1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
2
|
Gao K, Xi W, Ni J, Jiang J, Lei Y, Li L, Chu J, Li R, An Y, Ouyang Y, Su R, Zhang R, Wu G. Genetically modified extracellular vesicles loaded with activated gasdermin D potentially inhibit prostate-specific membrane antigen-positive prostate carcinoma growth and enhance immunotherapy. Biomaterials 2025; 315:122894. [PMID: 39461061 DOI: 10.1016/j.biomaterials.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Prostate cancer (PCa) is associated with poor immunogenicity and lymphocytic infiltration, and immunotherapy effective against PCa remains unavailable. Pyroptosis, a novel immunotherapeutic modality for cancer, promotes systemic immune responses leading to immunogenic cell death in solid tumors. This paper describes the preparation and analysis of PSMAscFv-EVN-GSDMD; this genetically engineered recombinant extracellular vesicle (EV) expresses a single-chain variable antibody fragment (scFv) with high affinity for prostate-specific membrane antigen (PSMA) on their surfaces and is loaded with the N-terminal domain of gasdermin D (GSDMD). Both in vitro and in vivo, PSMAscFv-EVN-GSDMD effectively targeted PSMA-positive PCa cells and induced pyroptosis through the carrier properties of EVs and the specificity of PSMAscFv. In the 22RV1 and PSMA-transfected RM-1-inoculated PCa mouse models, PSMAscFv-EVN-GSDMD efficiently inhibited tumor growth and promoted tumor immune responses. In conclusion, PSMAscFv-EVN-GSDMD can convert the immunosuppressive "cold" tumor microenvironment of PCa into an immunogenic "hot" tumor microenvironment.
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Jun Jiang
- Department of Health Service, Base of Health Service, Air Force Medical University, Xi'an, China
| | - Yonghua Lei
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Lin Li
- Department of Immunology, School of Basic Medicine, Yan'an University. Yan'an, 716099, China
| | - Jie Chu
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Ruixiao Li
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Yongpan An
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Yanan Ouyang
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Ruiping Su
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
3
|
Gao M, Sun Q, Zhang R, Shan G, Zhang H, Peng R, Liu M, Sun G, Qiao L, Li Y, He X. Extracellular vesicles-hitchhiking boosts the deep penetration of drugs to amplify anti-tumor efficacy. Biomaterials 2025; 314:122829. [PMID: 39276410 DOI: 10.1016/j.biomaterials.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Developing drug delivery systems capable of achieving deep tumor penetration is a challenging task, yet there is a significant demand for such systems in cancer treatment. Hitchhiking on tumor-derived extracellular vesicles (EVs) represents a promising strategy for enhancing drug penetration into tumors. However, the limited drug assembly on EVs restricts its further application. Here, we present a novel approach to efficiently attach antitumor drugs to EVs using an engineered cell membrane-based vector. This vector includes the AS1411 aptamer for tumor-specific targeting, the vesicular stomatitis virus glycoprotein (VSV-G) for tumor cell membrane fusion, and a photosensitizer as the therapeutic agent while ensuring optimal drug encapsulation and stability. Upon injection, photosensitizers are firstly transferred to the tumor cell membrane and subsequently piggybacked onto EVs with the inherent secretion process. By hitchhiking with EVs, photosensitizers can be transferred layer by layer deep into the solid tumors. The results suggest that this EVs-hitchhiking strategy enables photosensitizers to penetrate deeply into tumor tissue, thereby enhancing the efficacy of phototherapy. This study offers broad application prospects for delivering drugs deeply into tumor tissues.
Collapse
Affiliation(s)
- Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Qiuting Sun
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Ruijie Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Guisong Shan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Huiru Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Rui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Mengyu Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Lei Qiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Yang Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China.
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
4
|
Cheng Y, Dong X, Shi J, Wu G, Tao P, Ren N, Zhao Y, Li F, Wang Z. Immunomodulation with M2 macrophage-derived extracellular vesicles for enhanced titanium implant osseointegration under diabetic conditions. Mater Today Bio 2025; 30:101385. [PMID: 39742145 PMCID: PMC11683253 DOI: 10.1016/j.mtbio.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
M2 macrophage-derived extracellular vesicles (M2-EVs) demonstrate the capacity to reduce pro-inflammatory M1 macrophage formation, thereby restoring the M1-M2 macrophage balance and promoting immunoregulation. However, the efficacy of M2-EVs in regulating macrophage polarization and subsequently enhancing osseointegration around titanium (Ti) implants in patients with diabetes mellitus (DM) remains to be elucidated. In this study, Ti implants were coated with polydopamine to facilitate M2-EVs adherence. In vitro experiment results demonstrated that M2-EVs could carry miR-23a-3p, inhibiting NOD-like receptor protein3(NLRP3) inflammasome activation in M1 macrophage and reducing the levels of inflammatory cytokines such as IL-1β by targeting NEK7. This improved the M1-M2 macrophage balance and enhanced mineralization on the Ti implant surfaces. The in vivo experiment results demonstrated that in diabetic conditions, the nanocoated M2-EVs significantly promoted high-quality bone deposition around the Ti implants. The current results provide a novel perspective for simple and effective decoration of M2-EVs on Ti implants; clinically, the method may afford osteoimmunomodulatory effects enhancing implant osseointegration in patients with DM.
Collapse
Affiliation(s)
- Yuzhao Cheng
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Xin Dong
- Department of Orthopedic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jing Shi
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guangsheng Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
- Department of Stomatology, Qingdao Special Servicemen Recuperation Center of PLA Navy, No.18 Yueyang Road, Qingdao, 266071, China
| | - Pei Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
- College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, 336000, China
| | - Nan Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| | - Fenglan Li
- The Stomatology Department of Shanxi Provincial People Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Zhongshan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China
| |
Collapse
|
5
|
Austria E, Bilek M, Varamini P, Akhavan B. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. NANO TODAY 2025; 60:102552. [DOI: 10.1016/j.nantod.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Huang W, Han G, Wang D, Zhu Y, Wang H, Liu Z, Uvdal K, Geng J, Hu Z, Zhang R, Zhang Z. Lipophilicity Modulation of Fluorescent Probes for In Situ Imaging of Cellular Microvesicle Dynamics. J Am Chem Soc 2025. [PMID: 39749720 DOI: 10.1021/jacs.4c13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-Cn, with n ranging from 1 to 18) that feature varying aliphatic side chains (CnH2n+1). Through in situ cell imaging and analysis, we found that IC-Cn location is highly related to their lipophilicities and the phospholipid layer hydrophobic microenvironments in cellular compartments. In detail, IC-C1 and IC-C2 specifically localize MVs both inside and outside cells. In contrast, IC-C3, IC-C4, and IC-C5 label cellular MVs and mitochondria but with distinct fluorescence lifetimes. Using these probes strategically, we have discovered that, in addition to the biogenesis of MVs from plasma membranes and damaged mitochondria, newly formed MVs can undergo fusion and fission processes. Moreover, mitochondria-derived MVs, beyond being released from parent cells, can fuse with lysosomes to facilitate the removal of dysfunctional mitochondria. The work not only provides new insights into MV physiology but also inspires the design strategies for probes used in specific labeling in cell studies.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yingzhong Zhu
- School of Materials and Chemical Engineering, Chuzhou University, Chu Zhou, Anhui 239000, China
| | - Hui Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Junlong Geng
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
8
|
Su W, Du Y, Wang W, Li Q, Zhang J, He W. Dihuang Yinzi Improves Scopolamine-Induced Learning and Memory Impairment by Regulating Plasma Exosome-Derived BDNF. JOURNAL OF ETHNOPHARMACOLOGY 2025:119322. [PMID: 39755187 DOI: 10.1016/j.jep.2025.119322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dihuang Drink (DHD), formulated by Liu Hejian during the Yuan Dynasty, is listed as one of the first ancient classical prescriptions by the National Medical Products Administration of China. It is commonly used for the prevention and treatment of Alzheimer's disease (AD). This study further investigates the therapeutic effects and potential mechanisms of DHD in AD. AIM OF THE STUDY This study aimed to evaluate the cognitive improvement effects of DHD on scopolamine (SCOP)-induced memory impairment in mice and to explore its anti-AD mechanisms mediated by exosomes. MATERIALS AND METHODS A cognitive impairment model was established in C57BL/6J mice via intraperitoneal injection of SCOP (1 mg/kg) for 21 consecutive days, followed by DHD intervention to assess its effects on learning, memory, hippocampal synaptic density, and the cholinergic system. SD rats were gavaged with DHD (22.00 g/kg) for 7 days, and plasma exosomes were extracted. These exosomes were injected into SCOP-treated mice (2 mg/kg, every other day for 14 days, 7 injections) to verify the role of exosomes in improving cognitive function. Behavioral performance and brain ChAT and BDNF levels were measured. RESULTS DHD improved learning and memory in SCOP model mice, attenuated neuronal loss and decreases in dendritic spines induced by scopolamine, and modulated the expression of BDNF, SYN-1, PSD95, and M1 mAChR. DHD-derived plasma exosomes further enhanced learning and memory function and significantly increased brain ChAT activity and BDNF levels. CONCLUSIONS DHD may alleviate cognitive impairment in SCOP model mice, potentially through exosome-mediated neuroprotection.
