1
|
Chen K, Ou B, Huang Q, Deng D, Xiang Y, Hu F. LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea. Epigenetics 2024; 19:2293409. [PMID: 38232183 PMCID: PMC10795783 DOI: 10.1080/15592294.2023.2293409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1β, interleukin-1β; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.
Collapse
Affiliation(s)
- Kai Chen
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Baiqing Ou
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Quan Huang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Daqing Deng
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yi Xiang
- Department of Cardiovascular Medicine Six Wards (Cardiovascular and Metabolic Diseases), Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fang Hu
- Comprehensive internal medicine of Hunan Provincial People’s Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Sobhy H, De Rovere M, Ait-Ammar A, Kashif M, Wallet C, Daouad F, Loustau T, Van Lint C, Schwartz C, Rohr O. BCL11b interacts with RNA and proteins involved in RNA processing and developmental diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024:195065. [PMID: 39455000 DOI: 10.1016/j.bbagrm.2024.195065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders. IMPORTANCE: BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression. BCL11b interacts with RNA processing and splicing proteins.
Collapse
Affiliation(s)
- Haitham Sobhy
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| | - Marco De Rovere
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Amina Ait-Ammar
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France; Université Libre de Bruxelles, ULB, Gosselies, Belgium
| | | | - Clementine Wallet
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- University of Strasbourg, UR 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | | | - Christian Schwartz
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, UPR CNRS 9002, ARN, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
3
|
Zhang H, Wang Z, Zhang J, Li Z, Liu J, Yu J, Zhao Y, Guo F, Chen WD, Wang YD. A MYC-STAMBPL1-TOE1 positive feedback loop mediates EGFR stability in hepatocellular carcinoma. Cell Rep 2024; 43:114812. [PMID: 39388352 DOI: 10.1016/j.celrep.2024.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The role of STAM binding protein-like 1 (STAMBPL1), a Lys-63 linkage-specific deubiquitinase, in hepatocellular carcinoma has remained elusive. Here, we report the functions of STAMBPL1 in modulating the stability of the protein and mRNA of the epidermal growth factor receptor (EGFR). STAMBPL1 deficiency attenuates liver tumorigenesis in vitro and in vivo. STAMBPL1 removes K63-linked ubiquitin chains from EGFR to avoid lysosome degradation upon EGF stimulation. STAMBPL1 augments RNA efficient splicing of EGFR to avoid intron retention by activating cleavage of the K63-linked ubiquitin chain on the target of EGR1 protein 1 (TOE1). Moreover, the EGFR-MYC axis has a positive feedback regulation on the transcription of STAMBPL1, and depletion of STAMBPL1 in vivo blunts MYC-driven liver tumorigenesis. Inhibition of STAMBPL1 or TOE1 synergistically improves the antitumor activity of lenvatinib. Our work shows the mechanism of STAMBPL1 in liver cancer and suggests it as a potential therapeutic target for liver cancer treatment.
Collapse
Affiliation(s)
- Hongli Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jian Zhang
- Department of Clinical Pathology, Nanyang Central Hospital, Nanyang, P.R. China
| | - Zhengtai Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jiaxuan Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China
| | - Jingwen Yu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China; Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Yiqi Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China; Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Fan Guo
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, The People's Hospital of Hebi, School of Medicine, Henan University, Henan, P.R. China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P.R. China.
| |
Collapse
|
4
|
Kesner JS, Wu X. Mechanisms suppressing noncoding translation. Trends Cell Biol 2024:S0962-8924(24)00190-9. [PMID: 39443270 DOI: 10.1016/j.tcb.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The majority of the DNA sequence in our genome is noncoding and not intended for synthesizing proteins. Nonetheless, genome-wide mapping of ribosome footprints has revealed widespread translation in annotated noncoding sequences, including long noncoding RNAs (lncRNAs), untranslated regions (UTRs), and introns of mRNAs. How cells suppress the translation of potentially toxic proteins from various noncoding sequences remains poorly understood. This review summarizes mechanisms for the mitigation of noncoding translation, including the BCL2-associated athanogene 6 (BAG6)-mediated proteasomal degradation pathway, which has emerged as a unifying mechanism to suppress the translation of diverse noncoding sequences in metazoan cells.
Collapse
Affiliation(s)
- Jordan S Kesner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuebing Wu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Tavoulari S, Lacabanne D, Pereira GC, Thangaratnarajah C, King MS, He J, Chowdhury SR, Tilokani L, Palmer SM, Prudent J, Walker JE, Kunji ERS. Distinct roles for the domains of the mitochondrial aspartate/glutamate carrier citrin in organellar localization and substrate transport. Mol Metab 2024; 90:102047. [PMID: 39419476 DOI: 10.1016/j.molmet.2024.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease. Here, we aim to understand the role of different citrin domains and how they contribute to pathogenic mechanisms in citrin deficiency. METHODS We have employed structural modeling and functional reconstitution of purified proteins in proteoliposomes to assess the transport activity and calcium regulation of wild-type citrin and pathogenic variants associated with citrin deficiency. We have also developed a double knockout of citrin and aralar (AGC1), the two paralogs of the mitochondrial aspartate/glutamate carrier, in HAP1 cells to perform mitochondrial imaging and to investigate mitochondrial localisation. RESULTS Using 33 pathogenic variants of citrin we clarify determinants of subcellular localization and transport mechanism. We identify crucial elements of the carrier domain that are required for transport, including those involved in substrate binding, network formation and dynamics. We show that the N-terminal domain is not involved in calcium regulation of transport, as previously thought, but when mutated causes a mitochondrial import defect. CONCLUSIONS Our work introduces a new role for the N-terminal domain of citrin and demonstrates that dysfunction of the different domains contributes to distinct pathogenic mechanisms in citrin deficiency.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Gonçalo C Pereira
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Jiuya He
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Suvagata R Chowdhury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Shane M Palmer
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - John E Walker
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.
| |
Collapse
|
6
|
Valli AA, Domingo-Calap ML, González de Prádena A, García JA, Cui H, Desbiez C, López-Moya JJ. Reconceptualizing transcriptional slippage in plant RNA viruses. mBio 2024; 15:e0212024. [PMID: 39287447 PMCID: PMC11481541 DOI: 10.1128/mbio.02120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
RNA viruses have evolved sophisticated strategies to exploit the limited encoded information within their typically compact genomes. One of them, named transcriptional slippage (TS), is characterized by the appearance of indels in nascent viral RNAs, leading to changes in the open reading frame (ORF). Although members of unrelated viral families express key proteins via TS, the available information about this phenomenon is still limited. In potyvirids (members of the Potyviridae family), TS has been defined by the insertion of an additional A at An motifs (n ≥ 6) in newly synthesized transcripts at a low frequency, modulated by nucleotides flanking the A-rich motif. Here, by using diverse experimental approaches and a collection of plant/virus combinations, we discover cases not following this definition. In summary, we observe (i) a high rate of single-nucleotide deletions at slippage motifs, (ii) overlapping ORFs acceded by slippage at an U8 stretch, and (iii) changes in slippage rates induced by factors not related to cognate viruses. Moreover, a survey of whole-genome sequences from potyvirids shows a widespread occurrence of species-specific An/Un (n ≥ 6) motifs. Even though many of them, but not all, lead to the production of truncated proteins rather than access to overlapping ORFs, these results suggest that slippage motifs appear more frequently than expected and play relevant roles during virus evolution. Considering the potential of this phenomenon to expand the viral proteome by acceding to overlapping ORFs and/or producing truncated proteins, a re-evaluation of TS significance during infections of RNA viruses is required.IMPORTANCETranscriptional slippage (TS) is used by RNA viruses as another strategy to maximize the coding information in their genomes. This phenomenon is based on a peculiar feature of viral replicases: they may produce indels in a small fraction of newly synthesized viral RNAs when transcribing certain motifs and then produce alternative proteins due to a change of the reading frame or truncated products by premature termination. Here, using plant-infecting RNA viruses as models, we discover cases expanding on previously established features of plant virus TS, prompting us to reconsider and redefine this expression strategy. An interesting conclusion from our study is that TS might be more relevant during RNA virus evolution and infection processes than previously assumed.
Collapse
Affiliation(s)
| | - María Luisa Domingo-Calap
- Center for Research in Agricultural Genomics (CRAG-CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Spain
- Evolving Therapeutics SL., Parc Científic de la Universitat de València, Paterna, Spain
| | | | | | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education and College of Plant Protection, Hainan University, Haikou, Hainan, China
| | | | - Juan José López-Moya
- Center for Research in Agricultural Genomics (CRAG-CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Spain
| |
Collapse
|
7
|
Haas N, Thompson JD, Renaud JP, Chennen K, Poch O. StopKB: a comprehensive knowledgebase for nonsense suppression therapies. Database (Oxford) 2024; 2024:baae108. [PMID: 39395187 PMCID: PMC11470752 DOI: 10.1093/database/baae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Nonsense variations, characterized by premature termination codons, play a major role in human genetic diseases as well as in cancer susceptibility. Despite their high prevalence, effective therapeutic strategies targeting premature termination codons remain a challenge. To understand and explore the intricate mechanisms involved, we developed StopKB, a comprehensive knowledgebase aggregating data from multiple sources on nonsense variations, associated genes, diseases, and phenotypes. StopKB identifies 637 317 unique nonsense variations, distributed across 18 022 human genes and linked to 3206 diseases and 7765 phenotypes. Notably, ∼32% of these variations are classified as nonsense-mediated mRNA decay-insensitive, potentially representing suitable targets for nonsense suppression therapies. We also provide an interactive web interface to facilitate efficient and intuitive data exploration, enabling researchers and clinicians to navigate the complex landscape of nonsense variations. StopKB represents a valuable resource for advancing research in precision medicine and more specifically, the development of targeted therapeutic interventions for genetic diseases associated with nonsense variations. Database URL: https://lbgi.fr/stopkb/.
