1
|
Moore M, Whittington HD, Knickmeyer R, Azcarate-Peril MA, Bruno-Bárcena JM. Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers. Gut Microbes 2025; 17:2440120. [PMID: 39695352 DOI: 10.1080/19490976.2024.2440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Diet is one of the main factors shaping the human microbiome, yet our understanding of how specific dietary components influence microbial consortia assembly and subsequent stability in response to press disturbances - such as increasing resource availability (feeding rate) - is still incomplete. This study explores the reproducible re-assembly, metabolic interplay, and compositional stability within microbial consortia derived from pooled stool samples of three healthy infants. Using a single-step packed-bed reactor (PBR) system, we assessed the reassembly and metabolic output of consortia exposed to lactose, glucose, galacto-oligosaccharides (GOS), and humanized GOS (hGOS). Our findings reveal that complex carbohydrates, especially those containing low inclusion (~1.25 gL-1) components present in human milk, such as N-acetyl-lactosamine (LacNAc), promote taxonomic, and metabolic stability under varying feeding rates, as shown by diversity metrics and network analysis. Targeted metabolomics highlighted distinct metabolic responses to different carbohydrates: GOS was linked to increased lactate, lactose to propionate, sucrose to butyrate, and CO2, and the introduction of bile salts with GOS or hGOS resulted in butyrate reduction and increased hydrogen production. This study validates the use of single-step PBRs for reliably studying microbial consortium stability and functionality in response to nutritional press disturbances, offering insights into the dietary modulation of microbial consortia and their ecological dynamics.
Collapse
Affiliation(s)
- Madison Moore
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Hunter D Whittington
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Rebecca Knickmeyer
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Zhang D, Xie D, Qu Y, Mu D, Wang S. Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives. Gut Microbes 2025; 17:2451071. [PMID: 39826099 DOI: 10.1080/19490976.2025.2451071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential. We further critically examine dysbiotic alterations within the gut microbiota, with a particular focus on imbalances in bacterial and viral communities, which may contribute to the onset of NEC. The intricate interactions among toll-like receptor 4 (TLR4), microvascular integrity, immune activation, and the inflammatory milieu are meticulously summarized, offering a sophisticated understanding of NEC pathophysiology. This academic review aims to enhance the etiological comprehension of NEC, promote the development of targeted therapeutic interventions, and impart the significant impact of perinatal factors on the formulation of preventive and curative strategies for the disease.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongke Xie
- Division of Neonatology/Pediatric Surgery, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shaopu Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Mousavi SM, Younesian S, Ejtahed HS. The alteration of gut microbiota composition in patients with epilepsy: A systematic review and meta-analysis. Microb Pathog 2025; 199:107266. [PMID: 39736340 DOI: 10.1016/j.micpath.2024.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND There is accumulating evidence suggesting a connection between epilepsy, a neurologic disease with recurrent seizures, and gut microbiota. This systematic review and meta-analysis explores the alterations of GM composition in patients with epilepsy. METHODS A systematic search was conducted up to June 26, 2024, across PubMed, Scopus, Web of Science, and Embase. The study outcomes were α- and β-diversity indexes, and relative abundance at different bacterial taxonomic levels, compared between epilepsy patients and healthy controls. Inverse variance-weighted meta-analysis was performed to estimate the standardized mean difference. We utilized the Newcastle-Ottawa Scale (NOS) to assess the quality of the included studies. RESULTS In this systematic review, we included 16 case-control studies encompassing 438 cases and 369 controls, and 12 studies were included in the meta-analyses. α-diversity was not significantly different between epilepsy and control group. Of the 11 studies measuring β-diversity, 8 studies showed that the microbiota compositions of the two groups differed significantly. Verrucomicrobia was significantly higher in the epilepsy group (SMD = 0.39 [0.05, 0.72], p = 0.022) than in the control group. At the genus level, Roseburia (SMD = -0.50 [-0.84, -0.17], p = 0.003), Blautia (SMD = -0.40 [-0.73, -0.06], p = 0.022), and Dialister (SMD = -0.40 [-0.74, -0.07], p = 0.018) were significantly less abundant in patients with epilepsy. CONCLUSIONS Our findings evince remarkable changes in gut microbiota composition in epilepsy. Bacterial genera that promote neuroinflammation are elevated in epilepsy. Our study revealed the interrelation between GM disruption and epileptogenesis, but the heterogeneity among the included results was high, and further investigation is encouraged.
Collapse
Affiliation(s)
- Seyede Maryam Mousavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sobhan Younesian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Shimokawa C. The gut microbiome-helminth-immune axis in autoimmune diseases. Parasitol Int 2025; 104:102985. [PMID: 39491642 DOI: 10.1016/j.parint.2024.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The global prevalence of autoimmune diseases has surged in recent decades. Consequently, environmental triggers have emerged as crucial contributors to autoimmune diseases, equally relevant to classical risk factors, such as genetic polymorphisms, infections, and smoking. Sequencing-based approaches have demonstrated distinct gut microbiota compositions in individuals with autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, type 1 diabetes mellitus (T1D), and systemic lupus erythematosus, compared to healthy controls. Furthermore, fecal microbiota transplantation and microbial inoculation experiments have supported the hypothesis that alterations in the gut microbiota can influence autoimmune responses and disease outcomes. Herein, we propose that intestinal helminths may serve as a critical factor in inducing alterations in the gut microbiota. The concept of helminth-mediated suppression of autoimmune diseases in humans is supported by substantial evidence, aligning with the long-standing "hygiene hypothesis." This review focused on T1D to explore the interactions between parasites, gut microbiota, and the immune system-a topic that remains a black box within this intricate triangular relationship.
Collapse
Affiliation(s)
- Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
5
|
Neumann CJ, Mohammadzadeh R, Woh PY, Kobal T, Pausan MR, Shinde T, Haid V, Mertelj P, Weiss EC, Kolovetsiou-Kreiner V, Mahnert A, Kumpitsch C, Jantscher-Krenn E, Moissl-Eichinger C. First-year dynamics of the anaerobic microbiome and archaeome in infants' oral and gastrointestinal systems. mSystems 2025; 10:e0107124. [PMID: 39714161 DOI: 10.1128/msystems.01071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Recent research provides new insights into the early establishment of the infant gut microbiome, emphasizing the influence of breastfeeding on the development of gastrointestinal microbiomes. In our study, we longitudinally examined the taxonomic and functional dynamics of the oral and gastrointestinal tract (GIT) microbiomes of healthy infants (n = 30) in their first year, focusing on the often-over-looked aspects, the development of archaeal and anaerobic microbiomes. Breastfed (BF) infants exhibit a more defined transitional phase in their oral microbiome compared to non-breastfed (NBF) infants, marked by a decrease in Streptococcus and the emergence of anaerobic genera such as Granulicatella. This phase, characterized by increased alpha-diversity and significant changes in beta-diversity, occurs earlier in NBF infants (months 1-3) than in BF infants (months 4-6), suggesting that breastfeeding supports later, more defined microbiome maturation. We demonstrated the presence of archaea in the infant oral cavity and GIT microbiome from early infancy, with Methanobrevibacter being the predominant genus. Still, transient patterns show that no stable archaeome is formed. The GIT microbiome exhibited gradual development, with BF infants showing increased diversity and complexity between the third and eighth months, marked by anaerobic microbial networks. NBF infants showed complex microbial co-occurrence patterns from the start. These strong differences between BF and NBF infants' GIT microbiomes are less pronounced on functional levels than on taxonomic levels. Overall, the infant microbiome differentiates and stabilizes over the first year, with breastfeeding playing a crucial role in shaping anaerobic microbial networks and overall microbiome maturation. IMPORTANCE The first year of life is a crucial period for establishing a healthy human microbiome. Our study analyses the role of archaea and obligate anaerobes in the development of the human oral and gut microbiome, with a specific focus on the impact of breastfeeding in this process. Our findings demonstrated that the oral and gut microbiomes of breastfed infants undergo distinct phases of increased dynamics within the first year of life. In contrast, the microbiomes of non-breastfed infants are more mature from the first month, leading to a steadier development without distinct transitional phases in the first year. Additionally, we found that archaeal signatures are present in infants under 1 year of age, but they do not form a stable archaeome. In contrast to this, we could track specific bacterial strains transitioning from oral to gut or persisting in the gut over time.
Collapse
Affiliation(s)
- Charlotte J Neumann
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Pei Yee Woh
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tanja Kobal
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Manuela-Raluca Pausan
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
- BBMRI-ERIC, Graz, Styria, Austria
| | - Tejus Shinde
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Victoria Haid
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Polona Mertelj
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Eva-Christine Weiss
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Styria, Austria
| | | | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Styria, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Graz, Styria, Austria
- BioTechMed, Graz, Styria, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Styria, Austria
- BioTechMed, Graz, Styria, Austria
| |
Collapse
|
6
|
Zhou Y, Zhang L, Lin L, Liu Y, Li Q, Zhao Y, Zhang Y. Associations of prenatal organophosphate esters exposure with risk of eczema in early childhood, mediating role of gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137250. [PMID: 39827805 DOI: 10.1016/j.jhazmat.2025.137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Few epidemiological evidence has focused on the impact of organophosphate esters (OPEs) and the risk of eczema, and underlying role of gut microbiota. Based on the Shanghai Maternal-Child Pairs Cohort, a nested case-control study including 332 eczema cases and 332 controls was conducted. Umbilical cord blood and stools were collected for OPEs detection and gut microbiota sequencing, separately. Eczema cases were identified using the International Study of Asthma and Allergies in Childhood core questionnaire and clinical diagnosis. The environmental risk score (ERS) for OPEs was developed to quantify OPEs burden. Conditional logistic regression models, multivariate analysis by linear models, negative-binomial hurdle regression, and mediation analysis were employed. Tris(2-butoxyethyl) phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) had detection rates > 50 %, with median concentrations ranged from 0.11 to 2.71 μg/L. TBP (OR = 1.12, 95 % CI: 1.01, 1.25), TDCPP (OR = 1.32, 95 % CI: 1.09, 1.59), and ERS (OR = 6.44, 95 % CI: 3.47, 11.94) were associated with elevated risk of eczema. OPEs exposure was correlated with increased alpha diversity and the abundance of several pathogenic bacteria, such as Klebsiella. Negative associations were observed between OPEs exposure and the abundances of Lachnospiraceae genera. Additionally, a positive correlation was identified between alpha diversity and the risk of eczema during childhood. Alpha diversity indices and Lachnospiraceae serve as significant mediators in this relationship. Results of this study indicate that prenatal exposure to OPEs is linked to an elevated risk of eczema and gut microbiota dysbiosis, potentially contributing to immunotoxicity of OPEs during early life.
Collapse
Affiliation(s)
- Yuhan Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Ling Lin
- Nantong Center for Disease Control & Prevention, Jiangsu 226007, China
| | - Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Fahur Bottino G, Bonham KS, Patel F, McCann S, Zieff M, Naspolini N, Ho D, Portlock T, Joos R, Midani FS, Schüroff P, Das A, Shennon I, Wilson BC, O'Sullivan JM, Britton RA, Murray DM, Kiely ME, Taddei CR, Beltrão-Braga PCB, Campos AC, Polanczyk GV, Huttenhower C, Donald KA, Klepac-Ceraj V. Early life microbial succession in the gut follows common patterns in humans across the globe. Nat Commun 2025; 16:660. [PMID: 39809768 PMCID: PMC11733223 DOI: 10.1038/s41467-025-56072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life. Using 3154 samples from 1827 infants across 12 countries, we trained a random forest model, achieving a root mean square error of 2.56 months. We identified key taxonomic predictors of age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse human populations, suggesting universal developmental trajectories. Functional analysis confirmed trends in key microbial genes involved in feeding transitions and dietary exposures. This model provides a normative benchmark of "microbiome age" for assessing early gut maturation that may be used alongside other measures of child development.
