1
|
Yang K, Zhu Y, Chen J, Zhou W. Interleukin-8 in HepG2 cells: Enhancing antiviral proteins in uninfected cells but promoting HBV replication in infected cells. Biochem Biophys Res Commun 2024; 734:150455. [PMID: 39083972 DOI: 10.1016/j.bbrc.2024.150455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
In vitro studies have revealed that hepatitis B virus (HBV) infection upregulates interleukin-8 (IL-8), which enhances HBV replication. Clinically, elevated IL-8 levels in chronic HBV patients are associated with diminished therapeutic efficacy of interferon-α (IFN-α). Our study advances these findings by demonstrating that IL-8 promotes the expression of myxovirus resistance A (MxA) and protein kinase R (PKR) in HepG2 cells via the PI3K-AKT pathway. However, HBV-infected cells fail to exhibit IL-8-induced upregulation of MxA and PKR, likely due to HBV's upregulation of PP2A that inhibits the PI3K-AKT pathway. Notably, IL-8 targets the C/EBPα transcription factor, increasing HBV promoter activity and viral replication, which in turn partially suppresses the expression of MxA and PKR induced by IFN-α. Our findings uncover a mechanism by which HBV may evade immune responses, suggesting potential new strategies for immunotherapy against chronic HBV infection.
Collapse
Affiliation(s)
- Kai Yang
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China.
| | - Yukai Zhu
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Jin Chen
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Weifeng Zhou
- School of Clinical Medicine, Anhui Medical College, Hefei, 230601, China
| |
Collapse
|
2
|
Wang K, Wang X, Song L. Unraveling the complex role of neutrophils in lymphoma: From pathogenesis to therapeutic approaches (Review). Mol Clin Oncol 2024; 21:85. [PMID: 39347476 PMCID: PMC11428085 DOI: 10.3892/mco.2024.2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Lymphoma, a malignancy of the lymphatic system, which is critical for maintaining the body's immune defenses, has become a focal point in recent research due to its intricate interplay with neutrophils-white blood cells essential for combating infections and inflammation. Unlike prior perceptions associating neutrophils only with tumor support, contemporary studies underscore their intricate and multifaceted involvement in the immune response to lymphoma. Recognizing the nuanced participation of neutrophils in lymphoma is crucial for developing innovative treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cell Engineering, School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiao Wang
- Reproduction Medicine Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Li Song
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
3
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Staps M, Tarnita CE, Kawakatsu M. Ecological principles for the evolution of communication in collective systems. Proc Biol Sci 2024; 291:20241562. [PMID: 39381908 PMCID: PMC11462452 DOI: 10.1098/rspb.2024.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024] Open
Abstract
Communication allows members of a collective to share information about their environment. Advanced collective systems, such as multicellular organisms and social insect colonies, vary in whether they use communication at all and, if they do, in what types of signals they use, but the origins of these differences are poorly understood. Here, we develop a theoretical framework to investigate the evolution and diversity of communication strategies under collective-level selection. We find that whether communication can evolve depends on a collective's external environment: communication only evolves in sufficiently stable environments, where the costs of sensing are high enough to disfavour independent sensing but not so high that the optimal strategy is to ignore the environment altogether. Moreover, we find that the evolution of diverse signalling strategies-including those relying on prolonged signalling (e.g. honeybee waggle dance), persistence of signals in the environment (e.g. ant trail pheromones) and brief but frequent communicative interactions (e.g. ant antennal contacts)-can be explained theoretically in terms of the interplay between the demands of the environment and internal constraints on the signal. Altogether, we provide a general framework for comparing communication strategies found in nature and uncover simple ecological principles that may contribute to their diversity.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Corina E. Tarnita
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Mari Kawakatsu
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
- Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|
5
|
Jiang XQ, Wang WX, Dong W, Xie QM, Liu Q, Guo Z, Chen N, Song SM, Jiang W, Wu HM. Targeted Modulation of Redox and Immune Homeostasis in Acute Lung Injury Using a Thioether-Functionalized Dendrimer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402146. [PMID: 38888130 DOI: 10.1002/smll.202402146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Acute lung injury (ALI) is the pathophysiological precursor of acute respiratory distress syndrome. It is characterized by increased oxidative stress and exaggerated inflammatory response that disrupts redox reactions and immune homeostasis in the lungs, thereby posing significant clinical challenges. In this study, an internally functionalized thioether-enriched dendrimer Sr-G4-PEG is developed, to scavenge both proinflammatory cytokines and reactive oxygen species (ROS) and restore homeostasis during ALI treatment. The dendrimers are synthesized using an efficient and orthogonal thiol-ene "click" chemistry approach that involves incorporating thioether moieties within the dendritic architectures to neutralize the ROS. The ROS scavenging of Sr-G4-PEG manifests in its capacity to sequester proinflammatory cytokines. The synergistic effects of scavenging ROS and sequestering inflammatory cytokines by Sr-G4-PEG contribute to redox remodeling and immune homeostasis, along with the modulation of the NLRP3-pyroptosis pathway. Treatment with Sr-G4-PEG enhances the therapeutic efficacy of ALIs by alleviating alveolar bleeding, reducing inflammatory cell infiltration, and suppressing the release of inflammatory cytokines. These results suggest that Sr-G4-PEG is a potent nanotechnological candidate for remodeling redox and immune homeostasis in the treatment of ALIs, demonstrating the great potential of dendrimer-based nanomedicine for the treatment of respiratory pathologies.
Collapse
Affiliation(s)
- Xu-Qin Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wu-Xuan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Wang Dong
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zixuan Guo
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ning Chen
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Si-Ming Song
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
6
|
Hazegh Nikroo A, Altenburg WJ, van Veldhuisen TW, Brunsveld L, van Hest JCM. Spatiotemporal Control Over Protein Release from Artificial Cells via a Light-Activatable Protease. Adv Biol (Weinh) 2024:e2400353. [PMID: 39334525 DOI: 10.1002/adbi.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
The regulation of protein uptake and secretion by cells is paramount for intercellular signaling and complex multicellular behavior. Mimicking protein-mediated communication in artificial cells holds great promise to elucidate the underlying working principles, but remains challenging without the stimulus-responsive regulatory machinery of living cells. Therefore, systems to precisely control when and where protein release occurs should be incorporated in artificial cells. Here, a light-activatable TEV protease (LaTEV) is presented that enables spatiotemporal control over protein release from a coacervate-based artificial cell platform. Due to the presence of Ni2+-nitrilotriacetic acid moieties within the coacervates, His-tagged proteins are effectively sequestered into the coacervates. LaTEV is first photocaged, effectively blocking its activity. Upon activation by irradiation with 365 nm light, LaTEV cleaves the His-tags from sequestered cargo proteins, resulting in their release. The successful blocking and activation of LaTEV provides control over protein release rate and triggerable protein release from specific coacervates via selective irradiation. Furthermore, light-activated directional transfer of proteins between two artificial cell populations is demonstrated. Overall, this system opens up avenues to engineer light-responsive protein-mediated communication in artificial cell context, which can advance the probing of intercellular signaling and the development of protein delivery platforms.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Wiggert J Altenburg
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Thijs W van Veldhuisen
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jan C M van Hest
- Laboratory of Bio-Organic Chemistry, Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
7
|
Zhang MH, Scotland BL, Jiao Y, Slaby EM, Truong N, Cottingham AL, Stephanie G, Szeto GL, Pearson RM. Lipid-Polymer Hybrid Nanoparticles Utilize B Cells and Dendritic Cells to Elicit Distinct Antigen-Specific CD4 + and CD8 + T Cell Responses. ACS APPLIED BIO MATERIALS 2024; 7:4818-4830. [PMID: 37219857 PMCID: PMC10665545 DOI: 10.1021/acsabm.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antigen-presenting cells (APCs) are widely studied for treating immune-mediated diseases, and dendritic cells (DCs) are potent APCs that uptake and present antigens (Ags). However, DCs face several challenges that hinder their clinical translation due to their inability to control Ag dosing and low abundance in peripheral blood. B cells are a potential alternative to DCs, but their poor nonspecific Ag uptake capabilities compromise controllable priming of T cells. Here, we developed phospholipid-conjugated Ags (L-Ags) and lipid-polymer hybrid nanoparticles (L/P-Ag NPs) as delivery platforms to expand the range of accessible APCs for use in T cell priming. These delivery platforms were evaluated using DCs, CD40-activated B cells, and resting B cells to understand the impacts of various Ag delivery mechanisms for generation of Ag-specific T cell responses. L-Ag delivery (termed depoting) of MHC class I- and II-restricted Ags successfully loaded all APC types in a tunable manner and primed both Ag-specific CD8+ and CD4+ T cells, respectively. Incorporating L-Ags and polymer-conjugated Ags (P-Ag) into NPs can direct Ags to different uptake pathways to engineer the dynamics of presentation and shape T cell responses. DCs were capable of processing and presenting Ag delivered from both L- and P-Ag NPs, yet B cells could only utilize Ag delivered from L-Ag NPs, which led to differential cytokine secretion profiles in coculture studies. Altogether, we show that L-Ags and P-Ags can be rationally paired within a single NP to leverage distinct delivery mechanisms to access multiple Ag processing pathways in two APC types, offering a modular delivery platform for engineering Ag-specific immunotherapies.
