1
|
Xiao L, Ping Y, Sun S, Xu R, Zhou X, Wu H, Qi L. TMT-based quantitative proteomics unveils the protective mechanism of Polygonatum sibiricum polysaccharides on septic acute liver injury. J Proteomics 2025; 310:105331. [PMID: 39427987 DOI: 10.1016/j.jprot.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Polygonatum sibiricum polysaccharides (PSP) has been shown to possess multiple pharmacological functions. Our previous study found that PSP could protect against acute liver injury during sepsis via inhibiting inflammatory response. However, the underlying molecular mechanism by which PSP alleviates septic acute liver injury (SALI) remains unknown. Herein, TMT-based quantitative proteomics was utilized to explore the essential pathways and proteins involved in the protective effects of PSP on SALI. The results revealed that 632 and 176 differentially expressed proteins (DEPs) were identified in Model_vs_Control and PSP_vs_Model, respectively. GO annotation showed similar trends, suggesting that these DEPs were primarily involved in the cellular anatomical entity in Cellular Component, the cellular processe and the biological regulation in Biological Process, the binding and the catalytic activity in Molecular Function. Meanwhile, KEGG enrichment analysis implied that four common pathways, including the NF-κB signaling pathway, the IL-17 signaling pathway, the TNF signaling pathway and the Toll-like receptor signaling pathway, were closely associated with the pathogenesis of sepsis among the top 20 remarkably enriched pathways in Model_vs_Control_up and PSP_vs_Model_down. Moreover, the levels of several common DEPs, including TLR2, IKKi, JunB and CXCL9, were validated by WB, which was in line with the results of proteomics. Therefore, the protective effects of PSP on SALI might exert via blocking the above-mentioned inflammation pathways. Significance: PSP, recognized as a key component of Polygonatum sibiricum, exhibits a range of pharmacological functions. Our previous study found that PSP could protect against SALI, yet failing to clarify the mechanism of action. To reveal the underlying molecular mechanism involved in the protective effects of PSP on SALI, a TMT-based quantitative proteomic analysis was performed to detect and analyse the DEPs in liver tissue among the control group, the model group and the PSP group in this study. The results provide theoretical references for exploring the action mechanism of drugs and facilitate the comprehensive utilization of PSP. SIGNIFICANCE: PSP have been identified as the most crucial components of Polygonatum sibiricum with various pharmacological functions. Our previous study found that PSP could protect against SALI, but the mechanism of action remains unknown. To reveal the underlying molecular mechanism involved in the protective effects of PSP on SALI, a TMT-based quantitative proteomic analysis was performed to detect and analyse the DEPs in liver tissue among the control group, the model group and the PSP group in this study. The results provide theoretical references for exploring the action mechanism of drugs and facilitate the comprehensive utilization of PSP.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Yinuo Ping
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Shangshang Sun
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ran Xu
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xinru Zhou
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Hongyan Wu
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Liang Qi
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
2
|
He J, Li L, Yan X, Li Y, Wang Y, Huang J, Li C, Liu W, Qi J. Sappanone A enhances hepatocyte proliferation in lipopolysaccharide-induced acute liver injury in mice by promoting injured hepatocyte apoptosis and regulating macrophage polarization. Int Immunopharmacol 2024; 142:113055. [PMID: 39243556 DOI: 10.1016/j.intimp.2024.113055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES Lipopolysaccharide (LPS), also known as endotoxin, is the main toxic component of the cell wall of gram negative bacteria, which is released after bacterial death and widely exists in the living environment. Human exposure to endotoxin may cause sepsis. The occurrence of septic liver injury is a prominent factor contributing to mortality in patients with sepsis. The purpose of this study is to explore the role of Sappanone A (SA), a homoisoflavonoid isolated from the heartwood of Caesalpinia sappan Linn., in LPS-induced acute liver injury (ALI). METHODS An LPS-induced ALI mouse model was used to evaluate the effects of SA on septic ALI, and murine cells were treated with LPS to explore the mechanisms underlying SA-provided effects. RESULTS Treating SA substantially improved LPS-induced ALI. We also performed in silico prediction and RNA-seq analysis to elucidate SA's potential mechanisms of action. The terms generated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of predicted target proteins of SA include inflammation, oxidative stress, and apoptosis; protein-protein interaction network (PPI) analysis indicated that fas binding protein 1 (Fbf1) has the strongest correlation with SA. Consistently, RNA-seq analysis displayed that SA administration regulates cell apoptosis and inflammatory responses, which was further confirmed by checking related markers in livers of mice and murine cells challenged with LPS. Of note, SA significantly decreased the expression of Fbf1 in mouse livers, and promoted apoptosis of injured hepatocytes and hepatocyte proliferation, which were substantially abolished by Fbf1 knockdown in AML12 cells. Besides, SA could increase M2 phenotype polarization but inhibit M1 macrophage polarization in LPS-induced ALI in mice. CONCLUSION SA enhances hepatocyte proliferation and liver repair in LPS-induced ALI in mcie by promoting injured hepatocyte apoptosis through Fbf1 inhibition and regulating macrophage polarization.
Collapse
Affiliation(s)
- Jiale He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Lanqian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Yehaomin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Yufei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Jiabin Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Chutao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Wenwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| | - Jing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, China.
| |
Collapse
|
3
|
Chen X, Dumbuya JS, Du J, Xue L, Zeng Q. Bovine pulmonary surfactant alleviates inflammation and epithelial cell apoptosis in the early phase of lipopolysaccharide-induced acute lung injury in rats. Biotechnol Genet Eng Rev 2024; 40:4361-4379. [PMID: 37154048 DOI: 10.1080/02648725.2023.2210452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
We investigate the impact of bovine pulmonary surfactant (PS) on LPS-induced ALI in vitro and in vivo to improve recognition and prevent mortality in sepsis-induced ALI. Primary alveolar type II (AT2) cells were treated with LPS alone or in combination with PS. Cell morphology observation, CCK-8 proliferation assay, flow cytometry apoptosis assay, and ELISA for inflammatory cytokine levels were performed at different time points after treatment. An LPS-induced ALI rat model was established and treated with vehicle or PS. Lung wet/dry weight ratio, histopathological changes, lung function parameters, and serum inflammatory cytokine levels were examined 6 h after PS treatment. Survival analysis by Kaplan-Meier method. RNA sequencing was conducted to identify LPS-induced differentially expressed genes in rat lungs. Proapoptotic gene expression in rat lungs was determined by Western blot. LPS significantly inhibited cell proliferation while promoting apoptosis of AT2 cells starting 2 h after treatment, accompanied by a significant increase in inflammatory cytokine production; PS reversed these effects. PS decreased the lung wet/dry ratio in septic rats, histological abnormalities, alterations in lung function parameters, and inflammatory cytokines production; while improving the overall survival of rats. LPS-induced differentially expressed genes were closely associated with apoptosis. PS attenuated LPS-induced upregulation of proapoptotic gene expression starting 2 h after treatment in AT2 cells while restoring lung ATPase activity in vivo. Bovine PS alleviates LPS-induced ALI in the early phase, possibly by suppressing inflammation and AT2 cell apoptosis, as a preemptive therapeutic agent for managing sepsis-induced ALI.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Du
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijun Xue
- Department of neonatology, Songgang People's Hospital, Shenzhen, China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Velayati A, Vafa MR, Sani'ee N, Darabi Z. Therapeutic effects and mechanisms of action of ginger and its bioactive components on inflammatory response, oxidative stress, the immune system, and organ failure in sepsis: a comprehensive systematic review. Nutr Rev 2024; 82:1800-1819. [PMID: 38102801 DOI: 10.1093/nutrit/nuad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
CONTEXT Sepsis refers to a usually lethal medical condition that results from an extreme, uncontrolled, and multifaceted immune system response to infection. Ginger (Zingiber officinale Roscoe; Zingiberaceae) is 1 of the most popular spice. It is widely used as a traditional herb and as medicine in the treatment of some inflammatory conditions, such as vomiting, pain, cancer, diabetes, and cardiovascular diseases, because of its varied medical characteristics, including anti-inflammatory, antioxidant, antimicrobial, and antitumor effects. OBJECTIVE The aim of this study was to demonstrate the potential roles of ginger and its elements in sepsis. DATA SOURCES This systematic review article was conducted and reported by following the guideline of the Preferred Reporting for Systematic Reviews (PRISMA). Electronic databases, including Web of Sciences, Google Scholar, PubMed, Scopus, and ProQuest, were searched using related key words up to January 2023. DATA EXTRACTION Among 141 found articles, 48 eligible articles were included and reviewed for their details. Data were extracted, including the first author's name, year of publication, name of origin country, study design, number and type of subject, dosage and type of intervention, study duration, assay, and main results. DATA ANALYSIS The data from the included articles showed that ginger and its bioactive elements, such as gingerol (1-300 µg/mL or 1-100 mg/kg for 24 hours to 14 days), shogaol (0.2-100 µg/mL or 10-40 mg/kg body weight for 24 hours to 8 days), gingerdione (1-100 µg/mL for 20-48 hours), and zingerone (2-20 µM for 4 hours to 8 days), can be effective in sepsis via suppressing the gene expression and production of pro-inflammatory cytokines and oxidant agents, downregulating immune response, and protecting against sepsis-induced organ failures in experimental and animal models. CONCLUSION Ginger has potential therapeutic effects in sepsis. Human clinical trials are recommended. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023373613.
