1
|
Cea-Sánchez S, Martín-Villanueva S, Gutiérrez G, Cánovas D, Corrochano LM. VE-1 regulation of MAPK signaling controls sexual development in Neurospora crassa. mBio 2024; 15:e0226424. [PMID: 39283084 PMCID: PMC11481897 DOI: 10.1128/mbio.02264-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Sexual reproduction in fungi allows genetic recombination and increases genetic diversity, allowing adaptation and survival. The velvet complex is a fungal-specific protein assembly that regulates development, pathogenesis, and secondary metabolism in response to environmental cues, such as light. In Neurospora crassa, this complex comprises VE-1, VE-2, and LAE-1. Deletion of ve-1 or ve-2, but not lae-1, leads to increased conidiation (asexual spore formation) and reduced sexual development. Mutants lacking ve-1 and/or ve-2 are female sterile and male fertile, indicating that a VE-1/VE-2 complex regulates the development of female structures. During sexual development, we observed differential regulation of 2,117 genes in dark and 4,364 genes in light between the wild type and the ∆ve-1 strain. The pheromone response and cell wall integrity pathways were downregulated in the ∆ve-1 mutant, especially in light. Additionally, we found reduced levels of both total and phosphorylated MAK-1 and MAK-2 kinases. In vitro experiments demonstrated the binding of VE-1 and VE-2 to the promoters of mak-1 and mak-2, suggesting a direct regulatory role of VE-1/VE-2 in the transcriptional control of MAPK genes to regulate sexual development. Deletion of the photosensor gene white-collar 1 prevented the light-dependent inhibition of sexual development in the ∆ve-1 mutant by increasing transcription of the pheromone response and cell wall integrity pathway genes to the levels in the dark. Our results support the proposal that the regulation of the MAP kinase pathways by the VE-1/VE-2 complex is a key element in transcriptional regulation that occurs during sexual development. IMPORTANCE Sexual reproduction generates new gene combinations and novel phenotypic traits and facilitates evolution. Induction of sexual development in fungi is often regulated by environmental conditions, such as the presence of light and nutrients. The velvet protein complex coordinates internal cues and environmental signals to regulate development. We have found that VE-1, a component of the velvet complex, regulates transcription during sexual development in the fungus Neurospora crassa. VE-1 regulates the transcription of many genes, including those involved in mitogen-activated protein kinase (MAPK) signaling pathways that are essential in the regulation of sexual development, and regulates the activity of the MAPK pathway. Our findings provide valuable insights into how fungi respond to environmental signals and integrate them into their reproductive processes.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Nordio R, Belachqer-El Attar S, Clagnan E, Sánchez-Zurano A, Pichel N, Viviano E, Adani F, Guzmán JL, Acién G. Exploring microbial growth dynamics in a pilot-scale microalgae raceway fed with urban wastewater: Insights into the effect of operational variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122385. [PMID: 39243421 DOI: 10.1016/j.jenvman.2024.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microalgae-based wastewater treatment is a promising technology efficient for nutrient recycling and biomass production. Studies continuously optimize processes to reduce costs and increase productivity. However, changes in the operational conditions affect not only biomass productivity but the dynamics of the overall microbial community. This study characterizes a microalgae culture from an 80 m2 pilot-scale raceway reactor fed with untreated urban wastewater. Operational conditions such as pH, dissolved oxygen control strategies (On-off, PI, Event-based, no control), and culture height were varied to assess microbial population changes. Results demonstrate that increased culture height significantly promotes higher microalgal and bacterial diversity. pH, dissolved oxygen and culture height highly affects nitrifying bacteria activity and nitrogen accumulation. Furthermore, the system exhibited high disinfection capability with average Logarithmic Reduction Values (LRV) of 3.36 for E. coli and 2.57 for Clostridium perfringens. Finally, the fungi species detected included Chytridiomycota and Ascomycota, while purple photosynthetic bacteria were also found in significant abundance within the medium.
Collapse
Affiliation(s)
- Rebecca Nordio
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain.
| | - Solaima Belachqer-El Attar
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | - Elisa Clagnan
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | | | - Natalia Pichel
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Madrid, Spain
| | - Emanuele Viviano
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain
| | - Fabrizio Adani
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - José Luis Guzmán
- Department of Informatics, University of Almeria, 04120, Almería, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| |
Collapse
|
3
|
Buradam P, Thananusak R, Koffas M, Chumnanpuen P, Vongsangnak W. Expanded Gene Regulatory Network Reveals Potential Light-Responsive Transcription Factors and Target Genes in Cordyceps militaris. Int J Mol Sci 2024; 25:10516. [PMID: 39408845 PMCID: PMC11476991 DOI: 10.3390/ijms251910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and light-signaling pathways. However, the mechanisms of gene regulation in response to light exposure in C. militaris remain largely unexplored. This study aimed to identify light-responsive genes and potential transcription factors (TFs) in C. militaris through an integrative transcriptome analysis. To achieve this, we reconstructed an expanded gene regulatory network (eGRN) comprising 507 TFs and 8662 regulated genes using both interolog-based and homolog-based methods to build the protein-protein interaction network. Aspergillus nidulans and Neurospora crassa were chosen as templates due to their relevance as fungal models and the extensive study of their light-responsive mechanisms. By utilizing the eGRN as a framework for comparing transcriptomic responses between light-exposure and dark conditions, we identified five key TFs-homeobox TF (CCM_07504), FlbC (CCM_04849), FlbB (CCM_01128), C6 zinc finger TF (CCM_05172), and mcrA (CCM_06477)-along with ten regulated genes within the light-responsive subnetwork. These TFs and regulated genes are likely crucial for the growth, development, and secondary metabolite production in C. militaris. Moreover, molecular docking analysis revealed that two novel TFs, CCM_05727 and CCM_06992, exhibit strong binding affinities and favorable docking scores with the primary light-responsive protein CmWC-1, suggesting their potential roles in light signaling pathways. This information provides an important functional interactive network for future studies on global transcriptional regulation in C. militaris and related fungi.
Collapse
Affiliation(s)
- Paradee Buradam
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Mattheos Koffas
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| |
Collapse
|
4
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
5
|
Jia K, Jia Y, Zeng Q, Yan Z, Wang S. Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus. J Fungi (Basel) 2024; 10:650. [PMID: 39330410 PMCID: PMC11433291 DOI: 10.3390/jof10090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.
Collapse
Affiliation(s)
- Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yipu Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianhua Zeng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoqi Yan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Schwarze FWMR, Carvalho T, Reina G, Greca LG, Buenter U, Gholam Z, Krupnik L, Neels A, Boesel L, Morris H, Heeb M, Huch A, Nyström G, Giovannini G. Taming the Production of Bioluminescent Wood Using the White Rot Fungus Desarmillaria Tabescens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403215. [PMID: 39263934 DOI: 10.1002/advs.202403215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Indexed: 09/13/2024]
Abstract
Although bioluminescence is documented both anecdotally and experimentally, the parameters involved in the production of fungal bioluminescence during wood colonization have not been identified to date. Here, for the first time, this work develops a methodology to produce a hybrid living material by manipulating wood colonization through merging the living fungus Desarmillaria tabescens with nonliving balsa (Ochroma pyramidale) wood to achieve and control the autonomous emission of bioluminescence. The hybrid material with the highest bioluminescence is produced by soaking the wood blocks before co-cultivating them with the fungus for 3 months. Regardless of the incubation period, the strongest bioluminescence is evident from balsa wood blocks with a moisture content of 700-1200%, highlighting the fundamental role of moisture content for bioluminescence production. Further characterization reveals that D. tabescens preferentially degraded hemicelluloses and lignin in balsa wood. Fourier-transform infrared spectroscopy reveals a decrease in lignin, while X-ray diffraction analysis confirms that the cellulose crystalline structure is not altered during the colonization process. This information will enable the design of ad-hoc synthetic materials that use fungi as tools to maximize bioluminescence production, paving the way for an innovative hybrid material that could find application in the sustainable production of light.
Collapse
Affiliation(s)
- Francis W M R Schwarze
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Tiago Carvalho
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Giacomo Reina
- Laboratory for Particles-Biology Interactions, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Luiz Garcia Greca
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Urs Buenter
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Zennat Gholam
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Leonard Krupnik
- Center for X-ray Analytics, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Luciano Boesel
- Giorgia Giovannini, Laboratory for Biomimetic Membranes and Textiles Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Hugh Morris
- Integrated Land Management Department, SRUC, Barony, Parkgate, Dumfries, DG1 3NE, UK
| | - Markus Heeb
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Anja Huch
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose and Wood Materials, Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Giorgia Giovannini
- Giorgia Giovannini, Laboratory for Biomimetic Membranes and Textiles Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
7
|
Suthaparan A, Stensvand A. Shedding the Light on Powdery Mildew: The Use of Optical Irradiation in Management of the Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:289-308. [PMID: 38876113 DOI: 10.1146/annurev-phyto-021622-115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Ultraviolet (UV) irradiation below 300 nm may control powdery mildew in numerous crops. Depending on disease pressure, wavelength, and crop growth stage, one to three applications of 100-200 J/m2 per week at night are as effective or better than the best fungicides. Higher doses may harm the plants and reduce yields. Although red light alone or in combination with UV has a suppressive effect on powdery mildew, concomitant or subsequent exposure to blue light or UV-A strongly reduces the efficacy of UV treatments. To be effective, direct exposure of the pathogen/infection sites to UV/red light is important, but there are clear indications for the involvement of induced resistance in the host. Other pathogens and pests are susceptible to UV, but the effective dose may be phytotoxic. Although there are certain limitations, this technology is gradually becoming more used in both protected and open-field commercial production systems.