Collapse
Affiliation(s)
- Michael H. Zhang
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Co-first authors
| | - Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- Co-first authors
| | - Yun Jiao
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Emily M. Slaby
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Georgina Stephanie
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Allen Institute for Immunology, Seattle, WA 98109
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
8
|
Jia D, Salazar-Cavazos E, West T, Liang SH, Costa R, Clavijo-Salomon M, Huang A, Trinchieri G, Lionakis M, Mukherjee R, Altan-Bonnet G. Chaotic dynamics for homeostatic hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608266. [PMID: 39372763 PMCID: PMC11451746 DOI: 10.1101/2024.08.16.608266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Hematopoiesis is a highly dynamical and stochastic process, challenging our understanding of homeostasis. Clinical studies of leukemia or neutropenic patients revealed that multiple blood cell types fluctuate spontaneously with large yet regular oscillations of their frequencies. Yet the stability of hematopoiesis in healthy individuals remains understudied. Here we report on both cross-sectional and longitudinal studies of dozens of healthy mice, through high-dimensional mass and spectral cytometry, to understand hematopoiesis at homeostasis. We found that all cell types in the bone marrow, blood, and spleen exhibit large variations of frequency (e.g., with coefficients of variation larger than 1). While the frequencies of individual cell type fluctuate, there existed extensive and robust correlations/anti-correlations between cell types, exemplified by the pronounced anti-correlation between blood neutrophils and B cells. Through longitudinal study of the blood content of healthy mice, we found that leukocyte fluctuations are ergodic yet subject to chaotic behaviors characterized by a broad spectrum of characteristic timescales. We then built a minimal mathematical model to capture these dynamical features of hematopoiesis (fluctuations, correlations, and chaos) and explain how the accumulation of B cells (e.g. during lymphoma development) would transition the blood cell dynamics from chaos to oscillations (as observed clinically). Finally, we demonstrated the ubiquity and consistency of the correlated fluctuations in hematopoiesis by comparing mouse cohorts of different genetic backgrounds and ages. To conclude, we discuss how study of hematopoiesis must factor in the newfound chaotic dynamics at homeostasis, towards better modeling the responses to perturbations.
Collapse
|
9
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
10
|
Erickson HL, Taniguchi S, Raman A, Leitenberger JJ, Malhotra SV, Oshimori N. Cancer stem cells release interleukin-33 within large oncosomes to promote immunosuppressive differentiation of macrophage precursors. Immunity 2024; 57:1908-1922.e6. [PMID: 39079535 PMCID: PMC11324407 DOI: 10.1016/j.immuni.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
In squamous cell carcinoma (SCC), macrophages responding to interleukin (IL)-33 create a TGF-β-rich stromal niche that maintains cancer stem cells (CSCs), which evade chemotherapy-induced apoptosis in part via activation of the NRF2 antioxidant program. Here, we examined how IL-33 derived from CSCs facilitates the development of an immunosuppressive microenvironment. CSCs with high NRF2 activity redistributed nuclear IL-33 to the cytoplasm and released IL-33 as cargo of large oncosomes (LOs). Mechanistically, NRF2 increased the expression of the lipid scramblase ATG9B, which exposed an "eat me" signal on the LO surface, leading to annexin A1 (ANXA1) loading. These LOs promoted the differentiation of AXNA1 receptor+ myeloid precursors into immunosuppressive macrophages. Blocking ATG9B's scramblase activity or depleting ANXA1 decreased niche macrophages and hindered tumor progression. Thus, IL-33 is released from live CSCs via LOs to promote the differentiation of alternatively activated macrophage, with potential relevance to other settings of inflammation and tissue repair.
Collapse
Affiliation(s)
- Hannah L Erickson
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Anish Raman
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Justin J Leitenberger
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Center for Experimental Therapeutics, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
11
|
Arribas Arranz J, Villacorta A, Rubio L, García-Rodríguez A, Sánchez G, Llorca M, Farre M, Ferrer JF, Marcos R, Hernández A. Kinetics and toxicity of nanoplastics in ex vivo exposed human whole blood as a model to understand their impact on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174725. [PMID: 39009158 DOI: 10.1016/j.scitotenv.2024.174725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
The ubiquitous presence of nanoplastics (NPLs) in the environment is considered of great health concern. Due to their size, NPLs can cross both the intestinal and pulmonary barriers and, consequently, their presence in the blood compartment is expected. Understanding the interactions between NPLs and human blood components is required. In this study, to simulate more adequate real exposure conditions, the whole blood of healthy donors was exposed to five different NPLs: three polystyrene NPLs of approximately 50 nm (aminated PS-NH2, carboxylated PS-COOH, and pristine PS- forms), together with two true-to-life NPLs from polyethylene terephthalate (PET) and polylactic acid (PLA) of about 150 nm. Internalization was determined in white blood cells (WBCs) by confocal microscopy, once the different main cell subtypes (monocytes, polymorphonucleated cells, and lymphocytes) were sorted by flow cytometry. Intracellular reactive oxygen species (iROS) induction was determined in WBCs and cytokine release in plasma. In addition, hemolysis, coagulation, and platelet activation were also determined. Results showed a differential uptake between WBC subtypes, with monocytes showing a higher internalization. Regarding iROS, lymphocytes were those with higher levels, which was observed for different NPLs. Changes in cytokine release were also detected, with higher effects observed after PLA- and PS-NH2-NPL exposure. Hemolysis induction was observed after PS- and PS-COOH-NPL exposure, but no effects on platelet functionality were observed after any of the treatments. To our knowledge, this is the first study comprehensively evaluating the bloodstream kinetics and toxicity of NPL from different polymeric types on human whole blood, considering the role played by the cell subtype and the NPLs physicochemical characteristics in the effects observed after the exposures.
Collapse
Affiliation(s)
- J Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - L Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - G Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - M Llorca
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - M Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - J F Ferrer
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, 46980 Paterna, Spain
| | - R Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - A Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
12
|
Bell PT, Gelman AE. Alveolar macrophage-CD8 T cell interactions after acute lung allograft dysfunction: Insights from single-cell RNA sequencing. J Heart Lung Transplant 2024; 43:1087-1089. [PMID: 38490571 DOI: 10.1016/j.healun.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Peter T Bell
- Frazer Institute, at the Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri.
| |
Collapse
|
13
|
De Masi R, Orlando S, Carata E, Panzarini E. Ultrastructural Characterization of PBMCs and Extracellular Vesicles in Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2024; 25:6867. [PMID: 38999977 PMCID: PMC11241448 DOI: 10.3390/ijms25136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Growing evidence identifies extracellular vesicles (EVs) as important cell-to-cell signal transducers in autoimmune disorders, including multiple sclerosis (MS). If the etiology of MS still remains unknown, its molecular physiology has been well studied, indicating peripheral blood mononuclear cells (PBMCs) as the main pathologically relevant contributors to the disease and to neuroinflammation. Recently, several studies have suggested the involvement of EVs as key mediators of neuroimmune crosstalk in central nervous system (CNS) autoimmunity. To assess the role of EVs in MS, we applied electron microscopy (EM) techniques and Western blot analysis to study the morphology and content of plasma-derived EVs as well as the ultrastructure of PBMCs, considering four MS patients and four healthy controls. Through its exploratory nature, our study was able to detect significant differences between groups. Pseudopods and large vesicles were more numerous at the plasmalemma interface of cases, as were endoplasmic vesicles, resulting in an activated aspect of the PBMCs. Moreover, PBMCs from MS patients also showed an increased number of multivesicular bodies within the cytoplasm and amorphous material around the vesicles. In addition, we observed a high number of plasma-membrane-covered extensions, with multiple associated large vesicles and numerous autophagosomal vacuoles containing undigested cytoplasmic material. Finally, the study of EV cargo evidenced a number of dysregulated molecules in MS patients, including GANAB, IFI35, Cortactin, Septin 2, Cofilin 1, and ARHGDIA, that serve as inflammatory signals in a context of altered vesicular dynamics. We concluded that EM coupled with Western blot analysis applied to PBMCs and vesiculation can enhance our knowledge in the physiopathology of MS.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of the Salento, 73100 Lecce, Italy;
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of the Salento, 73100 Lecce, Italy;
| |
Collapse
|
14
|
M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, Abdullah B, Chen X, Tengku Din TADAA. CD4+ Foxp3+ Regulatory T-cells in Modulating Inflammatory Microenvironment in Chronic Rhinosinusitis with Nasal Polyps: Progress and Future Prospect. Cytokine 2024; 178:156557. [PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
Collapse
Affiliation(s)
- Nur Najwa Farahin M Yusoff
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | | |
Collapse
|
15
|
Ma G, Li X, Tao Q, Ma S, Du H, Hu Q, Xiao H. Impacts of preparation technologies on biological activities of edible mushroom polysaccharides - novel insights for personalized nutrition achievement. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38821105 DOI: 10.1080/10408398.2024.2352796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Edible mushroom polysaccharides (EMPs) as a natural macromolecular carbohydrate have a very complex structure and composition. EMPs are considered ideal candidates for developing healthy products and functional foods and have received significant research attention due to their unique physiological activities such as immunomodulatory, anti-inflammatory, anti-tumor/cancer, gut microbiota regulation, metabolism improvement, and nervous system protection. The structure and monosaccharide composition of edible mushroom polysaccharides have an unknown relationship with their functional activity, which has not been widely studied. Therefore, we summarized the preparation techniques of EMPs and discussed the association between functional activity, preparation methods, structure and composition of EMPs, laying a theoretical foundation for the personalized nutritional achievements of EMP. We also establish the foundation for the further investigation and application of EMPs as novel functional foods and healthy products.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xinyi Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Qi Tao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Sai Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
Chen Z, Balachandran YL, Chong WP, Chan KWY. Roles of Cytokines in Alzheimer's Disease. Int J Mol Sci 2024; 25:5803. [PMID: 38891990 PMCID: PMC11171747 DOI: 10.3390/ijms25115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The neuroimmune system is a collection of immune cells, cytokines, and the glymphatic system that plays a pivotal role in the pathogenesis and progression of Alzheimer's disease (AD). Of particular focus are cytokines, a group of immune signaling molecules that facilitate communication among immune cells and contribute to inflammation in AD. Extensive research has shown that the dysregulated secretion of certain cytokines (IL-1β, IL-17, IL-12, IL-23, IL-6, and TNF-α) promotes neuroinflammation and exacerbates neuronal damage in AD. However, anti-inflammatory cytokines (IL-2, IL-3, IL-33, and IL-35) are also secreted during AD onset and progression, thereby preventing neuroinflammation. This review summarizes the involvement of pro- and anti-inflammatory cytokines in AD pathology and discusses their therapeutic potential.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