Collapse
Affiliation(s)
- Aynaz Velayati
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Sani'ee
- Medical Library and Information Science, Asadabad School Medical Sciences, Asadabad, Iran
| | - Zahra Darabi
- Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Zhou Y, He LP, Qi YH, Huang Y, Hu BQ, Liu JL, Zeng QB, Song JC. Diagnostic value of tissue plasminogen activator-inhibitor complex in sepsis-induced liver injury: A single-center retrospective case-control study. World J Hepatol 2024; 16:1255-1264. [DOI: 10.4254/wjh.v16.i11.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/05/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Sepsis often causes severe liver injury and leads to poor patient outcomes. Early detection of sepsis-induced liver injury (SILI) and early treatment are key to improving outcomes.
AIM To investigate the clinical characteristics of SILI patients and analyze the associated risk factors, to identify potential sensitive biomarkers.
METHODS Retrospective analysis of clinical data from 546 patients with sepsis treated in the intensive care unit of the 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force between May 2018 and December 2022. The patients were divided into the sepsis group (n = 373) and SILI group (n = 173) based on the presence of acute liver injury within 2 hours of admission. We used the random forest algorithm to analyze risk factors and assessed potential diagnostic markers of SILI using the area under the receiver operating characteristic curve, Kaplan-Meier survival curves, subgroup analysis and correlation analysis.
RESULTS Compared with the sepsis group, tissue plasminogen activator-inhibitor complex (t-PAIC) levels in serum were significantly higher in the SILI group (P < 0.05). Random forest results showed that t-PAIC was an independent risk factor for SILI, with an area under the receiver operating characteristic curve of 0.862 (95% confidence interval: 0.832-0.892). Based on the optimal cut-off value of 11.9 ng/mL, patients at or above this threshold had significantly higher levels of lactate and Acute Physiology and Chronic Health Evaluation II score. The survival rate of these patients was also significantly worse (hazard ratio = 2.2, 95% confidence interval: 1.584-3.119, P < 0.001). Spearman’s correlation coefficients were 0.42 between t-PAIC and lactate, and 0.41 between t-PAIC and aspartate transaminase. Subgroup analysis showed significant differences in t-PAIC levels between patients with different severity of liver dysfunction.
CONCLUSION T-PAIC can serve as a diagnostic indicator for SILI, with its elevation correlated with the severity of SILI.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Critical Care Medicine, Changcheng Hospital Affiliated to Nanchang University, Nanchang 330002, Jiangxi Province, China
- Department of Critical Care Medicine, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang 330002, Jiangxi Province, China
| | - Long-Ping He
- Department of Critical Care Medicine, Changcheng Hospital Affiliated to Nanchang University, Nanchang 330002, Jiangxi Province, China
| | - Ying-Han Qi
- Department of Critical Care Medicine, Changcheng Hospital Affiliated to Nanchang University, Nanchang 330002, Jiangxi Province, China
| | - Yu Huang
- Department of Critical Care Medicine, Changcheng Hospital Affiliated to Nanchang University, Nanchang 330002, Jiangxi Province, China
| | - Bing-Qin Hu
- Department of Critical Care Medicine, Changcheng Hospital Affiliated to Nanchang University, Nanchang 330002, Jiangxi Province, China
| | - Jia-Ling Liu
- Department of Critical Care Medicine, Changcheng Hospital Affiliated to Nanchang University, Nanchang 330002, Jiangxi Province, China
| | - Qing-Bo Zeng
- Intensive Care Unit, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang 330002, Jiangxi Province, China
| | - Jing-Chun Song
- Department of Critical Care Medicine, Changcheng Hospital Affiliated to Nanchang University, Nanchang 330002, Jiangxi Province, China
- Department of Critical Care Medicine, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang 330002, Jiangxi Province, China
| |
Collapse
|
6
|
Qian YY, Huang FF, Chen SY, Zhang WX, Wang Y, Du PF, Li G, Ding WB, Qian L, Zhan B, Chu L, Jiang DH, Yang XD, Zhou R. Therapeutic effect of recombinant Echinococcus granulosus antigen B subunit 2 protein on sepsis in a mouse model. Parasit Vectors 2024; 17:467. [PMID: 39548530 DOI: 10.1186/s13071-024-06540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sepsis is a potentially fatal systemic inflammatory response syndrome (SIRS) that threatens millions of lives worldwide. Echinococcus granulosus antigen B (EgAgB) is a protein released by the larvae of the tapeworm. This protein has been shown to play an important role in modulating host immune response. In this study we expressed EgAgB as soluble recombinant protein in E. coli (rEgAgB) and explored its protective effect on sepsis. METHODS The sepsis model was established by cecal ligation and puncture (CLP) procedure in BALB/c mice. The therapeutic effect of rEgAgB on sepsis was performed by interperitoneally injecting 5 µg rEgAgB in mice with CLP-induced sepsis and observing the 72 h survival rate after onset of sepsis. The proinflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-6] and regulatory cytokines [IL-10, transforming growth factor beta (TGF-β)] were measured in sera, and the histopathological change was observed in livers, kidneys, and lungs of septic mice treated with rEgAgB compared with untreated mice. The effect of rEgAgB on the macrophage polarization was performed in vitro by incubating rEgAgB with peritoneal macrophages. The levels of TLR2 and MyD88 were measured in these tissues to determine the involvement of TLR-2/MyD88 in the sepsis-induced inflammatory signaling pathway. RESULTS In vivo, we observed that treatment with rEgAgB significantly increased the survival rate of mice with CLP-induced sepsis up to 72 h while all mice without treatment died within the same period. The increased survival was associated with reduced pathological damage in key organs such as liver, lung, and kidneys. It was supported by the reduced proinflammatory cytokine levels and increased regulatory cytokine expression in peripheral blood and key organ tissues. Further study identified that treatment with rEgAgB promoted macrophage polarization from classically activated macrophage (M1) to regulatory M2-like macrophage via inhibiting TLR2/MyD88 signal pathway. CONCLUSIONS The therapeutic effects of rEgAgB on mice with sepsis was observed in a mice model that was associated with reduced inflammatory responses and increased regulatory responses, possibly through inducing polarization of macrophages from proinflammatory M1 to regulatory M2 phenotype through inhibiting TLR2/MyD88 inflammatory pathway.
Collapse
Affiliation(s)
- Ya-Yun Qian
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- First People's Hospital of Changzhou, Changzhou, 213000, China
| | - Fei-Fei Huang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Si-Yu Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214028, China
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei-Xiao Zhang
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Yin Wang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Peng-Fei Du
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Gen Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Wen-Bo Ding
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Lei Qian
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liang Chu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China
- Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Dong-Hui Jiang
- Department of Critical Care Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.
- Department of Critical Care Medicine, First People's Hospital of Haidong, Haidong, 810600, China.
| | - Xiao-Di Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical University, Bengbu, 233000, China.
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
7
|
Sepehrinia M, Yousefi F, Valibeygi A, Alkamel A. Necrotizing fasciitis resembled acute coronary syndrome: A case report. Clin Case Rep 2024; 12:e9513. [PMID: 39493788 PMCID: PMC11527836 DOI: 10.1002/ccr3.9513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024] Open
Abstract
Chest pain is a frequent complaint in emergency departments, with various differential diagnoses from benign to life-threatening. Hereby, we described a 60-year-old man presented with chest pain and hypotension who initially misdiagnosed as acute coronary syndrome, but was ultimately diagnosed with necrotizing fasciitis. This case highlights the importance of considering rare causes of chest pain.
Collapse
Affiliation(s)
- Matin Sepehrinia
- Student Research CommitteeFasa University of Medical SciencesFasaIran
- Non‐Communicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Faeze Yousefi
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | - Adib Valibeygi
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | - Abdulhakim Alkamel
- Non‐Communicable Diseases Research CenterFasa University of Medical SciencesFasaIran
- Department of Cardiovascular Disease, Faculty of MedicineFasa University of Medical SciencesFasaIran
| |
Collapse
|
8
|
Li X, Liu S, Xie J, Liu L, Duan C, Yang L, Wang Y, Wu Y, Shan N, Zhang Y, Zhang Y, Zhuang R. Salvianolic acid B improves the microcirculation in a mouse model of sepsis through a mechanism involving the platelet receptor CD226. Br J Pharmacol 2024. [PMID: 39443080 DOI: 10.1111/bph.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/03/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Salvianolic acid B (SalB) demonstrates diverse clinical applications, particularly in cardiovascular and cerebral protection. This study primarily investigated the effects of SalB on sepsis. EXPERIMENTAL APPROACH The model of sepsis via caecal ligation puncture (CLP) was established in male C57BL/6 mice. Therapeutic effects of SalB on hepatic and pulmonary injury, inflammatory responses and microcirculatory disturbances in sepsis were evaluated. Platelet aggregation and adhesion were measured via flow cytometry and an adhesion test. After overexpression of platelet-related activating molecules by 293T cells, the efficient binding of SalB and platelet CD226 molecules was further evaluated. Finally, neutralizing antibody experiments were used to assess the mechanism of SalB in alleviating the progression of sepsis. KEY RESULTS SalB mitigated hepatic and pulmonary impairments, reduced inflammatory cytokine levels and enhanced mesenteric microvascular blood flow in septic mice. SalB enhanced CLP-induced reduction of platelet count and platelet pressure cumulative volume. SalB reduced platelet adhesion to endothelial cells and platelet aggregation to leukocytes. A high binding efficiency was observed between SalB and the platelet adhesion molecule CD226. Ex vivo, interactions between SalB and platelets from CD226-knockout mice were markedly decreased. In vivo administration of CD226 neutralizing antibodies significantly delayed disease progression and enhanced mesenteric microcirculation in septic mice. CONCLUSION AND IMPLICATIONS In our murine model of sepsis, treatment with SalB improved the microcirculatory disturbance and hindered the progression of sepsis by inhibiting platelet CD226 function. Our results suggest SalB is a promising therapeutic approach to the treatment of sepsis.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Shanshou Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiangang Xie
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yilin Wu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Niqi Shan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yun Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
10
|
Hanieh H, Alfwuaires MA, Abduh MS, Abdrabu A, Qinna NA, Alzahrani AM. Protective Effects of a Dihydrodiazepine Against Endotoxin Shock Through Suppression of TLR4/NF-κB/IRF3 Signaling Pathways. Inflammation 2024:10.1007/s10753-024-02160-w. [PMID: 39400777 DOI: 10.1007/s10753-024-02160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Sepsis and septic shock are life-threatening systemic inflammatory conditions and among the most frequent causes of morbidity and mortality globally. Preclinical evidence has identified a number of diazepine-based compounds with therapeutic potential in inflammatory diseases. However, the potential anti-inflammatory properties of diazepines in the overwhelming immune response during sepsis have been rarely examined. Thus, the current study aimed to identify a new diazepine compound with therapeutic potential in sepsis. Assessing the inflammatory response of macrophages to Lipopolysaccharides (LPS) in vitro identified 2-[7-(trifluoromethyl)-2,3-dihydro-1H-1,4-diazepin-5-yl]phenol (2-TDDP) as a potential anti-inflammatory agent. It reduced secretion of Interleukin-1β (IL-1β), IL-6, IL-12p70, IL-18, Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), IFN-β, and increased the secretion of IL-10. In a mouse model of LPS-induced endotoxin shock, 2-TDDP reduced mortality and attenuated inflammation-induced tissue injury in the spleen, liver, kidney, and lung. This was accompanied by reduced serum levels of IL-1β, IL-6, IL-12p70, TNF-α, IFN-γ, IFN-β, and increased levels of IL-10. Importantly, 2-TDDP suppressed the Toll-like receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) and TLR4/Interferon regulatory factor 3 (IRF3) signaling pathways through a reduction in the expression of TLR4, Myeloid differentiation primary response 88 (MyD88), P65, and TNF receptor-associated factor 3 (Traf3). Moreover, 2-TDDP suppressed the expression of CD86, Programmed death-ligand 1 (PD-L1) and C5a receptor (C5aR), but not Major histocompatibility complex II (MHCII). Analysis of splenic lymphocyte populations revealed a decrease in the number of CD4+, CD8+, and B cells. Collectively, these findings introduced the dihydrodiazepine 2-TDDP as a new anti-inflammatory agent with potent therapeutic potential in endotoxin shock, paving an avenue for future clinical application.