Collapse
Affiliation(s)
- Nicolas Haas
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory—CNRS, University of Strasbourg, CRBS, 1 rue Eugène Boeckel, Strasbourg 67000, France
| | - Julie Dawn Thompson
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory—CNRS, University of Strasbourg, CRBS, 1 rue Eugène Boeckel, Strasbourg 67000, France
| | | | - Kirsley Chennen
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory—CNRS, University of Strasbourg, CRBS, 1 rue Eugène Boeckel, Strasbourg 67000, France
| | - Olivier Poch
- Complex Systems and Translational Bioinformatics (CSTB), ICube laboratory—CNRS, University of Strasbourg, CRBS, 1 rue Eugène Boeckel, Strasbourg 67000, France
| |
Collapse
|
8
|
Li H, Ma Q, Xue Y, Cai L, Bao L, Hong L, Zeng Y, Huang SZ, Finnell RH, Zeng F. Compound heterozygous mutation of AFG3L2 causes autosomal recessive spinocerebellar ataxia through mitochondrial impairment and MICU1 mediated Ca 2+ overload. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2549-2. [PMID: 39428429 DOI: 10.1007/s11427-023-2549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/07/2024] [Indexed: 10/22/2024]
Abstract
Autosomal recessive spinocerebellar ataxias (SCARs) are one of the most common neurodegenerative diseases characterized by progressive ataxia. Although SCARs are known to be caused by mutations in multiple genes, there are still many cases that go undiagnosed or are misdiagnosed. In this study, we presented a SCAR patient, and identified a probable novel pathogenic mutation (c.1A>G, p.M1V) in the AFG3L2 start codon. The proband's genotype included heterozygous mutations of the compound AFG3L2 (p.[M1V]; [R632X] (c.[1A>G]; [1894.C>T])), which were inherited from the father (c.1A>G, p.M1V) and mother (c.1894C>T, p.R632X). Functional studies performed on hiPSCs (human induced pluripotent stem cells) generated from the patients and HEK293T cells showed that the mutations impair mitochondrial function and the unbalanced expression of AFG3L2 mRNA and protein levels. Furthermore, this novel mutation resulted in the degradation of the protein and the reduction of the stability of the AFG3L2 protein, and MCU (mitochondrial calcium uniporter) complex mediated Ca2+ overload.
Collapse
Affiliation(s)
- Hongyu Li
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Qingwen Ma
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Yan Xue
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Linlin Cai
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Liwen Bao
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Yitao Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Shu-Zhen Huang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Richard H Finnell
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, 77030, USA
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China.
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
- School of Pharmacy, Macau University of Science and Technology, Macao, 999078, China.
| |
Collapse
|
9
|
Ahmad I, Kis A, Verma R, Szádeczky-Kardoss I, Szaker HM, Pettkó-Szandtner A, Silhavy D, Havelda Z, Csorba T. TFIIS is required for reproductive development and thermal adaptation in barley. PLANT CELL REPORTS 2024; 43:260. [PMID: 39390135 PMCID: PMC11467006 DOI: 10.1007/s00299-024-03345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
KEY MESSAGE Barley reproductive fitness and efficient heat stress adaptation requires the activity of TFIIS, the elongation cofactor of RNAPII. Regulation of transcriptional machinery and its adaptive role under different stress conditions are studied extensively in the dicot model plant Arabidopsis, but our knowledge on monocot species remains elusive. TFIIS is an RNA polymerase II-associated transcription elongation cofactor. Previously, it was shown that TFIIS ensures efficient transcription elongation that is necessary for heat stress survival in A. thaliana. However, the function of TFIIS has not been analysed in monocots. In the present work, we have generated and studied independent tfIIs-crispr-mutant barley lines. We show that TFIIS is needed for reproductive development and heat stress survival in barley. The molecular basis of HS-sensitivity of tfIIs mutants is the retarded expression of heat stress protein transcripts, which leads to late accumulation of HSP chaperones, enhanced proteotoxicity and ultimately to lethality. We also show that TFIIS is transcriptionally regulated in response to heat, supporting a conserved adaptive function of these control elements for plant thermal adaptation. In sum, our results are a step forward for the better understanding of transcriptional machinery regulation in monocot crops.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Department of Plant Biotechnology, Hungarian University of Agriculture and Life Sciences, Genetics and Biotechnology Institute, Szent-Györgyi A. U. 4, Gödöllő, 2100, Hungary
| | - András Kis
- Department of Plant Biotechnology, Hungarian University of Agriculture and Life Sciences, Genetics and Biotechnology Institute, Szent-Györgyi A. U. 4, Gödöllő, 2100, Hungary
| | - Radhika Verma
- Department of Plant Biotechnology, Hungarian University of Agriculture and Life Sciences, Genetics and Biotechnology Institute, Szent-Györgyi A. U. 4, Gödöllő, 2100, Hungary
| | - István Szádeczky-Kardoss
- Department of Plant Biotechnology, Hungarian University of Agriculture and Life Sciences, Genetics and Biotechnology Institute, Szent-Györgyi A. U. 4, Gödöllő, 2100, Hungary
| | - Henrik Mihály Szaker
- Department of Plant Biotechnology, Hungarian University of Agriculture and Life Sciences, Genetics and Biotechnology Institute, Szent-Györgyi A. U. 4, Gödöllő, 2100, Hungary
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | | | - Dániel Silhavy
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Zoltán Havelda
- Department of Plant Biotechnology, Hungarian University of Agriculture and Life Sciences, Genetics and Biotechnology Institute, Szent-Györgyi A. U. 4, Gödöllő, 2100, Hungary
| | - Tibor Csorba
- Department of Plant Biotechnology, Hungarian University of Agriculture and Life Sciences, Genetics and Biotechnology Institute, Szent-Györgyi A. U. 4, Gödöllő, 2100, Hungary.
| |
Collapse
|
10
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024:10.1038/s41568-024-00750-2. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Wu YW, Deng ZQ, Rong Y, Bu GW, Wu YK, Wu X, Cheng H, Fan HY. RNA surveillance by the RNA helicase MTR4 determines volume of mouse oocytes. Dev Cell 2024:S1534-5807(24)00537-9. [PMID: 39378876 DOI: 10.1016/j.devcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Oocytes are the largest cell type in multicellular animals. Here, we show that mRNA transporter 4 (MTR4) is indispensable for oocyte growth and functions as part of the RNA surveillance mechanism, which is responsible for nuclear waste RNA clearance. MTR4 ensures the normal post-transcriptional processing of maternal RNAs, their nuclear export to the cytoplasm, and the accumulation of properly processed transcripts. Oocytes with Mtr4 knockout fail to accumulate sufficient and normal transcripts in the cytoplasm and cannot grow to normal sizes. MTR4-dependent RNA surveillance has a previously unrecognized function in maintaining a stable nuclear environment for the establishment of non-canonical histone H3 lysine-4 trimethylation and chromatin reorganization, which is necessary to form a nucleolus-like structure in oocytes. In conclusion, MTR4-dependent RNA surveillance activity is a checkpoint that allows oocytes to grow to a normal size, undergo nuclear and cytoplasmic maturation, and acquire developmental competence.
Collapse
Affiliation(s)
- Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zuo-Qi Deng
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yan Rong
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Guo-Wei Bu
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Yu-Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| |
Collapse
|
12
|
Zhang HY, Minnis C, Gustavsson E, Ryten M, Mole SE. CLN3 transcript complexity revealed by long-read RNA sequencing analysis. BMC Med Genomics 2024; 17:244. [PMID: 39367445 PMCID: PMC11451007 DOI: 10.1186/s12920-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Batten disease is a group of rare inherited neurodegenerative diseases. Juvenile CLN3 disease is the most prevalent type, and the most common pathogenic variant shared by most patients is the "1-kb" deletion which removes two internal coding exons (7 and 8) in CLN3. Previously, we identified two transcripts in patient fibroblasts homozygous for the 1-kb deletion: the 'major' and 'minor' transcripts. To understand the full variety of disease transcripts and their role in disease pathogenesis, it is necessary to first investigate CLN3 transcription in "healthy" samples without juvenile CLN3 disease. METHODS We leveraged PacBio long-read RNA sequencing datasets from ENCODE to investigate the full range of CLN3 transcripts across various tissues and cell types in human control samples. Then we sought to validate their existence using data from different sources. RESULTS We found that a readthrough gene affects the quantification and annotation of CLN3. After taking this into account, we detected over 100 novel CLN3 transcripts, with no dominantly expressed CLN3 transcript. The most abundant transcript has median usage of 42.9%. Surprisingly, the known disease-associated 'major' transcripts are detected. Together, they have median usage of 1.5% across 22 samples. Furthermore, we identified 48 CLN3 ORFs, of which 26 are novel. The predominant ORF that encodes the canonical CLN3 protein isoform has median usage of 66.7%, meaning around one-third of CLN3 transcripts encode protein isoforms with different stretches of amino acids. The same ORFs could be found with alternative UTRs. Moreover, we were able to validate the translational potential of certain transcripts using public mass spectrometry data. CONCLUSION Overall, these findings provide valuable insights into the complexity of CLN3 transcription, highlighting the importance of studying both canonical and non-canonical CLN3 protein isoforms as well as the regulatory role of UTRs to fully comprehend the regulation and function(s) of CLN3. This knowledge is essential for investigating the impact of the 1-kb deletion and rare pathogenic variants on CLN3 transcription and disease pathogenesis.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Christopher Minnis
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Emil Gustavsson
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK.