| | - Yekkuni L. Balachandran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Ressel S, Kumar S, Bermúdez-Barrientos JR, Gordon K, Lane J, Wu J, Abreu-Goodger C, Schwarze J, Buck A. RNA-RNA interactions between respiratory syncytial virus and miR-26 and miR-27 are associated with regulation of cell cycle and antiviral immunity. Nucleic Acids Res 2024; 52:4872-4888. [PMID: 38412296 PMCID: PMC11109944 DOI: 10.1093/nar/gkae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
microRNAs (miRNAs) regulate nearly all physiological processes but our understanding of exactly how they function remains incomplete, particularly in the context of viral infections. Here, we adapt a biochemical method (CLEAR-CLIP) and analysis pipeline to identify targets of miRNAs in lung cells infected with Respiratory syncytial virus (RSV). We show that RSV binds directly to miR-26 and miR-27 through seed pairing and demonstrate that these miRNAs target distinct gene networks associated with cell cycle and metabolism (miR-27) and antiviral immunity (miR-26). Many of the targets are de-repressed upon infection and we show that the miR-27 targets most sensitive to miRNA inhibition are those associated with cell cycle. Finally, we demonstrate that high confidence chimeras map to long noncoding RNAs (lncRNAs) and pseudogenes in transcriptional regulatory regions. We validate that a proportion of miR-27 and Argonaute 2 (AGO2) is nuclear and identify a long non-coding RNA (lncRNA) as a miR-27 target that is linked to transcriptional regulation of nearby genes. This work expands the target networks of miR-26 and miR-27 to include direct interactions with RSV and lncRNAs and implicate these miRNAs in regulation of key genes that impact the viral life cycle associated with cell cycle, metabolism, and antiviral immunity.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sujai Kumar
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | | | - Katrina Gordon
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Julia Lane
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jin Wu
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
18
|
Samo S, Hamo F, Hamza A, Yadlapati R, Kahrilas PJ, Wozniak A. Rapid Development of Achalasia After SARS-CoV-2 Infection: Polymerase Chain Reaction Analysis of Esophageal Muscle Tissue. Am J Gastroenterol 2024; 119:987-990. [PMID: 38265043 DOI: 10.14309/ajg.0000000000002669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Achalasia has been linked to viruses. We have observed cases of rapid-developing achalasia post-coronavirus disease 2019 (COVID-19). METHODS We aimed to prospectively evaluate esophageal muscle for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from patients with rapid-onset achalasia post-COVID-19 and compare them with achalasia predating COVID-19 and achalasia with no COVID-19. RESULTS Compared with long-standing achalasia predating COVID-19 and long-standing achalasia with no COVID-19, the subjects with achalasia post-COVID-19 had significantly higher levels of messenger RNA for the SARS-CoV-2 nucleocapsid (N) protein, which correlated with a significant increase in the inflammatory markers NOD-like receptor family pyrin domain-containing 3 and tumor necrosis factor. DISCUSSION SARS-CoV-2, the virus responsible for COVID-19, is a possible trigger for achalasia.
Collapse
Affiliation(s)
- Salih Samo
- Division of Gastroenterology, Hepatology, and Motility, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Falak Hamo
- Division of Gastroenterology, Hepatology, and Motility, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Ameer Hamza
- Department of Pathology, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Rena Yadlapati
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Peter J Kahrilas
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ann Wozniak
- Division of Gastroenterology, Hepatology, and Motility, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
19
|
Zuo X, Peng G, Zhao J, Zhao Q, Zhu Y, Xu Y, Xu L, Li F, Xia Y, Liu Y, Wang C, Wang Z, Wang H, Zou X. Infection of domestic pigs with a genotype II potent strain of ASFV causes cytokine storm and lymphocyte mass reduction. Front Immunol 2024; 15:1361531. [PMID: 38698849 PMCID: PMC11064794 DOI: 10.3389/fimmu.2024.1361531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
The whole-genome sequence of an African swine fever virus (ASFV) strain (HuB/HH/2019) isolated from Hubei, China, was highly similar to that of the Georgia 2007/1 strain ASFV. After infection with strong strains, domestic pigs show typical symptoms of infection, including fever, depression, reddening of the skin, hemorrhagic swelling of various tissues, and dysfunction. The earliest detoxification occurred in pharyngeal swabs at 4 days post-infection. The viral load in the blood was extremely high, and ASFV was detected in multiple tissues, with the highest viral loads in the spleen and lungs. An imbalance between pro- and anti-inflammatory factors in the serum leads to an excessive inflammatory response in the body. Immune factor expression is suppressed without effectively eliciting an immune defense. Antibodies against p30 were not detected in acutely dead domestic pigs. Sequencing of the peripheral blood mononuclear cell transcriptome revealed elevated transcription of genes associated with immunity, defense, and stress. The massive reduction in lymphocyte counts in the blood collapses the body's immune system. An excessive inflammatory response with a massive reduction in the lymphocyte count may be an important cause of mortality in domestic pigs. These two reasons have inspired researchers to reduce excessive inflammatory responses and stimulate effective immune responses for future vaccine development.
Collapse
Affiliation(s)
- Xuezhi Zuo
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Guorui Peng
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Junjie Zhao
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Qizu Zhao
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Yuanyuan Zhu
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Yuan Xu
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Lu Xu
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Fangtao Li
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Yingju Xia
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Yebing Liu
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Cheng Wang
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhen Wang
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xingqi Zou
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
20
|
Sundling C, Yman V, Mousavian Z, Angenendt S, Foroogh F, von Horn E, Lautenbach MJ, Grunewald J, Färnert A, Sondén K. Disease-specific plasma protein profiles in patients with fever after traveling to tropical areas. Eur J Immunol 2024; 54:e2350784. [PMID: 38308504 DOI: 10.1002/eji.202350784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Fever is common among individuals seeking healthcare after traveling to tropical regions. Despite the association with potentially severe disease, the etiology is often not determined. Plasma protein patterns can be informative to understand the host response to infection and can potentially indicate the pathogen causing the disease. In this study, we measured 49 proteins in the plasma of 124 patients with fever after travel to tropical or subtropical regions. The patients had confirmed diagnoses of either malaria, dengue fever, influenza, bacterial respiratory tract infection, or bacterial gastroenteritis, representing the most common etiologies. We used multivariate and machine learning methods to identify combinations of proteins that contributed to distinguishing infected patients from healthy controls, and each other. Malaria displayed the most unique protein signature, indicating a strong immunoregulatory response with high levels of IL10, sTNFRI and II, and sCD25 but low levels of sCD40L. In contrast, bacterial gastroenteritis had high levels of sCD40L, APRIL, and IFN-γ, while dengue was the only infection with elevated IFN-α2. These results suggest that characterization of the inflammatory profile of individuals with fever can help to identify disease-specific host responses, which in turn can be used to guide future research on diagnostic strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Stockholm South Hospital, Stockholm, Sweden
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sina Angenendt
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fariba Foroogh
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ellen von Horn
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Respiratory Medicine Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Barrio-Alonso C, Nieto-Valle A, García-Martínez E, Gutiérrez-Seijo A, Parra-Blanco V, Márquez-Rodas I, Avilés-Izquierdo JA, Sánchez-Mateos P, Samaniego R. Chemokine profiling of melanoma-macrophage crosstalk identifies CCL8 and CCL15 as prognostic factors in cutaneous melanoma. J Pathol 2024; 262:495-504. [PMID: 38287901 DOI: 10.1002/path.6252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024]
Abstract
During cancer evolution, tumor cells attract and dynamically interact with monocytes/macrophages. To find biomarkers of disease progression in human melanoma, we used unbiased RNA sequencing and secretome analyses of tumor-macrophage co-cultures. Pathway analysis of genes differentially modulated in human macrophages exposed to melanoma cells revealed a general upregulation of inflammatory hallmark gene sets, particularly chemokines. A selective group of chemokines, including CCL8, CCL15, and CCL20, was actively secreted upon melanoma-macrophage co-culture. Because we previously described the role of CCL20 in melanoma, we focused our study on CCL8 and CCL15 and confirmed that in vitro both chemokines contributed to melanoma survival, proliferation, and 3D invasion through CCR1 signaling. In vivo, both chemokines enhanced primary tumor growth, spontaneous lung metastasis, and circulating tumor cell survival and lung colonization in mouse xenograft models. Finally, we explored the clinical significance of CCL8 and CCL15 expression in human skin melanoma, screening a collection of 67 primary melanoma samples, using multicolor fluorescence and quantitative image analysis of chemokine-chemokine receptor content at the single-cell level. Primary skin melanomas displayed high CCR1 expression, but there was no difference in its level of expression between metastatic and nonmetastatic cases. By contrast, comparative analysis of these two clinically divergent groups showed a highly significant difference in the cancer cell content of CCL8 (p = 0.025) and CCL15 (p < 0.0001). Kaplan-Meier curves showed that a high content of CCL8 or CCL15 in cancer cells correlated with shorter disease-free and overall survival (log-rank test, p < 0.001). Our results highlight the role of CCL8 and CCL15, which are highly induced by melanoma-macrophage interactions in biologically aggressive primary melanomas and could be clinically applicable biomarkers for patient profiling. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Celia Barrio-Alonso
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alicia Nieto-Valle
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Elena García-Martínez
- Servicio de Inmunología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alba Gutiérrez-Seijo
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Verónica Parra-Blanco
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Iván Márquez-Rodas
- Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Inmunología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
22
|
Godthi A, Min S, Das S, Cruz-Corchado J, Deonarine A, Misel-Wuchter K, Issuree PD, Prahlad V. Neuronal IL-17 controls Caenorhabditis elegans developmental diapause through CEP-1/p53. Proc Natl Acad Sci U S A 2024; 121:e2315248121. [PMID: 38483995 PMCID: PMC10963014 DOI: 10.1073/pnas.2315248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
During metazoan development, how cell division and metabolic programs are coordinated with nutrient availability remains unclear. Here, we show that nutrient availability signaled by the neuronal cytokine, ILC-17.1, switches Caenorhabditis elegans development between reproductive growth and dormancy by controlling the activity of the tumor suppressor p53 ortholog, CEP-1. Specifically, upon food availability, ILC-17.1 signaling by amphid neurons promotes glucose utilization and suppresses CEP-1/p53 to allow growth. In the absence of ILC-17.1, CEP-1/p53 is activated, up-regulates cell-cycle inhibitors, decreases phosphofructokinase and cytochrome C expression, and causes larvae to arrest as stress-resistant, quiescent dauers. We propose a model whereby ILC-17.1 signaling links nutrient availability and energy metabolism to cell cycle progression through CEP-1/p53. These studies describe ancestral functions of IL-17 s and the p53 family of proteins and are relevant to our understanding of neuroimmune mechanisms in cancer. They also reveal a DNA damage-independent function of CEP-1/p53 in invertebrate development and support the existence of a previously undescribed C. elegans dauer pathway.
