal shedding of SARS-CoV-2 antigens positively correlates with bowel symptoms. Active viral infection in the GI tract was identified by human intestinal organoid studies showing SARS-CoV-2 replication in gut epithelial cells. In this review, we highlight the key findings in post-COVID bowel symptoms and explore possible mechanisms underlying the pathophysiology of the illness. These mechanisms include mucosal inflammation, gut barrier dysfunction, and microbiota dysbiosis during viral infection. Viral shedding through the GI route may be the primary factor causing the alteration of the microbiome ecosystem, particularly the virome. Recent evidence in experimental models suggested that microbiome dysbiosis could be further aggravated by epithelial barrier damage and immune activation. Moreover, altered microbiota composition has been associated with dysregulated serotonin pathways, resulting in intestinal nerve hypersensitivity. These mechanisms may explain the development of post-infectious IBS-like symptoms in long COVID. Understanding how coronavirus infection affects gut pathophysiology, including microbiome changes, would benefit the therapeutic advancement for managing post-infectious bowel symptoms.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Valiei A, Dickson A, Aminian-Dehkordi J, Mofrad MRK. Metabolic interactions shape emergent biofilm structures in a conceptual model of gut mucosal bacterial communities. NPJ Biofilms Microbiomes 2024; 10:99. [PMID: 39358363 PMCID: PMC11447261 DOI: 10.1038/s41522-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The gut microbiome plays a major role in human health; however, little is known about the structural arrangement of microbes and factors governing their distribution. In this work, we present an in silico agent-based model (ABM) to conceptually simulate the dynamics of gut mucosal bacterial communities. We explored how various types of metabolic interactions, including competition, neutralism, commensalism, and mutualism, affect community structure, through nutrient consumption and metabolite exchange. Results showed that, across scenarios with different initial species abundances, cross-feeding promotes species coexistence. Morphologically, competition and neutralism resulted in segregation, while mutualism and commensalism fostered high intermixing. In addition, cooperative relations resulted in community properties with little sensitivity to the selective uptake of metabolites produced by the host. Moreover, metabolic interactions strongly influenced colonization success following the invasion of newcomer species. These results provide important insights into the utility of ABM in deciphering complex microbiome patterns.
Collapse
Affiliation(s)
- Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Andrew Dickson
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Jian C, Yinhang W, Jing Z, Zhanbo Q, Zefeng W, Shuwen H. Escherichia coli on colorectal cancer: A two-edged sword. Microb Biotechnol 2024; 17:e70029. [PMID: 39400440 PMCID: PMC11472651 DOI: 10.1111/1751-7915.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.
Collapse
Affiliation(s)
- Chu Jian
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wu Yinhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Zhuang Jing
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wang Zefeng
- Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
- ASIR (Institute ‐ Association of intelligent systems and robotics)Rueil‐MalmaisonFrance
| |
Collapse
|
8
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
9
|
Hong BY, Chhaya A, Robles A, Cervantes J, Tiwari S. The role of Fusobacterium nucleatum in the pathogenesis of colon cancer. J Investig Med 2024:10815589241277829. [PMID: 39175147 DOI: 10.1177/10815589241277829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Previously, many studies have reported changes in the gut microbiota of patients with colorectal cancer (CRC). While CRC is a well-described disease, the relationship between its development and features of the intestinal microbiome is still being understood. Evidence linking Fusobacterium nucleatum enrichment in colorectal tumor tissue has prompted the elucidation of various molecular mechanisms and tumor-promoting attributes. In this review we highlight various aspects of our understanding of the relationship between the development of CRC and the alteration of intestinal microbiome, focusing specifically on the role of F. nucleatum. As the amount of F. nucleatum DNA in CRC tissue is associated with shorter survival, it may potentially serve as a prognostic biomarker, and most importantly may open the door for a role in CRC treatment.
Collapse
Affiliation(s)
- Bo-Young Hong
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ajay Chhaya
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alejandro Robles
- Department of Internal Medicine, Division of Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Jorge Cervantes
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sangeeta Tiwari
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
10
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Ling J, Hryckowian AJ. Re-framing the importance of Group B Streptococcus as a gut-resident pathobiont. Infect Immun 2024; 92:e0047823. [PMID: 38436256 PMCID: PMC11392526 DOI: 10.1128/iai.00478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterial species that causes disease in humans across the lifespan. While antibiotics are used to mitigate GBS infections, it is evident that antibiotics disrupt human microbiomes (which can predispose people to other diseases later in life), and antibiotic resistance in GBS is on the rise. Taken together, these unintended negative impacts of antibiotics highlight the need for precision approaches for minimizing GBS disease. One possible approach involves selectively depleting GBS in its commensal niches before it can cause disease at other body sites or be transmitted to at-risk individuals. One understudied commensal niche of GBS is the adult gastrointestinal (GI) tract, which may predispose colonization at other body sites in individuals at risk for GBS disease. However, a better understanding of the host-, microbiome-, and GBS-determined variables that dictate GBS GI carriage is needed before precise GI decolonization approaches can be developed. In this review, we synthesize current knowledge of the diverse body sites occupied by GBS as a pathogen and as a commensal. We summarize key molecular factors GBS utilizes to colonize different host-associated niches to inform future efforts to study GBS in the GI tract. We also discuss other GI commensals that are pathogenic in other body sites to emphasize the broader utility of precise de-colonization approaches for mitigating infections by GBS and other bacterial pathogens. Finally, we highlight how GBS treatments could be improved with a more holistic understanding of GBS enabled by continued GI-focused study.
Collapse
Affiliation(s)
- Joie Ling
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Healthon, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Healthon, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Retuerto M, Al-Shakhshir H, Herrada J, McCormick TS, Ghannoum MA. Analysis of Gut Bacterial and Fungal Microbiota in Children with Autism Spectrum Disorder and Their Non-Autistic Siblings. Nutrients 2024; 16:3004. [PMID: 39275319 PMCID: PMC11396985 DOI: 10.3390/nu16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.