Collapse
Affiliation(s)
- Wenna Su
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619; Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine
| | - Yuzhong Du
- Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine; Shanxi Medical Univerity, Jinzhong, Shanxi, 030619
| | - Wenting Wang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619; Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine
| | - Qinqing Li
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619; Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine
| | - Junlong Zhang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619; Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine.
| | - Wenbin He
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619; Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine.
| |
Collapse
|
9
|
Cai N, Zhan X, Zhang Q, Di H, Chen C, Hu Y, Yan X. Red Blood Cell-Derived Small Extracellular Vesicles Inhibit Influenza Virus through Surface-Displayed Sialic Acids. Angew Chem Int Ed Engl 2025; 64:e202413946. [PMID: 39275883 DOI: 10.1002/anie.202413946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Disrupting the conserved multivalent binding of hemagglutinin (HA) on influenza A virus (IAV) to sialic acids (SAs) on the host cell membrane offers a robust strategy to block viral attachment and infection, irrespective of antigenic evolution or drug resistance. In this study, we exploit red blood cell-derived small extracellular vesicles (RBC sEVs) as nanodecoys by harnessing their high abundance of surface-displayed SAs to interact with IAV through multivalent HA-SA interactions. This high-avidity binding inhibits viral adhesion to the cell surface, effectively preventing both attachment and infection in a dose-dependent manner. Notably, enzymatic removal of SAs from RBC sEVs significantly diminishes their anti-IAV efficacy. Our findings indicate that RBC sEVs possess intrinsic anti-IAV properties due to their native multivalent SAs and hold considerable promise as antiviral therapeutics.
Collapse
Affiliation(s)
- Niangui Cai
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaozhen Zhan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qingyuan Zhang
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haonan Di
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yunyun Hu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Nelson HM, Konar GJ, Patton JG. Isolation and Characterization of Extracellular Vesicles to Activate Retina Regeneration. Methods Mol Biol 2025; 2848:135-150. [PMID: 39240521 DOI: 10.1007/978-1-0716-4087-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Mammals do not possess the ability to spontaneously repair or regenerate damaged retinal tissue. In contrast to teleost fish which are capable of retina regeneration through the action of Müller glia, mammals undergo a process of reactive gliosis and scarring that inhibits replacement of lost neurons. Thus, it is important to discover novel methods for stimulating mammalian Müller glia to dedifferentiate and produce progenitor cells that can replace lost retinal neurons. Inducing an endogenous regenerative pathway mediated by Müller glia would provide an attractive alternative to stem cell injections or gene therapy approaches. Extracellular vesicles (EVs) are now recognized to serve as a novel form of cell-cell communication through the transfer of cargo from donor to recipient cells or by the activation of signaling cascades in recipient cells. EVs have been shown to promote proliferation and regeneration raising the possibility that delivery of EVs could be a viable treatment for visual disorders. Here, we provide protocols to isolate EVs for use in retina regeneration experiments.
Collapse
Affiliation(s)
- Hannah M Nelson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Gregory J Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Zhang Y, Liu Z, Chopp M, Millman M, Li Y, Cepparulo P, Kemper A, Li C, Zhang L, Zhang ZG. Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery. Neural Regen Res 2025; 20:224-233. [PMID: 38767487 PMCID: PMC11246145 DOI: 10.4103/nrr.nrr-d-22-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/14/2023] [Accepted: 01/22/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Michael Millman
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Yanfeng Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Amy Kemper
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | |
Collapse
|
12
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
13
|
Urabe F, Tamura T, Sakamoto S, Kimura T, Ochiya T. Extracellular vesicles as novel uro-oncology biomarkers: insights toward clinical applications. Curr Opin Urol 2025; 35:13-18. [PMID: 38835180 DOI: 10.1097/mou.0000000000001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW We discussed the challenges associated with the clinical application of extracellular vesicles and summarized their potential impact on oncological clinical practice in urology. RECENT FINDINGS Despite extensive research on extracellular vesicles, their clinical applications remain limited; this is likely to be because of small study cohorts, a lack of large-scale analyses, and the impact of variable extraction and storage methods on analysis outcomes. However, promising results have emerged from clinical trials targeting urinary extracellular vesicles in prostate cancer using ExoDx Prostate Test. The ExoDx Prostate Test has demonstrated its efficacy in diagnosing prostate cancer in previous studies and is the only FDA-approved kit for this purpose. Moreover, recent trials have investigated the use of the ExoDx Prostate Test to determine the optimal timing for biopsies in prostate cancer patients undergoing active surveillance. SUMMARY We summarized recent studies on the potential of extracellular vesicles in the management of urological cancers. Particularly, the diagnosis of prostate cancer using the ExoDx Prostate Test has yielded positive results in several clinical trials. Additionally, while there are other studies suggesting its efficacy, most of these are based on retrospective analyses. These findings warrant further large-scale studies to optimize extracellular vesicle-based diagnostic and monitoring strategies. Although further research is required, extracellular vesicles would be attractive for early detection and surveillance.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo
| | - Takaaki Tamura
- Department of Urology, Chiba University, Chiba
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | | | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Bader J, Rüedi P, Mantella V, Geisshüsler S, Brigger F, Qureshi BM, Ortega Arroyo J, Montanari E, Leroux JC. Loading of Extracellular Vesicles with Nucleic Acids via Hybridization with Non-Lamellar Liquid Crystalline Lipid Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404860. [PMID: 39741121 DOI: 10.1002/advs.202404860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/01/2024] [Indexed: 01/02/2025]
Abstract
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (HII) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L2) or sponge (L3) phases, at pH 7.4, which are particularly suitable for inducing a controlled hybridization process with EVs. State-of-the-art single-particle analysis techniques reveal that LCNPs interact with various EV subpopulations at physiological conditions and that ≈40% of HEVs are loaded with the genetic cargo. Importantly, this study demonstrates that EV membrane proteins remain accessible on HEV surfaces, with their intrinsic enzymatic activity unaffected after the hybridization process. Finally, HEVs show in vitro improved transfection efficiencies compared to unhybridized LCNPs. In summary, this versatile platform holds potential for loading various nucleic acid molecules into native EVs and may help developing EV-based therapeutics.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Pascal Rüedi
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Valeria Mantella
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Silvana Geisshüsler
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Bilal Muhammad Qureshi
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Zurich, 8093, Switzerland
| | - Jaime Ortega Arroyo
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
15
|
Dong Q, Dong M, Liu X, Zhou J, Wu S, Liu Z, Niu W, Liu T. Salivary adenoid cystic carcinoma-derived α2,6-sialylated extracellular vesicles increase vascular permeability by triggering ER-stress in endothelial cells and promote lung metastasis. Cancer Lett 2024; 611:217407. [PMID: 39710056 DOI: 10.1016/j.canlet.2024.217407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Salivary adenoid cystic carcinoma (SACC) tends to metastasize to the lungs in the early stages of the disease. Factors secreted by the primary tumor can induce the formation of a supportive microenvironment in distant organs prior to metastasis, a process known as pre-metastatic niche (PMN) formation. Extracellular vesicles (EVs) participate in PMN formation. In this study, α2,6-sialylation of EVs derived from SACC cells with high metastatic potential increased vascular permeability, thereby facilitating tumor metastasis to the lungs. Mechanistic studies indicated that EV α2,6-sialylation triggers protein kinase R-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)-dependent activation of endoplasmic reticulum (ER) stress in the endothelium, leading to the disruption of vascular endothelial cadherin membrane expression. Sialidase or an ER stress inhibitor rescued vascular permeability induced by SACC EVs, which decreased the number of SACC cells extravasating into the lungs both in vitro and in vivo. This study identified a critical role of α2,6-sialylation of SACC EVs in lung metastasis. The findings indicate that EV α2,6-sialylation-induced ER stress in endothelial cells might be a therapeutic target for preventing SACC lung metastasis.
Collapse
Affiliation(s)
- Qi Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xue Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Jiasheng Zhou
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ziyao Liu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
16
|
Gurriaran-Rodriguez U, Kodippili K, Datzkiw D, Javandoost E, Xiao F, Rejas MT, Rudnicki MA. Wnt7a is required for regeneration of dystrophic skeletal muscle. Skelet Muscle 2024; 14:34. [PMID: 39702274 DOI: 10.1186/s13395-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Intramuscular injection of Wnt7a has been shown to accelerate and augment skeletal muscle regeneration and to ameliorate dystrophic progression in mdx muscle, a model for Duchenne muscular dystrophy (DMD). Here, we assessed muscle regeneration and function in wild type (WT) and mdx mice where Wnt7a was deleted in muscle using a conditional Wnt7a floxed allele and a Myf5-Cre driver. We found that both WT and mdx mice lacking Wnt7a in muscle, exhibited marked deficiencies in muscle regeneration at 21 d following cardiotoxin (CTX) induced injury. Unlike WT, deletion of Wnt7a in mdx resulted in decreased force generation prior to CTX injury. However, both WT and mdx muscle lacking Wnt7a displayed decreased force generation following CTX injection. Notably the regeneration deficit in mdx mice was rescued by a single tail vein injection of extracellular vesicles containing Wnt7a (Wnt7a-EVs). Therefore, we conclude that the regenerative capacity of muscle in mdx mice is highly dependant on the upregulation of endogenous Wnt7a following injury, and that systemic delivery of Wnt7a-EVs represents a therapeutic strategy for treating DMD.