| |
Collapse
|
13
|
Zhang Q, Ai Y, Abdel-Wahab O. Molecular impact of mutations in RNA splicing factors in cancer. Mol Cell 2024; 84:3667-3680. [PMID: 39146933 PMCID: PMC11455611 DOI: 10.1016/j.molcel.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Somatic mutations in genes encoding components of the RNA splicing machinery occur frequently in multiple forms of cancer. The most frequently mutated RNA splicing factors in cancer impact intronic branch site and 3' splice site recognition. These include mutations in the core RNA splicing factor SF3B1 as well as mutations in the U2AF1/2 heterodimeric complex, which recruits the SF3b complex to the 3' splice site. Additionally, mutations in splicing regulatory proteins SRSF2 and RBM10 are frequent in cancer, and there has been a recent suggestion that variant forms of small nuclear RNAs (snRNAs) may contribute to splicing dysregulation in cancer. Here, we describe molecular mechanisms by which mutations in these factors alter splice site recognition and how studies of this process have yielded new insights into cancer pathogenesis and the molecular regulation of splicing. We also discuss data linking mutant RNA splicing factors to RNA metabolism beyond splicing.
Collapse
Affiliation(s)
- Qian Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuxi Ai
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
14
|
Matsuura J, Akichika S, Wei FY, Suzuki T, Yamamoto T, Watanabe Y, Valášek LS, Mukasa A, Tomizawa K, Chujo T. Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation. Commun Biol 2024; 7:1238. [PMID: 39354220 PMCID: PMC11445529 DOI: 10.1038/s42003-024-06942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.
Collapse
Affiliation(s)
- Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takahiro Yamamoto
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Watanabe
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan.
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
15
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
16
|
Sayar SB, Has C. Strategy for the Optimization of Read-Through Therapy for Junctional Epidermolysis Bullosa with COL17A1 Nonsense Mutation. J Invest Dermatol 2024; 144:2221-2229.e1. [PMID: 38522573 DOI: 10.1016/j.jid.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Read-through therapy suppresses premature termination codons and induces read-through activity, consequently restoring missing proteins. Aminoglycosides are widely studied as read-through drugs in different human genetic disorders, including hereditary skin diseases. Our previous work revealed that aminoglycosides affect COL17A1 nonsense mutations and represent a therapeutic option to alleviate disease severity. However, the amount of restored type XVII collagen (C17) in C17-deficient junctional epidermolysis bullosa keratinocytes was <1% relative to that in normal keratinocytes and was achieved only after high-dose gentamicin treatment, which induced deep transcriptional changes. Therefore, in this study, we designed a strategy combining aminoglycosides with compounds known to reduce their side effects. We developed translational read-through-inducing drug cocktail, version 5 containing low dosage of aminoglycosides, CC-90009, NMDI-14, melatonin, and apocynin that was able to induce about 20% of missing C17 without cell toxicity or an effect on in vitro wound closure. Translational read-through-inducing drugs cocktail, version 5 significantly induced COL17A1 expression and reverted the proinflammatory phenotype of C17-deficient junctional epidermolysis bullosa keratinocytes. Evaluation of this drug cocktail regarding its stability, penetration, and efficacy as a topical treatment remains to be determined. Translational read-through-inducing drug cocktail, version 5 might represent an improved therapeutic strategy for junctional epidermolysis bullosa and for other genetic skin disorders.
Collapse
Affiliation(s)
- Saliha Beyza Sayar
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Yang L, Niu K, Wang J, Shen W, Jiang R, Liu L, Song W, Wang X, Zhang X, Zhang R, Wei D, Fan M, Jia L, Tao K. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J Hepatol 2024; 81:651-666. [PMID: 38679071 DOI: 10.1016/j.jhep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a fatal malignancy of the biliary system. The lack of a detailed understanding of oncogenic signaling or global gene expression alterations has impeded clinical iCCA diagnosis and therapy. The role of protein lactylation, a newly unraveled post-translational modification that orchestrates gene expression, remains largely elusive in the pathogenesis of iCCA. METHODS Proteomics analysis of clinical iCCA specimens and adjacent tissues was performed to screen for proteins aberrantly lactylated in iCCA. Mass spectrometry, macromolecule interaction and cell behavioral studies were employed to identify the specific lactylation sites on the candidate protein(s) and to decipher the downstream mechanisms responsible for iCCA development, which were subsequently validated using a xenograft tumor model and clinical samples. RESULTS Nucleolin (NCL), the most abundant RNA-binding protein in the nucleolus, was identified as a functional lactylation target that correlates with iCCA occurrence and progression. NCL was lactylated predominantly at lysine 477 by the acyltransferase P300 in response to a hyperactivity of glycolysis, and promoted the proliferation and invasion of iCCA cells. Mechanistically, lactylated NCL bound to the primary transcript of MAP kinase-activating death domain protein (MADD) and led to efficient translation of MADD by circumventing alternative splicing that generates a premature termination codon. NCL lactylation, MADD translation and subsequent ERK activation promoted xenograft tumor growth and were associated with overall survival in patients with iCCA. CONCLUSION NCL is lactylated to upregulate MADD through an RNA splicing-dependent mechanism, which potentiates iCCA pathogenesis via the MAPK pathway. Our findings reveal a novel link between metabolic reprogramming and canonical tumor-initiating events, and uncover biomarkers that can potentially be used for prognostic evaluation or targeted treatment of iCCA. IMPACT AND IMPLICATIONS Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive liver malignancy with largely uncharacterized pathogenetic mechanisms. Herein, we demonstrated that glycolysis promotes P300-catalyzed lactylation of nucleolin, which upregulates MAP kinase-activating death domain protein (MADD) through precise mRNA splicing and activates ERK signaling to drive iCCA development. These findings unravel a novel link between metabolic rewiring and canonical oncogenic pathways, and reveal new biomarkers for prognostic assessment and targeting of clinical iCCA.
Collapse
Affiliation(s)
- Long Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weiwei Shen
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Jiang
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lu Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xudan Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wei
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Fan
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
18
|
Ruan J, Yu X, Xu H, Cui W, Zhang K, Liu C, Sun W, Huang X, An L, Zhang Y. Suppressor tRNA in gene therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2120-2131. [PMID: 38926247 DOI: 10.1007/s11427-024-2613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Suppressor tRNAs are engineered or naturally occurring transfer RNA molecules that have shown promise in gene therapy for diseases caused by nonsense mutations, which result in premature termination codons (PTCs) in coding sequence, leading to truncated, often nonfunctional proteins. Suppressor tRNAs can recognize and pair with these PTCs, allowing the ribosome to continue translation and produce a full-length protein. This review introduces the mechanism and development of suppressor tRNAs, compares suppressor tRNAs with other readthrough therapies, discusses their potential for clinical therapy, limitations, and obstacles. We also summarize the applications of suppressor tRNAs in both in vitro and in vivo, offering new insights into the research and treatment of nonsense mutation diseases.
Collapse
Affiliation(s)
- Jingjing Ruan
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaoxiao Yu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Huixia Xu
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chenyang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenlong Sun
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| | - Yue Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Liangzhu Laboratory, Hangzhou, 310000, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
19
|
O'Neill MJ, Yang T, Laudeman J, Calandranis ME, Harvey ML, Solus JF, Roden DM, Glazer AM. ParSE-seq: a calibrated multiplexed assay to facilitate the clinical classification of putative splice-altering variants. Nat Commun 2024; 15:8320. [PMID: 39333091 PMCID: PMC11437130 DOI: 10.1038/s41467-024-52474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Interpreting the clinical significance of putative splice-altering variants outside canonical splice sites remains difficult without time-intensive experimental studies. To address this, we introduce Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed assay to quantify variant effects on RNA splicing. We first apply this technique to study hundreds of variants in the arrhythmia-associated gene SCN5A. Variants are studied in 'minigene' plasmids with molecular barcodes to allow pooled variant effect quantification. We perform experiments in two cell types, including disease-relevant induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The assay strongly separates known control variants from ClinVar, enabling quantitative calibration of the ParSE-seq assay. Using these evidence strengths and experimental data, we reclassify 29 of 34 variants with conflicting interpretations and 11 of 42 variants of uncertain significance. In addition to intronic variants, we show that many synonymous and missense variants disrupted RNA splicing. Two splice-altering variants in the assay also disrupt splicing and sodium current when introduced into iPSC-CMs by CRISPR-Cas9 editing. ParSE-seq provides high-throughput experimental data for RNA-splicing to support precision medicine efforts and can be readily adopted to study other loss-of-function genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Tao Yang
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie Laudeman
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria E Calandranis
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Lorena Harvey
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph F Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
20
|
Bubenik JL, Scotti MM, Swanson MS. Therapeutic targeting of RNA for neurological and neuromuscular disease. Genes Dev 2024; 38:698-717. [PMID: 39142832 PMCID: PMC11444190 DOI: 10.1101/gad.351612.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.