Collapse
Affiliation(s)
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Fadheela Patel
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Shelley McCann
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Michal Zieff
- University of Cape Town, Cape Town, Western Cape, South Africa
| | - Nathalia Naspolini
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Daniel Ho
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Theo Portlock
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Raphaela Joos
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Firas S Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Paulo Schüroff
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, SP, Brazil
| | - Anubhav Das
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Inoli Shennon
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Brooke C Wilson
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mairead E Kiely
- INFANT Maternal and Child Health Centre, Dept of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Carla R Taddei
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia C B Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, São Paulo, SP, Brazil
| | - Alline C Campos
- Pharmacology of Neuroplasticity Lab- Department of Pharmacology, Ribeirão Preto Medical School- University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
| |
Collapse
|
8
|
Grosserichter-Wagener C, Looman KIM, Beth SA, Radjabzadeh D, Gill PA, Smit KN, Duijts L, Kiefte-de Jong JC, Kraaij R, Moll HA, van Zelm MC. A distinct immunophenotype in children carrying the Blautia enterotype: The Generation R study. Clin Immunol 2025; 271:110426. [PMID: 39800090 DOI: 10.1016/j.clim.2025.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVE Studies in mouse models and human adults have shown that the intestinal microbiota composition can affect peripheral immune cells. We here examined whether the gut microbiota compositions affect B and T-cell subsets in children. METHODS The intestinal microbiota was characterized from stool samples of 344 10-year-old children from the Generation R Study by performing 16S rRNA sequencing. Bray-Curtis dissimilarity was used to cluster distinct microbiome compositions (enterotypes). B-cell and T-cell phenotypes were defined by 11-color-flow cytometry. Linear regression models with adjustment for lifestyle and child characteristics were performed to determine associations between enterotypes and immune cell numbers. RESULTS Three enterotypes with distinct microbiota composition were found, characterized by high abundance of Prevotella, Bacteroides and Blautia. Children with the Blautia enterotype had decreased numbers of plasmablasts, CD4+ central memory (Tcm) T cells and follicular T-helper cells (Tfh), while Th22 cells and CD4+ effector memory (Tem) T cells, CD27-IgA+ memory B cells and CD27-IgE+ memory B cells, were increased in these children. In addition, in children with the Blautia enterotype CD4+ Tcm cell numbers expressing the β7 integrin, which can pair with α4 to mediate intestinal homing were also lower, while CD4+β7+ Tem cell numbers were higher than in the other enterotypes. CONCLUSION The Blautia enterotype showed features beneficial for human health. Enterotypes were associated with differences in memory B- and T-cell compartments. This study is unique in the detailed analysis of the B and T-cell compartment and the intestinal microbiome in a large generic pediatric cohort, enabling correction for child and maternal covariates. These outcomes could guide further studies about the impact of intestinal microbiome intervention, for instance through diet and microbiota metabolites such as short chain fatty acid production.
Collapse
Affiliation(s)
| | - Kirsten I M Looman
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sanne A Beth
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Paul A Gill
- Department of Immunology, Central Clinical School, Monash University and Alfred Hospital, Commercial Road 89, 3004 Melbourne, Victoria, Australia
| | - Kyra N Smit
- Department of Immunology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Public Health and Primary Care/Health Campus The Hague, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Henriëtte A Moll
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; Department of Immunology, Central Clinical School, Monash University and Alfred Hospital, Commercial Road 89, 3004 Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Ercumen A, Mertens AN, Butzin-Dozier Z, Jung DK, Ali S, Achando BS, Rao G, Hemlock C, Pickering AJ, Stewart CP, Tan ST, Grembi JA, Benjamin-Chung J, Wolfe M, Ho GG, Rahman MZ, Arnold CD, Dentz HN, Njenga SM, Meerkerk T, Chen B, Nadimpalli M, Islam MA, Hubbard AE, Null C, Unicomb L, Rahman M, Colford JM, Luby SP, Arnold BF, Lin A. Water, sanitation, handwashing, and nutritional interventions can reduce child antibiotic use: evidence from Bangladesh and Kenya. Nat Commun 2025; 16:556. [PMID: 39788996 PMCID: PMC11718192 DOI: 10.1038/s41467-024-55801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Antibiotics can trigger antimicrobial resistance and microbiome alterations. Reducing pathogen exposure and undernutrition can reduce infections and antibiotic use. We assess effects of water, sanitation, handwashing (WSH) and nutrition interventions on caregiver-reported antibiotic use in Bangladesh and Kenya, longitudinally measured at three timepoints among birth cohorts (ages 3-28 months) in a cluster-randomized trial. Over 50% of children used antibiotics at least once in the 90 days preceding data collection. In Bangladesh, the prevalence of antibiotic use was 10-14% lower in groups receiving WSH (prevalence ratio [PR] = 0.90 (0.82-0.99)), nutrition (PR = 0.86 (0.78-0.94)), and nutrition+WSH (PR = 0.86 (0.79-0.93)) interventions. The prevalence of using antibiotics multiple times was 26-35% lower in intervention arms. Reductions were largest when the birth cohort was younger. In Kenya, interventions did not affect antibiotic use. In this work, we show that improving WSH and nutrition can reduce antibiotic use. Studies should assess whether such reductions translate to reduced antimicrobial resistance.
Collapse
Affiliation(s)
- Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.
| | - Andrew N Mertens
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Zachary Butzin-Dozier
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Da Kyung Jung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Shahjahan Ali
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin Hemlock
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Blum Center for Developing Economies, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christine P Stewart
- Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | - Sophia T Tan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jessica A Grembi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jade Benjamin-Chung
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marlene Wolfe
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gene G Ho
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Md Ziaur Rahman
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Charles D Arnold
- Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | - Holly N Dentz
- Institute for Global Nutrition, University of California, Davis, Davis, CA, USA
| | | | | | - Belinda Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Maya Nadimpalli
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mohammad Aminul Islam
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Alan E Hubbard
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Clair Null
- Mathematica Policy Research, Washington, DC, USA
| | - Leanne Unicomb
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Environmental Health and WASH, Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - John M Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin F Arnold
- Francis I. Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Audrie Lin
- University of California, Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
10
|
Yu S, Huang F, Huang Y, Yan F, Li Y, Xu S, Zhao Y, Zhang X, Chen R, Chen X, Zhang P. Deciphering the influence of gut and oral microbiomes on menopause for healthy aging. J Genet Genomics 2025:S1673-8527(24)00311-4. [PMID: 39577767 DOI: 10.1016/j.jgg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Menopause is characterized by the cessation of menstruation and a decline in reproductive function, which is an intrinsic component of the aging process. However, it has been a frequently overlooked field of women's health. The oral and gut microbiota, constituting the largest ecosystem within the human body, are important for maintaining human health and notably contribute to the healthy aging of menopausal women. Therefore, a comprehensive review elucidating the impact of the gut and oral microbiota on menopause for healthy aging is of paramount importance. This paper presents the current understanding of the microbiome during menopause, with a particular focus on alterations in the oral and gut microbiota. Our study elucidates the complex interplay between the microbiome and sex hormone levels, explores microbial crosstalk dynamics, and investigates the associations between the microbiome and diseases linked to menopause. Additionally, this review explores the potential of microbiome-targeting therapies for managing menopause-related diseases. Given that menopause can last for approximately 30 years, gaining insights into how the microbiome and menopause interact could pave the way for innovative interventions, which may result in symptomatic relief from menopause and an increase in quality of life in women.
Collapse
Affiliation(s)
- Shuting Yu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China
| | - Yixuan Huang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Fangxu Yan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Li
- Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Shenglong Xu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yan Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinlei Zhang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
11
|
Shang J, Del Valle DM, Britton GJ, Mead K, Rajpal U, Chen-Liaw A, Mogno I, Li Z, Menon R, Gonzalez-Kozlova E, Elkrief A, Peled JU, Gonsalves TR, Shah NJ, Postow M, Colombel JF, Gnjatic S, Faleck DM, Faith JJ. Baseline colitogenicity and acute perturbations of gut microbiota in immunotherapy-related colitis. J Exp Med 2025; 222:e20232079. [PMID: 39666007 PMCID: PMC11636624 DOI: 10.1084/jem.20232079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/17/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy-related colitis (irC) frequently emerges as an immune-related adverse event during immune checkpoint inhibitor therapy and is presumably influenced by the gut microbiota. We longitudinally studied microbiomes from 38 ICI-treated cancer patients. We compared 13 ICI-treated subjects who developed irC against 25 ICI-treated subjects who remained irC-free, along with a validation cohort. Leveraging a preclinical mouse model, predisease stools from irC subjects induced greater colitigenicity upon transfer to mice. The microbiota during the first 10 days of irC closely resembled inflammatory bowel disease microbiomes, with reduced diversity, increased Proteobacteria and Veillonella, and decreased Faecalibacterium, which normalized before irC remission. These findings highlight the irC gut microbiota as functionally distinct but phylogenetically similar to non-irC and healthy microbiomes, with the exception of an acute, transient disruption early in irC. We underscore the significance of longitudinal microbiome profiling in developing clinical avenues to detect, monitor, and mitigate irC in ICI therapy cancer patients.
Collapse
Affiliation(s)
- Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Marie Del Valle
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K.R. Mead
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urvija Rajpal
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihua Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Edgar Gonzalez-Kozlova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arielle Elkrief
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan U. Peled
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Tina Ruth Gonsalves
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil J. Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M. Faleck
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Quansah M, David MA, Martins R, El-Omar E, Aliberti SM, Capunzo M, Jensen SO, Tayebi M. The Beneficial Effects of Lactobacillus Strains on Gut Microbiome in Alzheimer's Disease: A Systematic Review. Healthcare (Basel) 2025; 13:74. [PMID: 39791681 PMCID: PMC11720007 DOI: 10.3390/healthcare13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND/OBJECTIVES Growing evidence suggests that the gut-brain axis influences brain function, particularly the role of intestinal microbiota in modulating cognitive processes. Probiotics may alter brain function and behavior by modulating gut microbiota, with implications for neurodegenerative diseases like Alzheimer's disease (AD). The purpose of this review is to systematically review the current literature exploring the effects of probiotic supplementation on gut microbiota and cognitive function in AD and mild cognitive impairment (MCI). METHODS A comprehensive literature search was conducted across PubMed/Medline, Embase, and Scopus to identify relevant randomized controlled trials (RCTs) from inception to 20 August 2024. The search focused on comparing outcomes between intervention and control/placebo groups. Data searches, article selection, data extraction, and risk of bias assessment were performed in accordance with Cochrane guidelines. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no: CRD42023446796. RESULTS Data from four RCTs involving 293 Individuals (AD and MCI patients) receiving mainly Lactobacillus and Bifidobacterium strains showed some beneficial effects on cognitive function, altered gut microbiota composition, and positively affected metabolic biomarkers. However, variability in microbiota assessment across studies limits the interpretation of results. The limited number and quality of the existing studies make it difficult to draw definitive conclusions from the data. Additional high-quality research is clearly needed. CONCLUSIONS Probiotics show promise as an adjunctive intervention for cognitive decline, but larger, long-term trials are needed to confirm their efficacy and clinical applicability in neurodegenerative diseases like AD.
Collapse
Affiliation(s)
- Michael Quansah
- Neuroimmunology Laboratory, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (M.Q.); (M.A.D.)