Collapse
Affiliation(s)
- Abhishiktha Godthi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Sehee Min
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Srijit Das
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Johnny Cruz-Corchado
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Andrew Deonarine
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Kara Misel-Wuchter
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Priya D. Issuree
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| |
Collapse
|
23
|
Hu Y, Wu X, Zhou L, Liu J. Which is the optimal choice for neonates' formula or breast milk? NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:21. [PMID: 38488905 PMCID: PMC10942964 DOI: 10.1007/s13659-024-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intricate range of nutrients may be necessary. This paper provides a comprehensive review of the current research progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well as explores the relationship between the main components of milk globular membrane and infant growth. Additionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily nutritional needs during lactation.
Collapse
Affiliation(s)
- Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Xing Wu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
24
|
Suhre K. Genetic associations with ratios between protein levels detect new pQTLs and reveal protein-protein interactions. CELL GENOMICS 2024; 4:100506. [PMID: 38412862 PMCID: PMC10943581 DOI: 10.1016/j.xgen.2024.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/25/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Protein quantitative trait loci (pQTLs) are an invaluable source of information for drug target development because they provide genetic evidence to support protein function, suggest relationships between cis- and trans-associated proteins, and link proteins to disease endpoints. Using Olink proteomics data for 1,463 proteins measured in over 54,000 samples of the UK Biobank, we identified 4,248 associations with 2,821 ratios between protein levels (rQTLs). rQTLs were 7.6-fold enriched in known protein-protein interactions, suggesting that their ratios reflect biological links between the implicated proteins. Conducting a GWAS on ratios increased the number of discovered genetic signals by 24.7%. The approach can identify novel loci of clinical relevance, support causal gene identification, and reveal complex networks of interacting proteins. Taken together, our study adds significant value to the genetic insights that can be derived from the UKB proteomics data and motivates the wider use of ratios in large-scale GWAS.
Collapse
Affiliation(s)
- Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha 24144, Qatar; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
25
|
Rengarajan A, Goldblatt HE, Beebe DJ, Virumbrales-Muñoz M, Boeldt DS. Immune cells and inflammatory mediators cause endothelial dysfunction in a vascular microphysiological system. LAB ON A CHIP 2024; 24:1808-1820. [PMID: 38363157 PMCID: PMC11022267 DOI: 10.1039/d3lc00824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Functional assessment of endothelium serves as an important indicator of vascular health and is compromised in vascular disorders including hypertension, atherosclerosis, and preeclampsia. Endothelial dysfunction in these cases is linked to dysregulation of the immune system involving both changes to immune cells and increased secretion of inflammatory cytokines. Herein, we utilize a well-established microfluidic device to generate a 3-dimensional vascular microphysiological system (MPS) consisting of a tubular blood vessel lined with human umbilical vein endothelial cells (HUVECs) to evaluate endothelial function measured via endothelial permeability and Ca2+ signaling. We evaluated the effect of a mixture of factors associated with inflammation and cardiovascular disease (TNFα, VEGF-A, IL-6 at 10 ng ml-1 each) on vascular MPS and inferred that inflammatory mediators contribute to endothelial dysfunction by disrupting the endothelial barrier over a 48 hour treatment and by diminishing coordinated Ca2+ activity over a 1 hour treatment. We also evaluated the effect of peripheral blood mononuclear cells (PBMCs) on endothelial permeability and Ca2+ signaling in the HUVEC MPS. HUVECs were co-cultured with PBMCs either directly wherein PBMCs passed through the lumen or indirectly with PBMCs embedded in the supporting collagen hydrogel. We revealed that phytohemagglutinin (PHA)-M activated PBMCs cause endothelial dysfunction in MPS both through increased permeability and decreased coordinated Ca2+ activity compared to non-activated PBMCs. Our MPS has potential applications in modeling cardiovascular disorders and screening for potential treatments using measures of endothelial function.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| | - Hannah E Goldblatt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - María Virumbrales-Muñoz
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Derek S Boeldt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| |
Collapse
|
26
|
Bacher J, Lali N, Steiner F, Jungbauer A. Cytokines as fast indicator of infectious virus titer during process development. J Biotechnol 2024; 383:55-63. [PMID: 38325657 DOI: 10.1016/j.jbiotec.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Measuring infectious titer is the most time-consuming method during the production and process development of live viruses. Conventionally, it is done by measuring the tissue culture infectious dose (TCID50) or plaque forming units (pfu) in cell-based assays. Such assays require a time span of more than a week to the readout and significantly slow down process development. In this study, we utilized the pro-inflammatory cytokine response of a Vero production cell line to a recombinant measles vaccine virus (MVV) as model system for rapidly determining infectious virus titer within several hours after infection instead of one week. Cytokines are immunostimulatory proteins contributing to the first line of defence against virus infection. The probed cytokines in this study were MCP-1 and RANTES, which are secreted in a virus dose as well as time dependent manner and correlate to TCID50 over a concentration range of several logarithmic levels with R2 = 0.86 and R2 = 0.83, respectively. Furthermore, the pro-inflammatory cytokine response of the cells was specific for infectious virus particles and not evoked with filtered virus seed. We also discovered that individual cytokine candidates may be more suitable for off- or at-line analysis, depending on the secretion profile as well as their sensitivity towards changing process conditions. Furthermore, the method can be applied to follow a purification procedure and is therefore suited for process development and control.
Collapse
Affiliation(s)
- Johanna Bacher
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Narges Lali
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Florian Steiner
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria
| | - Alois Jungbauer
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Shah V, Panchal V, Shah A, Vyas B, Agrawal S, Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). MEDICINE INTERNATIONAL 2024; 4:13. [PMID: 38410760 PMCID: PMC10895472 DOI: 10.3892/mi.2024.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
An increase in the incidence of melanoma has been observed in recent decades, which poses a significant challenge due to its poor prognosis in the advanced and metastatic stages. Previously, chemotherapy and high doses of interleukin-2 were available treatments for melanoma; however, they offered limited survival benefits and were associated with severe toxicities. The treatment of metastatic melanoma has been transformed by new developments in immunotherapy. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that target cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and its ligand, PDL-1, have emerged as promising therapeutic options. Commonly used ICIs, such as ipilimumab, nivolumab and pembrolizumab, have been found to be associated with an improved median overall survival, recurrence-free survival and response rates compared to traditional chemotherapies. Combination therapies involving different types of ICIs, such as anti-PD1 with anti-CTLA-4, have further enhanced the overall survival and response rates by targeting various phases of T-cell activation. Additionally, the development of novel biomarkers has facilitated the assessment of responses to ICI therapy, with tissue and serum-based prognostic and predictive biomarkers now available. The increased response observed with ICIs also provides potential for immune-related adverse effects on various organ systems. Further research is required to evaluate the efficacy and safety of various combinations of ICIs, while ongoing clinical trials explore the potential of newer ICIs. Concerns regarding the development of resistance to ICIs also warrant attention. The present review summarizes and discusses the advent of ICIs with a marked significant breakthrough in the treatment of metastatic melanoma, providing improved outcomes compared to traditional therapies.