Collapse
Affiliation(s)
- Aruppillai Suthaparan
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway;
| | - Arne Stensvand
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway;
| |
Collapse
|
8
|
Shen Y, Yang X, Zhu M, Duan S, Liu Q, Yang J. The Cryptochrome CryA Regulates Lipid Droplet Accumulation, Conidiation, and Trap Formation via Responses to Light in Arthrobotrys oligospora. J Fungi (Basel) 2024; 10:626. [PMID: 39330386 PMCID: PMC11432822 DOI: 10.3390/jof10090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.
Collapse
Affiliation(s)
- Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
9
|
Mishra AK, Kim J, Baghdadi H, Johnson BR, Hodge KT, Shepherd RF. Sensorimotor control of robots mediated by electrophysiological measurements of fungal mycelia. Sci Robot 2024; 9:eadk8019. [PMID: 39196952 DOI: 10.1126/scirobotics.adk8019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/30/2024] [Indexed: 08/30/2024]
Abstract
Living tissues are still far from being used as practical components in biohybrid robots because of limitations in life span, sensitivity to environmental factors, and stringent culture procedures. Here, we introduce fungal mycelia as an easy-to-use and robust living component in biohybrid robots. We constructed two biohybrid robots that use the electrophysiological activity of living mycelia to control their artificial actuators. The mycelia sense their environment and issue action potential-like spiking voltages as control signals to the motors and valves of the robots that we designed and built. The paper highlights two key innovations: first, a vibration- and electromagnetic interference-shielded mycelium electrical interface that allows for stable, long-term electrophysiological bioelectric recordings during untethered, mobile operation; second, a control architecture for robots inspired by neural central pattern generators, incorporating rhythmic patterns of positive and negative spikes from the living mycelia. We used these signals to control a walking soft robot as well as a wheeled hard one. We also demonstrated the use of mycelia to respond to environmental cues by using ultraviolet light stimulation to augment the robots' gaits.
Collapse
Affiliation(s)
- Anand Kumar Mishra
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jaeseok Kim
- Department of Industrial Engineering, University of Florence, Florence, Tuscany 50139, Italy
| | - Hannah Baghdadi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Bruce R Johnson
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kathie T Hodge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Robert F Shepherd
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. mBio 2024; 15:e0013324. [PMID: 38814088 PMCID: PMC11253612 DOI: 10.1128/mbio.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Botrytis cinerea is a typical necrotrophic plant pathogenic fungus which can deliberately acidify host tissues and trigger oxidative bursts therein to facilitate its virulence. The white collar complex (WCC), consisting of BcWCL1 and BcWCL2, is recognized as the primary light receptor in B. cinerea. Nevertheless, the specific mechanisms through which the WCC components, particularly BcWCL2 as a GATA transcription factor, control virulence are not yet fully understood. This study demonstrates that deletion of BcWCL2 results in the loss of light-sensitive phenotypic characteristics. Additionally, the Δbcwcl2 strain exhibits reduced secretion of citrate, delayed infection cushion development, weaker hyphal penetration, and decreased virulence. The application of exogenous citric acid was found to restore infection cushion formation, hyphal penetration, and virulence of the Δbcwcl2 strain. Transcriptome analysis at 48 h post-inoculation revealed that two citrate synthases, putative citrate transporters, hydrolytic enzymes, and reactive oxygen species scavenging-related genes were down-regulated in Δbcwcl2, whereas exogenous citric acid application restored the expression of the above genes involved in the early infection process of Δbcwcl2. Moreover, the expression of Bcvel1, a known regulator of citrate secretion, tissue acidification, and secondary metabolism, was down-regulated in Δbcwcl2 but not in Δbcwcl1. ChIP-qPCR and electrophoretic mobility shift assays revealed that BcWCL2 can bind to the promoter sequences of Bcvel1. Overexpressing Bcvel1 in Δbcwcl2 was found to rescue the mutant defects. Collectively, our findings indicate that BcWCL2 regulates the expression of the global regulator Bcvel1 to influence citrate secretion, tissue acidification, redox homeostasis, and virulence of B. cinerea.IMPORTANCEThis study illustrated the significance of the fungal blue light receptor component BcWCL2 protein in regulating citrate secretion in Botrytis cinerea. Unlike BcWCL1, BcWCL2 may contribute to redox homeostasis maintenance during infection cushion formation, ultimately proving to be essential for full virulence. It is also demonstrated that BcWCL2 can regulate the expression of Bcvel1 to influence host tissue acidification, citrate secretion, infection cushion development, and virulence. While the role of organic acids secreted by plant pathogenic fungi in fungus-host interactions has been recognized, this paper revealed the importance, regulatory mechanisms, and key transcription factors that control organic acid secretion. These understanding of the pathogenetic mechanism of plant pathogens can provide valuable insights for developing effective prevention and treatment strategies against fungal diseases.
Collapse
Affiliation(s)
- Weiheng Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chen Qian
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhaohui Deng
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Kukri A, Czékus Z, Gallé Á, Nagy G, Zsindely N, Bodai L, Galgóczy L, Hamow KÁ, Szalai G, Ördög A, Poór P. Exploring the effects of red light night break on the defence mechanisms of tomato against fungal pathogen Botrytis cinerea. PHYSIOLOGIA PLANTARUM 2024; 176:e14504. [PMID: 39191700 DOI: 10.1111/ppl.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Plant infections caused by fungi lead to significant crop losses worldwide every year. This study aims to better understand the plant defence mechanisms regulated by red light, in particular, the effects of red light at night when most phytopathogens are highly infectious. Our results showed that superoxide production significantly increased immediately after red light exposure and, together with hydrogen peroxide levels, was highest at dawn after 30 min of nocturnal red-light treatment. In parallel, red-light-induced expression and increased the activities of several antioxidant enzymes. The nocturnal red light did not affect salicylic acid but increased jasmonic acid levels immediately after illumination, whereas abscisic acid levels increased 3 h after nocturnal red-light exposure at dawn. Based on the RNAseq data, red light immediately increased the transcription of several chloroplastic chlorophyll a-b binding protein and circadian rhythm-related genes, such as Constans 1, CONSTANS interacting protein 1 and zinc finger protein CONSTANS-LIKE 10. In addition, the levels of several transcription factors were also increased after red light exposure, such as the DOF zinc finger protein and a MYB transcription factor involved in the regulation of circadian rhythms and defence responses in tomato. In addition to identifying these key transcription factors in tomato, the application of red light at night for one week not only reactivated key antioxidant enzymes at the gene and enzyme activity level at dawn but also contributed to a more efficient and successful defence against Botrytis cinerea infection.
Collapse
Affiliation(s)
- András Kukri
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | - Attila Ördög
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Osyczka P, Myśliwa-Kurdziel B. Do the expected heatwaves pose a threat to lichens?: Linkage between a passive decline in water content in thalli and response to heat stress. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38874284 DOI: 10.1111/pce.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Being poikilohydric, lichens are inherently exposed to alternating desiccation and hydration cycles. They can exhibit extraordinary resistance to extreme temperatures in a dehydrated state but thermal thresholds for hydrated lichens are lower. The ability of the lichen Cetraria aculeata to recovery after high temperature treatment (40°C, 60°C) at different air humidity levels (relative humidity [RH]: <15%, 25%, 50%, 75%, ≅100%) was examined to find a linkage between passive dehydration of the lichen and its physiological resistance to heat stress. The response to heating was determined by measuring parameters related to photosynthesis and respiration after 2- and 24-h recovery. A higher RH level resulted in a slower decline in relative water content (RWC) in hydrated thalli. In turn, the stress resistance of active thalli depended on the ambient humidity and associated RWC reduction. Elevated temperature had a negative impact on bioenergetic processes, but only an unnatural state of permanent full hydration during heat stress resulted in a lethal effect. Hydrated lichen thalli heated at 40°C and 50% relative humidity (RH) tended to be least susceptible to stress-induced damage. Although atypical climatic conditions may lead lichens to lethal thresholds, the actual likelihood of deadly threat to lichens due to heat events per se is debatable.
Collapse
Affiliation(s)
- Piotr Osyczka
- Institute of Botany, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Beata Myśliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Lai Z, Liu Z, Zhao Y, Qin S, Zhang W, Lang T, Zhu Z, Sun Y. Distinct microbial communities under different rock-associated microhabitats in the Qaidam Desert. ENVIRONMENTAL RESEARCH 2024; 250:118462. [PMID: 38367835 DOI: 10.1016/j.envres.2024.118462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.
Collapse
Affiliation(s)
- Zongrui Lai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhen Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China; College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China.