- Department of Medicine and Therapeutics, Medical School, University of Ghana, Accra LG25, Ghana
| | - Monique Antoinette David
- Neuroimmunology Laboratory, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (M.Q.); (M.A.D.)
| | - Ralph Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia;
| | - Emad El-Omar
- Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses, UNSW, Kogarah, NSW 2217, Australia;
| | - Silvana Mirella Aliberti
- Hygiene and Preventive Medicine Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (S.M.A.); (M.C.)
| | - Mario Capunzo
- Hygiene and Preventive Medicine Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (S.M.A.); (M.C.)
| | - Slade O. Jensen
- School of Medicine, Microbiology and Infectious Diseases, Ingham Institute for Applied Medical Research, Western Sydney University, Liverpool, NSW 1871, Australia;
| | - Mourad Tayebi
- Neuroimmunology Laboratory, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (M.Q.); (M.A.D.)
| |
Collapse
|
13
|
Fang Q, Qiu T, Chen F, Tian X, Feng Z, Cao Y, Bai J, Huang J, Liu Y. The relationship between prenatal drought exposure and the diversity and composition of gut microbiome in pregnant women and neonates. Sci Rep 2025; 15:296. [PMID: 39747960 PMCID: PMC11695601 DOI: 10.1038/s41598-024-82148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Drought induced by climate change poses a serious threat to human health. The gut microbiome also plays a critical role in human health. However, no studies have explored the effect of drought on the human gut microbiome. Therefore, our study aimed to investigate the relationship between drought and gut microbiome. Our study included 59 mothers and 38 neonates in our study. 16S rRNA V3-V4 sequencing was used to profile the gut microbiome. The Standardized Precipitation Evapotranspiration Index (SPEI) was used to represent drought characteristics. KEGG pathway level 3 was employed for functional analysis. Generalized linear models were used to explore the effect of drought on the gut microbiome. Mothers and neonates were divided into the LSPEI (Lower SPEI) group or HSPEI (Higher SPEI) group by calculating the average levels of prenatal SPEI levels. The maternal and neonatal gut microbiome exhibited similar diversities in terms of alpha and beta diversity between the LSPEI and HSPEI groups. However, notable differences were observed in their composition. We found that in the neonatal gut microbiome, Sediminibacterium and Thermovirga were positively associated with SPEI after controlling for PM2.5 in linear regression models. Additionally, SPEI was significantly associated with phenylpropanoid biosynthesis and cyanoamino acid metabolism in neonates. This study identified that prenatal SPEI levels were correlated with specific maternal and neonatal gut microbial taxa, as well as neonatal gut microbial functional pathways. Future studies should further investigate the mechanisms by which drought exposure influences maternal and neonatal gut microbial diversities, composition, and functional pathways.
Collapse
Affiliation(s)
- Qingbo Fang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tianlai Qiu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Fenglan Chen
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xuqi Tian
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Zijun Feng
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanan Cao
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Yanqun Liu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
14
|
Graf MD, Murgueitio N, Vogel SC, Hicks L, Carlson AL, Propper CB, Kimmel M. Maternal Prenatal Stress and the Offspring Gut Microbiome: A Cross-Species Systematic Review. Dev Psychobiol 2025; 67:e70005. [PMID: 39636074 DOI: 10.1002/dev.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The prenatal period is a critical developmental juncture with enduring effects on offspring health trajectories. An individual's gut microbiome is associated with health and developmental outcomes across the lifespan. Prenatal stress can disrupt an infant's microbiome, thereby increasing susceptibility to adverse outcomes. This cross-species systematic review investigates whether maternal prenatal stress affects the offspring's gut microbiome. The study analyzes 19 empirical, peer-reviewed research articles, including humans, rodents, and non-human primates, that included prenatal stress as a primary independent variable and offspring gut microbiome characteristics as an outcome variable. Prenatal stress appeared to correlate with differences in beta diversity and specific microbial taxa, but not alpha diversity. Prenatal stress is positively correlated with Proteobacteria, Bacteroidaceae, Lachnospiraceae, Prevotellaceae, Bacteroides, and Serratia. Negative correlations were observed for Actinobacteria, Enterobacteriaceae, Streptococcaceae, Bifidobacteria, Eggerthella, Parabacteroides, and Streptococcus. Evidence for the direction of association between prenatal stress and Lactobacillus was mixed. The synthesis of findings was limited by differences in study design, operationalization and timing of prenatal stress, timing of infant microbiome sampling, and microbiome analysis methods.
Collapse
Affiliation(s)
- Michelle D Graf
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C Vogel
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Lauren Hicks
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander L Carlson
- Pediatric Physician Scientist Training Program, Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, California, USA
| | - Cathi B Propper
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary Kimmel
- Department of Psychiatry, Washington University in St. Louis., St. Louis, Missouri, USA
| |
Collapse
|
15
|
Tegegne HA, Savidge TC. Leveraging human microbiomes for disease prediction and treatment. Trends Pharmacol Sci 2025; 46:32-44. [PMID: 39732609 DOI: 10.1016/j.tips.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
The human microbiome consists of diverse microorganisms that inhabit various body sites. As these microbes are increasingly recognized as key determinants of health, there is significant interest in leveraging individual microbiome profiles for early disease detection, prevention, and drug efficacy prediction. However, the complexity of microbiome data, coupled with conflicting study outcomes, has hindered its integration into clinical practice. This challenge is partially due to demographic and technological biases that impede the development of reliable disease classifiers. Here, we examine recent advances in 16S rRNA and shotgun-metagenomics sequencing, along with bioinformatics tools designed to enhance microbiome data integration for precision diagnostics and personalized treatments. We also highlight progress in microbiome-based therapies and address the challenges of establishing causality to ensure robust diagnostics and effective treatments for complex diseases.
Collapse
Affiliation(s)
- Henok Ayalew Tegegne
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
16
|
Nisa K, Arisandi R, Ibrahim N, Hardian H. Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. Int J Neurosci 2025; 135:41-51. [PMID: 37963096 DOI: 10.1080/00207454.2023.2283690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Stunting become a global concern because it's not only affecting physical stature, but also affecting on neurodevelopment and cognitive function. These impacts are resulting in long-term consequences especially for human resources, such as poor-quality labor, decreased productivity due to decreasing of health quality, including immunity and cognitive aspect. DISCUSSION This comprehensive review found that based on many studies, there is an altered gut microbiota, or dysbiosis, in stunted children, causing the impairment of brain development through Microbiota-Gut Brain Axis (MGB Axis) mechanism. The administration of probiotics has been known affect MGBA by improving the physical and chemical gut barrier integrity, producing antimicrobial substance to inhibit pathogen, and recovering the healthy gut microbiota. Probiotics, along with healthy gut microbiota, produce SCFAs which have various positive impact on CNS, such as increase neurogenesis, support the development and function of microglia, reduce inflammatory signaling, improve the Blood Brain Barrier's (BBB's) integrity, produce neurotropic factors (e.g. BDNF, GDNF), and promote the formation of new synapse. Probiotics also could induce the production of IGF-1 by intestinal epithelial cells, which functioned as growth factor of multiple body tissues and resulted in improvement of linear growth as well as brain development. CONCLUSION These properties of probiotics made it become the promising and feasible new treatment approach for stunting. But since most of the studies in this field are conducted in animal models, it is necessary to translate animal data into human models and do additional study to identify the numerous components in the MGB axis and the effect of probiotics on human.
Collapse
Affiliation(s)
- Khairun Nisa
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Rizki Arisandi
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Nurhadi Ibrahim
- Department of Medical Physiology and Biophysics, Universitas Indonesia, Depok, Indonesia
| | - Hardian Hardian
- Department of Physiology, University of Diponegoro, Semarang, Indonesia
| |
Collapse
|
17
|
Tessier MEM, Schraw JM, Beer S, Harpavat S, Kyle Jensen M, Magee JC, Ng V, Scheurer ME, Taylor SA, Shneider BL. The association of human milk intake and outcomes in biliary atresia. J Pediatr Gastroenterol Nutr 2025; 80:163-173. [PMID: 39526563 DOI: 10.1002/jpn3.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Human milk intake has many benefits which could influence outcomes in biliary atresia (BA). However, the role of human milk in BA has not been examined. We hypothesized that human milk intake would be associated with improved outcomes in BA. METHODS We assessed the impact of any human milk (AHM) as compared to formula only (FO) intake before Kasai portoenterostomy (KP) on outcomes in 447 infants with BA using the PROBE database (NCT00061828) post hoc. The primary outcome was clearance of jaundice (COJ = total bilirubin (TB) < 2 mg/dL by 3 months post-KP). Secondary outcomes included 2-year survival with native liver (SNL), bilirubin levels, cholangitis, ascites, and growth. We assessed the fecal microbiome (n = 8) comparing AHM versus FO. RESULTS At baseline, 211 infants received AHM and 215 received FO. 53.9% of AHM and 50.5% of FO achieved COJ (p = NS). SNL was insignificantly increased in AHM (odds ratio = 1.47, 95% confidence interval: 1.00-2.12, p = 0.053). TB decreased in AHM from 4 weeks to 3 months post-KP [4.8-4.0 mg/dL (p = 0.01)] unlike the FO group (4.9-4.9 mg/dL, p = 0.4). At 3 months post-KP, AHM infants had greater weight gain (1.88 ± 0.66 vs. 1.57 ± 0.73 kg, p < 0.001) and mid-upper arm circumference (12.9 ± 1.4 vs. 12.2 ± 1.7 cm, p < 0.001). Other secondary outcomes were not different. Microbiome differences were seen between AHM and FO. CONCLUSIONS Human milk intake in infants with BA did not significantly improve COJ or SNL. However, growth parameters were improved, and TB 3 months post-KP was decreased. Thus, human milk intake should not be discouraged. Prospective studies with detailed assessment of human milk intake are needed.
Collapse
Affiliation(s)
- Mary Elizabeth M Tessier
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - Jeremy M Schraw
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Stacey Beer
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - Sanjiv Harpavat
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - M Kyle Jensen
- Department of Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - John C Magee
- Department of Surgery, University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Vicky Ng
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah A Taylor
- Department of Pediatrics, Division of Gastroenterology Hepatology and Nutrition, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Benjamin L Shneider
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| |
Collapse
|
18
|
Xu J, Sheikh TMM, Shafiq M, Khan MN, Wang M, Guo X, Yao F, Xie Q, Yang Z, Khalid A, Jiao X. Exploring the gut microbiota landscape in cow milk protein allergy: Clinical insights and diagnostic implications in pediatric patients. J Dairy Sci 2025; 108:73-89. [PMID: 39369895 DOI: 10.3168/jds.2024-25455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Cow milk protein allergy (CMPA) is a significant health concern characterized by adverse immune reactions to cow milk proteins. Biomarkers for the accurate diagnosis and prognosis of CMPA are lacking. This study analyzed the clinical features of CMPA, and 16S RNA sequencing was used to investigate potential biomarkers through fecal microbiota profiling. Children with CMPA exhibit a range of clinical symptoms, including gastrointestinal (83% of patients), skin (53% of patients), and respiratory manifestations (26% of patients), highlighting the complexity of this condition. Laboratory analysis revealed significant differences in red cell distribution width and inflammatory markers between the CMPA and control groups, suggesting immune activation and inflammatory responses in CMPA. Microbial diversity analysis revealed higher specific diversity indices in the CMPA group compared with those in control group, with significant differences at the genus and species levels. Bacteroides were more abundant in the CMPA group, whereas Bifidobacterium, Ruminococcus, Faecalibacterium, and Parabacteroides were less abundant. The control group exhibited a balanced microbial profile, with a predominant presence of Bifidobacterium bifidum and Akkermansia muciniphila. The significant abundance of Bifidobacterium in the control group (23.19% vs. 9.89% in CMPA) was associated with improved growth metrics such as height and weight, suggesting its potential as a probiotic to prevent CMPA and enhance gut health. Correlation analysis linked specific microbial taxa such as Coprococcus and Bifidobacterium to clinical parameters such as family allergy history, weight, and height, providing insights into CMPA pathogenesis. Significant differences in bacterial abundance suggested diagnostic potential, with a panel of 6 bacteria achieving high predictive accuracy (area under curve = 0.8708). This study emphasizes the complex relationship between the gut microbiota and CMPA, offering valuable insights into disease mechanisms and diagnostic strategies.