Collapse
MESH Headings
- Animals
- Regeneration
- Mice, Inbred mdx
- Wnt Proteins/metabolism
- Wnt Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/drug effects
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Male
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/pathology
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain
| | - Kasun Kodippili
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maria Teresa Rejas
- Electron Microscopy Facility, Centro de Biología Molecular, Severo Ochoa. CSIC, Madrid, Spain
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Bockorny B, Muthuswamy L, Huang L, Hadisurya M, Maria Lim C, Tsai LL, Gill RR, Wei JL, Bullock AJ, Grossman JE, Besaw RJ, Narasimhan S, Tao WA, Perea S, Sawhney MS, Freedman SD, Hildago M, Iliuk A, Muthuswamy SK. A large-scale proteomics resource of circulating extracellular vesicles for biomarker discovery in pancreatic cancer. eLife 2024; 12:RP87369. [PMID: 39693144 DOI: 10.7554/elife.87369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using 'liquid biopsies' offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Bruno Bockorny
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
- Harvard Medical School, Boston, United States
| | | | - Ling Huang
- Henry Ford Cancer Institute, Detroit, United States
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University West Lafayette, West Lafayette, United States
| | | | - Leo L Tsai
- Harvard Medical School, Boston, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Ritu R Gill
- Harvard Medical School, Boston, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Jesse L Wei
- Harvard Medical School, Boston, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Andrea J Bullock
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
- Harvard Medical School, Boston, United States
| | | | - Robert J Besaw
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
| | | | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University West Lafayette, West Lafayette, United States
| | - Sofia Perea
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Mandeep S Sawhney
- Harvard Medical School, Boston, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Steven D Freedman
- Harvard Medical School, Boston, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Manuel Hildago
- Division of Hematology-Oncology, Weill Cornell Medical College, New York, United States
- New York-Presbyterian Hospital, New York, United States
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, United States
| | | |
Collapse
|
18
|
Lou S, Hu W, Wei P, He D, Fu P, Ding K, Chen Z, Dong Z, Zheng J, Wang K. Artificial Nanovesicles Derived from Cells: A Promising Alternative to Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39692623 DOI: 10.1021/acsami.4c12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As naturally secreted vesicles by cells, extracellular vesicles (EVs) play essential roles in modulating cell-cell communication and have significant potential in tissue regeneration, immune regulation, and drug delivery. However, the low yield and uncontrollable heterogeneity of EVs have been obstacles to their widespread translation into clinical practice. Recently, it has been discovered that artificial nanovesicles (NVs) produced by cell processing can inherit the components and functions of the parent cells and possess similar structures and functions to EVs, with significantly higher yields and more flexible functionalization, making them a powerful complement to natural EVs. This review focuses on recent advances in the research of artificial NVs as replacements for natural EVs. We provide an overview comparing natural EVs and artificial NVs and summarize the top-down preparation strategies of NVs. The applications of NVs prepared from stem cells, differentiated cells, and engineered cells are presented, as well as the latest advances in NV engineering. Finally, the main challenges of artificial NVs are discussed.
Collapse
Affiliation(s)
- Saiyun Lou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Wei Hu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Pengyao Wei
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Dongdong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejian Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhenyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zou X, Brigstock D. Extracellular Vesicles from Mesenchymal Stem Cells: Potential as Therapeutics in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Biomedicines 2024; 12:2848. [PMCID: PMC11673942 DOI: 10.3390/biomedicines12122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025] Open
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of triglycerides within hepatocytes, which can progress to more severe conditions, such as metabolic dysfunction-associated steatohepatitis (MASH), which may include progressive fibrosis, leading to cirrhosis, cancer, and death. This goal of this review is to highlight recent research showing the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in reducing the key pathogenic pathways of MASLD or MASH. Methods: Relevant published studies were identified using PubMed with one or more of the following search terms: MASLD, MASH, NAFLD, NASH, exosome, extracellular vesicle (EV), therapy, and/or mesenchymal stem cells (MSC). The primary literature were subsequently downloaded and summarized. Results: Using in vitro or in vivo models, MSC-EVs have been found to counteract oxidative stress, a significant contributor to liver injury in MASH, and to suppress disease progression, including steatosis, inflammation, and, in a few instances, fibrosis. Some of these outcomes have been attributed to specific EV cargo components including microRNAs and proteins. Thus, MSC-EVs enriched with these types of molecules may have improved the therapeutic efficacy for MASLD/MASH and represent a novel approach to potentially halt or reverse the disease process. Conclusions: MSC-EVs are attractive therapeutic agents for treating MASLD/MASH. Further studies are necessary to validate the clinical applicability and efficacy of MSC-EVs in human MASH patients, focusing on optimizing delivery strategies and identifying the pathogenic pathways that are targeted by specific EV components.
Collapse
Affiliation(s)
- Xue Zou
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - David Brigstock
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
20
|
Brandt P, Singha R, Ene IV. Hidden allies: how extracellular vesicles drive biofilm formation, stress adaptation, and host-immune interactions in human fungal pathogens. mBio 2024; 15:e0304523. [PMID: 39555918 PMCID: PMC11633191 DOI: 10.1128/mbio.03045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Pathogenic fungi pose a significant threat to human health, especially given the rising incidence of invasive fungal infections and the emergence of drug-resistant strains. This requires the development of vaccines and the advancement of antifungal strategies. Recent studies have focused on the roles of fungal extracellular vesicles (EVs) in intercellular communication and host-pathogen interactions. EVs are nanosized, lipid membrane-bound particles that facilitate the transfer of proteins, lipids, and nucleic acids. Here, we review the multifaceted functions of EVs produced by different human fungal pathogens, highlighting their importance in the response of fungal cells to different environmental cues and their interactions with host immune cells. We summarize the current state of research on EVs and how leveraging this knowledge can lead to innovative approaches in vaccine development and antifungal treatment.
Collapse
Affiliation(s)
- Philipp Brandt
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Rima Singha
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| |
Collapse
|
21
|
Beltrán FA, Torres-Díaz L L, Troncoso-Escudero P, Villalobos-González J, Mayorga-Weber G, Lara M, Covarrubias-Pinto A, Valdivia S, Vicencio I, Papic E, Paredes-Martínez C, Silva-Januàrio ME, Rojas A, daSilva LLP, Court F, Rosas-Arellano A, Bátiz LF, Rojas P, Rivera FJ, Castro MA. Distinct roles of ascorbic acid in extracellular vesicles and free form: Implications for metabolism and oxidative stress in presymptomatic Huntington's disease. Free Radic Biol Med 2024; 227:521-535. [PMID: 39662690 DOI: 10.1016/j.freeradbiomed.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin gene. The huntingtin protein (Htt) is ubiquitously expressed and localized in several organelles, including endosomes, where it plays an essential role in intracellular trafficking. Presymptomatic HD is associated with a failure in energy metabolism and oxidative stress. Ascorbic acid is a potent antioxidant that plays a key role in modulating neuronal metabolism and is highly concentrated in the brain. During synaptic activity, neurons take up ascorbic acid released by glial cells; however, this process is disrupted in HD. In this study, we aim to elucidate the molecular and cellular mechanisms underlying this dysfunction. Using an electrophysiological approach in presymptomatic YAC128 HD slices, we observed decreased ascorbic acid flux from astrocytes to neurons, which altered neuronal metabolic substrate preferences. Ascorbic acid efflux and recycling were also decreased in cultured astrocytes from YAC128 HD mice. We confirmed our findings using GFAP-HD160Q, an HD mice model expressing mutant N-terminal Htt mainly in astrocytes. For the first time, we demonstrated that ascorbic acid is released from astrocytes via extracellular vesicles (EVs). Decreased number of particles and exosomal markers were observed in EV fractions from cultured YAC128 HD astrocytes and Htt-KD cells. We observed reduced number of multivesicular bodies (MVBs) in YAC128 HD striatum via electron microscopy, suggesting mutant Htt alters MVB biogenesis. EVs containing ascorbic acid effectively reduced reactive oxygen species, whereas "free" ascorbic acid played a role in modulating neuronal metabolic substrate preferences. These findings suggest that the early redox imbalance observed in HD arises from a reduced release of ascorbic acid-containing EVs by astrocytes. Meanwhile, a decrease in "free" ascorbic acid likely contributes to presymptomatic metabolic impairment.