Collapse
Affiliation(s)
- Hamza Hanieh
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan.
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofuf, Saudi Arabia
| | - Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Alyaa Abdrabu
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofuf, Saudi Arabia
| |
Collapse
|
11
|
Lee HC, Park SH, Jeong HM, Shin G, Lim SI, Kim J, Shim J, Park YM, Song KS. LPS-induced systemic inflammation is suppressed by the PDZ motif peptide of ZO-1 via regulation of macrophage M1/M2 polarization. eLife 2024; 13:RP95285. [PMID: 39377568 PMCID: PMC11460976 DOI: 10.7554/elife.95285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
The gram-negative bacterium lipopolysaccharide (LPS) is frequently administered to generate models of systemic inflammation. However, there are several side effects and no effective treatment for LPS-induced systemic inflammation. PEGylated PDZ peptide based on zonula occludens-1 (ZO-1) was analyzed for its effects on systemic inflammation induced by LPS. PDZ peptide administration led to the restoration of tissue injuries (kidney, liver, and lung) and prevented alterations in biochemical plasma markers. The production of pro-inflammatory cytokines was significantly decreased in the plasma and lung BALF in the PDZ-administered mice. Flow cytometry analysis revealed the PDZ peptide significantly inhibited inflammation, mainly by decreasing the population of M1 macrophages, and neutrophils (immature and mature), and increasing M2 macrophages. Using RNA sequencing analysis, the expression levels of the NF-κB-related proteins were lower in PDZ-treated cells than in LPS-treated cells. In addition, wild-type PDZ peptide significantly increased mitochondrial membrane integrity and decreased LPS-induced mitochondria fission. Interestingly, PDZ peptide dramatically could reduce LPS-induced NF-κB signaling, ROS production, and the expression of M1 macrophage marker proteins, but increased the expression of M2 macrophage marker proteins. These results indicated that PEGylated PDZ peptide inhibits LPS-induced systemic inflammation, reducing tissue injuries and reestablishing homeostasis, and may be a therapeutic candidate against systemic inflammation.
Collapse
Affiliation(s)
- Hyun-Chae Lee
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| | - Sun-Hee Park
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| | - Hye Min Jeong
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| | - Goeun Shin
- Department of Chemical Engineering, Pukyong National UniversityBusanRepublic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National UniversityBusanRepublic of Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of MedicineBusanRepublic of Korea
| | - Jaewon Shim
- Department of Biochemistry, Kosin University College of MedicineBusanRepublic of Korea
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, College of Life Sciences, Sejong UniversitySeoulRepublic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| |
Collapse
|
12
|
Ren G, Liu R, Mai H, Yin G, Ding F, Wang C, Chen S, Lan X. GAB1 attenuates lipopolysaccharide‑mediated endothelial dysfunction via regulation of SOCS3. Exp Ther Med 2024; 28:400. [PMID: 39171145 PMCID: PMC11336802 DOI: 10.3892/etm.2024.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Endothelial dysfunction is a crucial pathogenetic mechanism for sepsis. GRB2-associated binder 1 (GAB1) alleviates sepsis-induced multi-organ damage; however, to the best of our knowledge, its function in endothelial dysfunction in sepsis remains unclear. HUVECs were induced by lipopolysaccharide (LPS) to simulate endothelial cell injury under sepsis. Cell transfection was conducted to achieve GAB1 overexpression or suppressor of cytokine signaling 3 (SOCS3) knockdown. The expression levels of GAB1 and SOCS3 were detected by reverse transcription-quantitative PCR and western blotting. Cell viability, apoptosis and migration were assessed using Cell Counting Kit-8, TUNEL and wound healing assays, respectively. The production of cytokines and nitric oxide (NO) was detected using commercial kits. The interaction between GAB1 and SOCS3 was confirmed using a co-immunoprecipitation assay. GAB1 was downregulated in LPS-induced HUVECs. However, GAB1 overexpression significantly mitigated LPS-induced cell viability decrease and apoptosis in HUVECs, accompanied by upregulation of Bcl2 expression, and downregulation of Bax and cleaved caspase-3 expression. GAB1 also inhibited the production of pro-inflammatory cytokines and increased NO level, increased the levels of endothelial NO synthase (eNOS) and phosphorylated (p)-eNOS, and promoted migration in LPS-induced HUVECs. However, SOCS3 knockdown partially weakened the effects of GAB1 overexpression on cell viability, apoptosis, inflammation, p-eNOS, eNOS expression and NO levels in LPS-induced HUVECs. In addition, GAB1 and SOCS3 regulated Janus kinase 2 (JAK2)/STAT3 signaling in LPS-induced HUVECs. In conclusion, GAB1 exerted a protective effect against LPS-induced endothelial cell apoptosis, inflammation and dysfunction by modulating the SOCS3/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Guangdong Ren
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Ran Liu
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Huiqiang Mai
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Gang Yin
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Fulai Ding
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Chunmei Wang
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Shuxin Chen
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xianqi Lan
- Emergency Department, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| |
Collapse
|
13
|
Zhu Q, Liao Y, Liao Z, Ye G, Shan C, Huang H. Compact bone mesenchymal stem cells-derived paracrine mediators for cell-free therapy in sepsis. Biochem Biophys Res Commun 2024; 727:150313. [PMID: 38954981 DOI: 10.1016/j.bbrc.2024.150313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuansong Liao
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Guogen Ye
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ce Shan
- Center of Growth Metabolism and Aging, State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
14
|
Shi P, Du Y, Zhang Y, Yang B, Guan Q, Jing Y, Tang H, Tang J, Yang C, Ge X, Shen S, Li L, Wu C. Ubiquitin-independent degradation of Bim blocks macrophage pyroptosis in sepsis-related tissue injury. Cell Death Dis 2024; 15:703. [PMID: 39349939 PMCID: PMC11442472 DOI: 10.1038/s41419-024-07072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Pyroptosis, a typical inflammatory cell death mode, has been increasingly demonstrated to have therapeutic value in inflammatory diseases such as sepsis. However, the mechanisms and therapeutic targets of sepsis remain elusive. Here, we reported that REGγ inhibition promoted pyroptosis by regulating members of the gasdermin family in macrophages. Mechanistically, REGγ directly degraded Bim, a factor of the Bcl-2 family that can inhibit the cleavage of GSDMD/E, ultimately preventing the occurrence of pyroptosis. Furthermore, cecal ligation and puncture (CLP)-induced sepsis model mice showed downregulation of REGγ at both the RNA and protein levels. Gasdermin-mediated pyroptosis was augmented in REGγ-knockout mice, and these mice exhibited more severe sepsis-related tissue injury. More importantly, we found that REGγ expression was downregulated in clinical sepsis samples, such as those from patients with Pseudomonas aeruginosa (PA) infection. Finally, PA-infected mice showed decreased REGγ levels in the lung. In summary, our study reveals that the REGγ-Bim-GSDMD/E pathway is a novel regulatory mechanism of pyroptosis in sepsis-related tissue injury.
Collapse
Affiliation(s)
- Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunyan Zhang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Bo Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiujing Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiming Jing
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Jianguo Tang
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Chunhui Yang
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Xiaoli Ge
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shihui Shen
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
| | - Lei Li
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
| | - Chunrong Wu
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200011, China.