Collapse
Affiliation(s)
- Mauricio Retuerto
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hilmi Al-Shakhshir
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Janet Herrada
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahmoud A Ghannoum
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Medical Mycology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
DeMichele E, Buret AG, Taylor CT. Hypoxia-inducible factor-driven glycolytic adaptations in host-microbe interactions. Pflugers Arch 2024; 476:1353-1368. [PMID: 38570355 PMCID: PMC11310250 DOI: 10.1007/s00424-024-02953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Mammalian cells utilize glucose as a primary carbon source to produce energy for most cellular functions. However, the bioenergetic homeostasis of cells can be perturbed by environmental alterations, such as changes in oxygen levels which can be associated with bacterial infection. Reduction in oxygen availability leads to a state of hypoxia, inducing numerous cellular responses that aim to combat this stress. Importantly, hypoxia strongly augments cellular glycolysis in most cell types to compensate for the loss of aerobic respiration. Understanding how this host cell metabolic adaptation to hypoxia impacts the course of bacterial infection will identify new anti-microbial targets. This review will highlight developments in our understanding of glycolytic substrate channeling and spatiotemporal enzymatic organization in response to hypoxia, shedding light on the integral role of the hypoxia-inducible factor (HIF) during host-pathogen interactions. Furthermore, the ability of intracellular and extracellular bacteria (pathogens and commensals alike) to modulate host cellular glucose metabolism will be discussed.
Collapse
Affiliation(s)
- Emily DeMichele
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Cormac T Taylor
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Liu Y, Li K, Zhuang W, Liang L, Chen X, Yu D. Tetrahedral framework nucleic acid-based small-molecule inhibitor delivery for ecological prevention of biofilm. Cell Prolif 2024; 57:e13678. [PMID: 38812355 PMCID: PMC11503243 DOI: 10.1111/cpr.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Biofilm formation constitutes the primary cause of various chronic infections, such as wound infections, gastrointestinal inflammation and dental caries. While preliminary achievement of biofilm inhibition is possible, the challenge lies in the difficulty of eliminating the bactericidal effects of current drugs that lead to microbiota imbalance. This study, utilizing in vitro and in vivo models of dental caries, aims to efficiently inhibit biofilm formation without inducing bactericidal effects, even against pathogenic bacteria. The tetrahedral framework nucleic acid (tFNA) was employed as a delivery vector for a small-molecule inhibitor (smI) specifically targeting the activity of glucosyltransferases C (GtfC). It was observed that tFNA loaded smI in a small-groove binding manner, efficiently transferring it into Streptococcus mutans, thereby inhibiting GtfC activity and extracellular polymeric substances formation without compromising bacterial survival. Furthermore, smI-loaded tFNA demonstrated a reduction in the severity of dental caries in vivo without adversely affecting oral microbial diversity and exhibited desirable topical and systemic biosafety. This study emphasizes the concept of 'ecological prevention of biofilm', which is anticipated to advance the optimization of biofilm prevention strategies and the clinical application of DNA nanocarrier-based drug formulations.
Collapse
Affiliation(s)
- Yuhao Liu
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Kechen Li
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Weijie Zhuang
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Lulu Liang
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
- Guangzhou Development District Hospital, Chinese Association of Medicinal BiotechnologySouthern Center of Biology Diagnosis and TherapyGuangzhouChina
| | - Xiangyi Chen
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| | - Dongsheng Yu
- Hospital of Stomatology, Guangdong Provincial Clinical Research Center of Oral Diseases, Guangdong Provincial Key Laboratory of Stomatology, Guangdong Key Laboratory for Dental Disease Prevention and ControlSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
15
|
Zhang T, Xiao Y, Wang H, Zhu J, Lu W, Zhang H, Chen W. Construction and characterization of stable multi-species biofilms formed by nine core gut bacteria on wheat fiber. Food Funct 2024; 15:8674-8688. [PMID: 39082112 DOI: 10.1039/d4fo01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Microbial aggregation mainly occurs on the intestinal epithelium, mucosal layer and undigested food particles in the gastrointestinal tract (GIT). Undigested food particles are usually insoluble dietary fiber (IDF), which can be easily obtained through daily diet, but there are few studies investigating whether the gut bacteria adhering to undigested food particles can form multi-species biofilms. In this study, we prepared mono- and multi-species biofilms using 18 core gut bacteria via a dynamic fermentation method, and it was found that multi-species composed of nine core gut bacteria (M9) showed the best biofilm formation ability. Cell counts of the nine bacteria in multi-species biofilms were 9.36, 11.85, 10.17, 9.93, 12.88, 11.39, 10.089, 9.06, and 13.21 Log10 CFU mL-1. M9 was tightly connected and regularly stacked on wheat fiber and had larger particle sizes than mono-species biofilms. M9 retained biofilm formation ability under pH and bile salt stresses. A human feces invasion experiment demonstrated that M9 can stably adhere to wheat fiber under the interference of complex gut bacteria, and the M9 multi-species biofilm had positions that can be filled by various gut bacteria. Metabolome results indicated that the M9 multi-species biofilm had more metabolic productions and more complex interspecies interactions than mono-species biofilms. This study provides a dynamic fermentation method to prepare multi-species biofilms on wheat fiber in vitro. It will also offer a research basis for clarifying whether gut bacteria can utilize IDF to form biofilm structures in vivo and the possible interspecific interactions and physiological functions of bacteria in biofilms.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
16
|
Motta EVS, de Jong TK, Gage A, Edwards JA, Moran NA. Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria. Appl Environ Microbiol 2024; 90:e0051524. [PMID: 39012136 PMCID: PMC11337805 DOI: 10.1128/aem.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tyler K. de Jong
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Joseph A. Edwards
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
17
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
18
|
Eghbalpoor F, Gorji M, Alavigeh MZ, Moghadam MT. Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon 2024; 10:e35666. [PMID: 39170521 PMCID: PMC11336853 DOI: 10.1016/j.heliyon.2024.e35666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.
