1
|
Ma J, Wang J, Wan Y, Wang S, Jiang C. Probiotic-fermented traditional Chinese herbal medicine, a promising approach to maintaining the intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118815. [PMID: 39270882 DOI: 10.1016/j.jep.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, PR China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Shihua Wang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| |
Collapse
|
2
|
Coenye T, Ahonen M, Anderson S, Cámara M, Chundi P, Fields M, Foidl I, Gnimpieba EZ, Griffin K, Hinks J, Loka AR, Lushbough C, MacPhee C, Nater N, Raval R, Slater-Jefferies J, Teo P, Wilks S, Yung M, Webb JS. Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy. Biofilm 2024; 8:100210. [PMID: 39221168 PMCID: PMC11364012 DOI: 10.1016/j.bioflm.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Priority question exercises are increasingly used to frame and set future research, innovation and development agendas. They can provide an important bridge between the discoveries, data and outputs generated by researchers, and the information required by policy makers and funders. Microbial biofilms present huge scientific, societal and economic opportunities and challenges. In order to identify key priorities that will help to advance the field, here we review questions from a pool submitted by the international biofilm research community and from practitioners working across industry, the environment and medicine. To avoid bias we used computational approaches to group questions and manage a voting and selection process. The outcome of the exercise is a set of 78 unique questions, categorized in six themes: (i) Biofilm control, disruption, prevention, management, treatment (13 questions); (ii) Resistance, persistence, tolerance, role of aggregation, immune interaction, relevance to infection (10 questions); (iii) Model systems, standards, regulatory, policy education, interdisciplinary approaches (15 questions); (iv) Polymicrobial, interactions, ecology, microbiome, phage (13 questions); (v) Clinical focus, chronic infection, detection, diagnostics (13 questions); and (vi) Matrix, lipids, capsule, metabolism, development, physiology, ecology, evolution environment, microbiome, community engineering (14 questions). The questions presented are intended to highlight opportunities, stimulate discussion and provide focus for researchers, funders and policy makers, informing future research, innovation and development strategy for biofilms and microbial communities.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Merja Ahonen
- Satakunta University of Applied Sciences, Finland
| | - Skip Anderson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Miguel Cámara
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Matthew Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ines Foidl
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Kristen Griffin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jamie Hinks
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | | | - Cait MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nater
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Rasmita Raval
- National Biofilms Innovation Centre, Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jo Slater-Jefferies
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Pauline Teo
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Sandra Wilks
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Maria Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | - Jeremy S. Webb
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Rodrigues e-Lacerda R, Barra NG, Fang H, Anhê GF, Schertzer JD. NOD2 protects against allergic lung inflammation in obese female mice. iScience 2024; 27:111130. [PMID: 39507249 PMCID: PMC11539594 DOI: 10.1016/j.isci.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/07/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Obesity is associated with compartmentalized changes in immune responses that can be protective or pathogenic. It has been proposed that obesity-related changes in the microbiota influence allergic lung inflammation. We hypothesized that sensors of the bacterial cell wall influenced allergenic lung inflammation during obesity. Ovalbumin (OVA)-induced lung inflammation was similar in female Nod1-/- and wild-type mice during high-fat-diet-induced obesity, but allergic lung inflammation was higher in obese, high-fat-diet-fed female Nod2-/- mice. Obese Nod2-/- mice had higher inflammatory cell infiltration in the bronchial alveolar lavage (BAL) and lungs, pulmonary fibrosis, mucus levels, hypertrophy and hyperplasia of goblet cells, M2 alveolar macrophage infiltration, interleukin-4 (IL-4), IL-5, IL-6, and lower CXCL1 and IL-22. Therefore, Nod2 protects against excessive lung inflammation and is a bacterial sensor that relays protective responses to allergenic lung inflammation in obese female mice.