Collapse
Affiliation(s)
- Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
21
|
Behera A, Panigrahi GK, Sahoo A. Nonsense-Mediated mRNA Decay in Human Health and Diseases: Current Understanding, Regulatory Mechanisms and Future Perspectives. Mol Biotechnol 2024:10.1007/s12033-024-01267-7. [PMID: 39264527 DOI: 10.1007/s12033-024-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that is conserved across all eukaryotes ensuring the quality of transcripts by targeting messenger RNA (mRNA) harbouring premature stop codons. It regulates the gene expression by targeting aberrant mRNA carrying pre-termination codons (PTCs) and eliminates C-terminal truncated proteins. NMD distinguishes aberrant and non-aberrant transcript by looking after long 3' UTRs and exon-junction complex (EJC) downstream of stop codon that indicate the presence of PTC. Therefore, NMD modulates cellular surveillance and eliminates the truncated proteins but if the PTC escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. The alternative splicing also contributes in formation of NMD-sensitive isoforms by introducing PTC. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. This mechanism augmented in the development of new therapeutics by PTC read-through mechanism and personalized medicine. Detailed studies on NMD surveillance will possibly lead towards development of strategies for improving human health aligning with United Nations sustainable development goals (SDG 3: Good health and well-being). The potential therapeutic applications of NMD pose a challenge in terms of safe and effective modulation. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases.
Collapse
Affiliation(s)
- Amrita Behera
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
22
|
Mishima K, Obika S, Shimojo M. Splice-switching antisense oligonucleotide controlling tumor suppressor REST is a novel therapeutic medicine for neuroendocrine cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102250. [PMID: 39377066 PMCID: PMC11456559 DOI: 10.1016/j.omtn.2024.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/10/2024] [Indexed: 10/09/2024]
Abstract
RNA splicing regulation has revolutionized the treatment of challenging diseases. Neuroendocrine cancers, including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (PCa), are highly aggressive, with metastatic neuroendocrine phenotypes, leading to poor patient outcomes. We investigated amido-bridged nucleic acid (AmNA)-based splice-switching oligonucleotides (SSOs) targeting RE1-silencing transcription factor (REST) splicing as a novel therapy. We designed AmNA-based SSOs to alter REST splicing. Tumor xenografts were generated by subcutaneously implanting SCLC or PCa cells into mice. SSOs or saline were intraperitoneally administered and tumor growth was monitored. Blood samples were collected from mice after SSO administration, and serum alanine aminotransferase and aspartate aminotransferase levels were measured to assess hepatotoxicity using a biochemical analyser. In vitro, REST_SSO reduced cancer cell viability. In a tumor xenograft model, it exhibited significant antitumor effects. It repressed REST-controlled RE1-harboring genes and upregulated miR-4516, an SCLC biomarker. Our findings suggest that REST_SSO suppresses tumorigenesis in neuroendocrine cancers by restoring REST function. This novel therapeutic approach holds promise for intractable neuroendocrine cancers such as SCLC and neuroendocrine PCa.
Collapse
Affiliation(s)
- Keishiro Mishima
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Masahito Shimojo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Barbarin-Bocahu I, Ulryck N, Rigobert A, Ruiz Gutierrez N, Decourty L, Raji M, Garkhal B, Le Hir H, Saveanu C, Graille M. Structure of the Nmd4-Upf1 complex supports conservation of the nonsense-mediated mRNA decay pathway between yeast and humans. PLoS Biol 2024; 22:e3002821. [PMID: 39331656 PMCID: PMC11463774 DOI: 10.1371/journal.pbio.3002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway clears eukaryotic cells of mRNAs containing premature termination codons (PTCs) or normal stop codons located in specific contexts. It therefore plays an important role in gene expression regulation. The precise molecular mechanism of the NMD pathway has long been considered to differ substantially from yeast to metazoa, despite the involvement of universally conserved factors such as the central ATP-dependent RNA-helicase Upf1. Here, we describe the crystal structure of the yeast Upf1 bound to its recently identified but yet uncharacterized partner Nmd4, show that Nmd4 stimulates Upf1 ATPase activity and that this interaction contributes to the elimination of NMD substrates. We also demonstrate that a region of Nmd4 critical for the interaction with Upf1 in yeast is conserved in the metazoan SMG6 protein, another major NMD factor. We show that this conserved region is involved in the interaction of SMG6 with UPF1 and that mutations in this region affect the levels of endogenous human NMD substrates. Our results support the universal conservation of the NMD mechanism in eukaryotes.
Collapse
Affiliation(s)
- Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Amandine Rigobert
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nadia Ruiz Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Mouna Raji
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Bhumika Garkhal
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
24
|
Guarnacci M, Zhang PH, Kanchi M, Hung YT, Lin H, Shirokikh NE, Yang L, Preiss T. Substrate diversity of NSUN enzymes and links of 5-methylcytosine to mRNA translation and turnover. Life Sci Alliance 2024; 7:e202402613. [PMID: 38986569 PMCID: PMC11235314 DOI: 10.26508/lsa.202402613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Maps of the RNA modification 5-methylcytosine (m5C) often diverge markedly not only because of differences in detection methods, data depand analysis pipelines but also biological factors. We re-analysed bisulfite RNA sequencing datasets from five human cell lines and seven tissues using a coherent m5C site calling pipeline. With the resulting union list of 6,393 m5C sites, we studied site distribution, enzymology, interaction with RNA-binding proteins and molecular function. We confirmed tRNA:m5C methyltransferases NSUN2 and NSUN6 as the main mRNA m5C "writers," but further showed that the rRNA:m5C methyltransferase NSUN5 can also modify mRNA. Each enzyme recognises mRNA features that strongly resemble their canonical substrates. By analysing proximity between mRNA m5C sites and footprints of RNA-binding proteins, we identified new candidates for functional interactions, including the RNA helicases DDX3X, involved in mRNA translation, and UPF1, an mRNA decay factor. We found that lack of NSUN2 in HeLa cells affected both steady-state levels of, and UPF1-binding to, target mRNAs. Our studies emphasise the emerging diversity of m5C writers and readers and their effect on mRNA function.
Collapse
Affiliation(s)
- Marco Guarnacci
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Pei-Hong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Madhu Kanchi
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yu-Ting Hung
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hanrong Lin
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nikolay E Shirokikh
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Thomas Preiss
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Sydney, Australia
| |
Collapse
|
25
|
Khoroshkin M, Asarnow D, Zhou S, Navickas A, Winters A, Goudreau J, Zhou SK, Yu J, Palka C, Fish L, Borah A, Yousefi K, Carpenter C, Ansel KM, Cheng Y, Gilbert LA, Goodarzi H. A systematic search for RNA structural switches across the human transcriptome. Nat Methods 2024; 21:1634-1645. [PMID: 39014073 PMCID: PMC11399106 DOI: 10.1038/s41592-024-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/29/2024] [Indexed: 07/18/2024]
Abstract
RNA structural switches are key regulators of gene expression in bacteria, but their characterization in Metazoa remains limited. Here, we present SwitchSeeker, a comprehensive computational and experimental approach for systematic identification of functional RNA structural switches. We applied SwitchSeeker to the human transcriptome and identified 245 putative RNA switches. To validate our approach, we characterized a previously unknown RNA switch in the 3' untranslated region of the RORC (RAR-related orphan receptor C) transcript. In vivo dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), coupled with cryogenic electron microscopy, confirmed its existence as two alternative structural conformations. Furthermore, we used genome-scale CRISPR screens to identify trans factors that regulate gene expression through this RNA structural switch. We found that nonsense-mediated messenger RNA decay acts on this element in a conformation-specific manner. SwitchSeeker provides an unbiased, experimentally driven method for discovering RNA structural switches that shape the eukaryotic gene expression landscape.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Asarnow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, U1278 Inserm, Orsay, France
| | - Aidan Winters
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Jackson Goudreau
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Simon K Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Palka
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ashir Borah
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kian Yousefi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Luke A Gilbert
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
26
|
Crombie EM, Cleverley K, Timmers HTM, Fisher EMC. The roles of TAF1 in neuroscience and beyond. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240790. [PMID: 39323550 PMCID: PMC11423858 DOI: 10.1098/rsos.240790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
The transcriptional machinery is essential for gene expression and regulation; dysregulation of transcription can result in a range of pathologies, including neurodegeneration, cancer, developmental disorders and cardiovascular disease. A key component of RNA polymerase II-mediated transcription is the basal transcription factor IID, which is formed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), the largest of which is the TAF1 protein, encoded on the X chromosome (Xq13.1). TAF1 is dysregulated in X-linked dystonia-parkinsonism and congenital mutations in the gene are causative for neurodevelopmental phenotypes; TAF1 dysfunction is also associated with cardiac anomalies and cancer. However, how TAF1 contributes to pathology is unclear. Here, we highlight the key aspects of the TAF1 gene and protein function that may link transcriptional regulation with disorders of development, growth and adult-onset disorders of motor impairment. We highlight the need to experimentally investigate the full range of TAF1 messenger RNA variants and protein isoforms in human and mouse to aid our understanding of TAF1 biology. Furthermore, the X-linked nature of TAF1-related diseases adds complexity to understanding phenotypes. Overall, we shed light on the aspects of TAF1 biology that may contribute to disease and areas that could be addressed for future research and targeted therapeutics.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ, Germany
- Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, Freiburg, 79106, Germany
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
27
|
Dalgleish R. Re: Identification of a family with van der Hoeve's syndrome harboring a novel COL1A1 mutation and generation of patient-derived iPSC lines and CRISPR/Cas9-corrected isogenic iPSCs. Hum Cell 2024; 37:1610-1611. [PMID: 38878231 DOI: 10.1007/s13577-024-01093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Raymond Dalgleish
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
28
|
Chen C, Wei Y, Jiang X, Li T. RNA Surveillance Factor SMG5 Is Essential for Mouse Embryonic Stem Cell Differentiation. Biomolecules 2024; 14:1023. [PMID: 39199410 PMCID: PMC11352633 DOI: 10.3390/biom14081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional gene expression regulatory mechanism in eukaryotic cells. NMD eliminates aberrant mRNAs with premature termination codons to surveil transcriptome integrity. Furthermore, NMD fine-tunes gene expression by destabilizing RNAs with specific NMD features. Thus, by controlling the quality and quantity of the transcriptome, NMD plays a vital role in mammalian development, stress response, and tumorigenesis. Deficiencies of NMD factors result in early embryonic lethality, while the underlying mechanisms are poorly understood. SMG5 is a key NMD factor. In this study, we generated an Smg5 conditional knockout mouse model and found that Smg5-null results in early embryonic lethality before E13.5. Furthermore, we produced multiple lines of Smg5 knockout mouse embryonic stem cells (mESCs) and found that the deletion of Smg5 in mESCs does not compromise cell viability. Smg5-null delays differentiation of mESCs. Mechanistically, our study reveals that the c-MYC protein, but not c-Myc mRNA, is upregulated in SMG5-deficient mESCs. The overproduction of c-MYC protein could be caused by enhanced protein synthesis upon SMG5 loss. Furthermore, SMG5-null results in dysregulation of alternative splicing on multiple stem cell differentiation regulators. Overall, our findings underscore the importance of SMG5-NMD in regulating mESC cell-state transition.