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yanfei Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
14
|
Liu D, Piao J, Li Y, Guan H, Hao J, Zhou R. Transcriptome Analysis Reveals Candidate Genes for Light Regulation of Elsinochrome Biosynthesis in Elsinoë arachidis. Microorganisms 2024; 12:1027. [PMID: 38792856 PMCID: PMC11124282 DOI: 10.3390/microorganisms12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Light regulation is critical in fungal growth, development, morphogenesis, secondary metabolism, and the biological clock. The fungus Elsinoë arachidis is known to produce the mycotoxin Elsinochrome (ESC), a key factor contributing to its pathogenicity, under light conditions. Although previous studies have predominantly focused on the light-induced production of ESC and its biosynthetic pathways, the detailed mechanisms underlying this process remain largely unexplored. This study explores the influence of light on ESC production and gene expression in E. arachidis. Under white light exposure for 28 days, the ESC yield was observed to reach 33.22 nmol/plug. Through transcriptome analysis, 5925 genes were identified as differentially expressed between dark and white light conditions, highlighting the significant impact of light on gene expression. Bioinformatics identified specific light-regulated genes, including eight photoreceptor genes, five global regulatory factors, and a cluster of 12 genes directly involved in the ESC biosynthesis, with expression trends confirmed by RT-qPCR. In conclusion, the study reveals the substantial alteration in gene expression associated with ESC biosynthesis under white light and identifies potential candidates for in-depth functional analysis. These findings advance understanding of ESC biosynthesis regulation and suggest new strategies for fungal pathogenicity control.
Collapse
Affiliation(s)
| | | | | | | | | | - Rujun Zhou
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (D.L.); (J.P.); (Y.L.); (H.G.); (J.H.)
| |
Collapse
|
15
|
Schuhmacher L, Heck S, Pitz M, Mathey E, Lamparter T, Blumhofer A, Leister K, Fischer R. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor. J Biol Chem 2024; 300:107238. [PMID: 38552736 PMCID: PMC11061223 DOI: 10.1016/j.jbc.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024] Open
Abstract
Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.
Collapse
Affiliation(s)
- Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Steffen Heck
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Michael Pitz
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Elena Mathey
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Tilman Lamparter
- Joseph Kölreuter Institute for Plant Research, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Alexander Blumhofer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Kai Leister
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
16
|
Lim CL, Yang CH, Pan XY, Tsai HY, Chen CY, Chen WL. Different wavelengths of LED irradiation promote secondary metabolite production in Pycnoporus sanguineus for antioxidant and immunomodulatory applications. Photochem Photobiol Sci 2024; 23:987-996. [PMID: 38662174 DOI: 10.1007/s43630-024-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Pycnoporus sanguineus is a fungus of the phylum Basidiomycota that has many applications in traditional medicine, modern pharmaceuticals, and agricultural industries. Light plays an essential role in the metabolism, growth, and development of fungi. This study evaluated the mycelial growth and antioxidant and anti-inflammatory activities in P. sanguineus fermentation broth (PFB) cultured under different wavelengths of LED irradiation or in the dark. Compared to the dark cultures, the dry weight of mycelia in red- and yellow-light cultures decreased by 37 and 35% and the yields of pigments increased by 30.92 ± 2.18 mg and 31.75 ± 3.06 mg, respectively. Compared with the dark culture, the DPPH free radical scavenging ability, ABTS+ free radical scavenging capacity, and reducing power of yellow-light cultures increased significantly, and their total phenolic content peaked at 180.0 ± 8.34 μg/mL. However, the reducing power in blue-light cultures was significantly reduced, though the total phenol content did not vary with that of dark cultures. In LPS- and IFN-γ-stimulated RAW 264.7 cells, nitrite release was significantly reduced in the red and yellow light-irradiated PFB compared with the dark culture. In the dark, yellow-, and green-light cultures, TNF-α production in the inflamed RAW 264.7 cells was inhibited by 62, 46, and 14%, respectively. With red-, blue-, and white-light irradiation, TNF-α production was significantly enhanced. Based on these results, we propose that by adjusting the wavelength of the light source during culture, one can effectively modulate the growth, development, and metabolism of P. sanguineus.
Collapse
Affiliation(s)
- Chui Li Lim
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
| | - Chao-Hsun Yang
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
- Cosmetic Industry Research & Development Center, Providence University, Taichung, 43301, Taiwan
| | - Xin-Yu Pan
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
| | - Hsiao-Yun Tsai
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
| | - Cheng-Yu Chen
- Cosmetic Industry Research & Development Center, Providence University, Taichung, 43301, Taiwan
- Xtremes Pure Company, Taipei, 10652, Taiwan
| | - Wei-Lin Chen
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan.
- Cosmetic Industry Research & Development Center, Providence University, Taichung, 43301, Taiwan.
| |
Collapse
|
17
|
Zheng R, Feng Y, Kong L, Wu X, Zhou J, Zhang L, Liu S. Blue-light irradiation induced partial nitrification. WATER RESEARCH 2024; 254:121381. [PMID: 38442606 DOI: 10.1016/j.watres.2024.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.
Collapse
Affiliation(s)
- Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Liguo Zhang
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
18
|
Sun T, Li Y, Li J, Gao J, Zhang J, Fischer R, Shen Q, Yu Z. Red and far-red light improve the antagonistic ability of Trichoderma guizhouense against phytopathogenic fungi by promoting phytochrome-dependent aerial hyphal growth. PLoS Genet 2024; 20:e1011282. [PMID: 38768261 PMCID: PMC11142658 DOI: 10.1371/journal.pgen.1011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/31/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Light as a source of information regulates morphological and physiological processes of fungi, including development, primary and secondary metabolism, or the circadian rhythm. Light signaling in fungi depends on photoreceptors and downstream components that amplify the signal to govern the expression of an array of genes. Here, we investigated the effects of red and far-red light in the mycoparasite Trichoderma guizhouense on its mycoparasitic potential. We show that the invasion strategy of T. guizhouense depends on the attacked species and that red and far-red light increased aerial hyphal growth and led to faster overgrowth or invasion of the colonies. Molecular experiments and transcriptome analyses revealed that red and far-red light are sensed by phytochrome FPH1 and further transmitted by the downstream MAPK HOG pathway and the bZIP transcription factor ATF1. Overexpression of the red- and far-red light-induced fluffy gene fluG in the dark resulted in abundant aerial hyphae formation and thereby improvement of its antagonistic ability against phytopathogenic fungi. Hence, light-induced fluG expression is important for the mycoparasitic interaction. The increased aggressiveness of fluG-overexpressing strains was phenocopied by four random mutants obtained after UV mutagenesis. Therefore, aerial hyphae formation appears to be a trait for the antagonistic potential of T. guizhouense.
Collapse
Affiliation(s)
- Tingting Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yifan Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jie Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jia Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhong Yu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Feng MG. Recovery of insect-pathogenic fungi from solar UV damage: Molecular mechanisms and prospects. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:59-82. [PMID: 39389708 DOI: 10.1016/bs.aambs.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Molecular mechanisms underlying insect-pathogenic fungal tolerance to solar ultraviolet (UV) damage have been increasingly understood. This chapter reviews the methodology established to quantify fungal response to solar UV radiation, which consists of UVB and UVA, and characterize a pattern of the solar UV dose (damage) accumulated from sunrise to sunset on sunny summer days. An emphasis is placed on anti-UV mechanisms of fungal insect pathogens in comparison to those well documented in model yeast. Principles are discussed for properly timing the application of a fungal pesticide to improve pest control during summer months. Fungal UV tolerance depends on either nucleotide excision repair (NER) or photorepair of UV-induced DNA lesions to recover UV-impaired cells in the darkness or the light. NER is a slow process independent of light and depends on a large family of anti-UV radiation (RAD) proteins studied intensively in model yeast but rarely in non-yeast fungi. Photorepair is a rapid process that had long been considered to depend on only one or two photolyases in filamentous fungi. However, recent studies have greatly expanded a genetic/molecular basis for photorepair-dependent photoreactivation that serves as a primary anti-UV mechanism in insect-pathogenic fungi, in which photolyase regulators required for photorepair and multiple RAD homologs have higher or much higher photoreactivation activities than do photolyases. The NER activities of those homologs in dark reactivation cannot recover the severe UV damage recovered by their activities in photoreactivation. Future studies are expected to further expand the genetic/molecular basis of photoreactivation and enrich principles for the recovery of insect-pathogenic fungi from solar UV damage.
Collapse
Affiliation(s)
- Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
20
|
Mykchaylova O, Dubova H, Negriyko A, Lomberg M, Krasinko V, Gregori A, Poyedinok N. Photoregulation of the biosynthetic activity of the edible medicinal mushroom Lentinula edodes in vitro. Photochem Photobiol Sci 2024; 23:435-449. [PMID: 38289457 DOI: 10.1007/s43630-023-00529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024]
Abstract
The findings of the study demonstrate the impact of low-intensity laser and quasi-monochromatic light on the biosynthetic activity of the edible medicinal fungus L. edodes during submerged cultivation. An artificial lighting installation based on matrices of light-emitting diodes (LED) emitting light at 470 nm (blue), 530 nm (green), 650 nm (red), and argon gas laser (488 nm) was used. Irradiation with blue and red LED and laser led to a shortening of the lag phase by 2 days and an increase in the mycelial mass. Irradiation with laser light resulted in the highest mycelial mass yield (14.1 g/L) on the 8th day of cultivation. Irradiation in all used wavelength ranges caused an increase in the synthesis of both extracellular and intracellular polysaccharides. Laser light at 488 nm and LED at 470 nm proved to be the most effective. Irradiation with red, green, and blue laser light caused an increase in the total amount of fatty acids in the mycelial mass compared to the control. A significant distinction in qualitative composition was observed: short-chain acids C6‒C12 compounds were produced under red light irradiation, whereas long-chain C20‒C24 were formed under green light irradiation. The most significant changes in the aromatic profile of the mycelial mass and culture liquid were recorded upon irradiation with green light. The content of aromatic components increased 24.6 times in the mycelial mass and 38.5 times in the culture liquid. The results suggest the possibility of using low-intensity quasi-monochromatic light for targeted regulation of L. edodes biosynthetic activity.