- Department of Trauma-Emergency and Critical Care Medicine Center (TECCMC), Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
- Department of Emergency Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
15
|
Tao YL, Wang JR, Liu M, Liu YN, Zhang JQ, Zhou YJ, Li SW, Zhu SF. Progress in the study of the correlation between sepsis and intestinal microecology. Front Cell Infect Microbiol 2024; 14:1357178. [PMID: 39391883 PMCID: PMC11464487 DOI: 10.3389/fcimb.2024.1357178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Sepsis, a disease with high incidence, mortality, and treatment costs, has a complex interaction with the gut microbiota. With advances in high-throughput sequencing technology, the relationship between sepsis and intestinal dysbiosis has become a new research focus. However, owing to the intricate interplay between critical illness and clinical interventions, it is challenging to establish a causal relationship between sepsis and intestinal microbiota imbalance. In this review, the correlation between intestinal microecology and sepsis was summarized, and new therapies for sepsis intervention based on microecological target therapy were proposed, and the shortcomings of bacterial selection and application timing in clinical practice were addressed. In conclusion, current studies on metabolomics, genomics and other aspects aimed at continuously discovering potential probiotics are all providing theoretical basis for restoring intestinal flora homeostasis for subsequent treatment of sepsis.
Collapse
Affiliation(s)
- Yan-Lin Tao
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Ran Wang
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miao Liu
- Department of Respiratory Medicine, Dingzhou People’s Hospital, Dingzhou, Heibei, China
| | - Ya-Nan Liu
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shu-Fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
16
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024:S1359-6101(24)00068-6. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
17
|
Hu M, Du H, Xu Y, Wang Y. Gentiopicroside Ameliorates Sepsis-Induced Acute Lung Injury via Inhibiting Inflammatory Response. Can Respir J 2024; 2024:1068326. [PMID: 39268525 PMCID: PMC11392574 DOI: 10.1155/2024/1068326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Sepsis is a systemic inflammatory reaction syndrome caused by infections. Acute lung injury (ALI) occurs first and most frequently in patients with sepsis. Gentiopicroside (GPS), which originates mostly from Gentiana, is classified as a secoiridoid glycosides. Terpenoid glycosides have various biological effects, including liver protection, blood glucose and cholesterol level management, and anti-inflammatory and antitumor effects. However, presently, the biochemical foundation and mechanism of the anti-inflammatory effects of GPS in sepsis-induced ALI have not been explained. In the present study, we established a rat model of sepsis ALI induced by cecal ligation and puncture. This enables us to observe the effects of GPS therapy, which significantly reduced the inflammatory response (TNF-α, IL-1β, and IL-6), nitrogen stress, oxidative stress, and severity of ALI at both the whole animal and molecular levels. In addition, GPS ameliorates LPS-induced ALI via regulation of inflammatory response and cell proptosis in BEAS-2B. This study provides a theoretical basis for treating sepsis-induced ALI with GPS.
Collapse
Affiliation(s)
- Mu Hu
- Department of Orthopedics Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 201801, China
| | - Hangxiang Du
- Department of Critical Care Medicine Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Orthopedics Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 201801, China
| | - Yan Wang
- Department of Orthopedics Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai 201801, China
| |
Collapse
|
18
|
Ma L, Jiang Y, Feng H, Gao J, Du X, Fan Z, Zheng H, Zhu J. Role of arterial blood glucose and interstitial fluid glucose difference in evaluating microcirculation and clinical prognosis of patients with septic shock: a prospective observational study. BMC Infect Dis 2024; 24:910. [PMID: 39227759 PMCID: PMC11370223 DOI: 10.1186/s12879-024-09768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Microcirculation abnormality in septic shock is closely associated with organ dysfunction and mortality rate. It was hypothesized that the arterial blood glucose and interstitial fluid (ISF) glucose difference (GA-I) as a marker for assessing the microcirculation status can effectively evaluate the severity of microcirculation disturbance in patients with septic shock. METHODS The present observational study enrolled patients with septic shock admitted to and treated in the intensive care unit (ICU) of a tertiary teaching hospital. The parameters reflecting organ and tissue perfusion, including lactic acid (Lac), skin mottling score, capillary refill time (CRT), venous-to-arterial carbon dioxide difference (Pv-aCO2), urine volume, central venous oxygen saturation (ScvO2) and GA-I of each enrolled patient were recorded at the time of enrollment (H0), H2, H4, H6, and H8. With ICU mortality as the primary outcome measure, the ICU mortality rate at any GA-I interval was analyzed. RESULTS A total of 43 septic shock patients were included, with median sequential organ failure assessment (SOFA) scores of 10.5 (6-16), and median Acute Physiology and Chronic Health Evaluation (APACHAE) II scores of 25.7 (9-40), of whom 18 died during ICU stay. The GA-I levels were negative correlation with CRT (r = 0.369, P < 0.001), Lac (r = -0.269, P < 0.001), skin mottling score (r=-0.223, P < 0.001), and were positively associated with urine volume (r = 0.135, P < 0.05). The ICU mortality rate of patients with septic shock presenting GA-I ≤ 0.30 mmol/L and ≥ 2.14 mmol/L was significantly higher than that of patients with GA-I at 0.30-2.14 mmol/L [65.2% vs. 15.0%, odds ratio (OR) = 10.625, 95% confidence interval (CI): 2.355-47.503]. CONCLUSION GA-I was correlated with microcirculation parameters, and with differences in survival. Future studies are needed to further explore the potential impact of GA-I on microcirculation and clinical prognosis of septic shock, and the bedside monitoring of GA-I may be beneficial for clinicians to identify high-risk patients.
Collapse
Affiliation(s)
- Limei Ma
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yuhao Jiang
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Hui Feng
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jiake Gao
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xin Du
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Zihao Fan
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Hengheng Zheng
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jianjun Zhu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
19
|
Wu Y, Chen X, Zeng Z, Chen B, Wang Z, Song Z, Xie H. Self-assembled carbon monoxide nanogenerators managing sepsis through scavenging multiple inflammatory mediators. Bioact Mater 2024; 39:595-611. [PMID: 38883313 PMCID: PMC11179263 DOI: 10.1016/j.bioactmat.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Sepsis, a life-threatening syndrome of organ damage resulting from dysregulated inflammatory response, is distinguished by overexpression of inflammatory cytokines, excessive generation of reactive oxygen/nitrogen species (RONS), heightened activation of pyroptosis, and suppression of autophagy. However, current clinical symptomatic supportive treatment has failed to reduce the high mortality. Herein, we developed self-assembled multifunctional carbon monoxide nanogenerators (Nano CO), as sepsis drug candidates, which can release CO in response to ROS, resulting in clearing bacteria and activating the heme oxygenase-1/CO system. This activation strengthened endogenous protection and scavenged multiple inflammatory mediators to alleviate the cytokine storm, including scavenging RONS and cfDNA, inhibiting macrophage activation, blocking pyroptosis and activating autophagy. Animal experiments show that Nano CO has a good therapeutic effect on mice with LPS-induced sepsis, which is manifested in hypothermia recovery, organ damage repair, and a 50% decrease in mortality rates. Taken together, these results illustrated the efficacy of multifunctional Nano CO to target clearance of multiple mediators in sepsis treatment and act against other refractory inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Wu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xia Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bei Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
20
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
21
|
Shahi E, Khosrojerdi A, Soudi S, Hosseini AZ. Mesenchymal stem cell-conditioned medium prevents inflammation-induced liver and lung damage in septic mice. Int Immunopharmacol 2024; 137:112407. [PMID: 38875996 DOI: 10.1016/j.intimp.2024.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
AIM Sepsis is a life-threatening condition caused by a dysregulated immune response to infection. Broad-spectrum antibiotics are used to treat it. However, due to antibiotic resistance, alternative treatments are needed. Mesenchymal stem cells (MSCs) have become a promising therapeutic tool for sepsis due to their immunomodulatory properties. The limitations of MSC therapy have led to increased attention to cell derivatives such as conditioned medium (CM). This study investigates the immunomodulatory effects of young and old MSC-CM during the inflammatory phase of sepsis. MAIN METHODS The cecal ligation and puncture (CLP) model was used to induce sepsis in mice. The mice were divided into four groups: sham, CLP, CLP treated with young MSC-CM, and CLP treated with old MSC-CM. The CM was injected intraperitoneally at 2-, 12-, and 24-hours post-surgery. After 72 h, blood was collected and white blood cells (WBCs) were counted. In addition, serum and tissue were isolated, and the levels of alanine transaminase (ALT) and aspartate transaminase (AST) in serum, bacterial load in the spleen, concentration of pro- and anti-inflammatory cytokines, and histopathology of liver and lung were investigated. KEY FINDINGS MSC-CM decreased serum AST and ALT levels, bacterial load in the spleen, and pro-inflammatory cytokines in serum. In addition, tissue damage was reduced, and the survival rate and WBC count increased. There was no significant difference between the young and old MSC-CM. SIGNIFICANCE MSC-CM effectively reduced inflammation-induced tissue damage in the liver and lungs during sepsis. Although young MSC-CM had better immunomodulatory effects than old MSC-CM, the difference was not significant.
Collapse
Affiliation(s)
- Elaheh Shahi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
22
|
Li Z, Lin L, Kong Y, Feng J, Ren X, Wang Y, Chen X, Wu S, Yang R, Li J, Liu Y, Lu Y, Chen J. Gut microbiota, circulating inflammatory proteins and sepsis: a bi-directional Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1398756. [PMID: 39176264 PMCID: PMC11338885 DOI: 10.3389/fcimb.2024.1398756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
Background Gut microbiota is closely related to the occurrence and development of sepsis. However, the causal effects between the gut microbiota and sepsis, and whether circulating inflammatory proteins act as mediators, remain unclear. Methods Gut microbiota, circulating inflammatory proteins, and four sepsis-related outcomes were identified from large-scale genome wide association studies (GWAS) summary data. Inverse Variance Weighted (IVW) was the primary statistical method. Additionally, we investigated whether circulating inflammatory proteins play a mediating role in the pathway from gut microbiota to the four sepsis-related outcomes. Results There were 14 positive and 15 negative causal effects between genetic liability in the gut microbiota and four sepsis-related outcomes. Additionally, eight positive and four negative causal effects were observed between circulating inflammatory proteins and the four sepsis-related outcomes. Circulating inflammatory proteins do not act as mediators. Conclusions Gut microbiota and circulating inflammatory proteins were causally associated with the four sepsis-related outcomes. However, circulating inflammatory proteins did not appear to mediate the pathway from gut microbiota to the four sepsis-related outcomes.