Collapse
Affiliation(s)
- Fatemeh Eghbalpoor
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdieh Gorji
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Zamani Alavigeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Liu S, Li Y, Xu H, Kearns DB, Wu Y. Active interface bulging in Bacillus subtilis swarms promotes self-assembly and biofilm formation. Proc Natl Acad Sci U S A 2024; 121:e2322025121. [PMID: 39052827 PMCID: PMC11295035 DOI: 10.1073/pnas.2322025121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Microbial communities such as biofilms are commonly found at interfaces. However, it is unclear how the physical environment of interfaces may contribute to the development and behavior of surface-associated microbial communities. Combining multimode imaging, single-cell tracking, and numerical simulations, here, we found that activity-induced interface bulging promotes colony biofilm formation in Bacillus subtilis swarms presumably via segregation and enrichment of sessile cells in the bulging area. Specifically, the diffusivity of passive particles is ~50% lower inside the bulging area than elsewhere, which enables a diffusion-trapping mechanism for self-assembly and may account for the enrichment of sessile cells. We also uncovered a quasilinear relation between cell speed and surface-packing density that underlies the process of active interface bulging. Guided by the speed-density relation, we demonstrated reversible formation of liquid bulges by manipulating the speed and local density of cells with light. Over the course of development, the active bulges turned into striped biofilm structures, which eventually give rise to a large-scale ridge pattern. Our findings reveal a unique physical mechanism of biofilm formation at air-solid interface, which is pertinent to engineering living materials and directed self-assembly in active fluids.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Ye Li
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, China
| | - Haoran Xu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, IN47405-7005
| | - Yilin Wu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
21
|
Wang B, Chen Y, Ye Z, Yu H, Chan KF, Xu T, Guo Z, Liu W, Zhang L. Low-Friction Soft Robots for Targeted Bacterial Infection Treatment in Gastrointestinal Tract. CYBORG AND BIONIC SYSTEMS 2024; 5:0138. [PMID: 38975252 PMCID: PMC11223897 DOI: 10.34133/cbsystems.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Untethered and self-transformable miniature robots are capable of performing reconfigurable deformation and on-demand locomotion, which aid the traversal toward various lumens, and bring revolutionary changes for targeted delivery in gastrointestinal (GI) tract. However, the viscous non-Newtonian liquid environment and plicae gastricae obstacles severely hamper high-precision actuation and payload delivery. Here, we developed a low-friction soft robot by assembly of densely arranged cone structures and grafting of hydrophobic monolayers. The magnetic orientation encoded robot can move in multiple modes, with a substantially reduced drag, terrain adaptability, and improved motion velocity across the non-Newtonian liquids. Notably, the robot stiffness can be reversibly controlled with magnetically induced hardening, enabling on-site scratching and destruction of antibiotic-ineradicable polymeric matrix in biofilms with a low-frequency magnetic field. Furthermore, the magnetocaloric effect can be utilized to eradicate the bacteria by magnetocaloric effect under high-frequency alternating field. To verify the potential applications inside the body, the clinical imaging-guided actuation platforms were developed for vision-based control and delivery of the robots. The developed low-friction robots and clinical imaging-guided actuation platforms show their high potential to perform bacterial infection therapy in various lumens inside the body.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Yunrui Chen
- College of Chemistry and Environmental Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Haidong Yu
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials,
Guangxi University, Nanning 530004, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine,
The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials,
Hubei University, Wuhan 430062, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,
Chinese Academy of Science, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,
Chinese Academy of Science, Lanzhou 730000, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering,
The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
22
|
Zhang Y, Miao D, Su M, Tang Y, Zhou M, Yu Y, Guo X, Wu D. Synergistic Drug-Loaded Shear-Thinning Star Polymer Hydrogel Facilitates Gastrointestinal Lesion Resection and Promotes Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309586. [PMID: 38686448 PMCID: PMC11234439 DOI: 10.1002/advs.202309586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Easy injection, long-lasting barrier, and drug loading are the critical properties of submucosal injection materials for endoscopic surgery. However, conventional injectable polymers face challenges in simultaneously attaining these properties due to the inherent conflict between injectability and in situ stability. Here, a multi-arm star polymer hydrogel (denoted as βCP hydrogel) with long-lasting submucosal barrier (exceeding 120 min), rapid hemostasis, and sustained antibacterial properties is successfully developed by grafting poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) side-chains from β-CD via atom transfer radical polymerization (ATRP). During the onset of shearing, βCP hydrogel experiences the unwinding of polymer side-chains between neighboring star polymers, which facilitates the process of endoscopic injectability. After submucosal injection, βCP hydrogel undergoes the winding of polymer side-chains, thereby establishing a long-lasting barrier cushion. Meanwhile, owing to its distinctive structures with a hydrophobic inner cavity and an outer layer of hydrophilic polymer side-chains, βCP hydrogel enables simultaneous loading and on-demand release of diverse categories of drugs. This unique performance can adapt to the diverse demands during different stages of wound healing in a porcine endoscopic surgery model. These results indicate an appealing prospect for new application of star polymers as a good submucosal injection material in endoscopic treatments.
Collapse
Affiliation(s)
- Yue Zhang
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Dongtian Miao
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Mingli Su
- Department of General Surgery (Endoscopic Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterKey Laboratory of Human Microbiome and Chronic Diseases (Sun Yat‐sen University)Ministry of EducationGuangzhou510655P. R. China
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Yinxiang Tang
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Minghong Zhou
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Yang Yu
- Department of General Surgery (Colorectal Surgery)Guangdong Institute of GastroenterologyBiomedical Innovation CenterGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Xuefeng Guo
- Department of General Surgery (Endoscopic Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterKey Laboratory of Human Microbiome and Chronic Diseases (Sun Yat‐sen University)Ministry of EducationGuangzhou510655P. R. China
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Dingcai Wu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
23
|
Condado Huerta MCC, Antunez-Mojica M, Martínez Plascencia H, Barrera Molina AI. [Agave fructanos promote in vitro biofilm formation with a probiotic consortium Lactobacillus delbrueckii ssp. lactis, L. delbrueckii ssp. bulgaricus and Streptococcus thermophilus]. Rev Argent Microbiol 2024; 56:322-328. [PMID: 38575495 DOI: 10.1016/j.ram.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 04/06/2024] Open
Abstract
In recent years the relationship between the intestinal microbiota, the host and chronic non-communicable diseases has brought interest into the study of its formation and maintenance in the host. Lactic acid bacteria (BAL) are Gram-positive bacteria with probiotic activity, which have been associated with many health benefits, such as decreased body fat mass and lower risk of type II diabetes mellitus. One of the main colonization mechanisms and bacteria survival strategies is the production of biofilms and the use of prebiotics as substrates to achieve a balance within intestinal microbiota. However, there is not enough evidence to demonstrate the biofilm formation in the presence of agave fructans (AF). This study aimed to evaluate in vitro the biofilm formation in a consortium of lactic acid bacteria: Lactobacillus delbrueckii ssp. lactis, Lactobacillus delbrueckii ssp. bulgaricus y Streptococcus thermophilus in the presence of AF at different concentrations: 0%, 0,1%, 4%, 8% y 16%. The addition of 0,1% of AF correlates with the best capacity for biofilm formation. The findings imply the possibility of modulating the biofilm formation of lactic acid bacteria with AF. These results can contribute positively to the host, by generating intestinal homeostasis, colonization resistance, stability to food digestion and chemical modifications of drugs and carry out beneficial functions to the health.