Collapse
Affiliation(s)
- Oksana Mykchaylova
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kiev, 01601, Ukraine
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kiev, 03056, Ukraine
| | - Halyna Dubova
- Department of Food Technology, Poltava State Agrarian University, 1/3 Skovorody, Poltava, 36003, Ukraine
| | - Anatoliy Negriyko
- Department of Laser Spectroscopy, Institute of Physics of the National Academy of Sciences of Ukraine, 46, Prospect Nauki, Kiev, 03039, Ukraine
| | - Margarita Lomberg
- Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, Kiev, 01601, Ukraine.
| | - Viktoriia Krasinko
- Department of Biotechnology and Microbiology, National University of Food Technologies, 68, Volodymyrska, Kiev, 01601, Ukraine
| | - Andrej Gregori
- Mycomedica Ltd, Podkoren 72, 4280, Kranjska Gora, Slovenia
| | - Natalia Poyedinok
- Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, Kiev, 03056, Ukraine
| |
Collapse
|
21
|
Hernando AV, Sun W, Abitbol T. "You Are What You Eat": How Fungal Adaptation Can Be Leveraged toward Myco-Material Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300140. [PMID: 38486929 PMCID: PMC10935908 DOI: 10.1002/gch2.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/01/2023] [Indexed: 03/17/2024]
Abstract
Fungi adapt to their surroundings, modifying their behaviors and composition under different conditions like nutrient availability and environmental stress. This perspective examines how a basic understanding of fungal genetics and the different ways that fungi can be influenced by their surroundings can be leveraged toward the production of functional mycelium materials. Simply put, within the constraints of a given genetic script, both the quality and quantity of fungal mycelium are shaped by what they eat and where they grow. These two levers, encompassing their global growth environment, can be turned toward different materials outcomes. The final properties of myco-materials are thus intimately shaped by the conditions of their growth, enabling the design of new biobased and biodegradable material constructions for applications that have traditionally relied on petroleum-based chemicals.This perspective highlights aspects of fungal genetics and environmental adaptation that have potential materials science implications, along the way touching on key studies, both to situate the state of the art within the field and to punctuate the viewpoints of the authors. Finally, this work ends with future perspectives, reinforcing key topics deemed important to consider in emerging myco-materials research.
Collapse
Affiliation(s)
- Alicia Vivas Hernando
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Wenjing Sun
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Tiffany Abitbol
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|
22
|
Peng H, Zhang YL, Ying SH, Feng MG. Rad2, Rad14 and Rad26 recover Metarhizium robertsii from solar UV damage through photoreactivation in vivo. Microbiol Res 2024; 280:127589. [PMID: 38154444 DOI: 10.1016/j.micres.2023.127589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Rad2, Rad14 and Rad26 recover ultraviolet (UV) damage by nucleotide excision repair (NER) in budding yeast but their functions in filamentous fungi have not been elucidated. Here, we report mechanistically different anti-UV effects of nucleus-specific Rad2, Rad14 and Rad26 orthologs in Metarhizium robertsii, an insect-pathogenic fungus. The null mutants of rad2, rad14 and rad26 showed a decrease of ∼90% in conidial resistance to UVB irradiation. When conidia were impaired at a UVB dose of 0.15 J/cm2, they were photoreactivated (germinated) by only 6-13% through a 5-h light plus 19-h dark incubation, whereas 100%, 80% and 70% of the wild-type conidia were photoreactivated at 0.15, 0.3 and 0.4 J/cm2, respectively. The dose-dependent photoreactivation rates were far greater than the corresponding 24-h dark reactivation rates and were largely enhanced by the overexpression (OE) of rad2, rad14 or rad26 in the wild-type strain. The OE strains exhibited markedly greater activities in photoreactivation of conidia inactivated at 0.5-0.7 J/cm2 than did the wild-type strain. Confirmed interactions of Rad2, Rad14 and Rad26 with photolyase regulators and/or Rad1 or Rad10 suggest that each of these proteins could have evolved into a component of the photolyase regulator-cored protein complex to mediate photoreactivation. The interactions inhibited in the null mutants resulted in transcriptional abolishment or repression of those factors involved in the complex. In conclusion, the anti-UV effects of Rad2, Rad14 and Rad26 depend primarily on DNA photorepair-dependent photoreactivation in M. robertsii and mechanistically differ from those of yeast orthologs depending on NER.
Collapse
Affiliation(s)
- Han Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yi-Lu Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
23
|
Liu XL, Duan Z, Yu M, Liu X. Epigenetic control of circadian clocks by environmental signals. Trends Cell Biol 2024:S0962-8924(24)00028-X. [PMID: 38423855 DOI: 10.1016/j.tcb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Circadian clocks have evolved to enable organisms to respond to daily environmental changes. Maintaining a robust circadian rhythm under various perturbations and stresses is essential for the fitness of an organism. In the core circadian oscillator conserved in eukaryotes (from fungi to mammals), a negative feedback loop based on both transcription and translation drives circadian rhythms. The expression of circadian clock genes depends both on the binding of transcription activators at the promoter and on the chromatin state of the clock genes, and epigenetic modifications of chromatin are crucial for transcriptional regulation of circadian clock genes. Herein we review current knowledge of epigenetic regulation of circadian clock mechanisms and discuss how environmental cues can control clock gene expression by affecting chromatin states.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muqun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Wang H, Zhao S, Han Z, Qi Z, Han L, Li Y. Integrated transcriptome and metabolome analysis provides insights into blue light response of Flammulina filiformis. AMB Express 2024; 14:21. [PMID: 38351413 PMCID: PMC10864240 DOI: 10.1186/s13568-024-01680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Blue light promotes primordium differentiation and fruiting body formation of mushroom. However, the blue light response mechanism of mushroom remains unclear. In this study, mycelium of Flammulina filiformis was exposed to blue light, red light and dark conditions, and then the comparative metabolome and transcriptome analysis was applied to explore metabolic regulation mechanism of F. filiformis under blue light and red light conditions. The yield of the fruiting body of F. filiformis under blue light condition was much higher than that under dark and red light conditions. Metabolome analysis showed that blue light treatment reduced the concentrations of many low molecular weight carbohydrates in the pilei, but it promoted the accumulation of some low molecular weight carbohydrates in the stipes. Blue light also decreased the accumulation of organic acids in the stipes. Blue light treatment reduced the levels of tyrosine and tryptophan in the stipes, but it largely promoted the accumulation of lysine in this organ. In the stipes of F. filiformis, blue light shifted metabolite flow to synthesis of lysine and carbohydrates through inhibiting the accumulation of aromatic amino acids and organic acids, thereby enhancing its nutritional and medicinal values. The transcriptome analysis displayed that blue light enhanced accumulation of lysine in fruiting body of F. filiformis through downregulation of lysine methyltransferase gene and L-lysine 6-monooxygenase gene. Additionally, in the stipes, blue light upregulated many hydrolase genes to improve the ability of the stipe to biodegrade the medium and elevated the growth rate of the fruiting body.
Collapse
Affiliation(s)
- Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Shuting Zhao
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiyang Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zexin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Han
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yu Li
- Department of Agronomy, Jilin Agricultural University, Changchun, 130118, China.
- Department of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
25
|
Pucelik S, Becker M, Heyber S, Wöhlbrand L, Rabus R, Jahn D, Härtig E. The blue light-dependent LOV-protein LdaP of Dinoroseobacter shibae acts as antirepressor of the PpsR repressor, regulating photosynthetic gene cluster expression. Front Microbiol 2024; 15:1351297. [PMID: 38404597 PMCID: PMC10890935 DOI: 10.3389/fmicb.2024.1351297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In the marine α-proteobacterium Dinoroseobacter shibae more than 40 genes of the aerobic anoxygenic photosynthesis are regulated in a light-dependent manner. A genome-wide screen of 5,605 clones from a D. shibae transposon library for loss of pigmentation and changes in bacteriochlorophyll absorbance identified 179 mutant clones. The gene encoding the LOV-domain containing protein Dshi_1135 was identified by its colorless phenotype. The mutant phenotype was complemented by the expression of a Dshi_1135-strep fusion protein in trans. The recombinantly produced and chromatographically purified Dshi_1135 protein was able to undergo a blue light-induced photocycle mediated by bound FMN. Transcriptome analyses revealed an essential role for Dshi_1135 in the light-dependent expression of the photosynthetic gene cluster. Interactomic studies identified the repressor protein PpsR as an interaction partner of Dshi_1135. The physical contact between PpsR and the Dshi_1135 protein was verified in vivo using the bacterial adenylate cyclase-based two-hybrid system. In addition, the antirepressor function of the Dshi_1135 protein was demonstrated in vivo testing of a bchF-lacZ reporter gene fusion in a heterologous Escherichia coli-based host system. We therefore propose to rename the Dshi_1135 protein to LdaP (light-dependent antirepressor of PpsR). Using the bacterial two-hybrid system, it was also shown that cobalamin (B12) is essential for the interaction of the antirepressor PpaA with PpsR. A regulatory model for the photosynthetic gene cluster in D. shibae was derived, including the repressor PpsR, the light-dependent antirepressor LdaP and the B12-dependent antirepressor PpaA.