Collapse
Affiliation(s)
- Rodrigo Rodrigues e-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- Department of Translational Medicine, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP CEP 13083-887, Brazil
| | - Nicole G. Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Gabriel Forato Anhê
- Department of Translational Medicine, University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, SP CEP 13083-887, Brazil
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
4
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024; 41:1630-1651. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen T, Deng C, Li S, Li B, Liang Y, Zhang Y, Li J, Xu N, Yu K. Multi-omics illuminates the functional significance of previously unknown species in a full-scale landfill leachate treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135669. [PMID: 39208627 DOI: 10.1016/j.jhazmat.2024.135669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Landfill leachate treatment plants (LLTPs) harbor a vast reservoir of uncultured microbes, yet limited studies have systematically unraveled their functional potentials within LLTPs. Combining 36 metagenomic and 18 metatranscriptomic datasets from a full-scale LLTP, we unveiled a double-edged sword role of unknown species in leachate biotreatment and environmental implication. We identified 655 species-level genome bins (SGBs) spanning 47 bacterial and 3 archaeal phyla, with 75.9 % unassigned to any known species. Over 90 % of up-regulated functional genes in biotreatment units, compared to the leachate influent, were carried by unknown species and actively participated in carbon, nitrogen, and sulfur cycles. Approximately 79 % of the 37,366 carbohydrate active enzymes (CAZymes), with ∼90 % novelty and high expression, were encoded by unknown species, exhibiting great potential in biodegrading carbohydrate compounds linked to human meat-rich diets. Unknown species offered a valuable genetic resource of thousands of versatile, abundant, and actively expressed metabolic gene clusters (MGCs) and biosynthetic gene clusters (BGCs) for enhancing leachate treatment. However, unknown species may contribute to the emission of hazardous N2O/H2S and represented significant reservoirs for antibiotic-resistant pathogens that posed environmental safety risks. This study highlighted the significance of considering both positive and adverse effects of LLTP microbes to optimize LLTP performance.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| | - Shaoyang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Nan Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| |
Collapse
|
6
|
Cansdale A, Chong JPJ. MAGqual: a stand-alone pipeline to assess the quality of metagenome-assembled genomes. MICROBIOME 2024; 12:226. [PMID: 39490992 PMCID: PMC11533350 DOI: 10.1186/s40168-024-01949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Metagenomics, the whole genome sequencing of microbial communities, has provided insight into complex ecosystems. It has facilitated the discovery of novel microorganisms, explained community interactions and found applications in various fields. Advances in high-throughput and third-generation sequencing technologies have further fuelled its popularity. Nevertheless, managing the vast data produced and addressing variable dataset quality remain ongoing challenges. Another challenge arises from the number of assembly and binning strategies used across studies. Comparing datasets and analysis tools is complex as it requires the quantitative assessment of metagenome quality. The inherent limitations of metagenomic sequencing, which often involves sequencing complex communities, mean community members are challenging to interrogate with traditional culturing methods leading to many lacking reference sequences. MIMAG standards aim to provide a method to assess metagenome quality for comparison but have not been widely adopted. RESULTS To address the need for simple and quick metagenome quality assignation, here we introduce the pipeline MAGqual (Metagenome-Assembled Genome qualifier) and demonstrate its effectiveness at determining metagenomic dataset quality in the context of the MIMAG standards. CONCLUSIONS The MAGqual pipeline offers an accessible way to evaluate metagenome quality and generate metadata on a large scale. MAGqual is built in Snakemake to ensure readability and scalability, and its open-source nature promotes accessibility, community development, and ease of updates. MAGqual is built in Snakemake, R, and Python and is available under the MIT license on GitHub at https://github.com/ac1513/MAGqual . Video Abstract.
Collapse
Affiliation(s)
- Annabel Cansdale
- Centre of Excellence for Anaerobic Digestion, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK.
| | - James P J Chong
- Centre of Excellence for Anaerobic Digestion, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
7
|
Guccione C, Patel L, Tomofuji Y, McDonald D, Gonzalez A, Sepich-Poore GD, Sonehara K, Zakeri M, Chen Y, Dilmore AH, Damle N, Baranzini SE, Nakatsuji T, Gallo RL, Langmead B, Okada Y, Curtius K, Knight R. Incomplete human reference genomes can drive false sex biases and expose patient-identifying information in metagenomic data. RESEARCH SQUARE 2024:rs.3.rs-4721159. [PMID: 39502785 PMCID: PMC11537348 DOI: 10.21203/rs.3.rs-4721159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As next-generation sequencing technologies produce deeper genome coverages at lower costs, there is a critical need for reliable computational host DNA removal in metagenomic data. We find that insufficient host filtration using prior human genome references can introduce false sex biases and inadvertently permit flow-through of host-specific DNA during bioinformatic analyses, which could be exploited for individual identification. To address these issues, we introduce and benchmark three host filtration methods of varying throughput, with concomitant applications across low biomass samples such as skin and high microbial biomass datasets including fecal samples. We find that these methods are important for obtaining accurate results in low biomass samples (e.g., tissue, skin). Overall, we demonstrate that rigorous host filtration is a key component of privacy-minded analyses of patient microbiomes and provide computationally efficient pipelines for accomplishing this task on large-scale datasets.