Collapse
Affiliation(s)
| | - Mayra Antunez-Mojica
- CONACYT-Centro de Investigaciones Químicas-Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Morelos, México
| | | | | |
Collapse
|
24
|
Herren R, Geva-Zatorsky N. Spatial features of skip lesions in Crohn's disease. Trends Immunol 2024; 45:470-481. [PMID: 38782626 DOI: 10.1016/j.it.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Skip lesions are an enigmatic spatial feature characterizing Crohn's disease (CD). They comprise inflamed and adjacent non-inflamed tissue sections with a clear demarcation. Currently, spatial features of the human gastrointestinal (GI) system lack clarity regarding the organization of microbes, mucus, tissue, and host cells during inflammation. New technologies with multiplexing abilities and innovative approaches provide ways of examining the spatial organization of inflamed and non-inflamed tissues in CD, which may open new avenues for diagnosis, prognosis, and treatment. In this review, we present evidence of the relevance of spatial context in patients with CD and the methods and ideas recently published in studies of spatiality during inflammation. With this review, we aim to provide inspiration for further research to address existing gaps.
Collapse
Affiliation(s)
- Rachel Herren
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel; CIFAR, MaRS Centre, West Tower 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
25
|
Fernández-Calvet A, Matilla-Cuenca L, Izco M, Navarro S, Serrano M, Ventura S, Blesa J, Herráiz M, Alkorta-Aranburu G, Galera S, Ruiz de Los Mozos I, Mansego ML, Toledo-Arana A, Alvarez-Erviti L, Valle J. Gut microbiota produces biofilm-associated amyloids with potential for neurodegeneration. Nat Commun 2024; 15:4150. [PMID: 38755164 PMCID: PMC11099085 DOI: 10.1038/s41467-024-48309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.
Collapse
Affiliation(s)
- Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Miriam Serrano
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria, HM Hospitales, Madrid, Spain
| | - Maite Herráiz
- Department of Gastroenterology, Clínica Universitaria and Medical School, University of Navarra, Navarra, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Alkorta-Aranburu
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Sergio Galera
- Department of Personalized Medicine, NASERTIC, Government of Navarra, Pamplona, Spain
| | | | - María Luisa Mansego
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB). CSIC-Gobierno de Navarra, Avenida Pamplona 123, Mutilva, 31192, Spain.
| |
Collapse
|
26
|
Ma T, Rothschild J, Halabeya F, Zilman A, Milstein JN. Mechanics limits ecological diversity and promotes heterogeneity in confined bacterial communities. Proc Natl Acad Sci U S A 2024; 121:e2322321121. [PMID: 38728226 PMCID: PMC11098131 DOI: 10.1073/pnas.2322321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Jeremy Rothschild
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Faisal Halabeya
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
| | - Joshua N. Milstein
- Department of Physics, University of Toronto, Toronto, ONM5S 3J1, Canada
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, ONL5L 1C6, Canada
| |
Collapse
|
27
|
Lopes AA, Vendrell-Fernández S, Deschamps J, Georgeault S, Cokelaer T, Briandet R, Ghigo JM. Bile-induced biofilm formation in Bacteroides thetaiotaomicron requires magnesium efflux by an RND pump. mBio 2024; 15:e0348823. [PMID: 38534200 PMCID: PMC11078008 DOI: 10.1128/mbio.03488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.
Collapse
Affiliation(s)
- Anne-Aurélie Lopes
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
- Pediatric Emergency, AP-HP, Necker-Enfants-Malades University Hospital, Paris, France
| | - Sol Vendrell-Fernández
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| | - Julien Deschamps
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Sonia Georgeault
- Plateforme IBiSA des Microscopies, Université et CHRU de Tours, Tours, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Center for Technological Resources and Research, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Center for Technological Resources and Research, Paris, France
| | - Romain Briandet
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| |
Collapse
|
28
|
Dey P. Good girl goes bad: Understanding how gut commensals cause disease. Microb Pathog 2024; 190:106617. [PMID: 38492827 DOI: 10.1016/j.micpath.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
This review examines the complex connection between commensal microbiota and the development of opportunistic infections. Several underlying conditions, such as metabolic diseases and weakened immune systems, increase the vulnerability of patients to opportunistic infections. The increasing antibiotic resistance adds significant complexity to the management of infectious diseases. Although commensals have long been considered beneficial, recent research contradicts this notion by uncovering chronic illnesses linked to atypical pathogens or commensal bacteria. This review examines conditions in which commensal bacteria, which are usually beneficial, contribute to developing diseases. Commensals' support for opportunistic infections can be categorized based on factors such as colonization fitness, pathoadaptive mutation, and evasion of host immune response. Individuals with weakened immune systems are especially susceptible, highlighting the importance of mucosal host-microbiota interaction in promoting infection when conditions are inappropriate. Dysregulation of gut microbial homeostasis, immunological modulation, and microbial interactions are caused by several factors that contribute to the development of chronic illnesses. Knowledge about these mechanisms is essential for developing preventive measures, particularly for susceptible populations, and emphasizes the importance of maintaining a balanced gut microbiota in reducing the impact of opportunistic infections.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
29
|
Zhong S, Yang J, Huang H. The role of single and mixed biofilms in Clostridioides difficile infection and strategies for prevention and inhibition. Crit Rev Microbiol 2024; 50:285-299. [PMID: 36939635 DOI: 10.1080/1040841x.2023.2189950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Clostridioides difficile infection (CDI) is a serious disease with a high recurrence rate. The single and mixed biofilms formed by C. difficile in the gut contribute to the formation of recurrent CDI (rCDI). In parallel, other gut microbes influence the formation and development of C. difficile biofilms, also known as symbiotic biofilms. Interactions between members within the symbiotic biofilm are associated with the worsening or alleviation of CDI. These interactions include effects on C. difficile adhesion and chemotaxis, modulation of LuxS/AI-2 quorum sensing (QS) system activity, promotion of cross-feeding by microbial metabolites, and regulation of intestinal bile acid and pyruvate levels. In the process of C. difficile biofilms control, inhibition of C. difficile initial biofilm formation and killing of C. difficile vegetative cells and spores are the main targets of action. The role of symbiotic biofilms in CDI suggested that targeting interventions of C. difficile-promoting gut microbes could indirectly inhibit the formation of C. difficile mixed biofilms and improved the ultimate therapeutic effect. In summary, this review outlines the mechanisms of C. difficile biofilm formation and summarises the treatment strategies for such single and mixed biofilms, aiming to provide new ideas for the prevention and treatment of CDI.
Collapse
Affiliation(s)
- Saiwei Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
30
|
Lachance G, Robitaille K, Laaraj J, Gevariya N, Varin TV, Feldiorean A, Gaignier F, Julien IB, Xu HW, Hallal T, Pelletier JF, Bouslama S, Boufaied N, Derome N, Bergeron A, Ellis L, Piccirillo CA, Raymond F, Fradet Y, Labbé DP, Marette A, Fradet V. The gut microbiome-prostate cancer crosstalk is modulated by dietary polyunsaturated long-chain fatty acids. Nat Commun 2024; 15:3431. [PMID: 38654015 DOI: 10.1038/s41467-024-45332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/17/2024] [Indexed: 04/25/2024] Open
Abstract
The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.