Collapse
Affiliation(s)
- Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangcai Lin
- The Third Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Yunqi Kong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolei Ren
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yushi Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyi Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongyuan Yang
- Guangdong Provincial People's Hospital, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiqiang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Yuntao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Jiankun Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| |
Collapse
|
23
|
Tang J, Li X, Li W, Cao C. The Protective Effect of Octanoic Acid on Sepsis: A Review. Nutr Rev 2024:nuae106. [PMID: 39101596 DOI: 10.1093/nutrit/nuae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Sepsis, a systemic inflammation that occurs in response to a bacterial infection, is a significant medical challenge. Research conducted over the past decade has indicated strong associations among a patient's nutritional status, the composition of their gut microbiome, and the risk, severity, and prognosis of sepsis. Octanoic acid (OA) plays a vital role in combating sepsis and has a protective effect on both animal models and human patients. In this discussion, the potential protective mechanisms of OA in sepsis, focusing on its regulation of the inflammatory response, immune system, oxidative stress, gastrointestinal microbiome and barrier function, metabolic disorders and malnutrition, as well as organ dysfunction are explored. A comprehensive understanding of the mechanisms by which OA act may pave the way for new preventive and therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou 215004, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
24
|
Li K, Alhaskawi A, Zhou H, Dong Y, Zhao Q, Wang C, Lu H. Risk Factors and Electromyographic Characteristics of Acquired Weakness in Critically Ill Patients: A Retrospective Study. Ther Clin Risk Manag 2024; 20:451-463. [PMID: 39104821 PMCID: PMC11299719 DOI: 10.2147/tcrm.s464722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Objective This retrospective study examines risk factors and electromyographic (EMG) characteristics associated with acquired weakness in critically ill patients and assesses their impact on patient prognosis. Methods Ninety-seven critically ill patients, ventilated for over 48 hours, were included. Patient data, encompassing general condition, medical history, Medical Research Council (MRC) scores, serum markers (c-reactive protein, calcitonin gene, albumin, brain natriuretic peptide, urea nitrogen, creatinine), EMG characteristics, respiratory treatment modalities, and parameters, were recorded. Mechanical ventilation duration, ICU stay duration, hospitalization duration, and patient prognosis were documented. Based on MRC scores, patients were categorized into the ICU-acquired weakness (ICU-AW) group (MRC <48 points) and the non-ICU-AW group (MRC ≥48 points). Results The study comprised 47 ICU-AW and 50 non-ICU-AW patients. Significant differences (p <0.05) were observed in age, MRC scores, albumin levels, c-reactive protein, calcitonin gene, brain natriuretic peptide, urea nitrogen, creatinine, mechanical ventilation duration, ICU stay duration, and hospitalization duration between groups. In the ICU-AW group, nerve conduction examinations revealed slow conduction velocity, reduced wave amplitude, and in severe cases, a complete loss of motor and sensory potentials. Multivariate logistic analysis identified low serum albumin levels and MRC scores as potential ICU-AW risk factors. Conclusion This study suggests that low serum albumin levels and MRC scores may contribute to ICU-AW risk. The ICU-AW group exhibited varied peripheral nerve damage and slow conduction velocities on EMG. Additionally, severe systemic inflammatory responses, renal function, brain natriuretic peptide levels, prolonged mechanical ventilation, and peripheral nerve damage may be associated with ICU-AW. Follow-up studies are essential for further understanding these complex interactions.
Collapse
Affiliation(s)
- Kun Li
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ahmad Alhaskawi
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Haiyin Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yanzhao Dong
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - QingFang Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenxi Wang
- Medical Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Hui Lu
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
25
|
Chen T, Xie Q, Tan B, Yi Q, Xiang H, Wang R, Zhou Q, He B, Tian J, Zhu J, Xu H. Inhibition of Pyruvate Dehydrogenase Kinase 4 Protects Cardiomyocytes from lipopolysaccharide-Induced Mitochondrial Damage by Reducing Lactate Accumulation. Inflammation 2024; 47:1356-1370. [PMID: 38401019 DOI: 10.1007/s10753-024-01981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/26/2024]
Abstract
Mitochondrial dysfunction is considered one of the major pathogenic mechanisms of sepsis-induced cardiomyopathy (SIC). Pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of mitochondrial metabolism, is essential for maintaining mitochondrial function. However, its specific role in SIC remains unclear. To investigate this, we established an in vitro model of septic cardiomyopathy using lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Our study revealed a significant increase in PDK4 expression in LPS-treated H9C2 cardiomyocytes. Inhibiting PDK4 with dichloroacetic acid (DCA) improved cell survival, reduced intracellular lipid accumulation and calcium overload, and restored mitochondrial structure and respiratory capacity while decreasing lactate accumulation. Similarly, Oxamate, a lactate dehydrogenase inhibitor, exhibited similar effects to DCA in LPS-treated H9C2 cardiomyocytes. To further validate whether PDK4 causes cardiomyocyte and mitochondrial damage in SIC by promoting lactate production, we upregulated PDK4 expression using PDK4-overexpressing lentivirus in H9C2 cardiomyocytes. This resulted in elevated lactate levels, impaired mitochondrial structure, and reduced mitochondrial respiratory capacity. However, inhibiting lactate production reversed the mitochondrial dysfunction caused by PDK4 upregulation. In conclusion, our study highlights the pathogenic role of PDK4 in LPS-induced cardiomyocyte and mitochondrial damage by promoting lactate production. Therefore, targeting PDK4 and its downstream product lactate may serve as promising therapeutic approaches for treating SIC.
Collapse
Affiliation(s)
- Tangtian Chen
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Qiumin Xie
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bin Tan
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Yi
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Han Xiang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Rui Wang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Zhou
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bolin He
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Tian
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Hao Xu
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Clinical Laboratory, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Box 136, No. 3 Zhongshan RD, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
26
|
Cao X, Zhao M, Wang X, Lin J, Yang M, Zhong L, Liang L, Yue Y, Du J, Li J, Zhou T, Yu J, Liang Y, Shi R, Luo R, Shen X, Chen Y, Wang Y, Shu Z. Multi-metabolomics and intestine microbiome analysis: YZC extract ameliorates septic-ALI by modulating intestine microbiota to reduce TMAO/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155345. [PMID: 38810555 DOI: 10.1016/j.phymed.2024.155345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Pharmacy, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou 514000, China.
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Xin Q, Zhang S, Sun S, Song N, Zhe Y, Tian F, Zhang S, Guo M, Zhang XD, Zhang J, Wang H, Zhang R. Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36047-36062. [PMID: 38978477 DOI: 10.1021/acsami.4c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yadong Zhe
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
28
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
29
|
Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol 2024; 15:1434688. [PMID: 39040114 PMCID: PMC11260823 DOI: 10.3389/fimmu.2024.1434688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Sepsis is described as a life-threatening organ dysfunction and a heterogeneous syndrome that is a leading cause of morbidity and mortality in intensive care settings. Severe sepsis could incite an uncontrollable surge of inflammatory cytokines, and the host immune system's immunosuppression could respond to counter excessive inflammatory responses, characterized by the accumulated anti-inflammatory cytokines, impaired function of immune cells, over-proliferation of myeloid-derived suppressor cells and regulatory T cells, depletion of immune effector cells by different means of death, etc. In this review, we delve into the underlying pathological mechanisms of sepsis, emphasizing both the hyperinflammatory phase and the associated immunosuppression. We offer an in-depth exploration of the critical mechanisms underlying sepsis, spanning from individual immune cells to a holistic organ perspective, and further down to the epigenetic and metabolic reprogramming. Furthermore, we outline the strengths of artificial intelligence in analyzing extensive datasets pertaining to septic patients, showcasing how classifiers trained on various clinical data sources can identify distinct sepsis phenotypes and thus to guide personalized therapy strategies for the management of sepsis. Additionally, we provide a comprehensive summary of recent, reliable biomarkers for hyperinflammatory and immunosuppressive states, facilitating more precise and expedited diagnosis of sepsis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
31
|
Magnin M, Gavet M, Ngo TT, Louzier V, Victoni T, Ayoub JY, Allaouchiche B, Bonnet-Garin JM, Junot S. A multimodal tissue perfusion measurement approach for the evaluation of the effect of pimobendan, an inodilator, in a porcine sepsis model. Microvasc Res 2024; 154:104687. [PMID: 38614155 DOI: 10.1016/j.mvr.2024.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sepsis is associated with hypoperfusion and organ failure. The aims of the study were: 1) to assess the effect of pimobendan on macrocirculation and perfusion and 2) to describe a multimodal approach to the assessment of perfusion in sepsis and compare the evolution of the perfusion parameters. Eighteen anaesthetized female piglets were equipped for macrocirculation monitoring. Sepsis was induced by an infusion of Pseudomonas aeruginosa. After the occurrence of hypotension, animals were resuscitated. Nine pigs received pimobendan at the start of resuscitation maneuvers, the others received saline. Tissue perfusion was assessed using temperature gradients measured with infrared thermography (TG = core temperature - tarsus temperature), urethral perfusion index (uPI) derived from photoplethysmography and sublingual microcirculation (Sidestream dark field imaging device): De Backer score (DBs), proportion of perfused vessels (PPV), microvascular flow index (MFI) and heterogeneity index (HI). Arterial lactate and ScvO2 were also measured. Pimobendan did not improve tissue perfusion nor macrocirculation. It did not allow a reduction in the amount of noradrenaline and fluids administered. Sepsis was associated with tissue perfusion disorders: there were a significant decrease in uPI, PPV and ScvO2 and a significant rise in TG. TG could significantly predict an increase in lactate. Resuscitation was associated with a significant increase in uPI, DBs, MFI, lactate and ScvO2. There were fair correlations between the different perfusion parameters. In this model, pimobendan did not show any benefit. The multimodal approach allowed the detection of tissue perfusion alteration but only temperature gradients predicted the increase in lactatemia.