Collapse
Affiliation(s)
- Chengyan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao Campus, Qingdao 266237, China
| | - Yanling Wei
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoning Jiang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao Campus, Qingdao 266237, China
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
29
|
Sun X, Lin R, Lu X, Wu Z, Qi X, Jiang T, Jiang J, Mu P, Chen Q, Wen J, Deng Y. UPF3B modulates endoplasmic reticulum stress through interaction with inositol-requiring enzyme-1α. Cell Death Dis 2024; 15:587. [PMID: 39138189 PMCID: PMC11322666 DOI: 10.1038/s41419-024-06973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
Collapse
Affiliation(s)
- XingSheng Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ruqin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinxia Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhikai Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xueying Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Tianqing Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qingmei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
30
|
Zhou L, Yang M, Mei M, Mai Z, Li X, Deng K, Chen S, Lin S, Li Y, Jiang W, Chen H, He Z, Yuan P. Exploring the role of non-canonical splice site variants in aberrant splicing associated with reproductive genetic disorders. Clin Genet 2024. [PMID: 39103988 DOI: 10.1111/cge.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Whole-exome sequencing (WES) is frequently utilized in diagnosing reproductive genetic disorders to identify various genetic variants. Canonical ±1,2 splice sites are typically considered highly pathogenic, while variants at the 5' or 3' ends of exon boundaries are often considered synonymous or missense variants, with their potential impact on abnormal gene splicing frequently overlooked. In this study, we identified five variants located at the last two bases of the exons and two canonical splicing variants in five distinct families affected by reproductive genetic disorders through WES. Minigene analysis, RT-PCR and Quantitative Real-time PCR (RT-qPCR) confirmed that all seven variants induced aberrant splicing, with six variants altering gene transcriptional expression levels. These findings underscore the crucial role of splice variants, particularly non-canonical splice sites variants, in reproductive genetic disorders, with all identified variants classified as pathogenic.
Collapse
Affiliation(s)
- Ling Zhou
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Min Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mei Mei
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Zhuoyao Mai
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xiaojuan Li
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kewen Deng
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Shiyi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Siyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yinshi Li
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Weilun Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hui Chen
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
31
|
Rojo C, Gárate-Rascón M, Recalde M, Álava A, Elizalde M, Azkona M, Aldabe I, Guruceaga E, López-Pascual A, Latasa MU, Sangro B, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. Caspases compromise SLU7 and UPF1 stability and NMD activity during hepatocarcinogenesis. JHEP Rep 2024; 6:101118. [PMID: 39105183 PMCID: PMC11298840 DOI: 10.1016/j.jhepr.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 08/07/2024] Open
Abstract
Background & Aims The homeostasis of the cellular transcriptome depends on transcription and splicing mechanisms. Moreover, the fidelity of gene expression, essential to preserve cellular identity and function is secured by different quality control mechanisms including nonsense-mediated RNA decay (NMD). In this context, alternative splicing is coupled to NMD, and several alterations in these mechanisms leading to the accumulation of aberrant gene isoforms are known to be involved in human disease including cancer. Methods RNA sequencing, western blotting, qPCR and co-immunoprecipitation were performed in multiple silenced culture cell lines (replicates n ≥4), primary hepatocytes and samples of animal models (Jo2, APAP, Mdr2 -/- mice, n ≥3). Results Here we show that in animal models of liver injury and in human HCC (TCGA, non-tumoral = 50 vs. HCC = 374), the process of NMD is inhibited. Moreover, we demonstrate that the splicing factor SLU7 interacts with and preserves the levels of the NMD effector UPF1, and that SLU7 is required for correct NMD. Our previous findings demonstrated that SLU7 expression is reduced in the diseased liver, contributing to hepatocellular dedifferentiation and genome instability during disease progression. Here we build on this by providing evidence that caspases activated during liver damage are responsible for the cleavage and degradation of SLU7. Conclusions Here we identify the downregulation of UPF1 and the inhibition of NMD as a new molecular pathway contributing to the malignant reshaping of the liver transcriptome. Moreover, and importantly, we uncover caspase activation as the mechanism responsible for the downregulation of SLU7 expression during liver disease progression, which is a new link between apoptosis and hepatocarcinogenesis. Impact and implications The mechanisms involved in reshaping the hepatocellular transcriptome and thereby driving the progressive loss of cell identity and function in liver disease are not completely understood. In this context, we provide evidence on the impairment of a key mRNA surveillance mechanism known as nonsense-mediated mRNA decay (NMD). Mechanistically, we uncover a novel role for the splicing factor SLU7 in the regulation of NMD, including its ability to interact and preserve the levels of the key NMD factor UPF1. Moreover, we demonstrate that the activation of caspases during liver damage mediates SLU7 and UPF1 protein degradation and NMD inhibition. Our findings identify potential new markers of liver disease progression, and SLU7 as a novel therapeutic target to prevent the functional decay of the chronically injured organ.
Collapse
Affiliation(s)
- Carla Rojo
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - María Gárate-Rascón
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Miriam Recalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ane Álava
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - María Elizalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - María Azkona
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iratxe Aldabe
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Elisabet Guruceaga
- Bioinformatics Platform, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - M Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- Hepatology Unit, Clínica Universidad de Navarra, CCUN, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - Maite G. Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - Matías A. Ávila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| |
Collapse
|
32
|
Fang N, Liu B, Pan Q, Gong T, Zhan M, Zhao J, Wang Q, Tang Y, Li Y, He J, Xiang T, Sun F, Lu L, Xia J. SMG5 Inhibition Restrains Hepatocellular Carcinoma Growth and Enhances Sorafenib Sensitivity. Mol Cancer Ther 2024; 23:1188-1200. [PMID: 38647536 DOI: 10.1158/1535-7163.mct-23-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Hepatocellular carcinoma (HCC) has a pathogenesis that remains elusive with restricted therapeutic strategies and efficacy. This study aimed to investigate the role of SMG5, a crucial component in nonsense-mediated mRNA decay (NMD) that degrades mRNA containing a premature termination codon, in HCC pathogenesis and therapeutic resistance. We demonstrated an elevated expression of SMG5 in HCC and scrutinized its potential as a therapeutic target. Our findings revealed that SMG5 knockdown not only inhibited the migration, invasion, and proliferation of HCC cells but also influenced sorafenib resistance. Differential gene expression analysis between the control and SMG5 knockdown groups showed an upregulation of methionine adenosyltransferase 1A in the latter. High expression of methionine adenosyltransferase 1A, a catalyst for S-adenosylmethionine (SAM) production, as suggested by The Cancer Genome Atlas data, was indicative of a better prognosis for HCC. Further, an ELISA showed a higher concentration of SAM in SMG5 knockdown cell supernatants. Furthermore, we found that exogenous SAM supplementation enhanced the sensitivity of HCC cells to sorafenib alongside changes in the expression of Bax and Bcl-2, apoptosis-related proteins. Our findings underscore the important role of SMG5 in HCC development and its involvement in sorafenib resistance, highlighting it as a potential target for HCC treatment.