Collapse
Affiliation(s)
- Felipe A Beltrán
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Leandro Torres-Díaz L
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Paulina Troncoso-Escudero
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Juan Villalobos-González
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Marcelo Lara
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Adriana Covarrubias-Pinto
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sharin Valdivia
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Department of Biological and Chemical Sciences, Faculty of Medicine and Sciences, San Sebastián University, Tres Pascualas Campus, Concepción, Chile
| | - Isidora Vicencio
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Eduardo Papic
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Carolina Paredes-Martínez
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile
| | - Mara E Silva-Januàrio
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alejandro Rojas
- Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Instituto de Medicina, UACh, Valdivia, Chile
| | - Luis L P daSilva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Felipe Court
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Luis Federico Bátiz
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco J Rivera
- Translational Regenerative Neurobiology Group (TReN), Molecular and Integrative Biosciences Research Program (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, UACh, Valdivia, Chile; Center for Interdisciplinary Studies on Nervous System (CISNe), UACh, Valdivia, Chile; Janelia Research Campus HHMI, Ashburn, VA, USA.
| |
Collapse
|
22
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Lodha P, Acari A, Rieck J, Hofmann S, Dieterich LC. The Lymphatic Vascular System in Extracellular Vesicle-Mediated Tumor Progression. Cancers (Basel) 2024; 16:4039. [PMID: 39682225 DOI: 10.3390/cancers16234039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Tumor growth and progression require molecular interactions between malignant and host cells. In recent years, extracellular vesicles (EVs) emerged as an important pillar of such interactions, carrying molecular information from their donor cells to distant recipient cells. Thereby, the phenotype and function of the recipient cells are altered, which may facilitate tumor immune escape and tumor metastasis to other organs through the formation of pre-metastatic niches. A prerequisite for these effects of tumor cell-derived EVs is an efficient transport system from the site of origin to the body periphery. Here, we highlight the role of the lymphatic vascular system in the distribution and progression-promoting functions of tumor cell-derived EVs. Importantly, the lymphatic vascular system is the primary drainage system for interstitial fluid and its soluble, particulate, and cellular contents, and therefore represents the principal route for regional (i.e., to tumor-draining lymph nodes) and systemic distribution of EVs derived from solid tumors. Furthermore, recent studies highlighted the tumor-draining lymph node as a crucial site where tumor-derived EVs exert their effects. A deeper mechanistic understanding of how EVs gain access to the lymphatic vasculature, how they interact with their recipient cells in tumor-draining lymph nodes and beyond, and how they induce phenotypic and functional maladaptation will be instrumental to identify new molecular targets and conceive innovative approaches for cancer therapy.
Collapse
Affiliation(s)
- Pragati Lodha
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Alperen Acari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Jochen Rieck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sarah Hofmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
24
|
Wang Y, Xiao B, Li J, Zhang M, Zhang L, Chen L, Zhang J, Chen G, Zhang W. Hypoxia regulates small extracellular vesicle biogenesis and cargo sorting through HIF-1α/HRS signaling pathway in head and neck squamous cell carcinoma. Cell Signal 2024; 127:111546. [PMID: 39631619 DOI: 10.1016/j.cellsig.2024.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Small extracellular vesicles (sEVs) act as crucial messengers that transmit biological signals in hypoxic tumor microenvironment (TME), significantly impacting cancer progression. However, the precise mechanism by which hypoxia influences sEV biogenesis remains poorly understood. In this study, we observed increased sEV secretion and alterations in cargo composition in head and neck squamous cell carcinoma (HNSCC) cells under hypoxic conditions. We found that hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a key component of the endosomal sorting complexes required for transport (ESCRT), was upregulated during hypoxia. This upregulation activated the endosomal system and reduced degradation of multivesicular bodies (MVBs). HRS depletion altered the packaging of protein cargoes such as mitochondria-related proteins into sEVs under hypoxia, and these cargoes promoted a pro-tumorigenic phenotype of macrophages. Importantly, we demonstrated that HRS is transcriptionally activated by hypoxia inducible factor-1α (HIF-1α). Spatial transcriptomics and immunohistochemistry revealed a positive correlation between HRS and HIF-1α. These findings establish a link between the hypoxic response, sEV biogenesis, and cargo packaging, enhancing our understanding of how the hypoxic TME influences sEV biogenesis in HNSCC cells.
Collapse
Affiliation(s)
- Yiman Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bolin Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jinbang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Mengyao Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Linzhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liguo Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Zhang
- Department of Thyroid and Breast Surgery, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
25
|
de Voogt WS, Frunt R, Leandro RM, Triesscheijn CS, Monica B, Paspali I, Tielemans M, François JJJM, Seinen CW, de Jong OG, Kooijmans SAA. EV-Elute: A universal platform for the enrichment of functional surface marker-defined extracellular vesicle subpopulations. J Extracell Vesicles 2024; 13:e70017. [PMID: 39692115 DOI: 10.1002/jev2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Intercellular communication via extracellular vesicles (EVs) has been identified as a vital component of a steadily expanding number of physiological and pathological processes. To accommodate these roles, EVs have highly heterogeneous molecular compositions. Given that surface molecules on EVs determine their interactions with their environment, EV functionality likely differs between subpopulations with varying surface compositions. However, it has been technically challenging to examine such functional heterogeneity due to a lack of non-destructive methods to separate EV subpopulations based on their surface markers. Here, we used the Design-of-Experiments (DoE) methodology to optimize a protocol, which we name 'EV-Elute', to elute intact EVs from commercially available Protein G-coated magnetic beads. We captured EVs from various cell types on these beads using antibodies against CD9, CD63, CD81 and a custom-made protein binding phosphatidylserine (PS). When applying EV-Elute, over 70% of bound EVs could be recovered from the beads in a pH- and incubation-time-dependent fashion. EV subpopulations showed intact integrity by electron microscopy and Proteinase K protection assays and showed uptake patterns similar to whole EV isolates in co-cultures of peripheral blood mononuclear cells (PBMCs) and endothelial cells. However, in Cas9/sgRNA delivery assays, CD63+ EVs showed a lower capacity to functionally deliver cargo as compared to CD9+, CD81+ and PS+ EVs. Taken together, we developed a novel, easy-to-use platform to isolate and functionally compare surface marker-defined EV subpopulations. This platform does not require specialized equipment or reagents and is universally applicable to any capturing antibody and EV source. Hence, EV-Elute can open new opportunities to study EV functionality at the subpopulation level.
Collapse
Affiliation(s)
| | - Rowan Frunt
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raul M Leandro
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bella Monica
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ioanna Paspali
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Tielemans
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cor W Seinen
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Sander A A Kooijmans
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Metabolic Diseases, Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Sun S, Cox‐Vázquez SJ, Cho N, Bazan GC, Groves JT. Direct imaging with multidimensional labelling and high-content analysis allows quantitative categorization and characterizations of individual small extracellular vesicles and nanoparticles (sEVPs). J Extracell Vesicles 2024; 13:e12520. [PMID: 39665317 PMCID: PMC11635478 DOI: 10.1002/jev2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 12/13/2024] Open
Abstract
Small extracellular vesicles and nanoparticles (sEVPs) are cell-secreted entities with potential as diagnostic biomarkers and therapeutic vehicles. However, significant intrinsic sEVP heterogeneity impedes analysis and understanding of their composition and functions. We employ multidimensional fluorescent labelling on sEVPs, leveraging the robustness of a newly developed membrane probe-conjugated oligoelectrolytes (COEs), and conduct total internal reflection fluorescence (TIRF) microscopy on sEVP arrays. These arrays comprise single sEVPs anchored to a soft material functionalized surface with little bias. We then develop an enhanced algorithm for colocalization analysis of the multiple labels on individual sEVPs and perform deep profiling of particle content. We categorize sEVPs derived from the same cell type into seven distinct subpopulations-some vesicular whereas others non-vesicular, and we demonstrate that sEVPs from four cell types exhibit quantitatively distinguishable subpopulation distributions. Furthermore, we gain insights into specific particle features within each subpopulation, including CD63 counts, relative particle size, relative concentration of cargoes, and correlations among different cargoes. This high-content analysis reveals common cargo sorting features in sEVP subpopulations across different cell types and suggests new statistics within the sEVP inherent heterogeneity that could differentiate sEVPs from two types of cancer cells and two types of normal cells. Collectively, our study presents a robust single-sEVP characterization platform, combining high-content imaging with comprehensive analysis. This platform is poised to advance sEVP-based theranostic assays and facilitate exploration into disease-associated sEVP biogenesis and sEVP-mediated intercellular communication.
Collapse
Affiliation(s)
- Simou Sun
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingaporeSingapore
- Current address: Department of ChemistryStony Brook UniversityNew YorkUnited States
| | - Sarah J. Cox‐Vázquez
- Department of ChemistryNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
| | - Nam‐Joon Cho
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Guillermo C. Bazan
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingaporeSingapore
- Department of ChemistryNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
| | - Jay T. Groves
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingaporeSingapore
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
27
|
Hua Y, Jiang P, Dai C, Li M. Extracellular vesicle autoantibodies. J Autoimmun 2024; 149:103322. [PMID: 39341173 DOI: 10.1016/j.jaut.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Autoantibodies are immunoglobulin proteins produced by autoreactive B cells responding to self-antigens. Extracellular vesicles (EVs) are membranous structures released by almost all types of cells and extensively distributed in various biological fluids. Studies have indicated that EVs loaded with self-antigens not only play important roles in antigen presentation and autoantibody production but can also form functional immune complexes with autoantibodies (termed EV autoantibodies). While numerous papers have summarized the production and function of pathogenic autoantibodies in diseases, especially autoimmune diseases, reviews on EV autoantibodies are rare. In this review, we outline the existing knowledge about EVs, autoantibodies, and EV antigens, highlighting the formation of EV autoantibodies and their functions in autoimmune diseases and cancers. In conclusion, EV autoantibodies may be involved in the occurrence of disease(s) and also serve as potential non-invasive markers that could help in the diagnosis and/or prognosis of disease. Additional studies designed to define in more detail the molecular characteristics of EV autoantibodies and their contribution to disease are recommended.