Collapse
Affiliation(s)
- Saskia Pucelik
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Miriam Becker
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffi Heyber
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
26
|
Ledoux C, Bobée C, Cabet É, David P, Filaine F, Hachimi S, Lalanne C, Ruprich-Robert G, Herbert É, Chapeland-Leclerc F. Characterization of spatio-temporal dynamics of the constrained network of the filamentous fungus Podospora anserina using a geomatics-based approach. PLoS One 2024; 19:e0297816. [PMID: 38319941 PMCID: PMC10846696 DOI: 10.1371/journal.pone.0297816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
In their natural environment, fungi are subjected to a wide variety of environmental stresses which they must cope with by constantly adapting the architecture of their growing network. In this work, our objective was to finely characterize the thallus development of the filamentous fungus Podospora anserina subjected to different constraints that are simple to implement in vitro and that can be considered as relevant environmental stresses, such as a nutrient-poor environment or non-optimal temperatures. At the Petri dish scale, the observations showed that the fungal thallus is differentially affected (thallus diameter, mycelium aspect) according to the stresses but these observations remain qualitative. At the hyphal scale, we showed that the extraction of the usual quantities (i.e. apex, node, length) does not allow to distinguish the different thallus under stress, these quantities being globally affected by the application of a stress in comparison with a thallus having grown under optimal conditions. Thanks to an original geomatics-based approach based on the use of automatized Geographic Information System (GIS) tools, we were able to produce maps and metrics characterizing the growth dynamics of the networks and then to highlight some very different dynamics of network densification according to the applied stresses. The fungal thallus is then considered as a map and we are no longer interested in the quantity of material (hyphae) produced but in the empty spaces between the hyphae, the intra-thallus surfaces. This study contributes to a better understanding of how filamentous fungi adapt the growth and densification of their network to potentially adverse environmental changes.
Collapse
Affiliation(s)
- Clara Ledoux
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Cécilia Bobée
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Éva Cabet
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | - Pascal David
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | | | | | | | | | - Éric Herbert
- CNRS, UMR 8236 – LIED, Université Paris Cité, Paris, France
| | | |
Collapse
|
27
|
Yu L, Xu SY, Luo XC, Ying SH, Feng MG. High photoreactivation activities of Rad2 and Rad14 in recovering insecticidal Beauveria bassiana from solar UV damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112849. [PMID: 38277960 DOI: 10.1016/j.jphotobiol.2024.112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Anti-ultraviolet (UV) roles of Rad2 and Rad14 depend on nucleotide excision repair (NER) of UV-induced DNA lesions in budding yeast but remain unexplored yet in filamentous fungi. Here, nucleus-specific Rad2 and Rad14 orthologs are shown to recover Beauveria bassiana, a main source of wide-spectrum mycoinsecticides, from solar UV damage through photorepair-depending photoreactivation. As a photorepair index, photoreactivation (germination) rates of lethal UVB dose-irradiated conidia via a 3- or 5-h light plus 9- or 7-h dark incubation at 25 °C were drastically reduced in the Δrad2 and Δrad14 mutants versus a wild-type strain. As an NER index, nighttime-mimicking 12-h dark reactivation rates of low UVB dose-impaired conidia decreased sharply compared to the corresponding photoreactivation rates in the presence or absence of either ortholog, indicating that its extant NER activity was limited to recovering light UVB damage in the field. The high photoreactivation activity of either Rad2 or Rad14 was derived from its tight link to a large protein complex formed by photolyase regulators and other anti-UV proteins through multiple protein-protein interactions revealed by yeast two-hybrid assays. Therefore, Rad2 and Rad14 recover B. bassiana from solar UV damage through photoreactiovation in vivo that depends primarily on photorepair, although they contribute little to the fungal lifecycle-related phenotypes. These findings unveil a novel scenario distinguished from the NER-depending anti-UV roles of Rad2 and Rad14 in the model yeast and broaden a biological basis crucial for rational application of fungal insecticides to improve pest control efficacy via feasible recovery of solar UV damage.
Collapse
Affiliation(s)
- Lei Yu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Cheng Luo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Zhu L, Su Y, Ma S, Guo L, Yang S, Yu H. Comparative Proteomic Analysis Reveals Candidate Pathways Related to the Effect of Different Light Qualities on the Development of Mycelium and Fruiting Body of Pleurotus ostreatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1361-1375. [PMID: 38166381 DOI: 10.1021/acs.jafc.3c06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Light affects the morphology and physiology of Pleurotus ostreatus. However, the underlying molecular mechanism of this effect remains unclear. In this study, a label-free comparative proteomic analysis was conducted to investigate the global protein expression profile of the mycelia and fruiting bodies of P. ostreatus PH11 growing under four different light quality treatments. Among all the 2234 P. ostreatus proteins, 1349 were quantifiable under all tested conditions. A total of 1100 differentially expressed proteins were identified by comparing the light group data with those of the darkness group. GO and KEGG enrichment analyses indicated that the oxidative phosphorylation, proteasome, and mRNA surveillance pathways were the most related pathways under the light condition. qRT-PCR verified that the expression of the white collar 1 protein was significantly enhanced under white light. Additionally, glutamine synthetase and aldehyde dehydrogenase played important roles during light exposure. This study provides valuable insight into the P. ostreatus light response mechanism, which will lay the foundation for improved cultivation.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Yao Su
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Shunan Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, Shandong Province266109, People's Republic of China
| |
Collapse
|
29
|
Hemmer S, Siedhoff NE, Werner S, Ölçücü G, Schwaneberg U, Jaeger KE, Davari MD, Krauss U. Machine Learning-Assisted Engineering of Light, Oxygen, Voltage Photoreceptor Adduct Lifetime. JACS AU 2023; 3:3311-3323. [PMID: 38155650 PMCID: PMC10751770 DOI: 10.1021/jacsau.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/30/2023]
Abstract
Naturally occurring and engineered flavin-binding, blue-light-sensing, light, oxygen, voltage (LOV) photoreceptor domains have been used widely to design fluorescent reporters, optogenetic tools, and photosensitizers for the visualization and control of biological processes. In addition, natural LOV photoreceptors with engineered properties were recently employed for optimizing plant biomass production in the framework of a plant-based bioeconomy. Here, the understanding and fine-tuning of LOV photoreceptor (kinetic) properties is instrumental for application. In response to blue-light illumination, LOV domains undergo a cascade of photophysical and photochemical events that yield a transient covalent FMN-cysteine adduct, allowing for signaling. The rate-limiting step of the LOV photocycle is the dark-recovery process, which involves adduct scission and can take between seconds and days. Rational engineering of LOV domains with fine-tuned dark recovery has been challenging due to the lack of a mechanistic model, the long time scale of the process, which hampers atomistic simulations, and a gigantic protein sequence space covering known mutations (combinatorial challenge). To address these issues, we used machine learning (ML) trained on scarce literature data and iteratively generated and implemented experimental data to design LOV variants with faster and slower dark recovery. Over the three prediction-validation cycles, LOV domain variants were successfully predicted, whose adduct-state lifetimes spanned 7 orders of magnitude, yielding optimized tools for synthetic (opto)biology. In summary, our results demonstrate ML as a viable method to guide the design of proteins even with limited experimental data and when no mechanistic model of the underlying physical principles is available.
Collapse
Affiliation(s)
- Stefanie Hemmer
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
| | - Niklas Erik Siedhoff
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Sophia Werner
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
| | - Gizem Ölçücü
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
- Institute
of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, Jülich 52426, Germany
| | - Mehdi D. Davari
- Department
of Bioorganic Chemistry, Leibniz Institute
of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Ulrich Krauss
- Institute
of Molecular Enzyme Technology, Heinrich
Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
- Institute
of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, Jülich 52426, Germany
- Department
of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
30
|
McElroy KE, Audino JA, Serb JM. Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum. Mol Biol Evol 2023; 40:msad263. [PMID: 38039155 PMCID: PMC10733189 DOI: 10.1093/molbev/msad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Collapse
Affiliation(s)
- Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jorge A Audino
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Schinagl CW, Siewert B, Hammerle F, Spes G, Peintner U, Schlierenzauer M, Vrabl P. Growth, morphology, and formation of cinnabarin in Pycnoporus cinnabarinus in relation to different irradiation spectra. Photochem Photobiol Sci 2023; 22:2861-2875. [PMID: 37897564 PMCID: PMC10709268 DOI: 10.1007/s43630-023-00493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND The demand for natural pigments in general, and for fungi-derived pigments in particular, is constantly rising. Wood-decomposing fungi represent a promising source for natural pigments and they are usually easy to cultivate in pure culture. One of them, i.e., Pycnoporus cinnabarinus, offers a highly interesting spectrum of bioactivity, partly due to the formation of the orange-red pigment cinnabarin. However, apart from a few studies addressing its diverse potential biotechnological applications, there is still a large gap of knowledge concerning the influence of light on the formation of cinnabarin. The aim of this work was to investigate the effect of different irradiations on the cinnabarin content, the growth, and the morphology of three different P. cinnabarinus strains. We used highly standardized irradiation conditions and cultivation techniques in combination with newly developed methods for the extraction and direct quantification of cinnabarin. RESULTS Red, green, blue, and UV-A irradiation (mean irradiance Ee = 1.5 ± 0.18 W m-2) had considerable effects on the growth and colony appearance of all three P. cinnabarinus strains tested. The cinnabarin content determined was, thus, dependent on the irradiation wavelength applied, allowing strain-specific thresholds to be defined. Irradiation with wavelengths below this strain-specific threshold corresponded to a lower cinnabarin content, at least at the intensity applied. The orange-red pigment appeared by light microscopy as incrusted extracellular plaques present on the hyphal walls. Highly efficient vegetative propagation occurred by arthroconidia, and we observed the tendency that this asexual reproduction was (i) most frequent in the dark but (ii) never occurred under UV-A exposure. CONCLUSION This study highlights a differential photo-dependence of growth, morphology, and cinnabarin formation in P. cinnabarinus. This confirms that it is advisable to consider the wavelength of the light used in future biotechnological productions of natural pigments.