Collapse
Affiliation(s)
- Mathieu Magnin
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Morgane Gavet
- Université de Lyon, VetAgro Sup, Service d'Anesthésie, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Thien-Tam Ngo
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France
| | - Vanessa Louzier
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Tatiana Victoni
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Jean Yves Ayoub
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Bernard Allaouchiche
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Réanimation Médicale, 165 Chemin du Grand Revoyet, F-69310 Pierre-Bénite, France
| | - Jeanne-Marie Bonnet-Garin
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| | - Stéphane Junot
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, Vetagro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup, Service d'Anesthésie, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France.
| |
Collapse
|
32
|
Huang Y, Li L, Li Y, Lu N, Qin H, Wang R, Li W, Cheng Z, Li Z, Kang P, Ye H, Gao Q. Knockdown of LncRNA Lcn2-204 alleviates sepsis-induced myocardial injury by regulation of iron overload and ferroptosis. J Mol Cell Cardiol 2024; 192:79-93. [PMID: 38761990 DOI: 10.1016/j.yjmcc.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Ferroptosis is an iron-dependent programmed cell death form resulting from lipid peroxidation damage, it plays a key role in organ damage and tumor development from various causes. Sepsis leads to severe host response after infection with high mortality. The long non-coding RNAs (LncRNAs) are involved in different pathophysiological mechanisms of multiple diseases. Here, we used cecal ligation and puncture (CLP) operation to mimic sepsis induced myocardial injury (SIMI) in mouse model, and LncRNAs and mRNAs were profiled by Arraystar mouse LncRNA Array V3.0. Based on the microarray results, 552 LncRNAs and 520 mRNAs were differentially expressed in the sham and CLP groups, among them, LncRNA Lcn2-204 was the highest differentially expressed up-regulated LncRNA. Iron metabolism disorder was involved in SIMI by bioinformatics analysis, meanwhile, myocardial iron content and lipocalin-2 (Lcn2) protein expressions were increased. The CNC network comprised 137 positive interactions and 138 negative interactions. Bioinformatics analysis showed several iron-related terms were enriched and six genes (Scara5, Tfrc, Lcn2, Cp, Clic5, Ank1) were closely associated with iron metabolism. Then, we constructed knockdown LncRNA Lcn2-204 targeting myocardium and found that it ameliorated cardiac injury in mouse sepsis model through modulating iron overload and ferroptosis. In addition, we found that LncRNA Lcn2-204 was involved in the regulation of Lcn2 expression in septic myocardial injury. Based on these findings, we conclude that iron overload and ferroptosis are the key mechanisms leading to myocardial injury in sepsis, knockdown of LncRNA Lcn2-204 plays the cardioprotective effect through inhibition of iron overload, ferroptosis and Lcn2 expression. It may provide a novel therapeutic approach to ameliorate sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Yuhui Huang
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Lu Li
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Yuping Li
- Department of Life Sciences, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Na Lu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - Hongqian Qin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - Rui Wang
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Wentao Li
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Zhipeng Cheng
- Department of Clinical Medicine, Bengbu Medical University, Bengbu 233000, China
| | - Zhenghong Li
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China
| | - Pinfang Kang
- Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China; Department of Cardiovascular Medicine, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Hongwei Ye
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China.
| | - Qin Gao
- Department of Physiology, Bengbu Medical University, Bengbu 233030, China; Key Laboratory of Basic and Clinical Cardiovascular Diseases, Bengbu Medical University, Bengbu 233030, China.
| |
Collapse
|
33
|
Li N, Hao R, Ren P, Wang J, Dong J, Ye T, Zhao D, Qiao X, Meng Z, Gan H, Liu S, Sun Y, Dou G, Gu R. Glycosaminoglycans: Participants in Microvascular Coagulation of Sepsis. Thromb Haemost 2024; 124:599-612. [PMID: 38242171 PMCID: PMC11199054 DOI: 10.1055/a-2250-3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.
Collapse
Affiliation(s)
- Nanxi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolin Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Tong Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Danyang Zhao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Xuan Qiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| |
Collapse
|
34
|
Zhang L, Wang Z, Sun X, Rong W, Deng W, Yu J, Xu X, Yu Q. Nasal mucosa-derived mesenchymal stem cells prolonged the survival of septic rats by protecting macrophages from pyroptosis. Cell Immunol 2024; 401-402:104840. [PMID: 38880071 DOI: 10.1016/j.cellimm.2024.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Sepsis is characterized by an exacerbated inflammatory response, driven by the overproduction of cytokines, a phenomenon known as a cytokine storm. This condition is further compounded by the extensive infiltration of M1 macrophages and the pyroptosis of these cells, leading to immune paralysis. To counteract this, we sought to transition M1 macrophages into the M2 phenotype and safeguard them from pyroptosis. For this purpose, we employed ectodermal mesenchymal stem cells (EMSCs) sourced from the nasal mucosa to examine their impact on both macrophages and septic animal models. The co-culture protocol involving LPS-stimulated rat bone marrow macrophages and EMSCs was employed to examine the paracrine influence of EMSCs on macrophages. The intravenous administration of EMSCs was utilized to observe the enhancement in the survival rate of septic rat models and the protection of associated organs. The findings indicated that EMSCs facilitated M2 polarization of macrophages, which were stimulated by LPS, and significantly diminished levels of pro-inflammatory cytokines and NLRP3. Furthermore, EMSCs notably restored the mitochondrial membrane potential (MMP) of macrophages through paracrine action, eliminated excess reactive oxygen species (ROS), and inhibited macrophage pyroptosis. Additionally, the systemic integration of EMSCs substantially reduced injuries to multiple organs and preserved the fundamental functions of the heart, liver, and kidney in CLP rats, thereby extending their survival.
Collapse
Affiliation(s)
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, China
| | | | - Wenwen Deng
- School of Pharmacy, Jiangsu University, China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, China
| | - Qingtong Yu
- School of Pharmacy, Jiangsu University, China.
| |
Collapse
|
35
|
Jin BY, Lee S, Kim W, Park JH, Cho H, Moon S, Ahn S. Ischemia-Modified Albumin, Lactate, and Combination for Predicting Mortality in Patients with Septic Shock in the Emergency Department. Biomedicines 2024; 12:1421. [PMID: 39061994 PMCID: PMC11274077 DOI: 10.3390/biomedicines12071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia-modified albumin (IMA) is produced during ischemia and reactive oxygen species production. This study aimed to evaluate the association between IMA and mortality in a larger population and the prognostic value of the combination of IMA and lactate for predicting mortality in septic shock patients in the emergency department. This retrospective observational study included adult septic shock patients between October 2019 and December 2021. A multivariable Cox proportional hazards model was performed. IMA was significantly higher in the non-surviving group than in the surviving group (89.1 ± 7.2 vs. 83.8 ± 6.2 U/mL, p < 0.001). IMA was independently associated with 28-day mortality after adjustments (adjusted hazard ratio [aHR]: 1.075, 95% confidence interval [CI]: 1.016-1.138, p = 0.012). The area under the ROC curve (AUROC) of IMA was 0.712 (95% CI: 0.648-0.775, p < 0.001) and was comparable to that of lactate. The AUROC of the combination of IMA and lactate was 0.838 (95% CI: 0.786-0.889, p < 0.001). The group with both high lactate and high IMA levels showed an extremely high risk of mortality than other groups (86.1%; aHR 8.956, 95% CI 4.071-19.70, p < 0.001). The elevation of IMA was associated with mortality in septic shock patients. The combination of IMA and lactate can be a helpful tool for early risk stratification of septic shock patients.
Collapse
Affiliation(s)
- Bo-Yeong Jin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Sukyo Lee
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea
| | - Woosik Kim
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea
| | - Jong-Hak Park
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea
| | - Hanjin Cho
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea
| | - Sungwoo Moon
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea
| | - Sejoong Ahn
- Department of Emergency Medicine, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea
| |
Collapse
|
36
|
Wang G, Ma X, Huang W, Wang S, Lou A, Wang J, Tu Y, Cui W, Zhou W, Zhang W, Li Y, Geng S, Meng Y, Li X. Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury. J Nanobiotechnology 2024; 22:362. [PMID: 38910259 PMCID: PMC11194988 DOI: 10.1186/s12951-024-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaoxin Ma
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangmei Zhou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
37
|
He W, Yao C, Wang K, Duan Z, Wang S, Xie L. Single-cell landscape of immunological responses in elderly patients with sepsis. Immun Ageing 2024; 21:40. [PMID: 38909272 PMCID: PMC11193269 DOI: 10.1186/s12979-024-00446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Sepsis is a dysregulated host response to severe infections, and immune dysfunction plays a crucial role in its pathogenesis. Elderly patients, a special population influenced by immunosenescence, are more susceptible to sepsis and have a worse prognosis. However, the immunopathogenic mechanisms underlying sepsis in elderly patients remain unclear. Here, we performed single-cell RNA sequencing of peripheral blood samples from young and old subjects and patients with sepsis. By exploring the transcriptional profiles of immune cells, we analyzed immune cell compositions, phenotype shifts, expression heterogeneities, and intercellular communication. In elderly patients with sepsis, innate immune cells (e.g., monocytes and DCs) exhibit decreased antigen presentation, presenting an overactive inflammatory and senescent phenotype. However, the immunophenotype of T cells shifted to characterize effector, memory, and exhaustion. Moreover, we identified strong interferon-γ responses of T cells in both aging and sepsis groups and a deranged inflammaging status in elderly sepsis patients. Tregs in elderly patients with sepsis showed increased abundance and enhanced immunosuppressive effects. In addition, metabolism-associated pathways were upregulated in T cells in elderly patients with sepsis, and the lysine metabolism pathway was enriched in Tregs. Cell-cell interaction analysis showed that the expression profile of ligand-receptor pairs was probably associated with aggravated immune dysfunction in elderly patients with sepsis. A novel HLA-KIR interaction was observed between Tregs and CD8 + T cells. These findings illustrate the immunological hallmarks of sepsis in elderly patients, and highlight that immunosuppressive and metabolic regulatory pathways may undergo important alterations in elderly patients with sepsis.