Collapse
Affiliation(s)
- Yan Hua
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Panpan Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China
| | - Chunyang Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
28
|
Wang J, Liu C, Cutler J, Ivanovski S, Lee RSB, Han P. Microbial- and host immune cell-derived extracellular vesicles in the pathogenesis and therapy of periodontitis: A narrative review. J Periodontal Res 2024; 59:1115-1129. [PMID: 38758729 PMCID: PMC11626692 DOI: 10.1111/jre.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024]
Abstract
Periodontitis is a chronic inflammatory disease caused by dysbiotic biofilms and destructive host immune responses. Extracellular vesicles (EVs) are circulating nanoparticles released by microbes and host cells involved in cell-to-cell communication, found in body biofluids, such as saliva and gingival crevicular fluid (GCF). EVs are mainly involved in cell-to-cell communication, and may hold promise for diagnostic and therapeutic purposes. Periodontal research has examined the potential involvement of bacterial- and host-cell-derived EVs in disease pathogenesis, diagnosis, and therapy, but data remains scarce on immune cell- or microbial-derived EVs. In this narrative review, we first provide an overview of the role of microbial and host-derived EVs on disease pathogenesis. Recent studies reveal that Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans-derived outer membrane vesicles (OMVs) can activate inflammatory cytokine release in host cells, while M1 macrophage EVs may contribute to bone loss. Additionally, we summarised current in vitro and pre-clinical research on the utilisation of immune cell and microbial-derived EVs as potential therapeutic tools in the context of periodontal treatment. Studies indicate that EVs from M2 macrophages and dendritic cells promote bone regeneration in animal models. While bacterial EVs remain underexplored for periodontal therapy, preliminary research suggests that P. gingivalis OMVs hold promise as vaccine candidates. Finally, we acknowledge the current limitations present in the field of translating immune cell derived EVs and microbial derived EVs in periodontology. It is concluded that microbial and host immune cell-derived EVs have a role in periodontitis pathogenesis and hence may be useful for studying disease pathophysiology, and as diagnostic and treatment monitoring biomarkers.
Collapse
Affiliation(s)
- Jenny Wang
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
| | - Chun Liu
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jason Cutler
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sašo Ivanovski
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ryan SB Lee
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| | - Pingping Han
- School of Dentistry, Center for Oral‐facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic GroupThe University of QueenslandBrisbaneQueenslandAustralia
- School of DentistryThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
29
|
Wang X, Ren J, Fang F, Wang E, Li J, He W, Zhang Z, Shen Y, Liu X. Matrix vesicles from osteoblasts promote atherosclerotic calcification. Matrix Biol 2024; 134:79-92. [PMID: 39580186 DOI: 10.1016/j.matbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 11/25/2024]
Abstract
Atherosclerotic calcification often coincides with osteoporosis, suggesting a potential interplay between bone and vascular mineralization. Osteoblast-derived matrix vesicles (Ost-MVs), pivotal in bone mineralization, have emerged as potential contributors to ectopic vascular calcification. However, the precise role of Ost-MVs in vascular calcification and the underlying mechanisms remain elusive. In this study, we observed a concomitant increase in atherosclerotic calcification and bone loss, accompanied by elevated release of Ost-MVs into circulation. We demonstrate that circulating Ost-MVs target plaque lesions in the setting of atherosclerosis. Mechanistically, vascular injury facilitates transendothelial transport of Ost-MVs, collagen І remodeling promotes Ost-MVs aggregation, and vascular smooth muscle cell (VSMC) phenotypic switching enhances MV uptake. These pathological changes during atherosclerosis collectively contribute to Ost-MVs recruitment into the vasculature. Furthermore, Ost-MVs and VSMC-derived matrix vesicles (VSMC-MVs) exacerbate calcification via the Ras-Raf-ERK pathway. Our findings unveil a novel Ost-MVs-mediated mechanism participating in vascular calcification and enriching our understanding of bone-vascular crosstalk.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Jie Ren
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Jianwei Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, PR China
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China.
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China.
| |
Collapse
|
30
|
Jeppesen DK, Zhang Q, Coffey RJ. Extracellular vesicles and nanoparticles at a glance. J Cell Sci 2024; 137:jcs260201. [PMID: 39641198 DOI: 10.1242/jcs.260201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Cells can communicate with neighboring and more distant cells by secretion of extracellular vesicles (EVs). EVs are lipid bilayer membrane-bound structures that can be packaged with proteins, nucleic acids and lipids that mediate cell-cell signaling. EVs are increasingly recognized to play numerous important roles in both normal physiological processes and pathological conditions. Steady progress in the field has uncovered a great diversity and heterogeneity of distinct vesicle types that appear to be secreted from most, if not all, cell types. Recently, it has become apparent that cells also release non-vesicular extracellular nanoparticles (NVEPs), including the newly discovered exomeres and supermeres. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the diversity of EVs and nanoparticles that are released from cells into the extracellular space, highlighting recent advances in the field.
Collapse
Affiliation(s)
- Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
31
|
Kato T, Sugihara E, Hata Y, Kawakami K, Fujita Y, Mizutani K, Ando T, Sakai Y, Sakurai K, Toyota S, Ehara H, Ito M, Ito H. Diagnostic potential of SDHB mRNA contained in serum extracellular vesicles among patients with prostate cancer. Prostate 2024; 84:1515-1524. [PMID: 39279231 DOI: 10.1002/pros.24792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Androgen receptor signaling inhibitors(ARSIs) have been used to treat patients with metastatic prostate cancer (PC) and castration-resistant prostate cancer (CRPC). In this study, we aimed to identify novel serum extracellular vesicle (EV)-based biomarkers to diagnose ARSI-resistance and therapeutic targets for ARSI-resistant CRPC. METHODS Total RNA contained in serum EVs from 5 cases of CRPC before ARSI treatment and after acquiring ARSI-resistance was subjected to RNA-sequencing. The expression changes of selected RNAs contained in EVs were confirmed in 48 cases of benign prostatic hyperplasia (BPH) and 107 PC using reverse transcription-quantitative PCR (RT-qPCR) and compared with tissue RNA expression using public datasets. RESULTS RNA-sequencing revealed that mitochondrial oxidative phosphorylation (OXPHOS)-related genes were increased in EVs after acquiring ARSI-resistance. Among them, RT-qPCR and datasets analysis demonstrated that SDHB mRNA was upregulated after acquiring ARSI-resistance in EVs and ARSI-exposed PC tissue compared to ARSI-naïve EVs and tissue, respectively. SDHB mRNA levels both in EVs and tissue were increased in localized PC compared with BPH and decreased in advanced PC. Tissue expression of SDHB mRNA was significantly correlated with those of other OXPHOS-related genes. SDHB mRNA in EVs (EV-SDHB) was elevated among 3 out of 7 ARSI-treating patients with stable PSA levels who later progressed to ARSI-resistant CRPC. CONCLUSIONS The levels of OXPHOS-related mRNAs in EVs correlated with those in PC tissue, among which SDHB mRNA was found to be a novel biomarker to diagnose ARSI-resistance. EV-SDHB may be useful for early diagnosis of ARSI-resistance.
Collapse
MESH Headings
- Humans
- Male
- Extracellular Vesicles/metabolism
- RNA, Messenger/blood
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/diagnosis
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Succinate Dehydrogenase/genetics
- Succinate Dehydrogenase/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Aged
- Middle Aged
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/blood
- Prostatic Neoplasms/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Drug Resistance, Neoplasm
- Prostatic Hyperplasia/genetics
- Prostatic Hyperplasia/blood
- Prostatic Hyperplasia/diagnosis
- Prostatic Hyperplasia/metabolism
- Androgen Antagonists/therapeutic use
- Androgen Antagonists/pharmacology
Collapse
Affiliation(s)
- Taku Kato
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Eiji Sugihara
- Open Facility Center, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuko Hata
- Open Facility Center, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kyojiro Kawakami
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasunori Fujita
- Molecular and Cellular Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kosuke Mizutani
- Department of Urology, Central Japan International Medical Center, Gifu, Japan
| | - Tatsuya Ando
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuhiro Sakai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Shohei Toyota
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Hidetoshi Ehara
- Department of Urology, Asahi University Hospital, Gifu, Japan
| | - Masafumi Ito
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
32
|
Jiang P, Ma X, Wang X, Huang J, Wang Y, Ai J, Xiao H, Dai M, Lin Y, Shao B, Tang X, Tong W, Ye Z, Chai R, Zhang S. Isolation and Comprehensive Analysis of Cochlear Tissue-Derived Small Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408964. [PMID: 39497619 DOI: 10.1002/advs.202408964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Indexed: 12/28/2024]
Abstract
Small extracellular vesicles (sEVs) act as a critical mediator in intercellular communication. Compared to sEVs derived from in vitro sources, tissue-derived sEVs can reflect the in vivo signals released from specific tissues more accurately. Currently, studies on the role of sEVs in the cochlea have relied on studying sEVs from in vitro sources. This study evaluates three cochlear tissue digestion and cochlear tissue-derived sEV (CDsEV) isolation methods, and first proposes that the optimal approach for isolating CDsEVs using collagenase D and DNase І combined with sucrose density gradient centrifugation. Furthermore, it comprehensively investigates CDsEV contents and cell origins. Small RNA sequencing and proteomics are performed to analyze the miRNAs and proteins of CDsEVs. The miRNAs and proteins of CDsEVs are crucial for maintaining normal auditory function. Among them, FGFR1 in CDsEVs may mediate the survival of cochlear hair cells via sEVs. Finally, the joint analysis of single CDsEV sequencing and single-cell RNA sequencing data is utilized to trace cellular origins of CDsEVs. The results show that different types of cochlear cells secrete different amounts of CDsEVs, with Kölliker's organ cells and supporting cells secrete the most. The findings are expected to enhance the understanding of CDsEVs in the cochlea.