Collapse
Affiliation(s)
- Nan Fang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Qiuzhong Pan
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tingting Gong
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Jingjing Zhao
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qijing Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Tang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yongqiang Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jia He
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Fengze Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Jianchuan Xia
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
33
|
Berg AT, Thompson CH, Myers LS, Anderson E, Evans L, Kaiser AJE, Paltell K, Nili AN, DeKeyser JML, Abramova TV, Nesbitt G, Egan SM, Vanoye CG, George AL. Expanded clinical phenotype spectrum correlates with variant function in SCN2A-related disorders. Brain 2024; 147:2761-2774. [PMID: 38651838 PMCID: PMC11292900 DOI: 10.1093/brain/awae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
SCN2A-related disorders secondary to altered function in the voltage-gated sodium channel Nav1.2 are rare, with clinically heterogeneous expressions that include epilepsy, autism and multiple severe to profound impairments and other conditions. To advance understanding of the clinical phenotypes and their relationship to channel function, 81 patients (36 female, 44%, median age 5.4 years) with 69 unique SCN2A variants were systematically phenotyped and their Nav1.2 channel function systematically assessed. Participants were recruited through the FamileSCN2A Foundation. Primary phenotype (epilepsy of neonatal onset, n = 27; infant onset, n = 18; and later onset n = 24; and autism without seizures, n = 12) was strongly correlated with a non-seizure severity index (P = 0.002), which was based on presence of severe impairments in gross motor, fine motor, communication abilities, gastrostomy tube dependence and diagnosis of cortical visual impairment and scoliosis. Non-seizure severity was greatest in the neonatal-onset group and least in the autism group (P = 0.002). Children with the lowest severity indices were still severely impaired, as reflected by an average Vineland Adaptive Behavior composite score of 49.5 (>3 standard deviations below the norm-referenced mean of the test). Epileptic spasms were significantly more common in infant-onset (67%) than in neonatal (22%) or later-onset (29%) epilepsy (P = 0.007). Primary phenotype was also strongly correlated with variant function (P < 0.0001); gain-of-function and mixed function variants predominated in neonatal-onset epilepsy, shifting to moderate loss of function in infant-onset epilepsy and to severe and complete loss of function in later-onset epilepsy and autism groups. Exploratory cluster analysis identified five groups, representing: (i) primarily later-onset epilepsy with moderate loss-of-function variants and low severity indices; (ii) mostly infant-onset epilepsy with moderate loss-of-function variants but higher severity indices; and (iii) late-onset and autism only, with the lowest severity indices (mostly zero) and severe/complete loss-of-function variants. Two exclusively neonatal clusters were distinguished from each other largely on non-seizure severity scores and secondarily on variant function. The relationship between primary phenotype and variant function emphasizes the role of developmental factors in the differential clinical expression of SCN2A variants based on their effects on Nav1.2 channel function. The non-seizure severity of SCN2A disorders depends on a combination of the age at seizure onset (primary phenotype) and variant function. As precision therapies for SCN2A-related disorders advance towards clinical trials, knowledge of the relationship between variant function and clinical disease expression will be valuable for identifying appropriate patients for these trials and in selecting efficient clinical outcomes.
Collapse
Affiliation(s)
- Anne T Berg
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- FamilieSCN2A Foundation, Longmeadow, MA 10116, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Erica Anderson
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Lindsey Evans
- Department of Psychology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ariela J E Kaiser
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60616, USA
| | - Katherine Paltell
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60616, USA
| | - Amanda N Nili
- Department of Medical and Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc L DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V Abramova
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Shawn M Egan
- FamilieSCN2A Foundation, Longmeadow, MA 10116, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
34
|
Zhang X. Splice-switching antisense oligonucleotides for pediatric neurological disorders. Front Mol Neurosci 2024; 17:1412964. [PMID: 39119251 PMCID: PMC11306167 DOI: 10.3389/fnmol.2024.1412964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Pediatric neurological disorders are frequently devastating and present unmet needs for effective medicine. The successful treatment of spinal muscular atrophy with splice-switching antisense oligonucleotides (SSO) indicates a feasible path to targeting neurological disorders by redirecting pre-mRNA splicing. One direct outcome is the development of SSOs to treat haploinsufficient disorders by targeting naturally occurring non-productive splice isoforms. The development of personalized SSO treatment further inspired the therapeutic exploration of rare diseases. This review will discuss the recent advances that utilize SSOs to treat pediatric neurological disorders.
Collapse
Affiliation(s)
- Xiaochang Zhang
- Department of Human Genetics, The Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Jiang D, Kejiou N, Qiu Y, Palazzo AF, Pennell M. Genetic and selective constraints on the optimization of gene product diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603951. [PMID: 39091777 PMCID: PMC11291005 DOI: 10.1101/2024.07.17.603951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNA and protein expressed from the same gene can have diverse isoforms due to various post-transcriptional and post-translational modifications. For the vast majority of alternative isoforms, It is unknown whether they are adaptive or simply biological noise. As we cannot experimentally probe the function of each isoform, we can ask whether the distribution of isoforms across genes and across species is consistent with expectations from different evolutionary processes. However, there is currently no theoretical framework that can generate such predictions. To address this, we developed a mathematical model where isoform abundances are determined collectively by cis-acting loci, trans-acting factors, gene expression levels, and isoform decay rates to predict isoform abundance distributions across species and genes in the face of mutation, genetic drift, and selection. We found that factors beyond selection, such as effective population size and the number of cis-acting loci, significantly influence evolutionary outcomes. Notably, suboptimal phenotypes are more likely to evolve when the population is small and/or when the number of cis-loci is large. We also explored scenarios where modification processes have both beneficial and detrimental effects, revealing a non-monotonic relationship between effective population size and optimization, demonstrating how opposing selection pressures on cis- and trans-acting loci can constrain the optimization of gene product diversity. As a demonstration of the power of our theory, we compared the expected distribution of A-to-I RNA editing levels in coleoids and found this to be largely consistent with non-adaptive explanations.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Nevraj Kejiou
- Department of Biochemistry, University of Toronto, Canada
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Canada
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
| |
Collapse
|
36
|
Heimdörfer D, Vorleuter A, Eschlböck A, Spathopoulou A, Suarez-Cubero M, Farhan H, Reiterer V, Spanjaard M, Schaaf CP, Huber LA, Kremser L, Sarg B, Edenhofer F, Geley S, de Araujo MEG, Huettenhofer A. Truncated variants of MAGEL2 are involved in the etiologies of the Schaaf-Yang and Prader-Willi syndromes. Am J Hum Genet 2024; 111:1383-1404. [PMID: 38908375 PMCID: PMC11267527 DOI: 10.1016/j.ajhg.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus. To elucidate regulatory pathways that may underlie both diseases, we identified protein interaction partners for WT or mutant MAGEL2, in particular the survival motor neuron protein (SMN), involved in spinal muscular atrophy, and the fragile-X-messenger ribonucleoprotein (FMRP), involved in autism spectrum disorders. The interactome of the non-coding RNA SNORD116 was also investigated by RNA-CoIP. We show that WT and truncated MAGEL2 were both involved in RNA metabolism, while regulation of transcription was mainly observed for WT MAGEL2. Hence, we investigated the influence of MAGEL2 mutations on the expression of genes from the PWS locus, including the SNORD116 cluster. Thereby, we provide evidence for MAGEL2 mutants decreasing the expression of SNORD116, SNORD115, and SNORD109A, as well as protein-coding genes MKRN3 and SNRPN, thus bridging the gap between PWS and SYS.
Collapse
Affiliation(s)
- David Heimdörfer
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Alexander Vorleuter
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Alexander Eschlböck
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Angeliki Spathopoulou
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Marta Suarez-Cubero
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Hesso Farhan
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Veronika Reiterer
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Melanie Spanjaard
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Frank Edenhofer
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Alexander Huettenhofer
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
37
|
Karayol R, Borroto MC, Haghshenas S, Namasivayam A, Reilly J, Levy MA, Relator R, Kerkhof J, McConkey H, Shvedunova M, Petersen AK, Magnussen K, Zweier C, Vasileiou G, Reis A, Savatt JM, Mulligan MR, Bicknell LS, Poke G, Abu-El-Haija A, Duis J, Hannig V, Srivastava S, Barkoudah E, Hauser NS, van den Born M, Hamiel U, Henig N, Baris Feldman H, McKee S, Krapels IPC, Lei Y, Todorova A, Yordanova R, Atemin S, Rogac M, McConnell V, Chassevent A, Barañano KW, Shashi V, Sullivan JA, Peron A, Iascone M, Canevini MP, Friedman J, Reyes IA, Kierstein J, Shen JJ, Ahmed FN, Mao X, Almoguera B, Blanco-Kelly F, Platzer K, Treu AB, Quilichini J, Bourgois A, Chatron N, Januel L, Rougeot C, Carere DA, Monaghan KG, Rousseau J, Myers KA, Sadikovic B, Akhtar A, Campeau PM. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am J Hum Genet 2024; 111:1330-1351. [PMID: 38815585 PMCID: PMC11267526 DOI: 10.1016/j.ajhg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
Collapse
Affiliation(s)
- Remzi Karayol
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Carla Borroto
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Anoja Namasivayam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Reilly
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Maria Shvedunova
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andrea K Petersen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Kari Magnussen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington, New Zealand
| | - Aya Abu-El-Haija
- Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Duis
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Vickie Hannig
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Natalie S Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Uri Hamiel
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Noa Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Baris Feldman
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ralitsa Yordanova
- Department of pediatrics "Prof. Ivan Andreev", Medical university - Plovdiv, Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Mihael Rogac
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angela Peron
- SOC Genetica Medica, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Iris A Reyes
- Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Janell Kierstein
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Joseph J Shen
- Division of Genomic Medicine, Department of Pediatrics, MIND Institute, UC Davis, Sacramento, CA 95817, USA
| | - Faria N Ahmed
- Division of Genomic Medicine, Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China; Nanhua University, Chiayi County, Taiwan
| | - Berta Almoguera
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, German
| | | | - Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP, Centre Université Paris Cité, Paris, France
| | - Alexia Bourgois
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Nicolas Chatron
- Department of Genetics, Lyon University Hospital, Lyon, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Louis Januel
- Department of Genetics, Lyon University Hospital, Lyon, France
| | | | | | | | - Justine Rousseau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Kenneth A Myers
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada.