Collapse
Affiliation(s)
- Jiaxin Xu
- Precision Medical Lab Center, Chaozhou Central Hospital, Chaozhou 521000, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Zhe Yang
- Department of Pediatrics, Chaozhou Central Hospital, Chaozhou 521000, China
| | - Areeba Khalid
- Department of Pediatrics, Federal Medical College, Islamabad 44080, Pakistan
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
19
|
Lalli MK, Salo TE, Hakola L, Knip M, Virtanen SM, Vatanen T. Associations between dietary fibers and gut microbiome composition in the EDIA longitudinal infant cohort. Am J Clin Nutr 2025; 121:83-99. [PMID: 39551356 PMCID: PMC11747200 DOI: 10.1016/j.ajcnut.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND The infant gut microbiome undergoes rapid changes in the first year of life, supporting normal development and long-term health. Although diet shapes this process, the role of fibers in complementary foods on gut microbiome maturation is poorly understood. OBJECTIVES We explored how the transition from human milk to fibers in complementary foods shapes the taxonomic and functional maturation of the gut microbiome within the first year of life. METHODS We assessed the longitudinal and cross-sectional development of infant gut microbiomes (N = 68 infants) and metabolomes (N = 33 infants) using linear mixed models to uncover their associations to dietary fibers and their food sources. Fiber intakes were assessed with 3-d food records (months 3, 6, 9, and 12) relying on CODEX-compliant fiber fraction values, and questionnaires tracked the overall complementary food introduction. Bacterial species were identified and quantified via MetaPhlAn2 from metagenomic data, and metabolomic profiles were obtained using 4 LC-MS methods. RESULTS We identified 176 complementary food fiber-bacterial species associations. First plant-based fibers associated with microbiota compositions similar to breastfeeding, and further associated with aromatic amino acid-derived metabolites, including 5-hydroxyindoleacetic acid (total dietary fiber - complementary foods (g) - β = 3.50, CI: 2.48, 4.52, P = 6.53 × 10-5). Distinct fibers from different food categories showed unique associations with specific bacterial taxa. Key species, such as Faecalibacterium prausnitznii, associated with oat fibers (g/MJ, β = 2.18, confidence interval: 1.36, 2.84, P = 6.12 × 10-6), reflective of maturing microbial communities. Fiber intake during weaning associated with shifts in metabolite profiles, including immunomodulatory metabolites, with fiber effects observed in a source- and timing-dependent manner, implicated in gradual microbiome diversification. CONCLUSIONS Introducing complementary dietary fibers during the weaning period supports gut microbiome diversification and stabilization. Even minor dietary variations shows significant associations with microbial taxa and functions from the onset of weaning, highlighting the importance of infant dietary recommendations that support the gut microbiome maturation during early life. This trial was registered at clinicaltrials.gov as registration number NCT01735123.
Collapse
Affiliation(s)
- Marianne K Lalli
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli Ei Salo
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Leena Hakola
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Helsinki University Hospital, Helsinki, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M Virtanen
- Department of Public Health, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, United States; Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
20
|
Xu S, Xiong J, Qin X, Ma M, Peng Y, Cheng J, Nie X, Fan X, Deng Y, Ju Y, Liu J, Zhang L, Liu B, Zhang Y, Li L. Association between gut microbiota and perinatal depression and anxiety among a pregnancy cohort in Hunan, China. Brain Behav Immun 2024:S0889-1591(24)00879-1. [PMID: 39736365 DOI: 10.1016/j.bbi.2024.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Perinatal depression and anxiety pose significant risks to maternal health and may lead to suicide. The gut microbiota may play a crucial role in perinatal depression and anxiety. However, the relationship between the alterations in gut microbiota and perinatal depression and anxiety remains unclear. This study aimed to investigate the dynamic changes of gut microbiota over various perinatal stages and their associations with perinatal depression and anxiety symptoms, especially suicide ideation. METHODS A total of 177 pregnant and 19 postpartum women were recruited in this study, with 48 of them participating longitudinally. Maternal depression and anxiety symptoms were assessed using the Edinburgh Postnatal Depression Scale (EPDS), 9-item Patient Health Questionnaire (PHQ-9), and 7-item Generalized Anxiety Disorder Scale (GAD-7). Fecal samples collected during the perinatal period were analyzed using 16S rRNA gene sequencing. RESULTS Significant changes in microbial diversity and multi-taxonomic levels were observed during pregnancy. The random forest regression model showed significant associations of some gut microbial features with depression and anxiety symptoms. Several genera were significantly associated with gestation age and perinatal depression and anxiety, such as Akkermansia, Bifidobacterium and Streptococcus. In addition, Erysipelotrichaceae_UCG-003 and Eubacterium_hallii_group were positively associated with suicidal ideation. The glycine biosynthesis pathway might act as a mediator between Eubacterium_hallii_group and suicidal ideation (ab = 3.27, p < 0.05). CONCLUSION The gut microbiota undergoes a programmed shift during pregnancy, which may play a critical role in perinatal depression and anxiety. Our findings underscore the impact of certain bacterial genera and metabolic pathways on perinatal mental health, which may help to develop new diagnostic tools and targeted interventions to reduce perinatal mental disorders and improve the outcomes for both mothers and infants.
Collapse
Affiliation(s)
- Shuyin Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Jintao Xiong
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Xuemei Qin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Yilin Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Junzhe Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Xueqing Nie
- Changsha Hospital for Maternal and Child Health Care, Changsha 410007, Hunan, China
| | - Xing Fan
- Changsha Hospital for Maternal and Child Health Care, Changsha 410007, Hunan, China
| | - Yali Deng
- Department of Obstetrics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Li Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| | - Lingjiang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha 410011, Hunan, China.
| |
Collapse
|
21
|
Pasalari M, Esmaeili HR, Keshavarzi B, Busquets R, Abbasi S, Momeni M. Microplastic footprints in sharks and rays: First assessment of microplastic pollution in two cartilaginous fishes, hardnose shark and whitespotted whipray. MARINE POLLUTION BULLETIN 2024; 212:117350. [PMID: 39731785 DOI: 10.1016/j.marpolbul.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 12/30/2024]
Abstract
Microplastic (MP) pollution is an emerging environmental problem worldwide and has caused widespread concern both in terrestrial and aquatic ecosystems due to their potential impacts on the human health, and health of aquatic organisms and the environment. Little is known about the exposure of top marine predators to MP contamination (debris 0.1μm - <5mm, also called MPs). For the first time, MPs have been characterized in carnivore demersal elasmobranch specimens of hardnose shark Carcharhinus macloti, and the whitespotted whipray Maculabatis gerrardi. The specimens were from the Persian Gulf and Sea of Oman, and MPs were extracted from their intestines, gills, and skin. MPs were found in every sampled tissue examined: this is higher pollution than previously reported for elasmobranch. The total MPs for these organs were 12.6 MPs/g body mass of sharks, and 17.8 MPs/g in the whiprays on average. The most common MPs found were fibres (59%), and filaments (35%); pointing towards fishing gears and limited wastewater treatment. Fragments, films, and foams were <2.1 %; a less abundant problem. The most abundant MPs sampled were ∼0.5 mm ≤ L< 1 mm (when the limit of detection was 0.1 mm), and blue was the most common MP color hinting intake due to visual confusion. Polycarbonate and nylon were the most abundant polymers in the MPs recovered. The overall findings show that C. macloti and M. gerrardi are vulnerable to plastic and it reflects the critical state of their habitat.
Collapse
Affiliation(s)
- Marzieh Pasalari
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz 71454, Iran
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz 71454, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Rosa Busquets
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower St, Bloomsbury, London WC1E 6BT, United Kingdom
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran
| | - Mohammad Momeni
- Persian Gulf and Oman Sea Ecological research center, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| |
Collapse
|
22
|
Li M, Tong F, Wu B, Dong X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut-Brain Axis Therapies. Brain Sci 2024; 14:1295. [PMID: 39766494 PMCID: PMC11674909 DOI: 10.3390/brainsci14121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus. With increasing survival rates among oncology patients, evaluating post-treatment quality of life has become crucial in assessing the benefits of radiation therapy. Consequently, it is imperative to investigate therapeutic strategies to mitigate cerebral complications from radiation exposure. Current management of radiation-induced cerebral damage involves corticosteroids and bevacizumab, with preclinical research on antioxidants and thalidomide. Despite these efforts, an optimal treatment remains elusive. Recent studies suggest the gut microbiota's involvement in neurologic pathologies. This review aims to discuss the causes and existing treatments for radiation-induced cerebral injury and explore gut microbiota modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mengting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
23
|
Bhutta NK, Xu X, Jian C, Wang Y, Liu Y, Sun J, Han B, Wu S, Javeed A. Gut microbiota mediated T cells regulation and autoimmune diseases. Front Microbiol 2024; 15:1477187. [PMID: 39749132 PMCID: PMC11694513 DOI: 10.3389/fmicb.2024.1477187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Gut microbiota regulates the immune system, the development and progression of autoimmune diseases (AIDs) and overall health. Recent studies have played a crucial part in understanding the specific role of different gut bacterial strains and their metabolites in different AIDs. Microbial signatures in AIDs are revealed by advanced sequencing and metabolomics studies. Microbes such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Anaerostipes caccae, Bacteroides sp., Roseburia sp., Blautia sp., Blautia faecis, Clostridium lavalense, Christensenellaceae sp., Coprococcus sp., Firmicutes sp., Ruminococcaceae sp., Lachnospiraceae sp., Megamonas sp., Monoglobus sp., Streptococcus pneumoniae and Bifidobacterium sp. help maintain immune homeostasis; whereas, Prevotella copri, Ruminococcus gnavus, Lactobacillus salivarius, Enterococcus gallinarum, Elizabeth menigoseptica, Collinsella sp., Escherichia sp., Fusobacterium sp., Enterobacter ludwigii, Enterobacteriaceae sp., Proteobacteria, Porphyromonas gingivalis, Porphyromonas nigrescens, Dorea sp., and Clostridium sp. cause immuno-pathogenesis. A complex web of interactions is revealed by understanding the influence of gut microbiota on immune cells and various T cell subsets such as CD4+ T cells, CD8+ T cells, natural killer T cells, γδ T cells, etc. Certain AIDs, including rheumatoid arthritis, diabetes mellitus, atopic asthma, inflammatory bowel disease and non-alcoholic fatty liver disease exhibit a state of dysbiosis, characterized by alterations in microbial diversity and relative abundance of specific taxa. This review summarizes recent developments in understanding the role of certain microbiota composition in specific AIDs, and the factors affecting specific regulatory T cells through certain microbial metabolites and also focuses the potential application and therapeutic significance of gut microbiota-based interventions as novel adjunctive therapies for AIDs. Further research to determine the precise association of each gut bacterial strain in specific diseases is required.
Collapse
Affiliation(s)
- Nabeel Khalid Bhutta
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiujin Xu
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cuiqin Jian
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifan Wang
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Jinlyu Sun
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Department of Allergy, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingnan Han
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd., Hangzhou, China
| | - Ansar Javeed
- Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
24
|
Vaher K, Cabez MB, Parga PL, Binkowska J, van Beveren GJ, Odendaal ML, Sullivan G, Stoye DQ, Corrigan A, Quigley AJ, Thrippleton MJ, Bastin ME, Bogaert D, Boardman JP. The neonatal gut microbiota: A role in the encephalopathy of prematurity. Cell Rep Med 2024; 5:101845. [PMID: 39637857 PMCID: PMC11722115 DOI: 10.1016/j.xcrm.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/11/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Preterm birth correlates with brain dysmaturation and neurocognitive impairment. The gut microbiome associates with behavioral outcomes in typical development, but its relationship with neurodevelopment in preterm infants is unknown. We characterize fecal microbiome in a cohort of 147 neonates enriched for very preterm birth using 16S-based and shotgun metagenomic sequencing. Delivery mode strongly correlates with the preterm microbiome shortly after birth. Low birth gestational age, infant sex assigned at birth, and antibiotics associate with microbiome composition at neonatal intensive care unit discharge. We integrate these data with term-equivalent structural and diffusion brain MRI. Bacterial community composition associates with MRI features of encephalopathy of prematurity. Particularly, abundances of Escherichia coli and Klebsiella spp. correlate with microstructural parameters in deep and cortical gray matter. Metagenome functional capacity analyses suggest that these bacteria may interact with brain microstructure via tryptophan and propionate metabolism. This study indicates that the gut microbiome associates with brain development following preterm birth.