Collapse
Affiliation(s)
- Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinlin Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jingyuan Huang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jingru Ai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 1518063, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
33
|
Lin J, Liu S, Xue X, Lv J, Zhao L, Yu L, Wang H, Chen J. Injectable Genetic Engineering Hydrogel for Promoting Spatial Tolerance of Transplanted Kidney in Situ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408631. [PMID: 39498870 DOI: 10.1002/advs.202408631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The establishment of a tolerant space to realize the co-stimulation of cytokines and contact-dependent molecules remain challenging in allotransplant. Here, an injectable genetically engineered hydrogel (iGE-Gel) is reported, which developed with a multivalent network of FOXP3 engineered extracellular vesicles (Foe-EVs) through the hydrophobic interaction between stearic acid modified hyaluronic acid (HASA) and the membrane phospholipids of extracellular vesicles (EVs). The iGE-Gel exhibited self-healing properties, injectability and biocompatibility. It is revealed that iGE-Gel displayed with abundant regulatory cytokines and coinhibitory contact molecules, promoting the formation of immune tolerance in situ. The multiplex immunohistofluorescence confirmed tolerant niches is dominated by FOXP3+ Tregs and PDL1+ cells in the allograft, which reduced the drainage of alloantigens to subcapsular sinus of lymph nodes, and suppressed the formation of germinal centers. Remarkably, the proportion of alloreactive T cells (IFN-γ/IL-2) and B cells (IgG1/IgG2a/IgG3) as well as the serum titers of donor specific antibody (DSA) is decreased by iGE-Gel. In murine allogeneic transplantation, the injection of iGE-Gel significantly alleviated immune cell infiltration and complement damage in the graft, preserved the structure and function of renal cells and prolonged recipient survival period from 30.8 to 79.3 days, highlighting the potential of iGE-Gel as a transformative treatment in allotransplant.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Shuaihui Liu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China
| | - Junhao Lv
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lingfei Zhao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Liqin Yu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
34
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
35
|
Jankovičová J, Michalková K, Sečová P, Horovská Ľ, Antalíková J. The extracellular vesicle tetraspanin CD63 journey from the testis through the epididymis to mature bull sperm. Sci Rep 2024; 14:29449. [PMID: 39604592 PMCID: PMC11603341 DOI: 10.1038/s41598-024-81021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
The important role of extracellular vesicles, which are considered key mediators of intercellular communication under physiological and pathological conditions, in various cellular processes, including those crucial for mammalian reproduction, has been increasingly studied. Tetraspanins, including CD63, are widely used as markers of extracellular vesicles, but they may also play a role in their biogenesis, cargo selection, cell targeting, and uptake. This study aimed to map the journey of the extracellular vesicle protein tetraspanin CD63 from the testis through the epididymis into mature bull sperm via an approach that included immunohistochemistry (immunofluorescence and immunoperoxidase staining), Western blot analysis, and immunoprecipitation analysis. We described the presence of CD63 in bull testicular and epididymal tissues, extracellular vesicles produced in these organs and spermatozoa during epididymal transit and after ejaculation. In addition, we revealed the nonuniform distribution of potential CD63 partners, such as CD9, integrin αV and syntenin-1, in the sperm head and tail and in extracellular vesicles. These findings contribute to understanding the complex mechanisms underlying sperm maturation and point to the possible involvement of tetraspanins and their associated partners, either as part of extracellular vesicles or sperm membranes, in these processes.
Collapse
Grants
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- VEGA-2/0074/24 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
- APVV-19-0111 Slovak Research and Development Agency
Collapse
Affiliation(s)
- Jana Jankovičová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic.
| | - Katarína Michalková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| | - Petra Sečová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| | - Ľubica Horovská
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| | - Jana Antalíková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 840 05, Slovak Republic
| |
Collapse
|
36
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
37
|
Gu X, He L, Zhang J, Xu H, Shen H, Huang R, Li Z. Recent Advances in Wash-Free Detection Methods of Extracellular Vesicles: A Mini Review. ACS Sens 2024; 9:5626-5641. [PMID: 39446112 DOI: 10.1021/acssensors.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are emerging biomarkers in liquid biopsy that have gained increasing attention in disease diagnosis and prognosis monitoring. Most reported detection methods require the isolation of EVs from complex body liquids, often involving multiple washing steps to remove excess reagents and eliminate background interference. Nonetheless, these methods not only cause the loss of EVs but also result in poor repeatability and prolonged detection duration. The focus on wash-free detection methods is increasing due to the specific ability to avoid the removal of surplus reagents and, in some cases, even the isolation and purification of EVs. Viewing from different methodological perspectives, this review summarizes the recent advances in wash-free detection of EVs, containing aggregation induction, proximity sensing, allosteric probes, phase separation, Roman spectroscopy, field-effect transistor and microcantilever. The pros and cons of each detection strategy are impartially evaluated and this review concludes the prospects for future developments in this field.
Collapse
Affiliation(s)
- Xinrui Gu
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Lei He
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Jinsong Zhang
- Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Hongpan Xu
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Han Shen
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, South Puzhu Road 30, Nanjing, Jiangsu Province 211816, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| |
Collapse
|
38
|
Fowler SL, Behr TS, Turkes E, O'Brien DP, Cauhy PM, Rawlinson I, Edmonds M, Foiani MS, Schaler A, Crowley G, Bez S, Ficulle E, Tsefou E, Fischer R, Geary B, Gaur P, Miller C, D'Acunzo P, Levy E, Duff KE, Ryskeldi-Falcon B. Tau filaments are tethered within brain extracellular vesicles in Alzheimer's disease. Nat Neurosci 2024:10.1038/s41593-024-01801-5. [PMID: 39572740 DOI: 10.1038/s41593-024-01801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024]
Abstract
The abnormal assembly of tau protein in neurons is a pathological hallmark of multiple neurodegenerative diseases, including Alzheimer's disease (AD). Assembled tau associates with extracellular vesicles (EVs) in the central nervous system of individuals with AD, which is linked to its clearance and prion-like propagation. However, the identities of the assembled tau species and EVs, as well as how they associate, are not known. Here, we combined quantitative mass spectrometry, cryo-electron tomography and single-particle cryo-electron microscopy to study brain EVs from individuals with AD. We found tau filaments composed mainly of truncated tau that were enclosed within EVs enriched in endo-lysosomal proteins. We observed multiple filament interactions, including with molecules that tethered filaments to the EV limiting membrane, suggesting selective packaging. Our findings will guide studies into the molecular mechanisms of EV-mediated secretion of assembled tau and inform the targeting of EV-associated tau as potential therapeutic and biomarker strategies for AD.
Collapse
Affiliation(s)
- Stephanie L Fowler
- UK Dementia Research Institute at University College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine, University of Oxford, Oxford, UK
| | - Tiana S Behr
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Isadora Rawlinson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marisa Edmonds
- UK Dementia Research Institute at University College London, London, UK
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK
| | - Ari Schaler
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA
| | - Gerard Crowley
- UK Dementia Research Institute at University College London, London, UK
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Ficulle
- UK Dementia Research Institute at University College London, London, UK
| | - Eliona Tsefou
- UK Dementia Research Institute at University College London, London, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Beth Geary
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Pallavi Gaur
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Chelsea Miller
- The Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Taub Institute, Irving Medical Center, Columbia University, New York, NY, USA.
| | | |
Collapse
|
39
|
Sies H. Dynamics of intracellular and intercellular redox communication. Free Radic Biol Med 2024; 225:933-939. [PMID: 39491734 DOI: 10.1016/j.freeradbiomed.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cell and organ metabolism is organized through various signaling mechanisms, including redox, Ca2+, kinase and electrochemical pathways. Redox signaling operates at multiple levels, from interactions between individual molecules in their microenvironment to communication among subcellular organelles, single cells, organs, and the entire organism. Redox communication is a dynamic and ongoing spatiotemporal process. This article focuses on hydrogen peroxide (H2O2), a key second messenger that targets redox-active protein cysteine thiolates. H2O2 gradients across cell membranes are controlled by peroxiporins, specialized aquaporins. Redox-active endosomes, known as redoxosomes, form at the plasma membrane. Cell-to-cell redox communication involves direct contacts, such as per gap junctions that connect cells for transfer of molecules via connexons. Moreover, signaling occurs through the release of redox-active molecules and enzymes into the surrounding space, as well as through various types of extracellular vesicles (EVs) that transport these signals to nearby or distant target cells.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
40
|
Abbasi A, Costafreda MI, Ballesteros A, Jacques J, Tami C, Manangeeswaran M, Casasnovas JM, Kaplan G. Molecular Basis for the Differential Function of HAVCR1 Mucin Variants. Biomedicines 2024; 12:2643. [PMID: 39595207 PMCID: PMC11592376 DOI: 10.3390/biomedicines12112643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The hepatitis A virus (HAV) cellular receptor 1 (HAVCR1) is a type I integral membrane glycoprotein discovered in monkeys and humans as a HAV receptor. HAVCR1 contains an N-terminal immunoglobulin-like variable domain (IgV) followed by a mucin-like domain (Muc), a transmembrane domain, and a cytoplasmic tail with a canonical tyrosine kinase phosphorylation site. The IgV binds phosphatidylserine on apoptotic cells, extracellular vesicles, and enveloped viruses. Insertions/deletions at position 156 (156ins/del) of the Muc were associated in humans with susceptibility to atopic, autoimmune, and infectious diseases. However, the molecular basis for the differential function of the HAVCR1 variants is not understood. Methods: We used mutagenesis, apoptotic cell binding, and signal transduction analyses to study the role of the 156ins/del in the function of HAVCR1. Results: We found that the HAVCR1 variant without insertions at position 156 (156delPMTTTV, or short-HAVCR1) bound more apoptotic cells than that containing a six amino acid insertion (156insPMTTTV, or long-HAVCR1). Furthermore, short-HAVCR1 induced stronger cell signaling and phagocytosis than long-HAVCR1. Conclusions: Our data indicated that the 156ins/del determine how the IgV is presented at the cell surface and modulate HAVCR1 binding, signaling, and phagocytosis, suggesting that variant-specific targeting could be used as therapeutic interventions to treat immune and infectious diseases.