Collapse
Affiliation(s)
- Christoph W Schinagl
- Department of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
- Department of Biotechnology and Food Engineering, MCI-The Entrepreneurial School, 6020, Innsbruck, Austria.
| | - Bianka Siewert
- Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Institute of Pharmacy, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Fabian Hammerle
- Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Institute of Pharmacy, University of Innsbruck, 6020, Innsbruck, Austria
| | - Gaja Spes
- Department of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria
- Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Institute of Pharmacy, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ursula Peintner
- Department of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria
| | | | - Pamela Vrabl
- Department of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
32
|
Li Y, Li Y, Lu H, Sun T, Gao J, Zhang J, Shen Q, Yu Z. The bZIP transcription factor ATF1 regulates blue light and oxidative stress responses in Trichoderma guizhouense. MLIFE 2023; 2:365-377. [PMID: 38818272 PMCID: PMC10989065 DOI: 10.1002/mlf2.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 06/01/2024]
Abstract
In several filamentous fungi, incident light and environmental stress signaling share the mitogen-activated protein kinase (MAPK) HOG (SAK) pathway. It has been revealed that short-term illumination with blue light triggers the activation of the HOG pathway in Trichoderma spp. In this study, we demonstrate the crucial role of the basic leucine zipper transcription factor ATF1 in blue light responses and signaling downstream of the MAPK HOG1 in Trichoderma guizhouense. The lack of ATF1 severely impaired photoconidiation and delayed vegetative growth and conidial germination. Upon blue light or H2O2 stimuli, HOG1 interacted with ATF1 in the nucleus. Genome-wide transcriptome analyses revealed that 61.8% (509 out of 824) and 85.2% (702 out of 824) of blue light-regulated genes depended on ATF1 and HOG1, respectively, of which 58.4% (481 out of 824) were regulated by both of them. Our results also show that blue light promoted conidial germination and HOG1 and ATF1 played opposite roles in controlling conidial germination in the dark. Additionally, the lack of ATF1 led to reduced oxidative stress resistance, probably because of the downregulation of catalase-encoding genes. Overall, our results demonstrate that ATF1 is the downstream component of HOG1 and is responsible for blue light responses, conidial germination, vegetative growth, and oxidative stress resistance in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Yanshen Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Huanhong Lu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Tingting Sun
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Jia Gao
- Department of MicrobiologyKarlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied BiosciencesKarlsruheGermany
| | - Jian Zhang
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Qirong Shen
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Zhenzhong Yu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| |
Collapse
|
33
|
Oostlander AG, Brodde L, von Bargen M, Leiterholt M, Trautmann D, Enderle R, Elfstrand M, Stenlid J, Fleißner A. A Reliable and Simple Method for the Production of Viable Pycnidiospores of the Pine Pathogen Diplodia sapinea and a Spore-Based Infection Assay on Scots Pine. PLANT DISEASE 2023; 107:3370-3377. [PMID: 37163310 DOI: 10.1094/pdis-01-23-0107-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diplodia sapinea is a globally distributed opportunistic fungal pathogen of conifers that causes severe production losses in forestry. The fungus frequently colonizes pine trees as an endophyte without causing visible symptoms but can become pathogenic when the host plant is weakened by stress, such as drought or heat. Forest damage might therefore further increase due to the effects of climate change. The future development of control strategies depends on a better understanding of the fungus' biology, which requires experimental methods for its investigation in the laboratory. An efficient, standardized protocol for the production and storage of highly viable pycnidiospores was developed, and a spore-based infection method was devised. We compared infection rates of dormant and actively growing, wounded, or nonwounded Scots pine seedlings inoculated with in vitro-produced spores and mycelium from agar-plugs. Spores were a much more efficient inoculum for causing disease symptoms on wounded plants than the conventional agar plug. The application of spores on nonwounded plants lead to high rates of asymptomatic infection, suggesting endophytic fungal development. These methods enable standardized spore infection and virulence assays and promote D. sapinea as a model organism for studying the switch from endophytic to pathogenic life styles of forest pathogens.
Collapse
Affiliation(s)
- Anne G Oostlander
- Institute of Genetics, Technical University Braunschweig, Braunschweig, Germany
| | - Laura Brodde
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Miriam von Bargen
- Institute of Genetics, Technical University Braunschweig, Braunschweig, Germany
| | - Marco Leiterholt
- Institute of Genetics, Technical University Braunschweig, Braunschweig, Germany
| | - Dagmar Trautmann
- Institute of Forest Protection, Julius Kuehn Institute (JKI), Braunschweig, Germany
- Institute for Plant Protection in Horticulture and Urban Green, Julius Kuehn Institute (JKI), Braunschweig, Germany
| | - Rasmus Enderle
- Institute of Forest Protection, Julius Kuehn Institute (JKI), Braunschweig, Germany
- Institute for Plant Protection in Horticulture and Urban Green, Julius Kuehn Institute (JKI), Braunschweig, Germany
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - André Fleißner
- Institute of Genetics, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
34
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
35
|
Qiu Z, Wang S, Zhao J, Cui L, Wang X, Cai N, Li H, Ren S, Li T, Shu L. Synthesis and structural characteristics analysis of melanin pigments induced by blue light in Morchella sextelata. Front Microbiol 2023; 14:1276457. [PMID: 37840742 PMCID: PMC10573313 DOI: 10.3389/fmicb.2023.1276457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Morchella sextelata, a highly sought-after edible mushroom worldwide, is evaluated based on its cap color as an essential commercial property indicator. In the present study, the effects of blue light on cap pigmentation in M. sextelata, as well as the synthesis and structural characteristics of melanin pigments within the cap were examined. The results showed that an increase in the proportion of blue light within the lighting environment promoted melanin synthesis and melanization of the cap. Transmission and scanning electron microscopy revealed the localization of melanin within the mycelium and its ultrastructural characteristics. The UV-visible analysis demonstrated that melanin exhibited a maximum absorption peak at 220 nm and possessed high alkaline solubility as well as acid precipitability. The structural characteristics of melanin were analyzed using FTIR, NMR, HPLC, and elemental analysis, which confirmed the presence of eumelanin, pheomelanin, and allomelanin in both brown and black caps. Furthermore, blue light can stimulate the synthesis of both eumelanin and pheomelanin. The obtained results can serve as the foundation for comprehending the mechanism by which light regulates color formation in mushrooms.