Collapse
Affiliation(s)
- Kadi Vaher
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Manuel Blesa Cabez
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paula Lusarreta Parga
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Justyna Binkowska
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gina J van Beveren
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Mari-Lee Odendaal
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven 3721 MA, the Netherlands
| | - Gemma Sullivan
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David Q Stoye
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Amy Corrigan
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Alan J Quigley
- Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | | | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Debby Bogaert
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital and University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - James P Boardman
- Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
25
|
Geniselli da Silva V, Tonkie JN, Roy NC, Smith NW, Wall C, Kruger MC, Mullaney JA, McNabb WC. The effect of complementary foods on the colonic microbiota of weaning infants: a systematic review. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39682025 DOI: 10.1080/10408398.2024.2439036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The transition from breastmilk to solid foods (weaning) is a decisive stage for the development of the colonic microbiota. However, little is known about how complementary foods influence the composition and function of the colonic microbiota in infants. This systematic review collected evidence of the effect of individual foods on the fecal microbiota of weaning infants (4-12 months old) using five databases: PubMed, CENTRAL, Scopus, Web of Science, and ScienceDirect. A total of 3625 records were examined, and seven randomized clinical trials met the review's eligibility criteria. Altogether, 983 participants were enrolled, and plant-based foods, meats, and dairy products were used as interventions. Wholegrain cereal increased the fecal abundance of the order Bacteroidales in the two included studies. Pureed beef increased the fecal abundances of the genus Bacteroides and the Clostridium XIVa group, as well as microbial richness in two of the three included studies. However, the conclusions of this review are limited by the small number of studies included. No conclusions could be drawn about the impact of complementary foods on fecal metabolites. Further clinical trials assessing the effect of dietary interventions on both fecal microbial composition and function are needed to fill this knowledge gap in infant nutrition.
Collapse
Affiliation(s)
- Vitor Geniselli da Silva
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Jacqueline Nicole Tonkie
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole Clémence Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | | | - Clare Wall
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Nutrition and Dietetics, The University of Auckland, Auckland, New Zealand
| | - Marlena Cathorina Kruger
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | - Jane Adair Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Warren Charles McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
26
|
Keerthy D, Spratlen MJ, Wen L, Seeram D, Park H, Calero L, Uhlemann AC, Herbstman JB. An evaluation of in utero polycyclic aromatic hydrocarbon exposure on the neonatal meconium microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120053. [PMID: 39341532 DOI: 10.1016/j.envres.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION In utero exposure to environmental polycyclic aromatic hydrocarbon (PAH) is associated with neurodevelopmental impairments[1-8], prematurity[9-12] and low birthweight[9,13-15]. The gut microbiome serves as an intermediary between self and external environment; therefore, exploring the impact of PAH on microbiota may elucidate their role in disease. Here, we evaluated the effect of in utero PAH exposure on meconium microbiome. METHODS We evaluated 49 mother-child dyads within Fair Start Birth Cohort with full term delivery and adequate meconium sampling. Prenatal PAH was measured using personal active samplers worn for 48 h during third trimester. Post-processing, 35 samples with adequate biomass were evaluated for association between tertile of PAH exposure (high (H) vs low/medium (L/M)) and microbiome diversity. RESULTS No significant differences were observed in alpha diversity metrics, Chao1 and Shannon index, between exposure groups for total PAH. However, alpha diversity metrics were negatively associated with log benzo[a]anthracene (BaA) and log chrysene (Chry) with high exposure, but positively associated with log benzo[a]pyrene (BaP) with low/medium exposure. After adjustment for birthweight and sex, alpha diversity metrics were negatively associated with log BaA, BaP, Chry, Indeno (Zhang et al., 2021; Perera et al., 2018)pyrene (IcdP) and total PAH with high exposure. Conversely, with low/medium exposure, alpha diversity metrics positively correlated with log BaP and benzo[b]fluoranthane (BbF). No significant difference in beta diversity was observed across groups using UniFrac, weighted UniFrac, or Bray-Curtis methods. Differential expression analysis showed differentially abundant taxa between exposure groups. CONCLUSION Bacterial taxa were detectable in 35/49 (71%) meconium samples. Altered alpha diversity metrics and differentially abundant taxa between groups suggest in utero PAH exposure may impede early colonization. Sample size is limited, but these findings provide supporting evidence for wider scale research. Research on long-term impact of prenatal PAH exposure on childhood health outcomes is ongoing. Differential effects of specific PAHs need further evaluation.
Collapse
Affiliation(s)
- Divya Keerthy
- Neonatal and Perinatal Medicine, Columbia University, New York, NY, United States; Neonatal and Perinatal Medicine, NewYork Presbyterian Queens, Flushing, NY, United States.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lingsheng Wen
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Lehyla Calero
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
27
|
Hoskinson C, Petersen C, Turvey SE. How the early life microbiome shapes immune programming in childhood asthma and allergies. Mucosal Immunol 2024:S1933-0219(24)00128-4. [PMID: 39675725 DOI: 10.1016/j.mucimm.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Despite advances in our understanding of their diagnosis and treatment, pediatric allergies impose substantial burdens on affected children, families, and healthcare systems. Further, the prevalence of allergic diseases has dramatically increased over the past half-century, leading to additional concerns and concerted efforts to identify the origins, potential predictors and preventions, and therapies of allergic diseases. Together with the increase in allergic diseases, changes in lifestyle and early-life environmental influences have corresponded with changes in colonization patterns of the infant gut microbiome. The gut microbiome plays a key role in developing the immune system, thus greatly influencing the development of allergic disease. In this review, we specifically highlight the importance of the proper maturation and composition of the gut microbiome as an essential step in healthy child development or disease progression. By exploring the intertwined development of the immune system and microbiome across pediatric allergic diseases, we provide insights into potential novel strategies for their prevention and management.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Peng Y, Zhu J, Wang S, Liu Y, Liu X, DeLeon O, Zhu W, Xu Z, Zhang X, Zhao S, Liang S, Li H, Ho B, Ching JYL, Cheung CP, Leung TF, Tam WH, Leung TY, Chang EB, Chan FKL, Zhang L, Ng SC, Tun HM. A metagenome-assembled genome inventory for children reveals early-life gut bacteriome and virome dynamics. Cell Host Microbe 2024; 32:2212-2230.e8. [PMID: 39591974 DOI: 10.1016/j.chom.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Existing microbiota databases are biased toward adult samples, hampering accurate profiling of the infant gut microbiome. Here, we generated a metagenome-assembled genome inventory for children (MAGIC) from a large collection of bulk and viral-like particle-enriched metagenomes from 0 to 7 years of age, encompassing 3,299 prokaryotic and 139,624 viral species-level genomes, 8.5% and 63.9% of which are unique to MAGIC. MAGIC improves early-life microbiome profiling, with the greatest improvement in read mapping observed in Africans. We then identified 54 candidate keystone species, including several Bifidobacterium spp. and four phages, forming guilds that fluctuated in abundance with time. Their abundances were reduced in preterm infants and were associated with childhood allergies. By analyzing the B. longum pangenome, we found evidence of phage-mediated evolution and quorum sensing-related ecological adaptation. Together, the MAGIC database recovers genomes that enable characterization of the dynamics of early-life microbiomes, identification of candidate keystone species, and strain-level study of target species.
Collapse
Affiliation(s)
- Ye Peng
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jie Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xin Liu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Orlando DeLeon
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, The University of Chicago, Chicago, IL 60637, USA
| | - Wenyi Zhu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xi Zhang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Shilin Zhao
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Suisha Liang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Hang Li
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Brian Ho
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China
| | - Jessica Yuet-Ling Ching
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Pan Cheung
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ting Fan Leung
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, The University of Chicago, Chicago, IL 60637, USA
| | - Francis Ka Leung Chan
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| | - Hein Min Tun
- Microbiota I-Center (MagIC), Hong Kong SAR 999077, China; Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
29
|
Jiang S, Cai M, Li D, Chen X, Chen X, Huang Q, Zhong C, Zheng X, Zhou D, Chen Z, Zhang L, Ching JYL, Chen A, Lu S, Zhang L, Hu L, Liao Y, Li Y, He Z, Wu J, Huo H, Liang Y, Li W, Zou Y, Luo W, Ng SC, Chan FKL, Chen X, Deng Y. Association of breast milk-derived arachidonic acid-induced infant gut dysbiosis with the onset of atopic dermatitis. Gut 2024; 74:45-57. [PMID: 39084687 PMCID: PMC11671956 DOI: 10.1136/gutjnl-2024-332407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The specific breast milk-derived metabolites that mediate host-microbiota interactions and contribute to the onset of atopic dermatitis (AD) remain unknown and require further investigation. DESIGN We enrolled 250 mother-infant pairs and collected 978 longitudinal faecal samples from infants from birth to 6 months of age, along with 243 maternal faecal samples for metagenomics. Concurrently, 239 corresponding breast milk samples were analysed for metabolomics. Animal and cellular experiments were conducted to validate the bioinformatics findings. RESULTS The clinical findings suggested that a decrease in daily breastfeeding duration was associated with a reduced incidence of AD. This observation inspired us to investigate the effects of breast milk-derived fatty acids. We found that high concentrations of arachidonic acid (AA), but not eicosapentaenoic acid (EPA) or docosahexaenoic acid, induced gut dysbiosis in infants. Further investigation revealed that four specific bacteria degraded mannan into mannose, consequently enhancing the mannan-dependent biosynthesis of O-antigen and lipopolysaccharide. Correlation analysis confirmed that in infants with AD, the abundance of Escherichia coli under high AA concentrations was positively correlated with some microbial pathways (eg, 'GDP-mannose-derived O-antigen and lipopolysaccharide biosynthesis'). These findings are consistent with those of the animal studies. Additionally, AA, but not EPA, disrupted the ratio of CD4/CD8 cells, increased skin lesion area and enhanced the proportion of peripheral Th2 cells. It also promoted IgE secretion and the biosynthesis of prostaglandins and leukotrienes in BALB/c mice fed AA following ovalbumin immunostimulation. Moreover, AA significantly increased IL-4 secretion in HaCaT cells costimulated with TNF-α and INF-γ. CONCLUSIONS This study demonstrates that AA is intimately linked to the onset of AD via gut dysbiosis.
Collapse
Affiliation(s)
- Suhua Jiang
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Mengyun Cai
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Dingru Li
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
- South China University of Technology School of Biology and Biological Engineering, Guangzhou, Guangdong, People's Republic of China
| | - Xiangping Chen
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Xiaoqian Chen
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Qitao Huang
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Caimei Zhong
- Department of Dermatology, Shunde District Center for Prevention and Cure of Chronic Diseases, Foshan, China
| | - Xiufeng Zheng
- Department of Dermatology, Shunde Hospital, Southern Medical University, Lunjiao, Shunde, Foshan, People's Republic of China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Zhiyan Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Lin Zhang
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinse University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jessica YL Ching
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ailing Chen
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Shaoxia Lu
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Lifang Zhang
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Ling Hu
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Yan Liao
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Ying Li
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Zhihua He
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Jingjing Wu
- Department of obstetrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Huiyi Huo
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Yongqi Liang
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Wanwen Li
- Department of paediatrics, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Yanli Zou
- The Second People's Hospital of Foshan, Foshan, People's Republic of China
| | - Wei Luo
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Siew C Ng
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinse University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Francis KL Chan
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xia Chen
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yuhua Deng
- Institute of translational medicine, The First People's Hospital of Foshan, Foshan, People's Republic of China
| |
Collapse
|
30
|
Guo D, Ning X, Bai T, Tan L, Zhou Y, Guo Z, Li X. Interaction between Vitamin D homeostasis, gut microbiota, and central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1449033. [PMID: 39717097 PMCID: PMC11663660 DOI: 10.3389/fendo.2024.1449033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Central precocious puberty (CPP) is an endocrine disease in children, characterized by rapid genital development and secondary sexual characteristics before the age of eight in girls and nine in boys. The premature activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of patients in adulthood and is associated with a higher risk of breast cancer. How to prevent and improve the prognosis of CPP is an important problem. Vitamin D receptor (VDR) is widely expressed in the reproductive system, participates in the synthesis and function of regulatory sex hormones, and affects the development and function of gonads. In addition, gut microbiota plays an important role in human health by mainly regulating metabolites, energy homeostasis, and hormone regulation. This review aims to clarify the effect of vitamin D deficiency on the occurrence and development of CPP and explore the role of gut microbiota in it. Although evidence on the interaction between vitamin D deficiency, gut microbiota, and sexual development remains limited, vitamin D supplementation and gut microbiota interventions offer a promising, non-invasive strategy for managing CPP.