Collapse
Affiliation(s)
- Vedant Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Viraj Panchal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Abhi Shah
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Bhavya Vyas
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Siddharth Agrawal
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| | - Sanket Bharadwaj
- Department of Medicine, Smt. N.H.L. Municipal Medical College and Sardar Vallabhbhai Patel Institute of Medical Sciences and Research (SVPISMR), Ahmedabad, Gujarat 380058, India
| |
Collapse
|
28
|
Hyun JH, Woo IK, Kim KT, Park YS, Kang DK, Lee NK, Paik HD. Heat-Treated Paraprobiotic Latilactobacillus sakei KU15041 and Latilactobacillus curvatus KU15003 Show an Antioxidant and Immunostimulatory Effect. J Microbiol Biotechnol 2024; 34:358-366. [PMID: 37997261 PMCID: PMC10940752 DOI: 10.4014/jmb.2309.09007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/25/2023]
Abstract
The lactic acid bacteria, including Latilactobacillus sakei and Latilactobacillus curvatus, have been widely studied for their preventive and therapeutic effects. In this study, the underlying mechanism of action for the antioxidant and immunostimulatory effects of two strains of heat-treated paraprobiotics was examined. Heat-treated L. sakei KU15041 and L. curvatus KU15003 showed higher radical scavenging activity in both the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays than the commercial probiotic strain LGG. In addition, treatment with these two strains exhibited immunostimulatory effects in RAW 264.7 macrophages, with L. curvatus KU15003 showing a slightly higher effect. Additionally, they promoted phagocytosis and NO production in RAW 264.7 cells without any cytotoxicity. Moreover, the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 was upregulated. These strains resulted in an increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the nuclear factor-κB and mitogen-activated protein kinase signaling pathways were stimulated by these strains. These findings suggest the potential of using L. sakei KU15041 and L. curvatus KU15003 in food or by themselves as probiotics with antioxidant and immune-enhancing properties.
Collapse
Affiliation(s)
- Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Im-Kyung Woo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Kee-Tae Kim
- Research Institute, WithBio Inc., Seoul 05029, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
29
|
Bonni S, Brindley DN, Chamberlain MD, Daneshvar-Baghbadorani N, Freywald A, Hemmings DG, Hombach-Klonisch S, Klonisch T, Raouf A, Shemanko CS, Topolnitska D, Visser K, Vizeacoumar FJ, Wang E, Gibson SB. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers (Basel) 2024; 16:911. [PMID: 38473273 DOI: 10.3390/cancers16050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Dean Chamberlain
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Nima Daneshvar-Baghbadorani
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology, Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Carrie Simone Shemanko
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Diana Topolnitska
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kaitlyn Visser
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Spencer B Gibson
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
30
|
Winkler I, Tolkachov A, Lammers F, Lacour P, Daugelaite K, Schneider N, Koch ML, Panten J, Grünschläger F, Poth T, Ávila BMD, Schneider A, Haas S, Odom DT, Gonçalves Â. The cycling and aging mouse female reproductive tract at single-cell resolution. Cell 2024; 187:981-998.e25. [PMID: 38325365 DOI: 10.1016/j.cell.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/21/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.
Collapse
Affiliation(s)
- Ivana Winkler
- German Cancer Research Center (DKFZ), Division of Somatic Evolution and Early Detection, 69120 Heidelberg, Germany
| | - Alexander Tolkachov
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Fritjof Lammers
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Perrine Lacour
- German Cancer Research Center (DKFZ), Division of Somatic Evolution and Early Detection, 69120 Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Klaudija Daugelaite
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany
| | - Nina Schneider
- German Cancer Research Center (DKFZ), Division of Somatic Evolution and Early Detection, 69120 Heidelberg, Germany
| | - Marie-Luise Koch
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany
| | - Jasper Panten
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, 69120 Heidelberg, Germany
| | - Florian Grünschläger
- Heidelberg University, Faculty of Biosciences, 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Division of Stem Cells and Cancer, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Tanja Poth
- CMCP - Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Augusto Schneider
- Universidade Federal de Pelotas, Faculdade de Nutrição, 96010-610 Pelotas, RS, Brazil
| | - Simon Haas
- German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Division of Stem Cells and Cancer, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Charité - Universitätsmedizin Berlin, Department of Hematology, Oncology and Cancer Immunology, 10115 Berlin, Germany
| | - Duncan T Odom
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, 69120 Heidelberg, Germany; Cancer Research UK - Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Ângela Gonçalves
- German Cancer Research Center (DKFZ), Division of Somatic Evolution and Early Detection, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Hu Y, Sun Y, Liao Z, An D, Liu X, Yang X, Tian Y, Deng S, Meng J, Wang Y, Li J, Deng Y, Zhou Z, Chen Q, Ye Y, Wei W, Wu B, Lovell JF, Jin H, Huang F, Wan C, Yang K. Irradiated engineered tumor cell-derived microparticles remodel the tumor immune microenvironment and enhance antitumor immunity. Mol Ther 2024; 32:411-425. [PMID: 38098229 PMCID: PMC10861971 DOI: 10.1016/j.ymthe.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Radiotherapy (RT), administered to roughly half of all cancer patients, occupies a crucial role in the landscape of cancer treatment. However, expanding the clinical indications of RT remains challenging. Inspired by the radiation-induced bystander effect (RIBE), we used the mediators of RIBE to mimic RT. Specifically, we discovered that irradiated tumor cell-released microparticles (RT-MPs) mediated the RIBE and had immune activation effects. To further boost the immune activation effect of RT-MPs to achieve cancer remission, even in advanced stages, we engineered RT-MPs with different cytokine and chemokine combinations by modifying their production method. After comparing the therapeutic effect of the engineered RT-MPs in vitro and in vivo, we demonstrated that tIL-15/tCCL19-RT-MPs effectively activated antitumor immune responses, significantly prolonged the survival of mice with malignant pleural effusion (MPE), and even achieved complete cancer remission. When tIL-15/tCCL19-RT-MPs were combined with PD-1 monoclonal antibody (mAb), a cure rate of up to 60% was achieved. This combination therapy relied on the activation of CD8+ T cells and macrophages, resulting in the inhibition of tumor growth and the establishment of immunological memory against tumor cells. Hence, our research may provide an alternative and promising strategy for cancers that are not amenable to conventional RT.
Collapse
Affiliation(s)
- Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qinyan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ying Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
33
|
Yeh M, Salazar-Cavazos E, Krishnan A, Altan-Bonnet G, DeVoe DL. Probing T-cell activation in nanoliter tumor co-cultures using membrane displacement trap arrays. Integr Biol (Camb) 2024; 16:zyae014. [PMID: 39074471 PMCID: PMC11286267 DOI: 10.1093/intbio/zyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Immune responses against cancer are inherently stochastic, with small numbers of individual T cells within a larger ensemble of lymphocytes initiating the molecular cascades that lead to tumor cytotoxicity. A potential source of this intra-tumor variability is the differential ability of immune cells to respond to tumor cells. Classical microwell co-cultures of T cells and tumor cells are inadequate for reliably culturing and analyzing low cell numbers needed to probe this variability, and have failed in recapitulating the heterogeneous small domains observed in tumors. Here we leverage a membrane displacement trap array technology that overcomes limitations of conventional microwell plates for immunodynamic studies. The microfluidic platform supports on-demand formation of dense nanowell cultures under continuous perfusion reflecting the tumor microenvironment, with real-time monitoring of T cell proliferation and activation within each nanowell. The system enables selective ejection of cells for profiling by fluorescence activated cell sorting, allowing observed on-chip variability in immune response to be correlated with off-chip quantification of T cell activation. The technology offers new potential for probing the molecular origins of T cell heterogeneity and identifying specific cell phenotypes responsible for initiating and propagating immune cascades within tumors. Insight Box Variability in T cell activation plays a critical role in the immune response against cancer. New tools are needed to unravel the mechanisms that drive successful anti-tumor immune response, and to support the development of novel immunotherapies utilizing rare T cell phenotypes that promote effective immune surveillance. To this end, we present a microfluidic cell culture platform capable of probing differential T cell activation in an array of nanoliter-scale wells coupled with off-chip cell analysis, enabling a high resolution view of variable immune response within tumor / T cell co-cultures containing cell ensembles orders of magnitude smaller than conventional well plate studies.
Collapse
Affiliation(s)
- Michael Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | | | - Anagha Krishnan
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Grégoire Altan-Bonnet
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
34
|
Hoekstra ME, Slagter M, Urbanus J, Toebes M, Slingerland N, de Rink I, Kluin RJC, Nieuwland M, Kerkhoven R, Wessels LFA, Schumacher TN. Distinct spatiotemporal dynamics of CD8 + T cell-derived cytokines in the tumor microenvironment. Cancer Cell 2024; 42:157-167.e9. [PMID: 38194914 PMCID: PMC10783802 DOI: 10.1016/j.ccell.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Cells in the tumor microenvironment (TME) influence each other through secretion and sensing of soluble mediators, such as cytokines and chemokines. While signaling of interferon γ (IFNγ) and tumor necrosis factor α (TNFα) is integral to anti-tumor immune responses, our understanding of the spatiotemporal behavior of these cytokines is limited. Here, we describe a single cell transcriptome-based approach to infer which signal(s) an individual cell has received. We demonstrate that, contrary to expectations, CD8+ T cell-derived IFNγ is the dominant modifier of the TME relative to TNFα. Furthermore, we demonstrate that cell pools that show abundant IFNγ sensing are characterized by decreased expression of transforming growth factor β (TGFβ)-induced genes, consistent with IFNγ-mediated TME remodeling. Collectively, these data provide evidence that CD8+ T cell-secreted cytokines should be categorized into local and global tissue modifiers, and describe a broadly applicable approach to dissect cytokine and chemokine modulation of the TME.
Collapse
Affiliation(s)
- Mirjam E Hoekstra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten Slagter
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Urbanus
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nadine Slingerland
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of EEMCS, Delft University of Technology, Delft, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
35
|
Downie AE, Oyesola O, Barre RS, Caudron Q, Chen YH, Dennis EJ, Garnier R, Kiwanuka K, Menezes A, Navarrete DJ, Mondragón-Palomino O, Saunders JB, Tokita CK, Zaldana K, Cadwell K, Loke P, Graham AL. Spatiotemporal-social association predicts immunological similarity in rewilded mice. SCIENCE ADVANCES 2023; 9:eadh8310. [PMID: 38134275 PMCID: PMC10745690 DOI: 10.1126/sciadv.adh8310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Environmental influences on immune phenotypes are well-documented, but our understanding of which elements of the environment affect immune systems, and how, remains vague. Behaviors, including socializing with others, are central to an individual's interaction with its environment. We therefore tracked behavior of rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior, including associations measured from spatiotemporal co-occurrences, to immune phenotypes. We found extensive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we found that the more associated two individuals were, the more similar their immune phenotypes were. Spatiotemporal association was particularly predictive of similar memory T and B cell profiles and was more influential than sibling relationships or shared infection status. These results highlight the importance of shared spatiotemporal activity patterns and/or social networks for immune phenotype and suggest potential immunological correlates of social life.