Collapse
Affiliation(s)
- Gabriel Lachance
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Centre de recherche de l'IUCPQ, Québec, QC, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Jalal Laaraj
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | | | - Andrei Feldiorean
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Fanny Gaignier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Isabelle Bourdeau Julien
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Hui Wen Xu
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Pelletier
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Department of Biology, Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ciriaco A Piccirillo
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Frédéric Raymond
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - David P Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | | | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.
- Centre de recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
- Institute of nutrition and functional foods (INAF) and NUTRISS Center - Nutrition, health and society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
31
|
Postek W, Staśkiewicz K, Lilja E, Wacław B. Substrate geometry affects population dynamics in a bacterial biofilm. Proc Natl Acad Sci U S A 2024; 121:e2315361121. [PMID: 38621130 PMCID: PMC11047097 DOI: 10.1073/pnas.2315361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.
Collapse
Affiliation(s)
- Witold Postek
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Klaudia Staśkiewicz
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Elin Lilja
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Bartłomiej Wacław
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- School of Physics and Astronomy, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| |
Collapse
|
32
|
Lou Y, Palermo EF. Dynamic Antimicrobial Poly(disulfide) Coatings Exfoliate Biofilms On Demand Via Triggered Depolymerization. Adv Healthc Mater 2024; 13:e2303359. [PMID: 38288658 DOI: 10.1002/adhm.202303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 02/13/2024]
Abstract
Bacterial biofilms are notoriously problematic in applications ranging from biomedical implants to ship hulls. Cationic, amphiphilic antibacterial surface coatings delay the onset of biofilm formation by killing microbes on contact, but they lose effectiveness over time due to non-specific binding of biomass and biofilm formation. Harsh treatment methods are required to forcibly expel the biomass and regenerate a clean surface. Here, a simple, dynamically reversible method of polymer surface coating that enables both chemical killing on contact, and on-demand mechanical delamination of surface-bound biofilms, by triggered depolymerization of the underlying antimicrobial coating layer, is developed. Antimicrobial polymer derivatives based on α-lipoic acid (LA) undergo dynamic and reversible polymerization into polydisulfides functionalized with biocidal quaternary ammonium salt groups. These coatings kill >99.9% of Staphylococcus aureus cells, repeatedly for 15 cycles without loss of activity, for moderate microbial challenges (≈105 colony-forming units (CFU) mL-1, 1 h), but they ultimately foul under intense challenges (≈107 CFU mL-1, 5 days). The attached biofilms are then exfoliated from the polymer surface by UV-triggered degradation in an aqueous solution at neutral pH. This work provides a simple strategy for antimicrobial coatings that can kill bacteria on contact for extended timescales, followed by triggered biofilm removal under mild conditions.
Collapse
Affiliation(s)
- Yang Lou
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Edmund F Palermo
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
- Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| |
Collapse
|
33
|
Zhang J, Wu Y, Li W, Xie H, Li J, Miao Y, Yang Z, Zhou Y, Wang X. Effects of a novel Bacillus subtilis GXYX crude lipopeptide against Salmonella enterica serovar Typhimurium infection in mice. Heliyon 2024; 10:e28219. [PMID: 38524560 PMCID: PMC10958701 DOI: 10.1016/j.heliyon.2024.e28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
The increased rate of antibiotic resistance strongly limits the resolution of Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Therefore, new strategies to control bacterial infections are urgently needed. Bacillus subtilis (B. subtilis) and its metabolites are desirable antibacterial agents. Here, we aimed to evaluate the antibacterial activity of the novel B. subtilis strain GXYX (No: PRJNA940956) crude lipopeptide against S. Typhimurium. In vitro, GXYX crude lipopeptides affected S. Typhimurium biofilm formation and swimming and attenuated the adhesion and invasion abilities of S. Typhimurium toward BHK-21 cells; in addition, it inhibited the mRNA expression of the filA, filC, csgA, and csgB genes, which are related to the adhesion and invasion ability of S. Typhimurium. In vivo, pretreatment with GXYX crude lipopeptide via intragastric administration improved the survival rate by 30%, which was related to reductions in organ bacterial loads and clinical signs in mice. Intragastric administration of GXYX crude lipopeptide significantly downregulated the mRNA levels of TNF-α, IL-1β, IL-12 and IL-6 in response to S. Typhimurium-induced inflammation compared with intraperitoneal injection. Moreover, it significantly improved the intestinal barrier-related gene (ZO-1, claudin-1, occludin-1) mRNA levels in intestinal tissue damaged by S. Typhimurium infection. In conclusion, GXYX crude lipopeptides were effective at reducing S. Typhimurium colonization, laying a foundation for the further development of novel antibacterial agents.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
34
|
Chen Z, Wang L, He D, Liu Q, Han Q, Zhang J, Zhang AM, Song Y. Exploration of the Antibacterial and Anti-Inflammatory Activity of a Novel Antimicrobial Peptide Brevinin-1BW. Molecules 2024; 29:1534. [PMID: 38611812 PMCID: PMC11013252 DOI: 10.3390/molecules29071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotic resistance has emerged as a grave threat to global public health, leading to an increasing number of treatment failures. Antimicrobial peptides (AMPs) are widely regarded as potential substitutes for traditional antibiotics since they are less likely to induce resistance when used. A novel AMP named Brevinin-1BW (FLPLLAGLAASFLPTIFCKISRKC) was obtained by the Research Center of Molecular Medicine of Yunnan Province from the skin of the Pelophylax nigromaculatus. Brevinia-1BW had effective inhibitory effects on Gram-positive bacteria, with a minimum inhibitory concentration (MIC) of 3.125 μg/mL against Enterococcus faecalis (ATCC 29212) and 6.25 μg/mL against both Staphylococcus aureus (ATCC 25923) and multidrug-resistant Staphylococcus aureus (ATCC 29213) but had weaker inhibitory effects on Gram-negative bacteria, with a MIC of ≥100 μg/mL. Studies using scanning electron microscopy (SEM) and flow cytometry have revealed that it exerts its antibacterial activity by disrupting bacterial membranes. Additionally, it possesses strong biofilm inhibitory and eradication activities as well as significant lipopolysaccharide (LPS)-binding activity. Furthermore, Brevinin-1BW has shown a significant anti-inflammatory effect in LPS-treated RAW264.7 cells. In conclusion, Brevinin-1BW is anticipated to be a promising clinical agent with potent anti-Gram-positive bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Zhizhi Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Lei Wang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Dongxia He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qi Liu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - A-Mei Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
- School of Medicine, Kunming University of Science and Technology, Kunming 650504, China
| |
Collapse
|
35
|
Vergnolle N. Thrombin stories in the gut. Biochimie 2024:S0300-9084(24)00065-8. [PMID: 38521125 DOI: 10.1016/j.biochi.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Many studies have demonstrated the involvement of proteases in gut physiology and pathophysiology over the recent years. Among them, thrombin has appeared for a long time as an old player only involved in blood clotting upon tissue injury. The fact that thrombin receptors (Protease-Activated Receptors-1 and -4) are expressed and functional in almost all cell types of the gut, contributing to barrier, immune or motility functions, suggested that thrombin could actually be at the crossroad of intestinal physiology. Recent work has unraveled the constitutive release of active thrombin by intestinal epithelial cells, opening new research avenues on the role of thrombin in the gut. These roles are considered in the present review, as well as the regulation of thrombin in the gut. The potential of thrombin as a target for treatments of intestinal pathologies is also discussed here.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), CS60039, Toulouse, Cedex 03, 31024, France; Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada.