Collapse
Affiliation(s)
- Doudou Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ning
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichen Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Shibata R, Nakanishi Y, Suda W, Nakano T, Sato N, Inaba Y, Kawasaki Y, Hattori M, Shimojo N, Ohno H. Neonatal gut microbiota and risk of developing food sensitization and allergy. J Allergy Clin Immunol 2024:S0091-6749(24)01173-4. [PMID: 39692676 DOI: 10.1016/j.jaci.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Food sensitization (FS) develops in early infancy and is a risk factor for subsequent food allergy (FA). Recent evidence suggests relationships of gut microbiota with FS and FA. However, little is known about the role of neonatal gut microbiota in the pathobiology of these manifestations. OBJECTIVES We sought to characterize gut microbiota in children using an enterotyping approach and determine the association of gut microbiota and the enterotypes with the development of FS and FA. METHODS We combined gut microbiome and fecal short-chain fatty acid data from 2 longitudinal birth-cohort studies in Japan, clustered the microbiome data from children who were 1 week to 7 years old and their mothers and identified enterotypes. We also determined the associations of gut microbiota and enterotypes with risks of developing FS and FA across the 2 studies using multivariable regression models. RESULTS Data from the 2563 microbiomes identified 6 enterotypes. More gut bacteria (eg, Bifidobacterium) in 1-month-old children showed significant relationships with the development of FS and FA than in 1-week-old children. Enterotypes at 1 month old consisted of Bacteroides-dominant, Klebsiella-dominant, and Bifidobacterium-dominant enterotypes. Bifidobacterium-dominant enterotypes with the highest fecal propionate concentration had the lowest risks of developing FS and FA, especially of hen egg white sensitization. Bifidobacterium-dominant enterotypes had lower risks at 2 years old in one study (vs Bacteroides-dominant enterotype, adjusted odds ratio [adjOR]: 0.10, 95% CI: 0.01-0.78; vs Klebsiella-dominant enterotype, adjOR: 0.10, 95% CI: 0.01-0.77) and at 9 months old in the other study (vs Bacteroides-dominant enterotype, adjOR: 0.33, 95% CI: 0.11-0.91). CONCLUSIONS In these birth-cohort studies, gut microbiome clustering identified distinct neonatal enterotypes with differential risks of developing FS and FA.
Collapse
Affiliation(s)
- Ryohei Shibata
- Laboratorie for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba City, Japan.
| | - Yumiko Nakanishi
- Laboratorie for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Wataru Suda
- Laboratorie for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taiji Nakano
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Noriko Sato
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba City, Japan
| | - Yosuke Inaba
- Clinical Research Center, Chiba University Hospital, Chiba City, Japan
| | - Yohei Kawasaki
- Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
| | - Masahira Hattori
- Laboratorie for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoki Shimojo
- Center for Preventive Medical Sciences, Chiba University, Chiba City, Japan
| | - Hiroshi Ohno
- Laboratorie for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan; Laboratorie for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.
| |
Collapse
|
32
|
Azcarate-Peril MA. Has the two decades of research on the gut microbiome resulted in making healthier choices? GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e10. [PMID: 39703542 PMCID: PMC11658936 DOI: 10.1017/gmb.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 12/21/2024]
Abstract
The gut microbiome is widely recognized for its significant contribution to maintaining human health across all life stages, from infancy to adulthood and beyond. This perspective article focuses on the impacts of well-supported microbiome research on global caesarean delivery rates, breastfeeding practices, and antimicrobial use. The article also explores the impact of dietary choices, particularly those involving ultra-processed foods, on the gut microbiota and their potential contribution to conditions like obesity, metabolic syndrome, and inflammatory diseases. This perspective aims to emphasize the need for updated guidelines and policy interventions to address the increasing global trends of caesarean deliveries, reduced breastfeeding, overuse of antibiotics, and consumption of highly processed foods to counter their adverse effects on gut health.
Collapse
Affiliation(s)
- M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Seco-Hidalgo V, Witney A, Chico ME, Vaca M, Arevalo A, Schuyler AJ, Platts-Mills TA, Ster IC, Cooper PJ. Rurality and relative poverty drive acquisition of a stable and diverse gut microbiome in early childhood in a non-industrialized setting. RESEARCH SQUARE 2024:rs.3.rs-5361957. [PMID: 39678332 PMCID: PMC11643292 DOI: 10.21203/rs.3.rs-5361957/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
There are limited longitudinal data from non-industrialized settings on patterns and determinants of gut bacterial microbiota development in early childhood. We analysed epidemiological data and stool samples collected from 60 children followed from early infancy to 5 years of age in a rural tropical district in coastal Ecuador. Data were collected longitudinally on a wide variety of individual, maternal, and household exposures. Extracted DNA from stool samples were analyzed for bacterial microbiota using 16S rRNA gene sequencing. Both alpha and beta diversity indices suggested stable profiles towards 5 years of age. Greater alpha diversity and lower beta diversity were associated with factors typical of rural poverty including low household incomes, overcrowding, and greater agricultural and animal exposures, but not with birth mode or antibiotic exposures. Consumption of unpasteurized milk was consistently associated with greater alpha diversity indices. Infants living in a non-industrialized setting in conditions of greater poverty and typically rural exposures appeared to acquire more rapidly a stable and diverse gut bacterial microbiome during childhood.
Collapse
Affiliation(s)
| | | | | | - Maritza Vaca
- Fundación Ecuatoriana Para la Investigación en Salud
| | | | | | | | | | | |
Collapse
|
34
|
Wei L, Qi C, Wang T, Jin X, Zhou X, Luo M, Lu M, Chen H, Guo J, Wang H, Xu D. Prenatal amoxicillin exposure induces depressive-like behavior in offspring via gut microbiota and myristic acid-mediated modulation of the STING pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136750. [PMID: 39672059 DOI: 10.1016/j.jhazmat.2024.136750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Amoxicillin is a widely used antibiotic globally, and its pervasive environmental presence poses significant risks to human health and ecosystems. Notably, prenatal amoxicillin exposure (PAmE) may have long-term neurodevelopmental toxicity for offspring. In this study, we investigated the lasting effects of PAmE on depressive-like behaviors in offspring rats, emphasizing the biological mechanisms mediated by changes in gut microbiota and its metabolite, myristic acid. Our results showed that PAmE significantly disrupted the gut microbiota composition in offspring, particularly through the reduction of Lachnospiraceae, leading to decreased levels of myristic acid. This disruption hindered the N-myristoylation of ADP-ribosylation factor 1 (ARF1), impaired the normal degradation of the stimulator of interferon genes protein, inhibited autophagic processes, and promoted M1 polarization of microglia, ultimately leading to depressive-like behaviors in the offspring. Remarkably, supplementation with Lachnospira or myristic acid effectively reversed the PAmE-induced neurodevelopmental and behavioral abnormalities, alleviating depressive-like symptoms. This study reveals how PAmE affects offspring neurodevelopment and behavior through gut microbiota and myristic acid, highlighting the crucial role of the gut-brain axis in the modulation of depressive symptoms. Supplementing Lachnospira or myristic acid could represent a novel strategy to mitigate PAmE-induced fetal-originated depression, providing new biological evidence and potential therapeutic avenues.
Collapse
Affiliation(s)
- Liyi Wei
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Cuiping Qi
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiuping Jin
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingcui Luo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxi Lu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Huijun Chen
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Juanjuan Guo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
35
|
Wang X, Cui H, Li N, Liu B, Zhang X, Yang J, Zheng JS, Qiao C, Liu HX, Hu J, Wen D. Impact of vaginal seeding on the gut microbiome of infants born via cesarean section: A systematic review. J Infect 2024; 89:106348. [PMID: 39537035 DOI: 10.1016/j.jinf.2024.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This systematic review summarizes eight studies involving 558 cesarean section (CS)-born infants (274 exposed to vaginal seeding (VS), 284 not exposed) and 261 infants born vaginally to investigate the effect of VS on gut microbiome colonization and development in CS-born infants. METHODS This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Relevant articles published before March 6, 2024, were identified through systematic searches of PubMed, Scopus, and Web of Science. We included experimental studies that investigated changes in the gut microbiota of CS-born infants following VS and reported changes in the gut microbiota. The relationship between VS and the gut microbiota composition of CS-born infants was assessed. RESULTS VS may selectively influence the abundance of bacterial genera from various phyla, such as an increased relative abundance of Bacteroides and Lactobacillus, in the gut microbiome of CS-seeded infants compared to CS-non-seeded infants. Conflicting results mainly concern microbial diversity. CONCLUSIONS Current evidence indicates modest changes in the gut microbiome of CS-born infants following VS. However, further clinical studies are necessary to fully understand its impact on early-life health outcomes, particularly regarding potential microbiome alterations and associated health risks.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Health Sciences Institute, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China
| | - Hong Cui
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Na Li
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Borui Liu
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Health Sciences Institute, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China
| | - Xiaoyan Zhang
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Health Sciences Institute, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China
| | - Jing Yang
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Health Sciences Institute, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chong Qiao
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Hui-Xin Liu
- Health Sciences Institute, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China.
| | - Jiajin Hu
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Health Sciences Institute, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China.
| | - Deliang Wen
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang 110122, China; Health Sciences Institute, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China.
| |
Collapse
|
36
|
Stinson LF, Ma J, Lai CT, Rea A, Perrella SL, Geddes DT. Milk microbiome transplantation: recolonizing donor milk with mother's own milk microbiota. Appl Microbiol Biotechnol 2024; 108:74. [PMID: 38194146 PMCID: PMC10776751 DOI: 10.1007/s00253-023-12965-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024]
Abstract
Donor human milk (DHM) provides myriad nutritional and immunological benefits for preterm and low birthweight infants. However, pasteurization leaves DHM devoid of potentially beneficial milk microbiota. In the present study, we performed milk microbiome transplantation from freshly collected mother's own milk (MOM) into pasteurized DHM. Small volumes of MOM (5%, 10%, or 30% v/v) were inoculated into pasteurized DHM and incubated at 37 °C for up to 8 h. Further, we compared microbiome recolonization in UV-C-treated and Holder-pasteurized DHM, as UV-C treatment has been shown to conserve important biochemical components of DHM that are lost during Holder pasteurization. Bacterial culture and viability-coupled metataxonomic sequencing were employed to assess the effectiveness of milk microbiome transplantation. Growth of transplanted MOM bacteria occurred rapidly in recolonized DHM samples; however, a greater level of growth was observed in Holder-pasteurized DHM compared to UV-C-treated DHM, potentially due to the conserved antimicrobial properties in UV-C-treated DHM. Viability-coupled metataxonomic analysis demonstrated similarity between recolonized DHM samples and fresh MOM samples, suggesting that the milk microbiome can be successfully transplanted into pasteurized DHM. These results highlight the potential of MOM microbiota transplantation to restore the microbial composition of UV-C-treated and Holder-pasteurized DHM and enhance the nutritional and immunological benefits of DHM for preterm and vulnerable infants. KEY POINTS: • Mother's own milk microbiome can be successfully transplanted into donor human milk. • Recolonization is equally successful in UV-C-treated and Holder-pasteurized milk. • Recolonization time should be restricted due to rapid bacterial growth.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Australia.