Collapse
Affiliation(s)
- Zhiheng Qiu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuang Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lingxiu Cui
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Xinyi Wang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Nuo Cai
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Hongpeng Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Shuhua Ren
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Tianlai Li
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| | - Lili Shu
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
| |
Collapse
|
36
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
37
|
Yang S, Zhuo Y, Lin Y, Huang M, Tang W, Zheng W, Lu G, Wang Z, Yun Y. The Signal Peptidase FoSpc2 Is Required for Normal Growth, Conidiation, Virulence, Stress Response, and Regulation of Light Sensitivity in Fusarium odoratissimum. Microbiol Spectr 2023; 11:e0440322. [PMID: 37367437 PMCID: PMC10433827 DOI: 10.1128/spectrum.04403-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Signal peptidase (SPase) is responsible for cleavage of N-terminal signal peptides in most secretory precursor proteins and many membrane proteins during maturation. In this study, we identified four components of the SPase complex (FoSec11, FoSpc1, FoSpc2, and FoSpc3) in the banana wilt fungal pathogen Fusarium odoratissimum. We proved that interactions exist among the four SPase subunits by bimolecular fluorescence complementation (BiFC) and affinity purification and mass spectrometry (AP-MS) assays. Among the four SPase genes, FoSPC2 was successfully deleted. FoSPC2 deletion caused defects in vegetative growth, conidiation, and virulence. Loss of FoSPC2 also affected the secretion of some pathogenicity-related extracellular enzymes, suggesting that SPase without FoSpc2 may have a lower efficiency in managing the maturation of the extracellular enzymes in F. odoratissimum. In addition, we found that the ΔFoSPC2 mutant had increased sensitivity to light, and the colonies of the mutant grew faster under all-dark conditions than under all-light conditions. We further observed that deletion of FoSPC2 affected expression of the blue light photoreceptor gene FoWC2, leading to cytoplasmic accumulation of FoWc2 under all-light conditions. Since FoWc2 has signal peptides, FoSpc2 may regulate the expression and subcellular localization of FoWc2 indirectly. Contrary to its response to light, the ΔFoSPC2 mutant displayed a significant decreased sensitivity to osmotic stress, and culturing the mutant under osmotic stress conditions restored both the localization of FoWc2 and light sensitivity of the ΔFoSPC2, suggesting that a cross talk between osmotic stress and light response pathways in F. odoratissimum and FoSpc2 takes part in these processes. IMPORTANCE In this study, we identified four components of SPase in the banana wilt pathogen Fusarium odoratissimum and characterized the SPase FoSpc2. Loss of FoSPC2 affected the secretion of extracellular enzymes, suggesting that SPase without FoSpc2 may have a lower efficiency in managing the maturation of the extracellular enzymes in F. odoratissimum. In addition, this is the first time that we have found a relationship between the SPase and fungal light response. Deletion of FoSPC2 resulted in decreased sensitivity to the osmotic stresses but with increased sensitivity to light. Continuous light inhibited the growth rate of the ΔFoSPC2 mutant and affected the cellular localization of the blue light photoreceptor FoWc2 in this mutant, but culturing the mutant under osmotic stress both restored the localization of FoWc2 and eliminated the light sensitivity of the ΔFoSPC2 mutant, suggesting that loss of FoSPC2 may affect a cross talk between the osmotic stress and light response pathways in F. odoratissimum.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanghong Zhuo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaqi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meimei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| |
Collapse
|
38
|
Crispim AC, Crispim SMA, Rocha JR, Ursulino JS, Sobrinho RR, Porto VA, Bento ES, Santana AEG, Caetano LC. Light effects on Lasiodiplodia theobromae metabolome cultured in vitro. Metabolomics 2023; 19:75. [PMID: 37580624 DOI: 10.1007/s11306-023-02041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION The present work identified and compared intracellular metabolites and metabolic networks in mycelial cultures of Lasiodiplodia theobromae grown under 12 natural light and 24 hours' dark using a 1 H NMR-based metabolomics approach. MATERIALS AND METHODS Fungal cultures were grown in potato dextrose media, and metabolites were extracted by sonication with sodium phosphate-buffered saline (pH = 6.0, 10% D2O, 0.1 mM TSP) from mycelium samples collected every week over four weeks. RESULTS Multivariate analyses revealed that the light exposure group showed a positive correlation within beta-hydroxybutyrate, acetoacetate, acetone, betaine, choline, glycerol, and phosphocholine. On the other hand, phenyl acetate, leucine, isoleucine, valine, and tyrosine were positively correlated with dark conditions. Light favored the oxidative degradation of valine, leucine, and isoleucine, leading to the accumulation of choline, phosphocholine, betaine, and ketone bodies (ketogenesis). Ketogenesis, gluconeogenesis, and the biosynthesis of choline, phosphocholine, and betaine, were considered discriminatory routes for light conditions. The light-sensing pathways were interlinked with fungal development, as verified by the increased production of mycelia biomass without fruiting bodies and stress signaling, as demonstrated by the increased production of pigments.
Collapse
Affiliation(s)
- Alessandre C Crispim
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil.
| | - Shirley M A Crispim
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Jéssica R Rocha
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Jeferson S Ursulino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Roberto R Sobrinho
- School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Viviane A Porto
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | - Edson S Bento
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | - Antônio E G Santana
- Campus of Engineering and Agricultural Sciences, CECA Federal University of Alagoas, Maceió, AL, Brazil
| | - Luiz C Caetano
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
39
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
40
|
Nagel A, Leonard M, Maurus I, Starke J, Schmitt K, Valerius O, Harting R, Braus GH. The Frq-Frh Complex Light-Dependently Delays Sfl1-Induced Microsclerotia Formation in Verticillium dahliae. J Fungi (Basel) 2023; 9:725. [PMID: 37504714 PMCID: PMC10381341 DOI: 10.3390/jof9070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The vascular plant pathogenic fungus Verticillium dahliae has to adapt to environmental changes outside and inside its host. V. dahliae harbors homologs of Neurospora crassa clock genes. The molecular functions and interactions of Frequency (Frq) and Frq-interacting RNA helicase (Frh) in controlling conidia or microsclerotia development were investigated in V. dahliae JR2. Fungal mutant strains carrying clock gene deletions, an FRH point mutation, or GFP gene fusions were analyzed on transcript, protein, and phenotypic levels as well as in pathogenicity assays on tomato plants. Our results support that the Frq-Frh complex is formed and that it promotes conidiation, but also that it suppresses and therefore delays V. dahliae microsclerotia formation in response to light. We investigated a possible link between the negative element Frq and positive regulator Suppressor of flocculation 1 (Sfl1) in microsclerotia formation to elucidate the regulatory molecular mechanism. Both Frq and Sfl1 are mainly present during the onset of microsclerotia formation with decreasing protein levels during further development. Induction of microsclerotia formation requires Sfl1 and can be delayed at early time points in the light through the Frq-Frh complex. Gaining further molecular knowledge on V. dahliae development will improve control of fungal growth and Verticillium wilt disease.
Collapse
Affiliation(s)
- Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
41
|
MacCready JS, Roggenkamp EM, Gdanetz K, Chilvers MI. Elucidating the Obligate Nature and Biological Capacity of an Invasive Fungal Corn Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:411-424. [PMID: 36853195 DOI: 10.1094/mpmi-10-22-0213-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production. Despite this, P. maydis has remained largely understudied at the molecular level, due to difficulties surrounding its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome, using a combination of long- and short-read technologies, and also provide the first transcriptomic analysis of primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely heterothallic, and encodes for significantly more protein-coding genes, including secreted enzymes and effectors, than previous determined. Furthermore, our expression analysis suggests that, following primary tar spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological capacity of P. maydis, which have much broader implications for mitigating tar spot of corn. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Emily M Roggenkamp
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Kristi Gdanetz
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
42
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
43
|
Tang Y, Tang Y, Ren D, Wang C, Qu Y, Huang L, Xue Y, Jiang Y, Wang Y, Xu L, Zhu P. White Collar 1 Modulates Oxidative Sensitivity and Virulence by Regulating the HOG1 Pathway in Fusarium asiaticum. Microbiol Spectr 2023; 11:e0520622. [PMID: 37195224 PMCID: PMC10269464 DOI: 10.1128/spectrum.05206-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
Fusarium asiaticum is an epidemiologically important pathogen of cereal crops in east Asia, accounting for both yield losses and mycotoxin contamination problems in food and feed products. FaWC1, a component of the blue-light receptor White Collar complex (WCC), relies on its transcriptional regulatory zinc finger domain rather than the light-oxygen-voltage domain to regulate pathogenicity of F. asiaticum, although the downstream mechanisms remain obscure. In this study, the pathogenicity factors regulated by FaWC1 were analyzed. It was found that loss of FaWC1 resulted in higher sensitivity to reactive oxygen species (ROS) than in the wild type, while exogenous application of the ROS quencher ascorbic acid restored the pathogenicity of the ΔFawc1 strain to the level of the wild type, indicating that the reduced pathogenicity of the ΔFawc1 strain is due to a defect in ROS tolerance. Moreover, the expression levels of the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway genes and their downstream genes encoding ROS scavenging enzymes were downregulated in the ΔFawc1 mutant. Upon ROS stimulation, the FaHOG1-green fluorescent protein (GFP)-expressing signal driven by the native promoter was inducible in the wild type but negligible in the ΔFawc1 strain. Overexpressing Fahog1 in the ΔFawc1 strain could recover the ROS tolerance and pathogenicity of the ΔFawc1 mutant, but it remained defective in light responsiveness. In summary, this study dissected the roles of the blue-light receptor component FaWC1 in regulating expression levels of the intracellular HOG-MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. IMPORTANCE The well-conserved fungal blue-light receptor White Collar complex (WCC) is known to regulate virulence of several pathogenic species for either plant or human hosts, but how WCC determines fungal pathogenicity remains largely unknown. The WCC component FaWC1 in the cereal pathogen Fusarium asiaticum was previously found to be required for full virulence. The present study dissected the roles of FaWC1 in regulating the intracellular HOG MAPK signaling pathway to affect ROS sensitivity and pathogenicity in F. asiaticum. This work thus extends knowledge of the association between fungal light receptors and the intracellular stress signaling pathway to regulate oxidative stress tolerance and pathogenicity in an epidemiologically important fungal pathogen of cereal crops.
Collapse
Affiliation(s)
- Ying Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Tang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Qu
- School of Life Sciences, East China Normal University, Shanghai, China
- No. 2 High School of East China Normal University, Shanghai, China
| | - Li Huang
- School of Life Sciences, East China Normal University, Shanghai, China
- Suzhou Industrial Park Xingyang School, Suzhou, China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
44
|
Cerón-Bustamante M, Tini F, Beccari G, Benincasa P, Covarelli L. Effect of Different Light Wavelengths on Zymoseptoria tritici Development and Leaf Colonization in Bread Wheat. J Fungi (Basel) 2023; 9:670. [PMID: 37367606 DOI: 10.3390/jof9060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The wheat pathogen Zymoseptoria tritici can respond to light by modulating its gene expression. Because several virulence-related genes are differentially expressed in response to light, different wavelengths could have a crucial role in the Z. tritici-wheat interaction. To explore this opportunity, the aim of this study was to analyze the effect of blue (470 nm), red (627 nm), blue-red, and white light on the in vitro and in planta development of Z. tritici. The morphology (mycelium appearance, color) and phenotypic (mycelium growth) characteristics of a Z. tritici strain were evaluated after 14 days under the different light conditions in two independent experiments. In addition, bread wheat plants were artificially inoculated with Z. tritici and grown for 35 days under the same light treatments. The disease incidence, severity, and fungal DNA were analyzed in a single experiment. Statistical differences were determined by using an ANOVA. The obtained results showed that the different light wavelengths induced specific morphological changes in mycelial growth. The blue light significantly reduced colony growth, while the dark and red light favored fungal development (p < 0.05). The light quality also influenced host colonization, whereby the white and red light had stimulating and repressing effects, respectively (p < 0.05). This precursory study demonstrated the influence of light on Z. tritici colonization in bread wheat.