| |
Collapse
|
36
|
Le Cosquer G, Vergnolle N, Motta JP. Gut microb-aging and its relevance to frailty aging. Microbes Infect 2024; 26:105309. [PMID: 38316374 DOI: 10.1016/j.micinf.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
This review explores 'microb-aging' in the gut and its potential link to frailty aging. We explore this connection through alterations in microbiota's taxonomy and metabolism, as well as with concepts of ecological resilience, pathobionts emergence, and biogeography. We examine microb-aging in interconnected body organs, emphasizing the bidirectional relationship with 'inflammaging'. Finally, we discuss how targeting microb-aging could improve screening, diagnostic, and therapeutic approaches in geriatrics.
Collapse
Affiliation(s)
- Guillaume Le Cosquer
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Gastroenterology and Pancreatology, Toulouse University Hospital, Toulouse Paul Sabatier University, 31059 Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France.
| |
Collapse
|
37
|
Chai L, Shank EA, Zaburdaev V. Where bacteria and eukaryotes meet. J Bacteriol 2024; 206:e0004923. [PMID: 38289062 PMCID: PMC10882991 DOI: 10.1128/jb.00049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The international workshop "Interdisciplinary life of microbes: from single cells to multicellular aggregates," following a virtual preassembly in November 2021, was held in person in Dresden, from 9 to 13 November 2022. It attracted not only prominent experts in biofilm research but also researchers from broadly neighboring disciplines, such as medicine, chemistry, and theoretical and experimental biophysics, both eukaryotic and prokaryotic. Focused brainstorming sessions were the special feature of the event and are at the heart of this commentary.
Collapse
Affiliation(s)
- Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elizabeth A. Shank
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
38
|
Hu R, Yang T, Ai Q, Shi Y, Ji Y, Sun Q, Tong B, Chen J, Wang Z. Autoinducer-2 promotes the colonization of Lactobacillus rhamnosus GG to improve the intestinal barrier function in a neonatal mouse model of antibiotic-induced intestinal dysbiosis. J Transl Med 2024; 22:177. [PMID: 38369503 PMCID: PMC10874557 DOI: 10.1186/s12967-024-04991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.
Collapse
Affiliation(s)
- Riqiang Hu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanchun Ji
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Sun
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Tong
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| | - Zhengli Wang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
39
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Drago L, Fidanza A, Giannetti A, Ciuffoletti A, Logroscino G, Romanò CL. Bacteria Living in Biofilms in Fluids: Could Chemical Antibiofilm Pretreatment of Culture Represent a Paradigm Shift in Diagnostics? Microorganisms 2024; 12:259. [PMID: 38399663 PMCID: PMC10892178 DOI: 10.3390/microorganisms12020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilms are multicellular aggregates of bacteria immersed in an extracellular matrix that forms on various surfaces, including biological tissues and artificial surfaces. However, more and more reports point out the fact that even biological fluids and semifluid, such as synovial liquid, blood, urine, or mucus and feces, harbor "non-attached" biofilm aggregates of bacteria, which represent a significant phenomenon with critical clinical implications that remain to be fully investigated. In particular, biofilm aggregates in biological fluid samples have been shown to play a relevant role in bacterial count and in the overall accuracy of microbiological diagnosis. In line with these observations, the introduction in the clinical setting of fluid sample pretreatment with an antibiofilm chemical compound called dithiothreitol (DTT), which is able to dislodge microorganisms from their intercellular matrix without killing them, would effectively improve the microbiological yield and increase the sensitivity of cultural examination, compared to the current microbiological techniques. While other ongoing research continues to unveil the complexity of biofilm formation in biological fluids and its impact on infection pathogenesis and diagnosis, we here hypothesize that the routine use of a chemical antibiofilm pretreatment of fluid and semi-solid samples may lead to a paradigm shift in the microbiological approach to the diagnosis of biofilm-related infections and should be further investigated and eventually implemented in the clinical setting.
Collapse
Affiliation(s)
- Lorenzo Drago
- Laboratory of Clinical Microbiology, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Andrea Fidanza
- Mininvasive Orthopaedic Surgery—Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.F.); (G.L.)
- Unit of Orthopaedics and Traumatology, “SS Filippo e Nicola” Hospital, 67051 Avezzano, Italy
| | - Alessio Giannetti
- Unit of Orthopaedics and Traumatology, “G. Mazzini” Hospital, 64100 Teramo, Italy; (A.G.); (A.C.)
| | - Alessio Ciuffoletti
- Unit of Orthopaedics and Traumatology, “G. Mazzini” Hospital, 64100 Teramo, Italy; (A.G.); (A.C.)
| | - Giandomenico Logroscino
- Mininvasive Orthopaedic Surgery—Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.F.); (G.L.)