Collapse
Affiliation(s)
- Wanxue He
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chen Yao
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaifei Wang
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhimei Duan
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
38
|
Xiao Z, Lin M, Song N, Wu X, Hou J, Wang L, Tian X, An C, Dela Cruz CS, Sharma L, Chang D. Clinical features and multiomics profiles indicate coagulation and platelet dysfunction in COVID-19 viral sepsis. iScience 2024; 27:110110. [PMID: 38974472 PMCID: PMC11225851 DOI: 10.1016/j.isci.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
Increased cases of sepsis during COVID-19 in the absence of known bacterial pathogens highlighted role of viruses as causative agents of sepsis. In this study, we investigated clinical, laboratory, proteomic, and metabolomic characteristics of viral sepsis patients (n = 45) and compared them to non-sepsis patients with COVID-19 (n = 186) to identify molecular mechanisms underlying the pathology of viral sepsis in COVID-19. We identified unique metabolomic and proteomic signatures that suggest a substantial perturbation in the coagulation, complement, and platelet activation pathways in viral sepsis. Our proteomic data indicated elevated coagulation pathway protein (fibrinogen), whereas a decrease in many of the complement proteins was observed. These alterations were associated with the functional consequences such as susceptibility to secondary bacterial infections and potentially contributing to both local and systemic disease phenotypes. Our data provide novel aspect of COVID-19 pathology that is centered around presence of sepsis phenotype in COVID-19.
Collapse
Affiliation(s)
- Zhiqing Xiao
- Department of Pulmonary and Critical Care Medicine at The Seventh Medical Center, College of Pulmonary and Critical Care Medicine of The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Minggui Lin
- Beijing Tsinghua Changgung Hospital, Tsinghua University School of Medicine, Beijing 102218, China
| | - Ning Song
- Department of Infectious Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xue Wu
- Department of Pulmonary and Critical Care Medicine at The Seventh Medical Center, College of Pulmonary and Critical Care Medicine of The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jingyu Hou
- Department of Infectious Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lili Wang
- Beijing Tsinghua Changgung Hospital, Tsinghua University School of Medicine, Beijing 102218, China
| | - XinLun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunge An
- Department of Pulmonary and Critical Care Medicine at The Seventh Medical Center, College of Pulmonary and Critical Care Medicine of The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Charles S. Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - De Chang
- Department of Pulmonary and Critical Care Medicine at The Seventh Medical Center, College of Pulmonary and Critical Care Medicine of The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
39
|
Zhu Z, Chambers S, Bhatia M. Substance P Promotes Leukocyte Infiltration in the Liver and Lungs of Mice with Sepsis: A Key Role for Adhesion Molecules on Vascular Endothelial Cells. Int J Mol Sci 2024; 25:6500. [PMID: 38928206 PMCID: PMC11204161 DOI: 10.3390/ijms25126500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Substance P (SP), encoded by the Tac1 gene, has been shown to promote leukocyte infiltration and organ impairment in mice with sepsis. Neurokinin-1 receptor (NK1R) is the major receptor that mediates the detrimental impact of SP on sepsis. This investigation studied whether SP affects the expression of adhesion molecules, including intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) on vascular endothelial cells in the liver and lungs, contributing to leukocyte infiltration in these tissues of mice with sepsis. Sepsis was induced by caecal ligation and puncture (CLP) surgery in mice. The actions of SP were inhibited by deleting the Tac1 gene, blocking NK1R, or combining these two methods. The activity of myeloperoxidase and the concentrations of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, were measured. The activity of myeloperoxidase and the concentration of ICAM1 and VCAM1 in the liver and lungs, as well as the expression of ICAM1 and VCAM1 on vascular endothelial cells in these tissues, increased in mice with CLP surgery-induced sepsis. Suppressing the biosynthesis of SP and its interactions with NK1R attenuated CLP surgery-induced alterations in the liver and lungs of mice. Our findings indicate that SP upregulates the expression of ICAM1 and VCAM1 on vascular endothelial cells in the liver and lungs, thereby increasing leukocyte infiltration in these tissues of mice with CLP surgery-induced sepsis by activating NK1R.
Collapse
Affiliation(s)
| | | | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
40
|
Tang Y, Chen L, Yang J, Zhang S, Jin J, Wei Y. Gut microbes improve prognosis of Klebsiella pneumoniae pulmonary infection through the lung-gut axis. Front Cell Infect Microbiol 2024; 14:1392376. [PMID: 38903943 PMCID: PMC11188585 DOI: 10.3389/fcimb.2024.1392376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024] Open
Abstract
Background The gut microbiota plays a vital role in the development of sepsis and in protecting against pneumonia. Previous studies have demonstrated the existence of the gut-lung axis and the interaction between the gut and the lung, which is related to the prognosis of critically ill patients; however, most of these studies focused on chronic lung diseases and influenza virus infections. The purpose of this study was to investigate the effect of faecal microbiota transplantation (FMT) on Klebsiella pneumoniae-related pulmonary infection via the gut-lung axis and to compare the effects of FMT with those of traditional antibiotics to identify new therapeutic strategies. Methods We divided the mice into six groups: the blank control (PBS), pneumonia-derived sepsis (KP), pneumonia-derived sepsis + antibiotic (KP + PIP), pneumonia-derived sepsis + faecal microbiota transplantation(KP + FMT), antibiotic treatment control (KP+PIP+PBS), and pneumonia-derived sepsis+ antibiotic + faecal microbiota transplantation (KP + PIP + FMT) groups to compare the survival of mice, lung injury, inflammation response, airway barrier function and the intestinal flora, metabolites and drug resistance genes in each group. Results Alterations in specific intestinal flora can occur in the gut of patients with pneumonia-derived sepsis caused by Klebsiella pneumoniae. Compared with those in the faecal microbiota transplantation group, the antibiotic treatment group had lower levels of proinflammatory factors and higher levels of anti-inflammatory factors but less amelioration of lung pathology and improvement of airway epithelial barrier function. Additionally, the increase in opportunistic pathogens and drug resistance-related genes in the gut of mice was accompanied by decreased production of favourable fatty acids such as acetic acid, propionic acid, butyric acid, decanoic acid, and secondary bile acids such as chenodeoxycholic acid 3-sulfate, isodeoxycholic acid, taurodeoxycholic acid, and 3-dehydrocholic acid; the levels of these metabolites were restored by faecal microbiota transplantation. Faecal microbiota transplantation after antibiotic treatment can gradually ameliorate gut microbiota disorder caused by antibiotic treatment and reduce the number of drug resistance genes induced by antibiotics. Conclusion In contrast to direct antibiotic treatment, faecal microbiota transplantation improves the prognosis of mice with pneumonia-derived sepsis caused by Klebsiella pneumoniae by improving the structure of the intestinal flora and increasing the level of beneficial metabolites, fatty acids and secondary bile acids, thereby reducing systemic inflammation, repairing the barrier function of alveolar epithelial cells, and alleviating pathological damage to the lungs. The combination of antibiotics with faecal microbiota transplantation significantly alleviates intestinal microbiota disorder, reduces the selection for drug resistance genes caused by antibiotics, and mitigates lung lesions; these effects are superior to those following antibiotic monotherapy.