| | - Jie Ma
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Alethea Rea
- Mathematics and Statistics, Murdoch University, Perth, Australia
| | - Sharon L Perrella
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
37
|
Moreno-Villares JM, Andrade-Platas D, Soria-López M, Colomé-Rivero G, Catalan Lamban A, Martinez-Figueroa MG, Espadaler-Mazo J, Valverde-Molina J. Comparative efficacy of probiotic mixture Bifidobacterium longum KABP042 plus Pediococcus pentosaceus KABP041 vs. Limosilactobacillus reuteri DSM17938 in the management of infant colic: a randomized clinical trial. Eur J Pediatr 2024; 183:5371-5381. [PMID: 39390276 PMCID: PMC11527960 DOI: 10.1007/s00431-024-05806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
We aimed to compare the efficacy of Bifidobacterium longum KABP042 + Pediococcus pentosaceus KABP041 (BL + PP) vs. Limosilactobacillus reuteri DSM17938 (LR) in alleviating the symptoms of infant colic, as commercially available formulations. A randomized, multicenter, parallel, single-blind (investigator) trial was conducted in 112 colicky infants diagnosed as per Rome IV criteria and randomly allocated to receive BL + PP orally (109 colony-forming units [CFU]/day, n = 55) or LR (108 CFU/day, n = 57) for 21 days. Primary study outcomes were percentage of responders (≥ 50% reduction in crying and fussing time from baseline, as reported by parents in a structured diary) and daily crying and fussing time (minutes/day) on days 7, 14, and 21 after randomization. Study groups were comparable at baseline. Responder rate was significantly higher in BP + PP group vs. LR group at days 7 (61.1% vs. 37.5%, p = 0.013) and 14 (84.6% vs. 59.3%, p = 0.004). Crying and fussing time (median [IQR]) became significantly lower in BL + PP group vs. LR group on day 7 (119 [60-210] vs. 180 [110-270]; p = 0.028), day 14 (60.0 [30-105] vs. 120 [60-180]; p = 0.017), and day 21 (29 [0-85] vs. 67 [30-165]; p = 0.011). No significant differences were found in the number of adverse events between the groups. CONCLUSION The specific formulation of B. longum KABP042 and P. pentosaceus KABP041 achieved a higher response rate and a larger reduction in crying and fussing time in colicky infants. Both probiotic interventions were well tolerated. TRIAL REGISTRATION The study was retrospectively registered as NCT05271747 on February 28th, 2022. WHAT IS KNOWN • L. reuteri DSM17938 (LR) is the most researched probiotic strain for infant colic against placebo in randomized, controlled clinical trials, and is recommended in various guidelines. A novel probiotic combining strains B. longum KABP042 and P. pentosaceus KABP041 (BL + PP) has also demonstrated efficacy in infant colic against placebo. WHAT IS NEW • This randomized study provides the first direct comparison of two probiotics for infant colic. BL + PP seems to be superior to LR in reducing crying time.
Collapse
Affiliation(s)
| | | | - M Soria-López
- Gastroenterology and Pediatric Nutrition, Hospital HM Puerta del Sur, Madrid, Spain
| | | | - A Catalan Lamban
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - J Valverde-Molina
- Department of Pediatrics, Hospital Universitario de Sta Lucia, Cartagena, Spain
| |
Collapse
|
38
|
Catassi G, Mateo SG, Occhionero AS, Esposito C, Giorgio V, Aloi M, Gasbarrini A, Cammarota G, Ianiro G. The importance of gut microbiome in the perinatal period. Eur J Pediatr 2024; 183:5085-5101. [PMID: 39358615 PMCID: PMC11527957 DOI: 10.1007/s00431-024-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
This narrative review describes the settlement of the neonatal microbiome during the perinatal period and its importance on human health in the long term. Delivery methods, maternal diet, antibiotic exposure, feeding practices, and early infant contact significantly shape microbial colonization, influencing the infant's immune system, metabolism, and neurodevelopment. By summarizing two decades of research, this review highlights the microbiome's role in disease predisposition and explores interventions like maternal vaginal seeding and probiotic and prebiotic supplementation that may influence microbiome development. CONCLUSION The perinatal period is a pivotal phase for the formation and growth of the neonatal microbiome, profoundly impacting long-term health outcomes. WHAT IS KNOWN • The perinatal period is a critical phase for the development of the neonatal microbiome, with factors such as mode of delivery, maternal diet, antibiotic exposure, and feeding practices influencing its composition and diversity, which has significant implications for long-term health. • The neonatal microbiome plays a vital role in shaping the immune system, metabolism, and neurodevelopment of infants. WHAT IS NEW • Recent studies have highlighted the potential of targeted interventions, such as probiotic and prebiotic supplementation, and innovative practices like maternal vaginal seeding, to optimize microbiome development during the perinatal period. • Emerging evidence suggests that specific bacterial genera and species within the neonatal microbiome are associated with reduced risks of developing chronic conditions, indicating new avenues for promoting long-term health starting from early life.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Sandra Garcia Mateo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009, Zaragossa, Spain
| | - Annamaria Sara Occhionero
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Esposito
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
39
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
40
|
Moghaddam HS, Abkar L, Fowler SJ. Making waves: From tap to gut- exploring the impact of drinking water on gut microbiota. WATER RESEARCH 2024; 267:122503. [PMID: 39340867 DOI: 10.1016/j.watres.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Drinking water (DW) harbours diverse microbial species and chemical attributes. Water comprises the greatest portion of our daily diet, ingested both on its own and used in the preparation of food. DW is our major source of liquids, which is vital to maintaining homeostasis, and can also supply essential minerals. Limited evidence suggests that DW plays a role in shaping the gut microbiome, which implies that it may impact human health. Despite its significant contribution to diet, DW is often overlooked in studies examining dietary influences on the gut microbiota. This perspective explores our current understanding of the link between DW and the gut microbiota - an area of human microbiome science that has been surprisingly understudied. Existing studies reveal links between DW source, microbiota composition, and gut health, emphasizing the need for comprehensive investigations. Understanding the interplay between DW and gut microbiota holds potential for tailored interventions to enhance human health.
Collapse
Affiliation(s)
| | - Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
41
|
Tsuruoka Y, Kato T, Watanabe M, Taguchi-Atarashi N, Ohno H, Mori C, Sakurai K. Changes in the intestinal microbiota of Japanese children during the first 3.5 years of life. Sci Rep 2024; 14:29302. [PMID: 39592618 PMCID: PMC11599607 DOI: 10.1038/s41598-024-78844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Human gut microbiota plays a crucial role in health and disease. Infancy is a critical period for gut microbiota maturation and immune system development and has the potential to affect long-term health. Understanding the development of gut microbiota in Japanese children is essential because of regional differences and the long-term health effects of the early gut microbiota. However, while several longitudinal studies in Japan have explored the development of the gut microbiota after birth, more extended follow-up periods are still needed. In this study, we aimed to analyze the gut microbiota of 106 Japanese mother-child pairs from the Chiba Study of Mother and Child Health, Japan, over 3.5 years. The results showed that the alpha diversity of the gut microbiota in children increased with age, and its composition began to resemble that of adults. We identified four distinct clusters of gut microbiota that reflected different maturation stages. The similarity between the maternal and child gut microbiota appeared to follow a bimodal-like distribution, suggesting that the presence of older siblings may enhance this similarity. This study highlights the dynamic nature of gut microbiota development in Japanese children and deepens our understanding of the similarities between maternal and child gut microbiota.
Collapse
Affiliation(s)
- Yuta Tsuruoka
- Department of Nutrition and Metabolic Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Masahiro Watanabe
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
42
|
Wang X, Liu J, Ren J, Chai B. Biotic Interaction Underpins the Assembly Processes of the Bacterial Community Across the Sediment-Water Interface in a Subalpine Lake. Microorganisms 2024; 12:2418. [PMID: 39770621 PMCID: PMC11677085 DOI: 10.3390/microorganisms12122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The sediment-water interface is the most active region for biogeochemical processes and biological communities in aquatic ecosystems. As the main drivers of biogeochemical cycles, the assembly mechanisms and the distribution characteristics of microbial communities at this boundary remain unclear. This study investigated the microbial communities across the sediment-water interface in a natural subalpine lake in China. The results indicated that the diversity of bacterial communities in middle sediment was significantly higher than that in overlying water and other sediments (p < 0.001). Pearson's correlation analysis indicated that the diversity was significantly influenced by biotic factors (e.g., diversity of fungus, protozoan and alga) and physicochemical parameters (e.g., total carbon, total organic carbon, nitrate, ammonium and pH) (p < 0.01). Null model analysis revealed that the homogeneous selection dominated the assembly of the bacteria community in sediment, whereas the heterogeneous selection dominated that in overlying water. The least squares path analysis showed that interactions between protozoa and bacteria had a greater impact on bacterial community assembly (p < 0.001). Important taxa influence the assembly by regulating biotic interactions. These findings provided a basis for understanding the importance of biotic interactions in maintaining subalpine lakes' ecosystems across the sediment-water interface.
Collapse
Affiliation(s)
- Xue Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China; (X.W.); (J.R.); (B.C.)
- Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinxian Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China; (X.W.); (J.R.); (B.C.)
- Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jiali Ren
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China; (X.W.); (J.R.); (B.C.)
- Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China; (X.W.); (J.R.); (B.C.)
- Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
43
|
Yang R, Shi Z, Li Y, Huang X, Li Y, Li X, Chen Q, Hu Y, Li X. Research focus and emerging trends of the gut microbiome and infant: a bibliometric analysis from 2004 to 2024. Front Microbiol 2024; 15:1459867. [PMID: 39633813 PMCID: PMC11615055 DOI: 10.3389/fmicb.2024.1459867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Over the past two decades, gut microbiota has demonstrated unprecedented potential in human diseases and health. The gut microbiota in early life is crucial for later health outcomes. This study aims to reveal the knowledge collaboration network, research hotspots, and explore the emerging trends in the fields of infant and gut microbiome using bibliometric analysis. Method We searched the literature on infant and gut microbiome in the Web of Science Core Collection (WOSCC) database from 2004 to 2024. CiteSpace V (version: 6.3.R1) and VOSview (version: 1.6.20) were used to display the top authors, journals, institutions, countries, authors, keywords, co-cited articles, and potential trends. Results A total of 9,899 documents were retrieved from the Web of Science Core Collection. The United States, China, and Italy were the three most productive countries with 3,163, 1,510, and 660 publications. The University of California System was the most prolific institution (524 publications). Van Sinderen, Douwe from University College Cork of Ireland was the most impactful author. Many studies have focused on atopic dermatitis (AD), necrotizing enterocolitis (NEC), as well as the immune mechanisms and microbial treatments for these diseases, such as probiotic strains mixtures and human milk oligosaccharides (HMOs). The mother-to-infant microbiome transmission, chain fatty acids, and butyrate maybe the emerging trends. Conclusion This study provided an overview of the knowledge structure of infant and gut microbiome, as well as a reference for future research.