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
38
|
Iwai N, Akaki K, Hia F, Li W, Yoshinaga M, Mino T, Takeuchi O. UPF1 plays critical roles in early B cell development. Nat Commun 2024; 15:5765. [PMID: 38982067 PMCID: PMC11233602 DOI: 10.1038/s41467-024-50032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The ATP-dependent RNA helicase UPF1 plays a crucial role in various mRNA degradation pathways, most importantly in nonsense-mediated mRNA decay (NMD). Here, we show that UPF1 is upregulated during the early stages of B cell development and is important for early B cell development in the bone marrow. B-cell-specific Upf1 deletion in mice severely impedes the early to late LPre-B cell transition, in which VH-DHJH recombination occurs at the Igh gene. Furthermore, UPF1 is indispensable for VH-DHJH recombination, without affecting DH-JH recombination. Intriguingly, the genetic pre-arrangement of the Igh gene rescues the differentiation defect in early LPre-B cells under Upf1 deficient conditions. However, differentiation is blocked again following Ig light chain recombination, leading to a failure in development into immature B cells. Notably, UPF1 interacts with and regulates the expression of genes involved in immune responses, cell cycle control, NMD, and the unfolded protein response in B cells. Collectively, our findings underscore the critical roles of UPF1 during the early LPre-B cell stage and beyond, thus orchestrating B cell development.
Collapse
Affiliation(s)
- Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wei Li
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
39
|
Lin L, Zhao J, Kubota N, Li Z, Lam YL, Nguyen LP, Yang L, Pokharel SP, Blue SM, Yee BA, Chen R, Yeo GW, Chen CW, Chen L, Zheng S. Epistatic interactions between NMD and TRP53 control progenitor cell maintenance and brain size. Neuron 2024; 112:2157-2176.e12. [PMID: 38697111 PMCID: PMC11446168 DOI: 10.1016/j.neuron.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.
Collapse
Affiliation(s)
- Lin Lin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Li Lam
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Lauren P Nguyen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela P Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA; Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
40
|
Li Y, Wan L, Li H, Tang X, Xu S, Sun G, Huang W, Tang M. Small molecule NMD and MDM2 inhibitors synergistically trigger apoptosis in HeLa cells. Mol Cells 2024; 47:100079. [PMID: 38871298 PMCID: PMC11250858 DOI: 10.1016/j.mocell.2024.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway and the p53 pathway, linked to tumorgenesis, are also promising targets for cancer treatment. NMD plays an important role in RNA quality control, while the p53 pathway is involved in cancer suppression. However, their individual and combined effects on cervical cancer are poorly understood. In this study, we evaluated the impacts of NMD inhibitor, Mouse double minute 2 homolog (MDM2) inhibitor, and their combination on cell apoptosis, cell cycle, and p53 target genes in human papillomavirus-18-positive HeLa cells. Our findings revealed that XR-2 failed to activate p53 or induce apoptosis in HeLa cells, whereas SMG1 (serine/threonine-protein kinase 1) inhibitor repressed cell proliferation at high concentrations. Notably, the combination of these 2 agents significantly inhibited cell proliferation, arrested the cell cycle, and triggered cell apoptosis. Mechanistically, MDM2 inhibitor and NMD inhibitor likely exert a synergistically through the truncated E6 protein. These results underscore the potential of employing a combination of MDM2 inhibitor and NMD inhibitor as a promising candidate for the clinical treatment of human papillomavirus-infected tumors.
Collapse
Affiliation(s)
- Ying Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Li Wan
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Xiaokun Tang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Siyuan Xu
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| |
Collapse
|
41
|
Coelho JPL, Yip MCJ, Oltion K, Taunton J, Shao S. The eRF1 degrader SRI-41315 acts as a molecular glue at the ribosomal decoding center. Nat Chem Biol 2024; 20:877-884. [PMID: 38172604 PMCID: PMC11253071 DOI: 10.1038/s41589-023-01521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Translation termination is an essential cellular process, which is also of therapeutic interest for diseases that manifest from premature stop codons. In eukaryotes, translation termination requires eRF1, which recognizes stop codons, catalyzes the release of nascent proteins from ribosomes and facilitates ribosome recycling. The small molecule SRI-41315 triggers eRF1 degradation and enhances translational readthrough of premature stop codons. However, the mechanism of action of SRI-41315 on eRF1 and translation is not known. Here we report cryo-EM structures showing that SRI-41315 acts as a metal-dependent molecular glue between the N domain of eRF1 responsible for stop codon recognition and the ribosomal subunit interface near the decoding center. Retention of eRF1 on ribosomes by SRI-41315 leads to ribosome collisions, eRF1 ubiquitylation and a higher frequency of translation termination at near-cognate stop codons. Our findings reveal a new mechanism of release factor inhibition and additional implications for pharmacologically targeting eRF1.
Collapse
Affiliation(s)
- João P L Coelho
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Matthew C J Yip
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Keely Oltion
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Lobel JH, Ingolia NT. Precise measurement of molecular phenotypes with barcode-based CRISPRi systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600132. [PMID: 38948701 PMCID: PMC11213135 DOI: 10.1101/2024.06.21.600132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Genome-wide CRISPR-Cas9 screens have untangled regulatory networks and revealed the genetic underpinnings of diverse biological processes. Their success relies on experimental designs that interrogate specific molecular phenotypes and distinguish key regulators from background effects. Here, we realize these goals with a generalizable platform for CRISPR interference with barcoded expression reporter sequencing (CiBER-seq) that dramatically improves the sensitivity and scope of genome-wide screens. We systematically address technical factors that distort phenotypic measurements by normalizing expression reporters against closely-matched control promoters, integrated together into the genome at single copy. To test our ability to capture post-transcriptional and post-translational regulation through sequencing, we screened for genes that affected nonsense-mediated mRNA decay and Doa10-mediated cytosolic protein decay. Our optimized CiBER-seq screens accurately capture the known components of well-studied RNA and protein quality control pathways with minimal background. These results demonstrate the precision and versatility of CiBER-seq for dissecting the genetic networks controlling cellular behaviors.
Collapse
Affiliation(s)
- Joseph H. Lobel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Lead contact
| |
Collapse
|
43
|
Zhuravskaya A, Yap K, Hamid F, Makeyev EV. Alternative splicing coupled to nonsense-mediated decay coordinates downregulation of non-neuronal genes in developing mouse neurons. Genome Biol 2024; 25:162. [PMID: 38902825 PMCID: PMC11188260 DOI: 10.1186/s13059-024-03305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The functional coupling between alternative pre-mRNA splicing (AS) and the mRNA quality control mechanism called nonsense-mediated decay (NMD) can modulate transcript abundance. Previous studies have identified several examples of such a regulation in developing neurons. However, the systems-level effects of AS-NMD in this context are poorly understood. RESULTS We developed an R package, factR2, which offers a comprehensive suite of AS-NMD analysis functions. Using this tool, we conducted a longitudinal analysis of gene expression in pluripotent stem cells undergoing induced neuronal differentiation. Our analysis uncovers hundreds of AS-NMD events with significant potential to regulate gene expression. Notably, this regulation is significantly overrepresented in specific functional groups of developmentally downregulated genes. Particularly strong association with gene downregulation is detected for alternative cassette exons stimulating NMD upon their inclusion into mature mRNA. By combining bioinformatic analyses with CRISPR/Cas9 genome editing and other experimental approaches we show that NMD-stimulating cassette exons regulated by the RNA-binding protein PTBP1 dampen the expression of their genes in developing neurons. We also provided evidence that the inclusion of NMD-stimulating cassette exons into mature mRNAs is temporally coordinated with NMD-independent gene repression mechanisms. CONCLUSIONS Our study provides an accessible workflow for the discovery and prioritization of AS-NMD targets. It further argues that the AS-NMD pathway plays a widespread role in developing neurons by facilitating the downregulation of functionally related non-neuronal genes.