Collapse
Affiliation(s)
- Alexander E. Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Quentin Caudron
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Emily J. Dennis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Romain Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kasalina Kiwanuka
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arthur Menezes
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J. Navarrete
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse B. Saunders
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Christopher K. Tokita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kimberly Zaldana
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
36
|
Hosseinkhani B, Duran G, Hoeks C, Hermans D, Schepers M, Baeten P, Poelmans J, Coenen B, Bekar K, Pintelon I, Timmermans JP, Vanmierlo T, Michiels L, Hellings N, Broux B. Cerebral microvascular endothelial cell-derived extracellular vesicles regulate blood - brain barrier function. Fluids Barriers CNS 2023; 20:95. [PMID: 38114994 PMCID: PMC10729529 DOI: 10.1186/s12987-023-00504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Autoreactive T lymphocytes crossing the blood-brain barrier (BBB) into the central nervous system (CNS) play a crucial role in the initiation of demyelination and neurodegeneration in multiple sclerosis (MS). Recently, extracellular vesicles (EV) secreted by BBB endothelial cells (BBB-EC) have emerged as a unique form of cell-to-cell communication that contributes to cerebrovascular dysfunction. However, the precise impact of different size-based subpopulations of BBB-EC-derived EV (BBB-EV) on the early stages of MS remains unclear. Therefore, our objective was to investigate the content and function of distinct BBB-EV subpopulations in regulating BBB integrity and their role in T cell transendothelial migration, both in vitro and in vivo. Our study reveals that BBB-ECs release two distinct size based EV populations, namely small EV (sEV; 30-150 nm) and large EV (lEV; 150-300 nm), with a significantly higher secretion of sEV during inflammation. Notably, the expression patterns of cytokines and adhesion markers differ significantly between these BBB-EV subsets, indicating specific functional differences in the regulation of T cell migration. Through in vitro experiments, we demonstrate that lEV, which predominantly reflect their cellular source, play a major role in BBB integrity loss and the enhanced migration of pro-inflammatory Th1 and Th17.1 cells. Conversely, sEV appear to protect BBB function by inducing an anti-inflammatory phenotype in BBB-EC. These findings align with our in vivo data, where the administration of sEV to mice with experimental autoimmune encephalomyelitis (EAE) results in lower disease severity compared to the administration of lEV, which exacerbates disease symptoms. In conclusion, our study highlights the distinct and opposing effects of BBB-EV subpopulations on the BBB, both in vitro and in vivo. These findings underscore the need for further investigation into the diagnostic and therapeutic potential of BBB-EV in the context of MS.
Collapse
Affiliation(s)
- Baharak Hosseinkhani
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, KU Leuven, Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Gayel Duran
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Cindy Hoeks
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Doryssa Hermans
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Melissa Schepers
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Paulien Baeten
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Joren Poelmans
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Britt Coenen
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Kübra Bekar
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology/Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology & Histology/Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Tim Vanmierlo
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Luc Michiels
- Bionanotechnology group, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Niels Hellings
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Bieke Broux
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Diepenbeek, Belgium.
- Universiteit Hasselt, Martelarenlaan 42, Hasselt, Belgium.
| |
Collapse
|
37
|
Amin A, Koul AM, Wani UM, Farooq F, Amin B, Wani Z, Lone A, Qadri A, Qadri RA. Dissection of paracrine/autocrine interplay in lung tumor microenvironment mimicking cancer cell-monocyte co-culture models reveals proteins that promote inflammation and metastasis. BMC Cancer 2023; 23:926. [PMID: 37784035 PMCID: PMC10544320 DOI: 10.1186/s12885-023-11428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Tumor cell-monocyte interactions play crucial roles in shaping up the pro-tumorigenic phenotype and functional output of tumor-associated macrophages. Within the tumor microenvironment, such heterotypic cell-cell interactions are known to occur via secretory proteins. Secretory proteins establish a diabolic liaison between tumor cells and monocytes, leading to their recruitment, subsequent polarization and consequent tumor progression. METHODS We co-cultured model lung adenocarcinoma cell line A549 with model monocytes, THP-1 to delineate the interactions between them. The levels of prototypical pro-inflammatory cytokines like TNF-𝛼, IL-6 and anti-inflammatory cytokines like IL-10 were measured by ELISA. Migration, invasion and attachment independence of lung cancer cells was assessed by wound healing, transwell invasion and colony formation assays respectively. The status of EMT was evaluated by immunofluorescence. Identification of secretory proteins differentially expressed in monocultures and co-culture was carried out using SILAC LC-MS/MS. Various insilico tools like Cytoscape, Reacfoam, CHAT and Kaplan-Meier plotter were utilized for association studies, pathway analysis, functional classification, cancer hallmark relevance and predicting the prognostic potential of the candidate secretory proteins respectively. RESULTS Co-culture of A549 and THP-1 cells in 1:10 ratio showed early release of prototypical pro-inflammatory cytokines TNF-𝛼 and IL-6, however anti-inflammatory cytokine, IL-10 was observed to be released at the highest time point. The conditioned medium obtained from this co-culture ratio promoted the migration, invasion and colony formation as well as the EMT of A549 cells. Co-culturing of A549 with THP-1 cells modulated the secretion of proteins involved in cell proliferation, migration, invasion, EMT, inflammation, angiogenesis and inhibition of apoptosis. Among these proteins Versican, Tetranectin, IGFBP2, TUBB4B, C2 and IFI30 were found to correlate with the inflammatory and pro-metastatic milieu observed in our experimental setup. Furthermore, dysregulated expression of these proteins was found to be associated with poor prognosis and negative disease outcomes in lung adenocarcinoma compared to other cancer types. Pharmacological interventions targeting these proteins may serve as useful therapeutic approaches in lung adenocarcinoma. CONCLUSION In this study, we have demonstrated that the lung cancer cell-monocyte cross-talk modulates the secretion of IFI30, RNH1, CLEC3B, VCAN, IGFBP2, C2 and TUBB4B favoring tumor growth and metastasis.
Collapse
Affiliation(s)
- Asif Amin
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Aabid Mustafa Koul
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Umer Majeed Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Faizah Farooq
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Basit Amin
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Zubair Wani
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India
| | - Asif Lone
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110608, India
| | - Ayub Qadri
- Abdul Kalam Chair for Translational Research, Islamic University of Science and Technology, Awantipora, J&K, 192122, India
| | - Raies A Qadri
- Immunobiology Lab, Department of Biotechnology, University of Kashmir, Srinagar, J&K, 190006, India.
| |
Collapse
|
38
|
Huang L, Lou N, Xie T, Tang L, Han X, Shi Y. Identification of an antigen-presenting cells/T/NK cells-related gene signature to predict prognosis and CTSL to predict immunotherapeutic response for lung adenocarcinoma: an integrated analysis of bulk and single-cell RNA sequencing. Cancer Immunol Immunother 2023; 72:3259-3277. [PMID: 37458771 PMCID: PMC10991236 DOI: 10.1007/s00262-023-03485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Antigen-presenting cells (APC)/T/NK cells are key immune cells that play crucial roles in fighting against malignancies including lung adenocarcinoma (LUAD). In this study, we aimed to identify an APC/T/NK cells-related gene signature (ATNKGS) and potential immune cell-related genes (IRGs) to realize risk stratification, prognosis, and immunotherapeutic response prediction for LUAD patients. METHODS Based on the univariate Cox regression and the LASSO Cox regression results of 196 APC/T/NK cells-related genes collected from three pathways in the KEGG database, we determined the final genes and established the ATNKGS-related risk model. The single-cell RNA sequencing data were applied for key IRGs identification and investigate their value in immunotherapeutic response prediction. Several GEO datasets and an external immunotherapy cohort from Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, were applied for validation. RESULTS In this study, nine independent public datasets including 1108 patients were enrolled. An ATNKGS containing 16 genes for predicting overall survival of LUAD patients was constructed with robust prognostic capability. The ATNKGS high risk group was related to significantly worse OS outcomes than those in the low-risk group, which were verified in TCGA and four GEO datatsets. A nomogram combining the ATNKGS risk score with clinical TNM stage achieved the optimal prediction performance. The single-cell RNA sequencing analysis revealed CTSL as an IRG of macrophage and monocyte. Moreover, though CTSL was an indicator for poor prognosis of LUAD patients, CTSL high expression group was associated with higher ESTIMATEScore, immune checkpoints expression, and lower TIDE score. Several immunotherapeutic cohorts have confirmed the response-predicting significance of CTSL in patients receiving immune checkpoint inhibitor (ICI) treatment. CONCLUSIONS Our study provided an insight into the significant role of APC/T/NK cells-related genes in survival risk stratification and CTSL in response prediction of immunotherapy in patients with LUAD.