Collapse
Affiliation(s)
- Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zeyao Shi
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xi Huang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingxin Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiong Chen
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanling Hu
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaowen Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
44
|
Dai Y, Qian Y, Qu Y, Guan W, Xie J, Wang D, Butler C, Dashper S, Carroll I, Divaris K, Liu Y, Wu D. Longitudinal Microbiome-based Interpretable Machine Learning for Identification of Time-Varying Biomarkers in Early Prediction of Disease Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619118. [PMID: 39605360 PMCID: PMC11601495 DOI: 10.1101/2024.10.18.619118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Information generated from longitudinally-sampled microbial data has the potential to illuminate important aspects of development and progression for many human conditions and diseases. Identifying microbial biomarkers and their time-varying effects can not only advance our understanding of pathogenetic mechanisms, but also facilitate early diagnosis and guide optimal timing of interventions. However, longitudinal predictive modeling of highly noisy and dynamic microbial data (e.g., metagenomics) poses analytical challenges. To overcome these challenges, we introduce a robust and interpretable machine-learning-based longitudinal microbiome analysis framework, LP-Micro, that encompasses: (i) longitudinal microbial feature screening via a polynomial group lasso, (ii) disease outcome prediction implemented via machine learning methods (e.g., XGBoost, deep neural networks), and (iii) interpretable association testing between time points, microbial features, and disease outcomes via permutation feature importance. We demonstrate in simulations that LP-Micro can not only identify incident disease-related microbiome taxa but also offers improved prediction accuracy compared to existing approaches. Applications of LP-Micro in two longitudinal microbiome studies with clinical outcomes of childhood dental disease and weight loss following bariatric surgery yield consistently high prediction accuracy. The identified critical early predictive time points are informative and aligned with clinical expectations.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biostatistics, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
| | - Yunzhi Qian
- Department of Nutrition, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
| | - Yixiang Qu
- Department of Biostatistics, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
| | - Wyliena Guan
- Department of Biostatistics, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
| | - Jialiu Xie
- Department of Biostatistics, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
| | - Duan Wang
- North Carolina School of Science and Mathematics
| | | | | | - Ian Carroll
- Department of Nutrition, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
| | - Kimon Divaris
- Department of Pediatric Dentistry and Dental Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - Yufeng Liu
- Department of Biostatistics, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill
| | - Di Wu
- Department of Biostatistics, Gillings School of Global Public Health at University of North Carolina at Chapel Hill
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill
| |
Collapse
|
45
|
Fisher JJ, Grace T, Castles NA, Jones EA, Delforce SJ, Peters AE, Crombie GK, Hoedt EC, Warren KE, Kahl RG, Hirst JJ, Pringle KG, Pennell CE. Methodology for Biological Sample Collection, Processing, and Storage in the Newcastle 1000 Pregnancy Cohort: Protocol for a Longitudinal, Prospective Population-Based Study in Australia. JMIR Res Protoc 2024; 13:e63562. [PMID: 39546349 DOI: 10.2196/63562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Research in the developmental origins of health and disease provides compelling evidence that adverse events during the first 1000 days of life from conception can impact life course health. Despite many decades of research, we still lack a complete understanding of the mechanisms underlying some of these associations. The Newcastle 1000 Study (NEW1000) is a comprehensive, prospective population-based pregnancy cohort study based in Newcastle, New South Wales, Australia, that will recruit pregnant women and their partners at 11-14 weeks' gestation, with assessments at 20, 28, and 36 weeks; birth; 6 weeks; and 6 months, in order to provide detailed data about the first 1000 days of life to investigate the developmental origins of noncommunicable diseases. OBJECTIVE The study aims to provide a longitudinal multisystem approach to phenotyping, supported by robust clinical data and collection of biological samples in NEW1000. METHODS This manuscript describes in detail the large variety of samples collected in the study and the method of collection, storage, and utility of the samples in the biobank, with a particular focus on incorporation of the samples into emerging and novel large-scale "-omics" platforms, including the genome, microbiome, epigenome, transcriptome, fragmentome, metabolome, proteome, exposome, and cell-free DNA and RNA. Specifically, this manuscript details the methods used to collect, process, and store biological samples, including maternal, paternal, and fetal blood, microbiome (stool, skin, vaginal, oral), urine, saliva, hair, toenail, placenta, colostrum, and breastmilk. RESULTS Recruitment for the study began in March 2021. As of July 2024, 1040 women and 684 partners were enrolled, with 922 infants born. The NEW1000 biobank contains 24,357 plasma aliquots from ethylenediaminetetraacetic acid (EDTA) tubes, 5284 buffy coat aliquots, 4000 plasma aliquots from lithium heparin tubes, 15,884 blood serum aliquots, 2977 PAX RNA tubes, 26,595 urine sample aliquots, 2280 fecal swabs, 17,687 microbiome swabs, 2356 saliva sample aliquots, 1195 breastmilk sample aliquots, 4007 placental tissue aliquots, 2680 hair samples, and 2193 nail samples. CONCLUSIONS NEW1000 will generate a multigenerational, deeply phenotyped cohort with a comprehensive biobank of samples relevant to a large variety of analyses, including multiple -omics platforms. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/63562.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Tegan Grace
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Nathan A Castles
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Elizabeth A Jones
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Alexandra E Peters
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Gabrielle K Crombie
- School of Life and Medical Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Emily C Hoedt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Kirby E Warren
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Richard Gs Kahl
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Craig E Pennell
- School of Medicine and Public Health, College and Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
46
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
47
|
Wu H, Guzior DV, Martin C, Neugebauer KA, Rzepka MM, Lumeng JC, Quinn RA, de Los Campos G. Longitudinal analyses of infants' microbiome and metabolome reveal microbes and metabolites with seemingly coordinated dynamics. Commun Biol 2024; 7:1506. [PMID: 39543263 PMCID: PMC11564710 DOI: 10.1038/s42003-024-07015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Population studies have shown that the infant's microbiome and metabolome undergo significant changes in early childhood. However, no previous study has investigated how diverse these changes are across subjects and whether the subject-specific dynamics of some microbes correlate with the over-time dynamics of specific metabolites. Using mixed-effects models, and data from the ABC study, we investigated the early childhood dynamics of fecal microbiome and metabolome and identified 83 amplicon sequence variants (ASVs) and 753 metabolites with seemingly coordinated trajectories. Enrichment analysis of these microbes and molecules revealed eight ASV families and 23 metabolite groups involving 1032 ASV-metabolite pairs with their presence-absence changing in a coordinated fashion. Members of the Lachnospiraceae (464/1032) and metabolites related to cholestane steroids (309/1032) dominated proportional shifts within the fecal microbiome and metabolome as infants aged.
Collapse
Affiliation(s)
- Hao Wu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Kerri A Neugebauer
- Department of Plant Soil and Microbiology, Michigan State University, East Lansing, MI, USA
| | - Madison M Rzepka
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
48
|
Park J, Woo S, Choi YG, Park H, Im JP, Lee HJ, Kim JS, Han YM, Park H, Koh SJ. Antibiotic usage within the first year of life has a protective effect against ulcerative colitis in South Korea: A nationwide cohort study. Dig Liver Dis 2024:S1590-8658(24)01060-0. [PMID: 39523197 DOI: 10.1016/j.dld.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Antibiotic usage in early life has been proposed as a risk factor for inflammatory bowel disease, especially Crohn's disease. However, most studies were conducted in Western countries. AIMS We evaluated the association between antibiotic usage and the incidence of inflammatory bowel disease in the Asian population. METHODS This nationwide population-based retrospective cohort study included 2,941,889 South Korean infants born between 2007 and 2015, using the National Health Insurance Service database. We assessed whether antibiotic use was associated with the incidence of inflammatory bowel disease. Additionally, we conducted sensitivity analyses, considering protopathic bias and dietary variables. The Cox proportional hazards model was used. RESULTS Among 2,941,889 infants, 2,566,390 (87 %) used antibiotics within a year after birth. Antibiotic usage within a year, number of antibiotic classes, and cumulative days of usage were shown to decrease the risk of ulcerative colitis. This association was particularly prominent with earlier antibiotic exposure. Penicillin was the only antibiotic class related to the reduced risk. The results were robust after adjusting for dietary variables and considering protopathic effect. CONCLUSIONS Antibiotic exposure during the first year of life, particularly at a younger age, is linked to a reduced risk of early-onset ulcerative colitis in South Korea.
Collapse
Affiliation(s)
- Junseok Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sungjin Woo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Geun Choi
- Department of Mathematics Education, Sungkyunkwan University, Seoul, South Korea
| | - Hoyoung Park
- Department of Statistics, Sookmyung Women's University, Seoul, South Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoo Min Han
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Hyunsun Park
- Department of Dermatology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea.
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
49
|
Hanski E, Raulo A, Knowles SCL. Early-life gut microbiota assembly patterns are conserved between laboratory and wild mice. Commun Biol 2024; 7:1456. [PMID: 39511304 PMCID: PMC11543677 DOI: 10.1038/s42003-024-07039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Assembly of the mammalian gut microbiota during early life is known to shape key aspects of organismal development, including immunity, metabolism and behaviour. While house mice (Mus musculus) are the major laboratory model organism for gut microbiota research, their artificial lab-based lifestyle could fundamentally alter ecological processes of microbiota assembly and dynamics, in ways that affect their usefulness as a model system. To examine this, here we directly compared patterns of gut microbiota assembly in house mice from the lab and from the wild, making use of a tractable, individually-marked wild population where we could examine patterns of gut microbiota assembly during early life. Despite lab and wild mice harbouring taxonomically distinct communities, we identify striking similarities in multiple patterns of their gut microbiota assembly. Specifically, age-related changes in both alpha and beta diversity, as well as the abundance of predominant phyla and aerotolerance of the microbiota followed parallel trajectories in both settings. These results suggest some degree of intrinsic programme in gut microbiota assembly that transcends variation in taxonomic profiles, and the genetic and environmental background of the host. They further support the notion that despite their artificial environment, lab mice can provide meaningful insights into natural microbiota ecological dynamics in early life and their interplay with host development.
Collapse
Affiliation(s)
- Eveliina Hanski
- Department of Biology, University of Oxford, Oxford, Oxfordshire, UK.
- Faculty of Medicine, University of Helsinki, Helsinki, Southern Finland, Finland.
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, Oxfordshire, UK
- Department of Computing, University of Turku, Turku, Western Finland, Finland
| | - Sarah C L Knowles
- Department of Biology, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
50
|
Zhou B, Wang C, Putzel G, Hu J, Liu M, Wu F, Chen Y, Pironti A, Li H. An integrated strain-level analytic pipeline utilizing longitudinal metagenomic data. Microbiol Spectr 2024; 12:e0143124. [PMID: 39311770 PMCID: PMC11542597 DOI: 10.1128/spectrum.01431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024] Open
Abstract
With the development of sequencing technology and analytic tools, studying within-species variations enhances the understanding of microbial biological processes. Nevertheless, most existing methods designed for strain-level analysis lack the capability to concurrently assess both strain proportions and genome-wide single nucleotide variants (SNVs) across longitudinal metagenomic samples. In this study, we introduce LongStrain, an integrated pipeline for the analysis of large-scale metagenomic data from individuals with longitudinal or repeated samples. In LongStrain, we first utilize two efficient tools, Kraken2 and Bowtie2, for the taxonomic classification and alignment of sequencing reads, respectively. Subsequently, we propose to jointly model strain proportions and shared haplotypes across samples within individuals. This approach specifically targets tracking a primary strain and a secondary strain for each subject, providing their respective proportions and SNVs as output. With extensive simulation studies of a microbial community and single species, our results demonstrate that LongStrain is superior to two genotyping methods and two deconvolution methods across a majority of scenarios. Furthermore, we illustrate the potential applications of LongStrain in the real data analysis of The Environmental Determinants of Diabetes in the Young study and a gastric intestinal metaplasia microbiome study. In summary, the proposed analytic pipeline demonstrates marked statistical efficiency over the same type of methods and has great potential in understanding the genomic variants and dynamic changes at strain level. LongStrain and its tutorial are freely available online at https://github.com/BoyanZhou/LongStrain. IMPORTANCE The advancement in DNA-sequencing technology has enabled the high-resolution identification of microorganisms in microbial communities. Since different microbial strains within species may contain extreme phenotypic variability (e.g., nutrition metabolism, antibiotic resistance, and pathogen virulence), investigating within-species variations holds great scientific promise in understanding the underlying mechanism of microbial biological processes. To fully utilize the shared genomic variants across longitudinal metagenomics samples collected in microbiome studies, we develop an integrated analytic pipeline (LongStrain) for longitudinal metagenomics data. It concurrently leverages the information on proportions of mapped reads for individual strains and genome-wide SNVs to enhance the efficiency and accuracy of strain identification. Our method helps to understand strains' dynamic changes and their association with genome-wide variants. Given the fast-growing longitudinal studies of microbial communities, LongStrain which streamlines analyses of large-scale raw sequencing data should be of great value in microbiome research communities.
Collapse
Affiliation(s)
- Boyan Zhou
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Chan Wang
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Gregory Putzel
- Department of
Microbiology, New York University School of
Medicine, New York, New
York, USA
| | - Jiyuan Hu
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Menghan Liu
- Department of
Biological Sciences, Columbia University in the City of New
York, New York, New
York, USA
| | - Fen Wu
- Division of
Epidemiology, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Yu Chen
- Division of
Epidemiology, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| | - Alejandro Pironti
- Department of
Microbiology, New York University School of
Medicine, New York, New
York, USA
| | - Huilin Li
- Division of
Biostatistics, Department of Population Health, New York University
School of Medicine, New
York, New York, USA
| |
Collapse
|