Collapse
Affiliation(s)
- Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Karen Yap
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
44
|
Song Y, Cui J, Zhu J, Kim B, Kuo ML, Potts PR. RNATACs: Multispecific small molecules targeting RNA by induced proximity. Cell Chem Biol 2024; 31:1101-1117. [PMID: 38876100 DOI: 10.1016/j.chembiol.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
RNA-targeting small molecules (rSMs) have become an attractive modality to tackle traditionally undruggable proteins and expand the druggable space. Among many innovative concepts, RNA-targeting chimeras (RNATACs) represent a new class of multispecific, induced proximity small molecules that act by chemically bringing RNA targets into proximity with an endogenous RNA effector, such as a ribonuclease (RNase). Depending on the RNA effector, RNATACs can alter the stability, localization, translation, or splicing of the target RNA. Although still in its infancy, this new modality has the potential for broad applications in the future to treat diseases with high unmet need. In this review, we discuss potential advantages of RNATACs, recent progress in the field, and challenges to this cutting-edge technology.
Collapse
Affiliation(s)
- Yan Song
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Jia Cui
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Jiaqiang Zhu
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Boseon Kim
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Mei-Ling Kuo
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
45
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573594. [PMID: 38234817 PMCID: PMC10793421 DOI: 10.1101/2023.12.28.573594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.
Collapse
|
46
|
Morais P, Zhang R, Yu YT. Therapeutic Nonsense Suppression Modalities: From Small Molecules to Nucleic Acid-Based Approaches. Biomedicines 2024; 12:1284. [PMID: 38927491 PMCID: PMC11201248 DOI: 10.3390/biomedicines12061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nonsense mutations are genetic mutations that create premature termination codons (PTCs), leading to truncated, defective proteins in diseases such as cystic fibrosis, neurofibromatosis type 1, Dravet syndrome, Hurler syndrome, Beta thalassemia, inherited bone marrow failure syndromes, Duchenne muscular dystrophy, and even cancer. These mutations can also trigger a cellular surveillance mechanism known as nonsense-mediated mRNA decay (NMD) that degrades the PTC-containing mRNA. The activation of NMD can attenuate the consequences of truncated, defective, and potentially toxic proteins in the cell. Since approximately 20% of all single-point mutations are disease-causing nonsense mutations, it is not surprising that this field has received significant attention, resulting in a remarkable advancement in recent years. In fact, since our last review on this topic, new examples of nonsense suppression approaches have been reported, namely new ways of promoting the translational readthrough of PTCs or inhibiting the NMD pathway. With this review, we update the state-of-the-art technologies in nonsense suppression, focusing on novel modalities with therapeutic potential, such as small molecules (readthrough agents, NMD inhibitors, and molecular glue degraders); antisense oligonucleotides; tRNA suppressors; ADAR-mediated RNA editing; targeted pseudouridylation; and gene/base editing. While these various modalities have significantly advanced in their development stage since our last review, each has advantages (e.g., ease of delivery and specificity) and disadvantages (manufacturing complexity and off-target effect potential), which we discuss here.
Collapse
Affiliation(s)
- Pedro Morais
- Drug Metabolism and Pharmacokinetics, Research and Development, Bayer Pharmaceuticals, 42113 Wuppertal, Germany
| | - Rui Zhang
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
47
|
Langer LM, Kurscheidt K, Basquin J, Bonneau F, Iermak I, Basquin C, Conti E. UPF1 helicase orchestrates mutually exclusive interactions with the SMG6 endonuclease and UPF2. Nucleic Acids Res 2024; 52:6036-6048. [PMID: 38709891 PMCID: PMC11162806 DOI: 10.1093/nar/gkae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved co-translational mRNA surveillance and turnover pathway across eukaryotes. NMD has a central role in degrading defective mRNAs and also regulates the stability of a significant portion of the transcriptome. The pathway is organized around UPF1, an RNA helicase that can interact with several NMD-specific factors. In human cells, degradation of the targeted mRNAs begins with a cleavage event that requires the recruitment of the SMG6 endonuclease to UPF1. Previous studies have identified functional links between SMG6 and UPF1, but the underlying molecular mechanisms have remained elusive. Here, we used mass spectrometry, structural biology and biochemical approaches to identify and characterize a conserved short linear motif in SMG6 that interacts with the cysteine/histidine-rich (CH) domain of UPF1. Unexpectedly, we found that the UPF1-SMG6 interaction is precluded when the UPF1 CH domain is engaged with another NMD factor, UPF2. Based on cryo-EM data, we propose that the formation of distinct SMG6-containing and UPF2-containing NMD complexes may be dictated by different conformational states connected to the RNA-binding status of UPF1. Our findings rationalize a key event in metazoan NMD and advance our understanding of mechanisms regulating activity and guiding substrate recognition by the SMG6 endonuclease.
Collapse
Affiliation(s)
- Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Katharina Kurscheidt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Iuliia Iermak
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| |
Collapse
|
48
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. Advances in molecular function of UPF1 in Cancer. Arch Biochem Biophys 2024; 756:109989. [PMID: 38621446 DOI: 10.1016/j.abb.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
It is known that more than 10 % of genetic diseases are caused by a mutation in protein-coding mRNA (premature termination codon; PTC). mRNAs with an early stop codon are degraded by the cellular surveillance process known as nonsense-mediated mRNA decay (NMD), which prevents the synthesis of C-terminally truncated proteins. Up-frameshift-1 (UPF1) has been reported to be involved in the downregulation of various cancers, and low expression of UPF1 was shown to correlate with poor prognosis. It is known that UPF1 is a master regulator of nonsense-mediated mRNA decay (NMD). UPF1 may also function as an E3 ligase and degrade target proteins without using mRNA decay mechanisms. Increasing evidence indicates that UPF1 could serve as a good biomarker for cancer diagnosis and treatment for future therapeutic applications. Long non-coding RNAs (lncRNAs) have the ability to bind different proteins and regulate gene expression; this role in cancer cells has already been identified by different studies. This article provides an overview of the aberrant expression of UPF1, its functional properties, and molecular processes during cancer for clinical applications in cancer. We also discussed the interactions of lncRNA with UPF1 for cell growth during tumorigenesis.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000, Prishtina, Republic of Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200, Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185, Rome, Italy.
| |
Collapse
|
49
|
Guo Q, Zhao J, Li Y, Zhang C, Shen X, Liu L, Yang Z, Ma S, Qin Y, Shi L. CK2-HTATSF1-TOPBP1 signaling axis modulates tumor chemotherapy response. J Biol Chem 2024; 300:107377. [PMID: 38762174 PMCID: PMC11208909 DOI: 10.1016/j.jbc.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Homologous recombination (HR) plays a key role in maintaining genomic stability, and the efficiency of the HR system is closely associated with tumor response to chemotherapy. Our previous work reported that CK2 kinase phosphorylates HIV Tat-specific factor 1 (HTATSF1) Ser748 to facilitate HTATSF1 interaction with TOPBP1, which in turn, promotes RAD51 recruitment and HR repair. However, the clinical implication of the CK2-HTATSF1-TOPBP1 pathway in tumorigenesis and chemotherapeutic response remains to be elucidated. Here, we report that the CK2-HTATSF1-TOPBP1 axis is generally hyperactivated in multiple malignancies and renders breast tumors less responsive to chemotherapy. In contrast, deletion mutations of each gene in this axis, which also occur in breast and lung tumor samples, predict higher HR deficiency scores, and tumor cells bearing a loss-of-function mutation of HTATSF1 are vulnerable to poly(ADP-ribose) polymerase inhibitors or platinum drugs. Taken together, our study suggests that the integrity of the CK2-HTATSF1-TOPBP1 axis is closely linked to tumorigenesis and serves as an indicator of tumor HR status and modulates chemotherapy response.
Collapse
Affiliation(s)
- Qiushi Guo
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jiao Zhao
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Li
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Chunyong Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xilin Shen
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ling Liu
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Zhenzhen Yang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shuai Ma
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Yan Qin
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
50
|
Rahmati M, Chebli J, Kumar Banote R, Roselli S, Agholme L, Zetterberg H, Abramsson A. Fine-Tuning Amyloid Precursor Protein Expression through Nonsense-Mediated mRNA Decay. eNeuro 2024; 11:ENEURO.0034-24.2024. [PMID: 38789273 PMCID: PMC11164851 DOI: 10.1523/eneuro.0034-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Studies on genetic robustness recently revealed transcriptional adaptation (TA) as a mechanism by which an organism can compensate for genetic mutations through activation of homologous genes. Here, we discovered that genetic mutations, introducing a premature termination codon (PTC) in the amyloid precursor protein-b (appb) gene, activated TA of two other app family members, appa and amyloid precursor-like protein-2 (aplp2), in zebrafish. The observed transcriptional response of appa and aplp2 required degradation of mutant mRNA and did not depend on Appb protein level. Furthermore, TA between amyloid precursor protein (APP) family members was observed in human neuronal progenitor cells; however, compensation was only present during early neuronal differentiation and could not be detected in a more differentiated neuronal stage or adult zebrafish brain. Using knockdown and chemical inhibition, we showed that nonsense-mediated mRNA decay (NMD) is involved in degradation of mutant mRNA and that Upf1 and Upf2, key proteins in the NMD pathway, regulate the endogenous transcript levels of appa, appb, aplp1, and aplp2 In conclusion, our results suggest that the expression level of App family members is regulated by the NMD pathway and that mutations destabilizing app/APP mRNA can induce genetic compensation by other family members through TA in both zebrafish and human neuronal progenitors.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jasmine Chebli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Sandra Roselli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Lotta Agholme
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N #BG, United Kingdom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
- United Kingdom Dementia Research Institute, London W1T 7NF, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, 17 Science Park W Ave, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| |
Collapse
|