Collapse
Affiliation(s)
- Liling Huang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ning Lou
- Department of Clinical Laboratory, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
39
|
Tripathi S, Tsang JS, Park K. Systems immunology of regulatory T cells: can one circuit explain it all? Trends Immunol 2023; 44:766-781. [PMID: 37690962 PMCID: PMC10543564 DOI: 10.1016/j.it.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Regulatory T (Treg) cells play vital roles in immune homeostasis and response, including discrimination between self- and non-self-antigens, containment of immunopathology, and inflammation resolution. These diverse functions are orchestrated by cellular circuits involving Tregs and other cell types across space and time. Despite dramatic progress in our understanding of Treg biology, a quantitative framework capturing how Treg-containing circuits give rise to these diverse functions is lacking. Here, we propose that different facets of Treg function can be interpreted as distinct operating regimes of the same underlying circuit. We discuss how a systems immunology approach, involving quantitative experiments, computational modeling, and machine learning, can advance our understanding of Treg function, and help identify general operating and design principles underlying immune regulation.
Collapse
Affiliation(s)
- Shubham Tripathi
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - John S Tsang
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Kyemyung Park
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; Graduate School of Health Science and Technology and Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
40
|
Mohapatra S, Chakraborty T, Basu A. Japanese Encephalitis virus infection in astrocytes modulate microglial function: Correlation with inflammation and oxidative stress. Cytokine 2023; 170:156328. [PMID: 37567102 DOI: 10.1016/j.cyto.2023.156328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Japanese Encephalitis Virus (JEV) is a neurotropic virus which has the propensity to infect neuronal and glial cells of the brain. Astrocyte-microglia crosstalk leading to the secretion of various factors plays a major role in controlling encephalitis in brain. This study focused on understanding the role of astrocytic mediators that further shaped the microglial response towards JEV infection. METHODS After establishing JEV infection in C8D1A (mouse astrocyte cell line) and primary astrocyte enriched cultures (PAEC), astrocyte supernatant was used for preparation of conditioned media. Astrocyte supernatant was treated with UV to inactivate JEV and the supernatant was added to N9 culture media in ratio 1:1 for preparation of conditioned media. N9 microglial cells post treatment with astrocyte conditioned media and JEV infection were checked for expression of various inflammatory genes by qRT-PCR, levels of secreted cytokines in N9 cell supernatant were checked by cytometric bead array. N9 cell lysates were checked for expression of proteins - pNF-κβ, IBA-1, NS3 and RIG-I by western blotting. Viral titers were measured in N9 supernatant by plaque assays. Immunocytochemistry experiments were done to quantify the number of infected microglial cells after astrocyte conditioned medium treatment. Expression of different antioxidant enzymes was checked in N9 cells by western blotting, levels of reactive oxygen species (ROS) was detected by fluorimetry using DCFDA dye. RESULTS N9 microglial cells post treatment with JEV-infected astrocyte conditioned media and JEV infection were activated, showed an upsurge in expression of inflammatory genes and cytokines both at the transcript and protein levels. These N9 cells showed a decrease in quantity of viral titers and associated viral proteins in comparison to control cells (not treated with conditioned media but infected with JEV). Also, N9 cells upon conditioned media treatment and JEV infection were more prone to undergo oxidative stress as observed by the decreased expression of antioxidant enzymes SOD-1, TRX-1 and increased secretion of reactive oxygen species (ROS). CONCLUSION Astrocytic mediators like TNF-α, MCP-1 and IL-6 influence microglial response towards JEV infection by promoting inflammation and oxidative stress in them. As a result of increased microglial inflammation and secretion of ROS, viral replication is lessened in conditioned media treated and JEV infected microglial cells as compared to control cells with no conditioned media treatment but only JEV infection.
Collapse
Affiliation(s)
- Stuti Mohapatra
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India.
| |
Collapse
|
41
|
Burt P, Thurley K. Distribution modeling quantifies collective T H cell decision circuits in chronic inflammation. SCIENCE ADVANCES 2023; 9:eadg7668. [PMID: 37703364 PMCID: PMC10881075 DOI: 10.1126/sciadv.adg7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Immune responses are tightly regulated by a diverse set of interacting immune cell populations. Alongside decision-making processes such as differentiation into specific effector cell types, immune cells initiate proliferation at the beginning of an inflammation, forming two layers of complexity. Here, we developed a general mathematical framework for the data-driven analysis of collective immune cell dynamics. We identified qualitative and quantitative properties of generic network motifs, and we specified differentiation dynamics by analysis of kinetic transcriptome data. Furthermore, we derived a specific, data-driven mathematical model for T helper 1 versus T follicular helper cell-fate decision dynamics in acute and chronic lymphocytic choriomeningitis virus infections in mice. The model recapitulates important dynamical properties without model fitting and solely by using measured response-time distributions. Model simulations predict different windows of opportunity for perturbation in acute and chronic infection scenarios, with potential implications for optimization of targeted immunotherapy.
Collapse
Affiliation(s)
- Philipp Burt
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute for Theoretical Biophysics, Humboldt University, Berlin, Germany
| | - Kevin Thurley
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
42
|
Centofanti E, Wang C, Iyer S, Krichevsky O, Oyler-Yaniv A, Oyler-Yaniv J. The spread of interferon-γ in melanomas is highly spatially confined, driving nongenetic variability in tumor cells. Proc Natl Acad Sci U S A 2023; 120:e2304190120. [PMID: 37603742 PMCID: PMC10468618 DOI: 10.1073/pnas.2304190120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023] Open
Abstract
Interferon-γ (IFNγ) is a critical antitumor cytokine that has varied effects on different cell types. The global effect of IFNγ in the tumor depends on which cells it acts upon and the spatial extent of its spread. Reported measurements of IFNγ spread vary dramatically in different contexts, ranging from nearest-neighbor signaling to perfusion throughout the entire tumor. Here, we apply theoretical considerations to experiments both in vitro and in vivo to study the spread of IFNγ in melanomas. We observe spatially confined niches of IFNγ signaling in 3-D mouse melanoma cultures and human tumors that generate cellular heterogeneity in gene expression and alter the susceptibility of affected cells to T cell killing. Widespread IFNγ signaling only occurs when niches overlap due to high local densities of IFNγ-producing T cells. We measured length scales of ~30 to 40 μm for IFNγ spread in B16 mouse melanoma cultures and human primary cutaneous melanoma. Our results are consistent with IFNγ spread being governed by a simple diffusion-consumption model and offer insight into how the spatial organization of T cells contributes to intratumor heterogeneity in inflammatory signaling, gene expression, and immune-mediated clearance. Solid tumors are often viewed as collections of diverse cellular "neighborhoods": Our work provides a general explanation for such nongenetic cellular variability due to confinement in the spread of immune mediators.
Collapse
Affiliation(s)
- Edoardo Centofanti
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | - Chad Wang
- The Systems, Synthetic, and Quantitative Biology Graduate Program at Harvard Medical School, Boston, MA02115
| | - Sandhya Iyer
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | - Oleg Krichevsky
- The Department of Physics at Ben Gurion University of the Negev, Beer-Sheva8410501, Israel
| | - Alon Oyler-Yaniv
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
43
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
44
|
Lee J, Jo SE, Han SI, Kim JH. Ethanol-Extracted Acorn Induces Anti-Inflammatory Effects in Human Keratinocyte and Production of Hyaluronic Acid in Human Fibroblasts. J Med Food 2023; 26:595-604. [PMID: 37594560 DOI: 10.1089/jmf.2022.k.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Acorn (Quercus acutissima CARR.) has been used in traditional food and medicinal ethnopharmacology in Asia, and it has shown multifarious functions such as antidementia, antiobesity, and antiasthma functions. However, there is limited scientific evidence about the efficacy of acorn for ameliorating skin problems. Treatment with ethanol-extracted acorns (EeA's) ablated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), monocyte chemoattractant protein-1 (MCP-1), and interleukin (IL)-8 stimulated by tumor necrosis factor (TNF)-α in human adult low calcium high temperature (HaCaT) cells under sublethal dosages. In addition, treatment with EeA dose dependently inhibited the ex vivo hyper keratin formation induced by TNF-α in HaCaT cells in conjunction with the blockade of cytokeratin-1 (CK-1) and cytokeratin-5 (CK-5) expression. Moreover, EeA treatment stimulated the expression of hyaluronic acid (HA) expression in human fibroblasts in a dose-dependent manner. Linoleamide was identified as the functional component of EeA using preparative high-performance liquid chromatography and ultra high performance liquid chromatography-mass spectrometry-mass spectrometry analysis, and the anti-inflammatory features and enhanced HA expression were verified. Collectively, these results suggest the efficacy of EeA supplementation in improving skin problems via anti-inflammation and upregulating HA production.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | | | - Song-I Han
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
| | - Jae-Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju, Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, Korea
| |
Collapse
|
45
|
Abstract
Tumour cells migrate very early from primary sites to distant sites, and yet metastases often take years to manifest themselves clinically or never even surface within a patient's lifetime. This pause in cancer progression emphasizes the existence of barriers that constrain the growth of disseminated tumour cells (DTCs) at distant sites. Although the nature of these barriers to metastasis might include DTC-intrinsic traits, recent studies have established that the local microenvironment also controls the formation of metastases. In this Perspective, I discuss how site-specific differences of the immune system might be a major selective growth restraint on DTCs, and argue that harnessing tissue immunity will be essential for the next stage in immunotherapy development that reliably prevents the establishment of metastases.