Collapse
Affiliation(s)
- Minely Cerón-Bustamante
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
45
|
Vrabl P, Zottele M, Colleselli L, Schinagl CW, Mayerhofer L, Siewert B, Strasser H. Light in the box-photobiological examination chamber with light trap ventilation system for studying fungal surface cultures illustrated with Metarhizium brunneum and Beauveria brongniartii. Fungal Biol Biotechnol 2023; 10:11. [PMID: 37248509 PMCID: PMC10228068 DOI: 10.1186/s40694-023-00159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Due to their versatile way of life as saprophytes, endophytes, and entomopathogens, fungi of the genera Metarhizium and Beauveria are exposed to varying illumination conditions in their natural habitats, which makes a thorough adaptation to light very likely. While the few available studies for these genera support this assumption, research in this field is still in its infancy and the data material restricted to only a few fungal species. Thus, the aim of this work was to explore how light influences growth, conidial production and secondary metabolite formation of two industrial relevant strains of M. brunneum (MA 43, formerly M. anisopliae var. anisopliae BIPESCO 5/F52) and B. brongniartii (BIPESCO 2). To achieve this, we constructed an easily adjustable illumination device for highly standardized photophysiological studies of fungi on Petri dishes, the so-called LIGHT BOX. With the aid of this device, M. brunneum and B. brongniartii were grown on S4G or S2G agar at 25 °C for 14 days either in complete darkness or under constant illumination with red light (λpeak = 635 nm), green light (λpeak = 519 nm) or blue light (λpeak = 452 nm). In addition, for each wavelength the effect of different illumination intensities was tested, i.e., intensities of red light ranging from 22.1 ± 0.1 to 136.5 ± 0.3 µW cm-2, green light from 16.5 ± 0.1 to 96.2 ± 0.1 µW cm-2, and blue light from 56.1 ± 0.2 to 188.9 ± 0.6 µW cm-2. Both fungi strongly responded in terms of growth, conidial production, pigmentation and morphology to changes in the wavelength and irradiation intensity. The wavelength-dependent production of the well-known secondary metabolite oosporein which is secreted by the genus Beauveria in particular, was also increased under green and blue light exposure. The established LIGHT BOX system allows not only to optimize conidial production yields with these biotechnologically relevant fungi, but also allows the photobiological exploration of other fungi.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| | - Maria Zottele
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Lucia Colleselli
- Department of Biotechnology & Food Engineering, MCI-The Entrepreneurial School, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Christoph Walter Schinagl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
- Department of Biotechnology & Food Engineering, MCI-The Entrepreneurial School, Maximilianstraße 2, A-6020, Innsbruck, Austria
| | - Laura Mayerhofer
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Hermann Strasser
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
46
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
47
|
Pérez-Lara G, Olivares-Yañez C, van Bakel H, Larrondo LF, Canessa P. Genome-Wide Characterization of Light-Regulated Gene Expression in Botrytis cinerea Reveals Underlying Complex Photobiology. Int J Mol Sci 2023; 24:8705. [PMID: 37240051 PMCID: PMC10218500 DOI: 10.3390/ijms24108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Botrytis cinerea is a necrotrophic fungus characterized mainly by its wide host range of infected plants. The deletion of the white-collar-1 gene (bcwcl1), which encodes for a blue-light receptor/transcription factor, causes a decrease in virulence, particularly when assays are conducted in the presence of light or photocycles. However, despite ample characterization, the extent of the light-modulated transcriptional responses regulated by BcWCL1 remains unknown. In this study, pathogen and pathogen:host RNA-seq analyses, conducted during non-infective in vitro plate growth and when infecting Arabidopsis thaliana leaves, respectively, informed on the global gene expression patterns after a 60 min light pulse on the wild-type B05.10 or ∆bcwcl1 B. cinerea strains. The results revealed a complex fungal photobiology, where the mutant did not react to the light pulse during its interaction with the plant. Indeed, when infecting Arabidopsis, no photoreceptor-encoding genes were upregulated upon the light pulse in the ∆bcwcl1 mutant. Differentially expressed genes (DEGs) in B. cinerea under non-infecting conditions were predominantly related to decreased energy production in response to the light pulse. In contrast, DEGs during infection significantly differ in the B05.10 strain and the ∆bcwcl1 mutant. Upon illumination at 24 h post-infection in planta, a decrease in the B. cinerea virulence-associated transcripts was observed. Accordingly, after a light pulse, biological functions associated with plant defense appear enriched among light-repressed genes in fungus-infected plants. Taken together, our results show the main transcriptomic differences between wild-type B. cinerea B05.10 and ∆bcwcl1 after a 60 min light pulse when growing saprophytically on a Petri dish and necrotrophically over A. thaliana.
Collapse
Affiliation(s)
- Gabriel Pérez-Lara
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Consuelo Olivares-Yañez
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luis F. Larrondo
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
| |
Collapse
|
48
|
Pacheco-Tapia R, Ortíz S, Jargeat P, Amasifuen C, Vansteelandt M, Haddad M. Exploration of the Production of Three Thiodiketopiperazines by an Endophytic Fungal Strain of Cophinforma mamane. Chem Biodivers 2023; 20:e202201087. [PMID: 36919620 DOI: 10.1002/cbdv.202201087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Endophytic fungi possess a versatile metabolism which is related to their ability to live in diverse ecological niches. While culturing under laboratory conditions, their metabolism is mainly influenced by the culture media, time of incubation and other physicochemical factors. In this study, we focused on the production of 3 thiodiketopiperazines (TDKPs) botryosulfuranols A-C produced by an endophytic strain of Cophinforma mamane isolated from the leaves of Bixa orellana L collected in the Peruvian Amazon. We studied the time-course production of botryosulfuranols A-C during 28 days and evaluated the variations in the production of secondary metabolites, including the TDKPs, produced by C. mamane in response to different culture media, light versus dark conditions and different incubation times. We observed a short time-frame production of botryosulfuranol C while its production was significantly affected by the light conditions and nutrients of the culture media. Botryosulfuranols A and B showed a similar production pattern and a similar response to culturing conditions. Molecular networking allowed us to detect three compounds related to TDKPs that will be the focus of future experiments.
Collapse
Affiliation(s)
- Romina Pacheco-Tapia
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sergio Ortíz
- Therapeutic Innovation Laboratory UMR CNRS 7200, Faculty of Pharmacy, Université de Strasbourg, Strasbourg, France
| | - Patricia Jargeat
- Laboratoire Evolution et Diversité Biologique UMR 5174, Université de Toulouse, CNRS, IRD, France
| | - Carlos Amasifuen
- Instituto Nacional de Innovación Agraria, Dirección de Recursos Genéticos y Biotecnología, Avenida La Molina 1981, Lima, 15024, Perú
- Present address: Epigénomique Fonctionnelle et Physiologie Moléculaire Du Diabète et Maladies Associées UMR 1283/8199, Université de Lille, Lille, France
| | | | - Mohamed Haddad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|
49
|
Zhao S, Niu C, Wang Y, Li X, Zheng F, Liu C, Wang J, Li Q. Revealing the contributions of sunlight-expose process and core-microbiota metabolism on improving the flavor profile during Doubanjiang fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
50
|
Transcriptomic analysis reveals the inhibition mechanism of pulsed light on fungal growth and ochratoxin A biosynthesis in Aspergillus carbonarius. Food Res Int 2023; 165:112501. [PMID: 36869509 DOI: 10.1016/j.foodres.2023.112501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Pulsed light (PL) technology has a good effect on the control of fungi in postharvest fruit. In this present work, PL inhibited the growth of Aspergillus carbonarius in a dose-dependent manner, the mycelial growth decreased by 4.83 %, 13.91 % and 30.01 % at a fluence of 4.5 J·cm-2 (PL5), 9 J·cm-2 (PL10) and 13.5 J·cm2 (PL15), respectively. When inoculated with PL15 treated A. carbonarius, the scab diameter of the pears, ergosterol and OTA content was reduced by 23.2 %, 27.9 % and 80.7 % after 7 days, respectively. The third-generation sequencing technique was applied to study the transcriptome response of A. carbonarius treated with PL. Compared with the blank control, a total number of 268 and 963 differentially expressed genes (DEGs) were discovered in the group of PL10 and PL15, respectively. To be specific, a large amount of DEGs involved in DNA metabolism were up-regulated, while most of DEGs related to cell integrity, energy and glucose metabolism, ochratoxin A (OTA) biosynthesis and transport were down-regulated. In addition, the stress response of A. carbonarius was imbalanced, including up-regulation of Catalase and PEX12 and down-regulation of taurine and subtaurine metabolism, alcohol dehydrogenase and glutathione metabolism. Meanwhile, the results of transmission electron microscopy, mycelium cellular leakage and DNA electrophoresis indicated that PL15 treatment caused mitochondrial swelling, the destroyed cell membrane permeability and imbalance of DNA metabolism. The expression of P450 and Hal involved in OTA biosynthesis pathway were down-regulated in PL treated samples detected by qRT-PCR. In conclusion, this study reveals the molecular mechanism of pulsed light on inhibiting the growth, development and toxin production of A. carbonarius.
Collapse
|