Collapse
Affiliation(s)
- Abdolrahim Abbasi
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Maria Isabel Costafreda
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Angela Ballesteros
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Jerome Jacques
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Cecilia Tami
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - Mohanraj Manangeeswaran
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| | - José M. Casasnovas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología and Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Cantoblanco, 28049 Madrid, Spain;
| | - Gerardo Kaplan
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (A.A.); (A.B.); (J.J.); (C.T.); (M.M.)
| |
Collapse
|
41
|
Kunitake K, Mizuno T, Hattori K, Oneyama C, Kamiya M, Ota S, Urano Y, Kojima R. Barcoding of small extracellular vesicles with CRISPR-gRNA enables comprehensive, subpopulation-specific analysis of their biogenesis and release regulators. Nat Commun 2024; 15:9777. [PMID: 39562573 DOI: 10.1038/s41467-024-53736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important intercellular information transmitters in various biological contexts, but their release processes remain poorly understood. Herein, we describe a high-throughput assay platform, CRISPR-assisted individually barcoded sEV-based release regulator (CIBER) screening, for identifying key players in sEV release. CIBER screening employs sEVs barcoded with CRISPR-gRNA through the interaction of gRNA and dead Cas9 fused with an sEV marker. Barcode quantification enables the estimation of the sEV amount released from each cell in a massively parallel manner. Barcoding sEVs with different sEV markers in a CRISPR pooled-screening format allows genome-wide exploration of sEV release regulators in a subpopulation-specific manner, successfully identifying previously unknown sEV release regulators and uncovering the exosomal/ectosomal nature of CD63+/CD9+ sEVs, respectively, as well as the synchronization of CD9+ sEV release with the cell cycle. CIBER should be a valuable tool for detailed studies on the biogenesis, release, and heterogeneity of sEVs.
Collapse
Affiliation(s)
- Koki Kunitake
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Hattori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Institute of Science Tokyo, Kanagawa, Japan
| | - Sadao Ota
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
- FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
42
|
Rayamajhi S, Gibbs BK, Sipes J, Pathak HB, Bossmann SH, Godwin AK. Tracking Small Extracellular Vesicles Using a Minimally Invasive PicoGreen Labeling Strategy. ACS APPLIED BIO MATERIALS 2024; 7:7770-7783. [PMID: 39482871 DOI: 10.1021/acsabm.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted lipid bilayer delimited particles that mediate cellular communication. These tiny sacs of cellular information play an important role in cell communication and alter the physiological process under both normal and pathological conditions. As such, tracking EVs can provide valuable information regarding the basic understanding of cell communication, the onset of early malignancy, and biomarker discovery. Most of the current EV-tracking strategies are invasive, altering the natural characteristics of EVs by modifying the lipid bilayer with lipophilic dyes or surface proteins with fluorescent reporters. The invasive labeling strategies could alter the natural processes of EVs and thereby have major limitations for functional studies. Here, we report an alternative minimally invasive EV labeling strategy using PicoGreen (PG), a small molecule that fluoresces at 520 nm when bound to dsDNA. We show that PG binds to dsDNA associated with small EVs (50-200 nm), forming a stable and highly fluorescent PG-DNA complex in EVs (PG-EVs). In both 2D cell culture and 3D organoid models, PG-EV showed efficient tracking properties, including a high signal-to-noise ratio, time- and concentration-dependent uptake, and the ability to traverse a 3D environment. We further validated PG-EV tracking using dual-labeled EVs following two orthogonal labeling strategies: (1) Bioconjugation via surface amine labeling and (2) donor cell engineering via endogenously expressing mCherry-tetraspanin (CD9/CD63/CD81) reporter proteins. Our study has shown the feasibility of using PG-EV as an effective EV tracking strategy that can be applied for studying the functional role of EVs across multiple model systems.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Benjamin K Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
43
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
44
|
Wang C, Xiao L, Gao L, Wu J, Wang S, Zheng MM, Qin CT, Huang XG, Zhou L, Xu WJ, Li HG, Chen WL, Zhu LH, Jin X. Comparative proteomic analysis between tumor tissues and intratumoral exosomes from lung adenocarcinoma patients identifies PAFAH1B3 as an exosomal protein key for initiating metastasis in lung adenocarcinoma. Heliyon 2024; 10:e39859. [PMID: 39553628 PMCID: PMC11567031 DOI: 10.1016/j.heliyon.2024.e39859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Mounting evidence strongly indicates that exosomes are pivotal in the advancement of cancer, yet the overarching profile of exosomal proteins and their contribution to lung adenocarcinoma (LUAD) progression remain underexplored. In our investigation, we isolated exosomes from treatment-naive LUAD (n = 20) and paired normal adjacent tissues (NATs), and conducted integrated proteomic on the acquired exosomes and source tissues to ascertain origin characteristics and potential therapeutic targets of the exosomal proteins in LUAD. The omics data revealed the overall landscape of exosomal proteins from tissues in LUAD, underscoring the profound linkage between exosomal proteins and tumor metastasis. Integrated analysis indicated a significant overlap in protein species, demonstrating high concordance between exosomal proteins and those in their originating tissues. However, only a small subset showed significant positive correlation in protein abundance between exosomes and their source tissues. Notably, we pinpointed five proteins (DDX18, DNAJA3, PAFAH1B3, BAG6, and CAD). Significantly, platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3), an essential serine hydrolase within cellular metabolic processes, stood out as the singular protein closely associated with disease-free survival (DFS) of patients. Cell invasion and migration assays further substantiated that PAFAH1B3 promoted metastasis of LUAD via the exosomal release pathway. Furthermore, analysis of public databases validated elevated PAFAH1B3 expression in LUAD and linked it to poor patient survival outcomes. Overall, our research positioned PAFAH1B3 as a promising candidate for prognostic marker and potential therapeutic target in lung cancer treatment.
Collapse
Affiliation(s)
- Congcong Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Ling Xiao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ling Gao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Miao-Miao Zheng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Chen-Tai Qin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Xian-ge Huang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lei Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wei-jie Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - He-gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Li-hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| |
Collapse
|
45
|
Gu M, Xu X, Wang X, Wang Y, Zhao Y, Hu X, Zhu L, Deng Z, Han C. Target Ligand Separation and Identification of Isoforsythiaside as a Histone Lysine-Specific Demethylase 1 Covalent Inhibitor Against Breast Cancer Metastasis. J Med Chem 2024; 67:19874-19888. [PMID: 39499621 DOI: 10.1021/acs.jmedchem.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is hyperactive in breast cancer, which is associated with the metastasis of the tumor. Current irreversible LSD1 inhibitors are all synthesized by covalently binding to the flavin adenine dinucleotide cofactor, which often have side effects due to the high affinity for a variety of targets. Here, we identified isoforsythiaside (IFA), a natural phenylpropanoid glycoside isolated from Forsythia suspensa, as a novel covalent inhibitor of LSD1. The target ligand fishing technique and LC-MS/MS analysis identified that IFA could covalently bind to the Ser817 residue of LSD1 by α,β-unsaturated ketone moiety to block the amine oxidase-like domain of LSD1. Moreover, RBMS3/Twist1/MMP2, the downstream signaling pathway of LSD1, was activated after IFA treatment to inhibit the metastasis of MDA-MB-231 cells in vitro and in vivo. This study provided novel molecular templates for development of LSD1 covalence-binding inhibitor and laid a foundation for developing agents against breast carcinoma metastasis for targeting LSD1.