| | - Carlo Luca Romanò
- Romano Institute, Rruga Deshmoret e 4 Shkurtit, 1001 Tirana, Albania;
| |
Collapse
|
41
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
42
|
Li X, Niu J, Deng L, Yu Y, Zhang L, Chen Q, Zhao J, Wang B, Gao H. Amphiphilic polymeric nanodrug integrated with superparamagnetic iron oxide nanoparticles for synergistic antibacterial and antitumor therapy of colorectal cancer. Acta Biomater 2024; 173:432-441. [PMID: 37984629 DOI: 10.1016/j.actbio.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies that can be influenced by Fusobacterium nucleatum (Fn), a bacterium that promotes tumor development and chemoresistance, resulting in limited therapeutic efficacy. Traditional antibiotics cannot effectively eliminate Fn at tumor site due to issues like biofilm formation, while chemotherapy alone fails to suppress tumor progression. Therefore, the development of new methods to eliminate Fn and promote antitumor efficacy is of great significance for improving the outcome of CRC treatment. Herein, we developed a nanodrug (OPPL) that integrates oleic acid-modified superparamagnetic iron oxide nanoparticles (O-SPIONs) and an amphiphilic polymer (PPL) to deliver the platinum prodrug and antimicrobial lauric acid (LA) for enhancing the treatment of CRC. We demonstrated that OPPL can synergistically enhance antibacterial and biofilm disruption activities against Fn along with the antimicrobial LA by producing reactive oxygen species (ROS) through its peroxidase-like activity. Furthermore, the OPPL nanodrug can increase intracellular ROS, promote lipid peroxides and deplete glutathione, leading to ferroptosis. By combining chemotherapy and induced ferroptosis, the OPPL nanodrug exhibited high cytotoxicity against CRC cells. In vivo studies showed that the OPPL nanodrug could enhance tumor accumulation, enable magnetic resonance imaging, suppresse tumor growth, and inhibit growth of intratumor Fn. These results suggest that OPPL is an effective and promising candidate for the treatment of Fn-infected CRC. STATEMENT OF SIGNIFICANCE: The enrichment of Fusobacterium nucleatum (Fn) in colorectal cancer is reported to exacerbate tumor malignancy and is particularly responsible for chemoresistance. To this respect, we strategically elaborated multifaceted therapeutics, namely OPPL nanodrug, combining oleic acid-modified superparamagnetic iron oxide nanoparticles (O-SPIONs) with a polymer containing a platinum prodrug and antimicrobial lauric acid. The O-SPION components exert distinctive peroxidase-like activity, capable of stimulating Fenton reactions selectively in the tumor microenvironment, consequently accounting for the progressive production of reactive oxygen species. Hence, O-SPIONs have been demonstrated to not only supplement the antimicrobial activities of lauric acid in overcoming Fn-induced chemoresistance but also stimulate potent tumor ferroptosis. Our proposed dual antimicrobial and chemotherapeutic nanodrug provides an appreciable strategy for managing challenging Fn-infected colorectal cancer.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jiazhen Niu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Lingling Deng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liuwei Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
43
|
Orgler E, Baumgartner M, Duller S, Kumptisch C, Hausmann B, Moser D, Khare V, Lang M, Köcher T, Frick A, Muttenthaler M, Makristathis A, Moissl-Eichinger C, Gasche C. Archaea influence composition of endoscopically visible ileocolonic biofilms. Gut Microbes 2024; 16:2359500. [PMID: 38825783 PMCID: PMC11152093 DOI: 10.1080/19490976.2024.2359500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.
Collapse
Affiliation(s)
- Elisabeth Orgler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Medicine II, University Hospital, Munich, Germany
| | - Maximilian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Stefanie Duller
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christina Kumptisch
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Bela Hausmann
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Thomas Köcher
- Metabolomics Service and Research Facility, Vienna Biocenter Core Facilities, Vienna, Austria
| | - Adrian Frick
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Athanasios Makristathis
- Centre for Microbiology and Environmental Systems Science, Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| |
Collapse
|
44
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
45
|
Biagini F, Botte E, Calvigioni M, De Maria C, Mazzantini D, Celandroni F, Ghelardi E, Vozzi G. A Millifluidic Chamber for Controlled Shear Stress Testing: Application to Microbial Cultures. Ann Biomed Eng 2023; 51:2923-2933. [PMID: 37713099 PMCID: PMC10632311 DOI: 10.1007/s10439-023-03361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
In vitro platforms such as bioreactors and microfluidic devices are commonly designed to engineer tissue models as well as to replicate the crosstalk between cells and microorganisms hosted in the human body. These systems promote nutrient supply and waste removal through culture medium recirculation; consequently, they intrinsically expose cellular structures to shear stress, be it a desired mechanical stimulus to drive the cell fate or a potential inhibitor for the model maturation. Assessing the impact of shear stress on cellular or microbial cultures thus represents a crucial step to define proper environmental conditions for in vitro models. In this light, the aim of this study was to develop a millifluidic device enabling to generate fully controlled shear stress profiles for quantitatively probing its influence on tissue or bacterial models, overcoming the limitations of previous reports proposing similar devices. Relying on this millifluidic tool, we present a systematic methodology to test how adherent cellular structures react to shear forces, which was applied to the case of microbial biofilms as a proof of concept. The results obtained suggest our approach as a suitable testbench to evaluate culture conditions in terms of shear stress faced by cells or microorganisms.
Collapse
Affiliation(s)
- Francesco Biagini
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy
| | - Ermes Botte
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Carmelo De Maria
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy.
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy.