Collapse
Affiliation(s)
- Yuxiu Tang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liquan Chen
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Suqing Zhang
- Department of School of Biology & Basic Medicine Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Jin
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Wei
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
41
|
Zhang X, Yuan S, Fan H, Zhang W, Zhang H. Liensinine alleviates sepsis-induced acute liver injury by inhibiting the NF-κB and MAPK pathways in an Nrf2-dependent manner. Chem Biol Interact 2024; 396:111030. [PMID: 38692452 DOI: 10.1016/j.cbi.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Sepsis remains a serious public health issue that needs to be addressed globally. Severe liver injury caused by sepsis increases the risk of death in patients with sepsis. Liensinine (Lie) is one of the primary active components in Plumula nelumbinis and has anti-inflammatory and antioxidant effects. Nevertheless, the effects of Lie on septic liver injury are unclear. This research investigated the protective effect of Lie (10, 20 and 40 mg/kg) on liver damage via intraperitoneal administration of LPS (10 mg/kg) to C57BL/6 mice. Lie was given through intraperitoneal injection once a day for five days. Mice were treated with LPS intraperitoneally for 6 h at 1 h after Lie administration on the last day. The results suggested that Lie could decrease AST and ALT levels in serum, ameliorate histopathological changes and inhibit cell apoptosis in mice with LPS-induced septic liver injury. In addition, Lie inhibited increases in the mRNA levels of TNF-α, IL-1β, iNOS and IL-6. Lie also increased the mRNA level of IL-10. Lie reduced the content of MDA, a marker of lipid peroxidation, and increased the activity of the antioxidant enzymes GSH-Px, CAT and SOD. Our results also showed that Lie could suppress the LPS-activated MAPK and NF-κB pathways and trigger the Nrf2 signaling pathway both in vitro and in vivo. Additionally, an Nrf2 inhibitor (ML385) weakened the suppressive effect of Lie on the MAPK and NF-κB pathways. Our results demonstrated that the suppressive effect of Lie on the MAPK and NF-κB pathways was partially reliant on activation of the Nrf2 pathway. In summary, these results indicate that Lie can improve inflammation and oxidative stress by activating Nrf2, which is a prospective therapeutic drug for alleviating septic liver injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Silong Yuan
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Honggang Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China.
| |
Collapse
|
42
|
Chen Y, Zhang P, Han F, Zhou Y, Wei J, Wang C, Song M, Lin S, Xu Y, Chen X. MiR-106a-5p targets PFKFB3 and improves sepsis through regulating macrophage pyroptosis and inflammatory response. J Biol Chem 2024; 300:107334. [PMID: 38705396 PMCID: PMC11190718 DOI: 10.1016/j.jbc.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3) is a critical regulator of glycolysis and plays a key role in modulating the inflammatory response, thereby contributing to the development of inflammatory diseases such as sepsis. Despite its importance, the development of strategies to target PFKFB3 in the context of sepsis remains challenging. In this study, we employed a miRNA-based approach to decrease PFKFB3 expression. Through multiple meta-analyses, we observed a downregulation of miR-106a-5p expression and an upregulation of PFKFB3 expression in clinical sepsis samples. These changes were also confirmed in blood monocytes from patients with early sepsis and from a mouse model of lipopolysaccharide (LPS)-induced sepsis. Overexpression of miR-106a-5p significantly decreased the LPS-induced increase in glycolytic capacity, inflammatory response, and pyroptosis in macrophages. Mechanistically, we identified PFKFB3 as a direct target protein of miR-106a-5p and demonstrated its essential role in LPS-induced pyroptosis and inflammatory response in macrophages. Furthermore, treatment with agomir-miR-106a-5p conferred a protective effect in an LPS mouse model of sepsis, but this effect was attenuated in myeloid-specific Pfkfb3 KO mice. These findings indicate that miR-106a-5p inhibits macrophage pyroptosis and inflammatory response in sepsis by regulating PFKFB3-mediated glucose metabolism, representing a potential therapeutic option for the treatment of sepsis.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ping Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fangwei Han
- School of Public Health, UNT Health Science Center, Fort Worth, Texas, USA
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Juexian Wei
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cailing Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mingchuan Song
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shaopeng Lin
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Xiaohui Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
43
|
Fu D, Gao S, Li JN, Cui YH, Luo YW, Zhong YJ, Li Q, Luo C, Dai RP, Luo RY, Hu ZL. P75 NTR+CD64 + neutrophils promote sepsis-induced acute lung injury. Clin Immunol 2024; 263:110206. [PMID: 38599263 DOI: 10.1016/j.clim.2024.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.
Collapse
Affiliation(s)
- Di Fu
- Department of Anesthesiology, The Xiangya Hospital, Central South University, Changsha City, Hunan 410008, China
| | - Shan Gao
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Jia-Nan Li
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha City, Hunan 410011, China
| | - Yan-Wei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Yan-Jun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiao Li
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Cong Luo
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Ru-Ping Dai
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Ru-Yi Luo
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China.
| | - Zhao-Lan Hu
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China.
| |
Collapse
|
44
|
Antonucci E, Garcia B, Legrand M. Hemodynamic Support in Sepsis. Anesthesiology 2024; 140:1205-1220. [PMID: 38743000 DOI: 10.1097/aln.0000000000004958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This review discusses recent evidence in managing sepsis-induced hemodynamic alterations and how it can be integrated with previous knowledge for actionable interventions in adult patients.
Collapse
Affiliation(s)
- Edoardo Antonucci
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, California; Department of Anesthesia and Critical Care Medicine, University of Milan, Milan, Italy
| | - Bruno Garcia
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, California; Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France; Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, California; INI-CRCT (Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists) Network, Nancy, France
| |
Collapse
|
45
|
Qin H, Fu Y, Deng C, Chen Y, Huang K, Ruan Y, Liu K. The role of gut microbiota and the gut-lung axis in sepsis: A case study of a pregnant woman with severe rickettsial pneumonia and septic shock complicated by MODS. Clin Case Rep 2024; 12:e8815. [PMID: 38840756 PMCID: PMC11150134 DOI: 10.1002/ccr3.8815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 06/07/2024] Open
Abstract
Key Clinical Message In this case report, we describe the successful management of severe scrub typhus with pneumonia, sepsis, and multiple organ dysfunction in a pregnant woman. Despite initial challenges, the patient responded favorably to fecal microbiota transplantation and oral fecal microbiota capsule therapy. Abstract Scrub typhus, caused by Orientia tsutsugamushi, can lead to severe multiorgan dysfunction and carries a mortality rate of up to 70% if not treated properly. In this report, we present the case of a 27-year-old pregnant woman at 18 + 6 weeks gestation whose symptoms worsened 15 days after onset and progressed to severe pneumonia with sepsis and multiple organ dysfunction syndrome. After the pathogen was confirmed by next-generation sequencing analysis of bronchoalveolar-lavage fluid and blood samples, the patient's treatment was switched to antiinfective chloramphenicol. The patient also underwent uterine evacuation due to a miscarriage. Extracorporeal membrane oxygenation was discontinued once the pulmonary infection significantly improved. Subsequently, the patient had recurrent diarrhea, abdominal distension, and difficulty eating. The antibiotic regimen was adjusted according to the drug sensitivity, but the diarrhea and abdominal distension still did not improve. Following a comprehensive multidisciplinary risk assessment, we initiated fecal microbiota transplantation and oral fecal microbiota capsule therapy. As a result, the patient's condition was effectively managed, and they were gradually discharged. Fecal microbiota transplantation may be a safe and effective treatment for severe pneumonia and shock in pregnant women. This has significant implications for maternal health. However, further clinical cases are required to observe its long-term effectiveness.
Collapse
Affiliation(s)
- Hongmei Qin
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Yaoqing Fu
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Caixia Deng
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Yanxing Chen
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Keming Huang
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Yiyang Ruan
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| | - Ke Liu
- Department of Critical Care MedicineThe First People's Hospital of YulinYulinChina
| |
Collapse
|
46
|
Shin J, Ahn SH, Oh DJ. Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System. Cell Biochem Biophys 2024; 82:1555-1566. [PMID: 38762714 DOI: 10.1007/s12013-024-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea.
| |
Collapse
|
47
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
48
|
Li J, Teng D, Jia W, Gong L, Dong H, Wang C, Zhang L, Xu B, Wang W, Zhong L, Wang J, Yang J. PLD2 deletion ameliorates sepsis-induced cardiomyopathy by suppressing cardiomyocyte pyroptosis via the NLRP3/caspase 1/GSDMD pathway. Inflamm Res 2024; 73:1033-1046. [PMID: 38630134 PMCID: PMC11106193 DOI: 10.1007/s00011-024-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVE Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.
Collapse
Affiliation(s)
- Jun Li
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Bowen Xu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenlong Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
49
|
Mathew B, Tripathi G, Gautam V, Bindal V, Sharma N, Yadav M, Pandey S, Sharma N, Gupta AC, Bhat SH, Saini AK, Sood V, Lal BB, Alam S, Khanna R, Maras JS. Circulating bacterial peptides and linked metabolomic signatures are indicative of early mortality in pediatric cirrhosis. Hepatol Commun 2024; 8:e0440. [PMID: 38836842 PMCID: PMC11155604 DOI: 10.1097/hc9.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms. METHODS We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort. RESULTS Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm. CONCLUSIONS Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.
Collapse
Affiliation(s)
- Babu Mathew
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaurav Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vipul Gautam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vasundhra Bindal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nupur Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Yadav
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sushmita Pandey
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Neha Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Abhishak C. Gupta
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sadam H. Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Akhilesh K. Saini
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
50
|
Song R, He S, Wu Y, Tan S. Pyroptosis in sepsis induced organ dysfunction. Curr Res Transl Med 2024; 72:103419. [PMID: 38246070 DOI: 10.1016/j.retram.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 01/23/2024]
Abstract
As an uncontrolled inflammatory response to infection, sepsis and sepsis induced organ dysfunction are great threats to the lives of septic patients. Unfortunately, the pathogenesis of sepsis is complex and multifactorial, which still needs to be elucidated. Pyroptosis is a newly discovered atypical form of inflammatory programmed cell death, which depends on the Caspase-1 dependent classical pathway or the non-classical Caspase-11 (mouse) or Caspase-4/5 (human) dependent pathway. Many studies have shown that pyroptosis is related to sepsis. The Gasdermin proteins are the key molecules in the membrane pores formation in pyroptosis. After cut by inflammatory caspase, the Gasdermin N-terminal fragments with perforation activity are released to cause pyroptosis. Pyroptosis is closely related to the occurrence and development of sepsis induced organ dysfunction. In this review, we summarized the molecular mechanism of pyroptosis, the key role of pyroptosis in sepsis and sepsis induced organ dysfunction, with the aim to bring new diagnostic biomarkers and potential therapeutic targets to improve sepsis clinical treatments.
Collapse
Affiliation(s)
- Ruoyu Song
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| | - Shijun He
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Yongbin Wu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Sipin Tan
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China; Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China.
| |
Collapse
|