Collapse
Affiliation(s)
- Mengzhen Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqing Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxian Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Zhenzhong Deng
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
46
|
Qin X, Niu R, Tan Y, Huang Y, Ren W, Zhou W, Wu H, Zhang J, Xu M, Zhou X, Guan H, Zhu X, Chen Y, Cao K. Exosomal PSM-E inhibits macrophage M2 polarization to suppress prostate cancer metastasis through the RACK1 signaling axis. Biomark Res 2024; 12:138. [PMID: 39538297 PMCID: PMC11562865 DOI: 10.1186/s40364-024-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND It is well-established that understanding the mechanism of prostate cancer (PCa)-associated metastasis is paramount for improving its prognosis. Metastasis is known to involve the communication between tumor-associated macrophages (TAMs) and tumor cells. Exosomes are crucial in mediating this intercellular communication within the tumor microenvironment. Nonetheless, the role of exosomal proteins in PCa metastasis is not yet fully understood. Here, we investigated the mechanisms of prostate cancer-derived exosomal PSM-E on regulating macrophage M2 polarization to suppress tumor invasion and metastasis. METHODS PSM-E levels in exosomes were detected by transmission electron microscopy and Western blotting analysis. The diagnostic value of urine-derived exosomal PSM-E in PCa were evaluated by LC-MS/MS, correlation analysis, and ROC curves analysis. The mechanisms underlying the inhibitory effect of exosomal PSM-E on the M2 polarization of macrophages was investigated by co-IP, IHC staining, and PCa tumorigenesis model, etc. RESULTS: We revealed that exosomal PSM-E is upregulated in exosomes derived from the serum and urine of PCa patients. Clinically, an elevated exosomal PSM-E expression in urine is significantly correlated with an advanced pathological tumor stage and a high Gleason score. Our research also revealed that exosomal PSM-E inhibits prostate cancer cell proliferation, invasion, and metastasis by suppressing macrophage polarization in vitro and in vivo. Furthermore, we provided compelling evidence that exosomal PSM-E inhibits M2 polarization of macrophages by recruiting RACK1 and suppressing the FAK and ERK signaling pathways, consequently suppressing PCa invasion and metastasis. Furthermore, we found that the protease-associated domain of PSM-E and the fourth tryptophan-aspartate repeat of RACK1 are crucial for the interaction between PSM-E and RACK1. CONCLUSIONS Notably, exosomes carrying PSM-E from PCa urine could potentially serve as a biomarker for PCa, and targeting exosomal PSM-E may represent a strategy for preventing tumor progression in this patient population.
Collapse
Affiliation(s)
- Xingliang Qin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruoxi Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Yongyao Tan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Yuxin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weishu Ren
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Weiwei Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Huiquan Wu
- Guangzhou Jishiyuan Bio-technology Co., Ltd., Guangzhou, 510700, China
| | - Junlong Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingze Xu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongyu Guan
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xun Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
- Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
| | - Yu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Kaiyuan Cao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
- Research Center for Clinical Laboratory Standard, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
- Guangzhou Jishiyuan Bio-technology Co., Ltd., Guangzhou, 510700, China.
| |
Collapse
|
47
|
Wagner M, Hicks C, El-Omar E, Combes V, El-Assaad F. The Critical Role of Host and Bacterial Extracellular Vesicles in Endometriosis. Biomedicines 2024; 12:2585. [PMID: 39595151 PMCID: PMC11591939 DOI: 10.3390/biomedicines12112585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Endometriosis is a chronic, inflammatory, oestrogen-dependent disorder that is defined by the presence of endometrium-like tissue in the extra-uterine environment. It is estimated to affect approximately 10% of women of reproductive age, and the cause is still largely unknown. The heterogenous nature and complex pathophysiology of the disease results in diagnostic and therapeutic challenges. This review examines the emerging role of host extracellular vesicles (EVs) in endometriosis development and progression, with a particular focus on bacterial extracellular vesicles (BEVs). EVs are nano-sized membrane-bound particles that can transport bioactive molecules such as nucleic acids, proteins, and lipids, and therefore play an essential role in intercellular communication. Due to their unique cargo composition, EVs can play a dual role, both in the disease pathogenesis and as biomarkers. Both host and bacterial EVs (HEVs and BEVs) have been implicated in endometriosis, by modulating inflammatory responses, angiogenesis, tissue remodelling, and cellular proliferation within the peritoneal microenvironment. Understanding the intricate mechanisms underlying EVs in endometriosis pathophysiology and modulation of the lesion microenvironment may lead to novel diagnostic tools and therapeutic targets. Future research should focus on uncovering the specific cargo, the inter-kingdom cell-to-cell interactions, and the anti-inflammatory and anti-microbial mechanisms of both HEVs and BEVs in endometriosis in the hope of discovering translational findings that could improve the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Michaela Wagner
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| | - Chloe Hicks
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| | - Valery Combes
- Malaria and Microvesicles Research Group, School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
| | - Fatima El-Assaad
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| |
Collapse
|
48
|
Ma X, Peng L, Zhu X, Chu T, Yang C, Zhou B, Sun X, Gao T, Zhang M, Chen P, Chen H. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2024:10.1007/s10495-024-02036-2. [PMID: 39522104 DOI: 10.1007/s10495-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) serve as critical mediators of intercellular communication, encompassing exosomes, microvesicles, and apoptotic vesicles that play significant roles in diverse physiological and pathological contexts. Numerous studies have demonstrated that EVs derived from mesenchymal stem cells (MSC-EVs) play a pivotal role in facilitating tissue and organ repair, alleviating inflammation and apoptosis, enhancing the proliferation of endogenous stem cells within tissues and organs, and modulating immune function-these functions have been extensively utilized in clinical applications. The precise classification, isolation, and identification of MSC-EVs are essential for their clinical applications. This article provides a comprehensive overview of the biological properties of EVs, emphasizing both their advantages and limitations in isolation and identification methodologies. Additionally, we summarize the protein markers associated with MSC-EVs, emphasizing their significance in the treatment of various diseases. Finally, this article addresses the current challenges and dilemmas in developing clinical applications for MSC-EVs, aiming to offer valuable insights for future research.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lanwei Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Changcheng Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiangwei Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China.
| |
Collapse
|
49
|
Ferguson L, Upton HE, Pimentel SC, Jeans C, Ingolia NT, Collins K. Improved precision, sensitivity, and adaptability of Ordered Two-Template Relay cDNA library preparation for RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622813. [PMID: 39574714 PMCID: PMC11581009 DOI: 10.1101/2024.11.09.622813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sequencing RNAs that are biologically processed or degraded to less than ~100 nucleotides typically involves multi-step, low-yield protocols with bias and information loss inherent to ligation and/or polynucleotide tailing. We recently introduced Ordered Two-Template Relay (OTTR), a method that captures obligatorily end-to-end sequences of input molecules and, in the same reverse transcription step, also appends 5' and 3' sequencing adapters of choice. OTTR has been thoroughly benchmarked for optimal production of microRNA, tRNA and tRNA fragments, and ribosome-protected mRNA footprint libraries. Here we sought to characterize, quantify, and ameliorate any remaining bias or imprecision in the end-to-end capture of RNA sequences. We introduce new metrics for the evaluation of sequence capture and use them to optimize reaction buffers, reverse transcriptase sequence, adapter oligonucleotides, and overall workflow. Modifications of the reverse transcriptase and adapter oligonucleotides increased the 3' and 5' end-precision of sequence capture and minimized overall library bias. Improvements in recombinant expression and purification of the truncated Bombyx mori R2 reverse transcriptase used in OTTR reduced non-productive sequencing reads by minimizing bacterial nucleic acids that compete with low-input RNA molecules for cDNA synthesis, such that with miRNA input of 3 picograms (less than 1 fmol), fewer than 10% of sequencing reads are bacterial nucleic acid contaminants. We also introduce a rapid, automation-compatible OTTR protocol that enables gel-free, length-agnostic enrichment of cDNA duplexes from unwanted adapter-only side products. Overall, this work informs considerations for unbiased end-to-end capture and annotation of RNAs independent of their sequence, structure, or post-transcriptional modifications.
Collapse
Affiliation(s)
- Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Present address: Addition Therapeutics, 201 Haskins Way, South San Francisco, CA 94080
| | - Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- Present address: NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016
| | - Chris Jeans
- MacroLab, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, USA
| |
Collapse
|
50
|
Xu F, Chen M, Lin Y, Zhou S, Li J, Yu Y, Xu J, Wu W, Chen Y, Zhang H, Wei Y, Wang W. Functional Three-Dimensional Zeolitic Imidazolate Framework with an Ordered Macroporous Structure for the Isolation of Extracellular Vesicles. Anal Chem 2024; 96:17640-17648. [PMID: 39440634 DOI: 10.1021/acs.analchem.4c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) and their cargoes are increasingly being recognized as noninvasive diagnostic markers, necessitating the isolation of EVs from complex biological samples. Herein, a distearoyl phospholipid ethanolamine-functionalized single-crystal ordered macroporous three-dimensional zeolitic imidazolate framework (SOM-ZIF-8-DSPE) was developed, which combines the surface charge interaction of ZIF-8 with the synergistic effect of DSPE insertion into the phospholipid membrane of EVs to improve the isolating selectivity of EV capture. The materials have porous structures larger than 300 nm in diameter, providing enough space and active sites to trap EVs. Benefiting from this feature, the entire isolation process takes only 10 min and is well compatible with the subsequent analysis of RNA in EVs. Consequently, 10 upregulated miRNA of plasma EVs in the primary colorectal cancer (pCRC) patients is found over the healthy donors, and 6 upregulated miRNA of plasma EVs in the metastatic colorectal cancer (mCRC) patients over pCRC patients. These findings suggest that the isolation of EV-based SOM-ZIF-8-DSPE is a promising strategy to identify biomarkers for disease diagnosis, such as miRNAs in plasma EVs for the early detection of CRC.
Collapse
Affiliation(s)
- Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shenyue Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuanyuan Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jiayu Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wen Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinshuang Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|