| |
Collapse
|
46
|
Yang S, Li X, Cang W, Mu D, Ji S, An Y, Wu R, Wu J. Biofilm tolerance, resistance and infections increasing threat of public health. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:233-247. [PMID: 37933277 PMCID: PMC10625689 DOI: 10.15698/mic2023.11.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Microbial biofilms can cause chronic infection. In the clinical setting, the biofilm-related infections usually persist and reoccur; the main reason is the increased antibiotic resistance of biofilms. Traditional antibiotic therapy is not effective and might increase the threat of antibiotic resistance to public health. Therefore, it is urgent to study the tolerance and resistance mechanism of biofilms to antibiotics and find effective therapies for biofilm-related infections. The tolerance mechanism and host reaction of biofilm to antibiotics are reviewed, and bacterial biofilm related diseases formed by human pathogens are discussed thoroughly. The review also explored the role of biofilms in the development of bacterial resistance mechanisms and proposed therapeutic intervention strategies for biofilm related diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Yuejia An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| |
Collapse
|
47
|
Lajoie G, Kembel SW. Data-driven identification of major axes of functional variation in bacteria. Environ Microbiol 2023; 25:2580-2591. [PMID: 37648438 DOI: 10.1111/1462-2920.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
The discovery of major axes of correlated functional variation among species and habitats has revealed the fundamental trade-offs structuring both functional and taxonomic diversity in eukaryotes such as plants. Whether such functional axes exist in the bacterial realm and whether they could explain bacterial taxonomic turnover among ecosystems remains unknown. Here, we use a data-driven approach to leverage global genomic and metagenomic datasets to reveal the existence of major axes of functional variation explaining both evolutionary differentiation within Bacteria and their ecological sorting across diverse habitats. We show that metagenomic variation among bacterial communities from various ecosystems is structured along a few axes of correlated functional pathways. Similar clusters of traits explained phylogenetic trait variation among >16,000 bacterial genomes, suggesting that functional turnover among bacterial communities from distinct habitats does not only result from the differential filtering of similar functions among communities, but also from phylogenetic correlations among these functions. Concordantly, functional pathways associated with trait clusters that were most important for defining functional turnover among bacterial communities were also those that had the highest phylogenetic signal in the bacterial genomic phylogeny. This study overall underlines the important role of evolutionary history in shaping contemporary distributions of bacteria across ecosystems.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| |
Collapse
|
48
|
Zhang Y, Young P, Traini D, Li M, Ong HX, Cheng S. Challenges and current advances in in vitro biofilm characterization. Biotechnol J 2023; 18:e2300074. [PMID: 37477959 DOI: 10.1002/biot.202300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Biofilms are structured communities of bacterial cells encased in a self-produced polymeric matrix, which develop over time and exhibit temporal responses to stimuli from internal biological processes or external environmental changes. They can be detrimental, threatening public health and causing economic loss, while they also play beneficial roles in ecosystem health, biotechnology processes, and industrial settings. Biofilms express extreme heterogeneity in their physical properties and structural composition, resulting in critical challenges in understanding them comprehensively. The lack of detailed knowledge of biofilms and their phenotypes has deterred significant progress in developing strategies to control their negative impacts and take advantage of their beneficial applications. A range of in vitro models and characterization tools have been developed and used to study biofilm growth and, specifically, to investigate the impact of environmental and growth factors on their development. This review article discusses the existing knowledge of biofilm properties and explains how external factors, such as flow condition, surface, interface, and host factor, may impact biofilm growth. The limitations of current tools, techniques, and in vitro models that are currently used for biofilms are also presented.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Giordani B, Parolin C, Abruzzo A, Foschi C, Marangoni A, Luppi B, Vitali B. Limosilactobacillus vaginalis Exerts Bifidogenic Effects: A Novel Postbiotic Strategy for Infant Prebiotic Supplementation. Nutrients 2023; 15:4433. [PMID: 37892507 PMCID: PMC10609882 DOI: 10.3390/nu15204433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Infant microbiota shaping strictly influences newborns' well-being and long-term health, and babies born by cesarean-section and formula-fed generally show low microbial gut diversity and are more prone to develop various disorders. The supplementation with beneficial microbes of vaginal origin or derivatives (postbiotics, including heat-inactivated cells) represents a valid strategy to drive the correct gut microbiota shaping. Here, we explored for the first time the bifidogenic activity of a heat-killed vaginal strain (Limosilactobacillus vaginalis BC17), in addition to the assessment of its safety. L. vaginalis BC17 whole genome was sequenced by Nanopore technology and highlighted the absence of antibiotic resistance genes and virulence factors, indicating the strain safety profile for human health. MIC values confirmed that L. vaginalis BC17 is susceptible to widely employed antibiotics. Heat-killed BC17 cells significantly enhanced the planktonic growth of Bifidobacterium spp. For the first time, stimulating effects were observed also toward biofilm formation of bifidobacteria and their pre-formed biofilms. Conversely, heat-killed BC17 cells exerted antibacterial and anti-biofilms activities against Gram-positive and Gram-negative pathogens. Lyophilized heat-killed BC17 cells were formulated in a sunflower oil suspension (1010 heat-killed cell/g) intended for infant oral intake. This possessed optimal technological (i.e., re-dispersibility and stability) and functional properties (i.e., bifidogenic activity) that were maintained even after pre-digestion in acidic conditions.
Collapse
Affiliation(s)
- Barbara Giordani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (B.G.); (A.A.); (B.L.); (B.V.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (B.G.); (A.A.); (B.L.); (B.V.)
| | - Angela Abruzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (B.G.); (A.A.); (B.L.); (B.V.)
| | - Claudio Foschi
- Section of Microbiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (C.F.); (A.M.)
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Antonella Marangoni
- Section of Microbiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (C.F.); (A.M.)
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (B.G.); (A.A.); (B.L.); (B.V.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (B.G.); (A.A.); (B.L.); (B.V.)
| |
Collapse
|
50
|
Guo H, Fu X, He J, Wang R, Yan M, Wang J, Dong P, Huang L, Zhang D. Gut bacterial consortium enriched in a biofloc system protects shrimp against Vibrio parahaemolyticus infection. MICROBIOME 2023; 11:230. [PMID: 37858205 PMCID: PMC10585862 DOI: 10.1186/s40168-023-01663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Shrimp cultured in a biofloc system (BFS) have a lower disease incidence than those farmed in a water exchange system (WES). Although a number of studies have reported that the gut bacterial community induced by BFS is highly associated with shrimp disease resistance, the causal relationship remains unknown. Here, the promotive roles of gut bacterial community induced by BFS in pathogenic Vibrio infection resistance and its potential micro-ecological and physiological mechanisms were investigated by gut bacterial consortium transplantation and synthetic community (SynCom) construction. RESULTS The BFS induced a more stable and resistant gut bacterial community, and significantly enriched some beneficial bacterial taxa, such as Paracoccus, Ruegeria, Microbacterium, Demequina, and Tenacibaculum. Transplantation of a gut bacterial consortium from BFS shrimp (EnrichBFS) greatly enhanced the stability of the bacterial community and resistance against pathogenic V. parahaemolyticus infection in WES shrimp, while transplantation of a gut bacterial consortium from WES shrimp significantly disrupted the bacterial community and increased pathogen susceptibility in both WES and BFS shrimp. The addition of EnrichBFS in shrimp postlarvae also improved the pathogen resistance through increasing the relative abundances of beneficial bacterial taxa and stability of bacterial community. The corresponding strains of five beneficial bacterial taxa enriched in BFS shrimp were isolated to construct a SynComBFS. The addition of SynComBFS could not only suppress disease development, but also improve shrimp growth, boost the digestive and immune activities, and restore health in diseased shrimp. Furthermore, the strains of SynComBFS well colonized shrimp gut to maintain a high stability of bacterial community. CONCLUSIONS Our study reveals an important role for native microbiota in protecting shrimp from bacterial pathogens and provides a micro-ecological regulation strategy towards the development of probiotics to ameliorate aquatic animal diseases. Video Abstract.
Collapse
Affiliation(s)
- Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Xuezhi Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jikun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ruoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Mengchen Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Pengsheng Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China.
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|