Collapse
|
46
|
Cheng C, Chen W, Jin H, Chen X. A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication. Cells 2023; 12:1970. [PMID: 37566049 PMCID: PMC10417635 DOI: 10.3390/cells12151970] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cellular biology at an unprecedented resolution, enabling the characterization of cellular heterogeneity, identification of rare but significant cell types, and exploration of cell-cell communications and interactions. Its broad applications span both basic and clinical research domains. In this comprehensive review, we survey the current landscape of scRNA-seq analysis methods and tools, focusing on count modeling, cell-type annotation, data integration, including spatial transcriptomics, and the inference of cell-cell communication. We review the challenges encountered in scRNA-seq analysis, including issues of sparsity or low expression, reliability of cell annotation, and assumptions in data integration, and discuss the potential impact of suboptimal clustering and differential expression analysis tools on downstream analyses, particularly in identifying cell subpopulations. Finally, we discuss recent advancements and future directions for enhancing scRNA-seq analysis. Specifically, we highlight the development of novel tools for annotating single-cell data, integrating and interpreting multimodal datasets covering transcriptomics, epigenomics, and proteomics, and inferring cellular communication networks. By elucidating the latest progress and innovation, we provide a comprehensive overview of the rapidly advancing field of scRNA-seq analysis.
Collapse
Affiliation(s)
- Changde Cheng
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.C.); (H.J.)
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (W.C.); (H.J.)
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
47
|
Alzahri RY, Al-Ghamdi FA, Al-Harbi SS. Immunological and Histological Studies of Different Concentrations of Rosmarinus officinalis and Thymus vulgaris Extracts on Thymus Gland of Chick Embryos. TOXICS 2023; 11:625. [PMID: 37505590 PMCID: PMC10386200 DOI: 10.3390/toxics11070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Humanity has an ancient history of consuming medicinal plants for prophylaxis. Within hours, and even months, embryonic cells undergo several processes to form an organism. This study aimed to prove the positive or negative effects of using rosemary and thyme extract on the thymus gland and level of IL-10, IgM, and IgG in serum of chick embryos. The immunological effect was measured by histological and immunological studies. A total of 160 fertilized eggs were randomly distributed into 8 groups; on the 0 and 8th day of incubation, all treated groups received a dose of 0.1 mL/egg. On the 14th and 20th days of incubation, the embryos were sacrificed and the samples were collected (serum and thymus gland). The data were analyzed using ANOVA. Simple damage in thymic tissue with a low cell density in the embryos was treated with high concentrations of rosemary and thyme extracts, as well as in the mixed group. A significant decrease in IgM levels in the group treated by a high concentration of thyme. A decrease in IgG levels was found in the group treated with a high concentration of rosemary and in the mixed group, while the group treated with a high concentration of thyme and the mixed group showed decreases on the 14th day. A significant decrease in IL-10 levels was found on the 14th day, followed by an increase on the 20th day. Despite the benefits of rosemary and thyme, inflammation signs appeared on embryos treated with these herbs.
Collapse
Affiliation(s)
- Reem Yahya Alzahri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | | | - Seetah Saleem Al-Harbi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
48
|
Moloudi K, Sarbadhikary P, Abrahamse H, George BP. Understanding the Photodynamic Therapy Induced Bystander and Abscopal Effects: A Review. Antioxidants (Basel) 2023; 12:1434. [PMID: 37507972 PMCID: PMC10376621 DOI: 10.3390/antiox12071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved minimally/non-invasive treatment modality that has been used to treat various conditions, including cancer. The bystander and abscopal effects are two well-documented significant reactions involved in imparting long-term systemic effects in the field of radiobiology. The PDT-induced generation of reactive oxygen and nitrogen species and immune responses is majorly involved in eliciting the bystander and abscopal effects. However, the results in this regard are unsatisfactory and unpredictable due to several poorly elucidated underlying mechanisms and other factors such as the type of cancer being treated, the irradiation dose applied, the treatment regimen employed, and many others. Therefore, in this review, we attempted to summarize the current knowledge regarding the non-targeted effects of PDT. The review is based on research published in the Web of Science, PubMed, Wiley Online Library, and Google Scholar databases up to June 2023. We have highlighted the current challenges and prospects in relation to obtaining clinically relevant robust, reproducible, and long-lasting antitumor effects, which may offer a clinically viable treatment against tumor recurrence and metastasis. The effectiveness of both targeted and untargeted PDT responses and their outcomes in clinics could be improved with more research in this area.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
49
|
Wei F, Azuma K, Nakahara Y, Saito H, Matsuo N, Tagami T, Kouro T, Igarashi Y, Tokito T, Kato T, Kondo T, Murakami S, Usui R, Himuro H, Horaguchi S, Tsuji K, Murotani K, Ban T, Tamura T, Miyagi Y, Sasada T. Machine learning for prediction of immunotherapeutic outcome in non-small-cell lung cancer based on circulating cytokine signatures. J Immunother Cancer 2023; 11:e006788. [PMID: 37433717 DOI: 10.1136/jitc-2023-006788] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy has substantially improved the overall survival (OS) in patients with non-small-cell lung cancer (NSCLC); however, its response rate is still modest. In this study, we developed a machine learning-based platform, namely the Cytokine-based ICI Response Index (CIRI), to predict the ICI response of patients with NSCLC based on the peripheral blood cytokine profiles. METHODS We enrolled 123 and 99 patients with NSCLC who received anti-PD-1/PD-L1 monotherapy or combined chemotherapy in the training and validation cohorts, respectively. The plasma concentrations of 93 cytokines were examined in the peripheral blood obtained from patients at baseline (pre) and 6 weeks after treatment (early during treatment: edt). Ensemble learning random survival forest classifiers were developed to select feature cytokines and predict the OS of patients undergoing ICI therapy. RESULTS Fourteen and 19 cytokines at baseline and on treatment, respectively, were selected to generate CIRI models (namely preCIRI14 and edtCIRI19), both of which successfully identified patients with worse OS in two completely independent cohorts. At the population level, the prediction accuracies of preCIRI14 and edtCIRI19, as indicated by the concordance indices (C-indices), were 0.700 and 0.751 in the validation cohort, respectively. At the individual level, patients with higher CIRI scores demonstrated worse OS [hazard ratio (HR): 0.274 and 0.163, and p<0.0001 and p=0.0044 in preCIRI14 and edtCIRI19, respectively]. By including other circulating and clinical features, improved prediction efficacy was observed in advanced models (preCIRI21 and edtCIRI27). The C-indices in the validation cohort were 0.764 and 0.757, respectively, whereas the HRs of preCIRI21 and edtCIRI27 were 0.141 (p<0.0001) and 0.158 (p=0.038), respectively. CONCLUSIONS The CIRI model is highly accurate and reproducible in determining the patients with NSCLC who would benefit from anti-PD-1/PD-L1 therapy with prolonged OS and may aid in clinical decision-making before and/or at the early stage of treatment.
Collapse
Affiliation(s)
- Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Koichi Azuma
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Norikazu Matsuo
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoyuki Tagami
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co Inc, Kawasaki, Japan
| | - Taku Kouro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Takaaki Tokito
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Tetsuro Kondo
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shuji Murakami
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Ryo Usui
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Shun Horaguchi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kayoko Tsuji
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Kenta Murotani
- Biostatistics Center, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
50
|
Li X, Li X, Wang H, Zhao X. Exploring hub pyroptosis-related genes, molecular subtypes, and potential drugs in ankylosing spondylitis by comprehensive bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:532. [PMID: 37386410 DOI: 10.1186/s12891-023-06664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, and the diagnosis and treatment of AS have been limited because its pathogenesis is still unclear. Pyroptosis is a proinflammatory type of cell death that plays an important role in the immune system. However, the relationship between pyroptosis genes and AS has never been elucidated. METHODS GSE73754, GSE25101, and GSE221786 datasets were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed pyroptosis-related genes (DE-PRGs) were identified by R software. Machine learning and PPI networks were used to screen key genes to construct a diagnostic model of AS. AS patients were clustered into different pyroptosis subtypes according to DE-PRGs using consensus cluster analysis and validated using principal component analysis (PCA). WGCNA was used for screening hub gene modules between two subtypes. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for enrichment analysis to elucidate underlying mechanisms. The ESTIMATE and CIBERSORT algorithms were used to reveal immune signatures. The connectivity map (CMAP) database was used to predict potential drugs for the treatment of AS. Molecular docking was used to calculate the binding affinity between potential drugs and the hub gene. RESULTS Sixteen DE-PRGs were detected in AS compared to healthy controls, and some of these genes showed a significant correlation with immune cells such as neutrophils, CD8 + T cells, and resting NK cells. Enrichment analysis showed that DE-PRGs were mainly related to pyroptosis, IL-1β, and TNF signaling pathways. The key genes (TNF, NLRC4, and GZMB) screened by machine learning and the protein-protein interaction (PPI) network were used to establish the diagnostic model of AS. ROC analysis showed that the diagnostic model had good diagnostic properties in GSE73754 (AUC: 0.881), GSE25101 (AUC: 0.797), and GSE221786 (AUC: 0.713). Using 16 DE-PRGs, AS patients were divided into C1 and C2 subtypes, and these two subtypes showed significant differences in immune infiltration. A key gene module was identified from the two subtypes using WGCNA, and enrichment analysis suggested that the module was mainly related to immune function. Three potential drugs, including ascorbic acid, RO 90-7501, and celastrol, were selected based on CMAP analysis. Cytoscape showed GZMB as the highest-scoring hub gene. Finally, molecular docking results showed that GZMB and ascorbic acid formed three hydrogen bonds, including ARG-41, LYS-40, and HIS-57 (affinity: -5.3 kcal/mol). GZMB and RO-90-7501 formed one hydrogen bond, including CYS-136 (affinity: -8.8 kcal/mol). GZMB and celastrol formed three hydrogen bonds, including TYR-94, HIS-57, and LYS-40 (affinity: -9.4 kcal/mol). CONCLUSIONS Our research systematically analyzed the relationship between pyroptosis and AS. Pyroptosis may play an essential role in the immune microenvironment of AS. Our findings will contribute to a further understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Xin Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangying Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongqiang Wang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| | - Xiang Zhao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|