Collapse
Affiliation(s)
- Caitlin Guccione
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Lucas Patel
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, California, USA
| | - Yoshihiko Tomofuji
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - Kyuto Sonehara
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Mohsen Zakeri
- Department of Computer Science, Johns Hopkins University
| | - Yang Chen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Neil Damle
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Sergio E. Baranzini
- Weill Institute for Neurosciences. Department of Neurology. University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University
| | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo 113-8654, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita 565-0871, Japan
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Fu Y, Wang C, Gao Z, Liao Y, Peng M, Fu F, Li G, Su D, Guo J, Shan Y. Microbes: Drivers of Chenpi manufacturing, biotransformation, and physiological effects. Food Chem 2024; 464:141631. [PMID: 39454433 DOI: 10.1016/j.foodchem.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
Collapse
Affiliation(s)
- Yanjiao Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
9
|
Pita S, Myers PN, Johansen J, Russel J, Nielsen MC, Eklund AC, Nielsen HB. CHAMP delivers accurate taxonomic profiles of the prokaryotes, eukaryotes, and bacteriophages in the human microbiome. Front Microbiol 2024; 15:1425489. [PMID: 39483755 PMCID: PMC11524946 DOI: 10.3389/fmicb.2024.1425489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Accurate taxonomic profiling of the human microbiome composition is crucial for linking microbial species to health outcomes. Therefore, we created the Clinical Microbiomics Human Microbiome Profiler (CHAMP), a comprehensive tool designed for the profiling of prokaryotes, eukaryotes, and viruses across all body sites. Methods CHAMP uses a reference database derived from 30,382 human microbiome samples, covering 6,567 prokaryotic and 244 eukaryotic species, as well as 64,003 viruses. We benchmarked CHAMP against established profiling tools (MetaPhlAn 4, Bracken 2, mOTUs 3, and Phanta) using a diverse set of in silico metagenomes and DNA mock communities. Results CHAMP demonstrated unparalleled species recall, F1 score, and significantly reduced false positives compared to all other tools benchmarked. The false positive relative abundance (FPRA) for CHAMP was, on average, 50-fold lower than the second-best performing profiler. CHAMP also proved to be more robust than other tools at low sequencing depths, highlighting its application for low biomass samples. Discussion Taken together, this establishes CHAMP as a best-in-class human microbiome profiler of prokaryotes, eukaryotes, and viruses in diverse and complex communities across low and high biomass samples. CHAMP profiling is offered as a service by Clinical Microbiomics A/S and is available for a fee at https://cosmosidhub.com.
Collapse
Affiliation(s)
- Sara Pita
- Clinical Microbiomics, Copenhagen, Denmark
- Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Crouch AL, Monsey L, Rambeau M, Ramos C, Yracheta JM, Anderson MZ. Metagenomic discovery of microbial eukaryotes in stool microbiomes. mBio 2024; 15:e0206324. [PMID: 39207108 PMCID: PMC11481512 DOI: 10.1128/mbio.02063-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Host-associated microbiota form complex microbial communities that are increasingly associated with host behavior and disease. While these microbes include bacterial, archaeal, viral, and eukaryotic constituents, most studies have focused on bacteria due to their dominance in the human host and available tools for investigation. Accumulating evidence suggests microbial eukaryotes in the microbiome play pivotal roles in host health, but our understandings of these interactions are limited to a few readily identifiable taxa because of technical limitations in unbiased eukaryote exploration. Here, we combined cell sorting, optimized eukaryotic cell lysis, and shotgun sequencing to accelerate metagenomic discovery and analysis of host-associated microbial eukaryotes. Using synthetic communities with a 1% microbial eukaryote representation, the eukaryote-optimized cell lysis and DNA recovery method alone yielded a 38-fold increase in eukaryotic DNA. Automated sorting of eukaryotic cells from stool samples of healthy adults increased the number of microbial eukaryote reads in metagenomic pools by up to 28-fold compared to commercial kits. Read frequencies for identified fungi increased by 10,000× on average compared to the Human Microbiome Project and allowed for the identification of novel taxa, de novo assembly of contigs from previously unknown microbial eukaryotes, and gene prediction from recovered genomic segments. These advances pave the way for the unbiased inclusion of microbial eukaryotes in deciphering determinants of health and disease in the host-associated microbiome.IMPORTANCEMicrobial eukaryotes are common constituents of the human gut where they can contribute to local ecology and host health, but they are often overlooked in microbiome studies. The lack of attention is due to current technical limitations that are heavily biased or poorly recovered DNA from microbial eukaryotes. We developed a method to increase the representation of these eukaryotes in metagenomic sequencing of microbiome samples that allows to improve their detection compared to prior methods and allows for the identification of new species. Application of the technique to gut microbiome samples improved detection of fungi, protists, and helminths. New eukaryotic taxa and their encoded genes could be identified by sequencing a small number of samples. This approach can improve the inclusion of eukaryotes into microbiome research.
Collapse
Affiliation(s)
- Audra L. Crouch
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Laine Monsey
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Molly Rambeau
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Cameron Ramos
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Center for Genomic Science Innovation, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Cheng M, Zhou H, Zhang H, Zhang X, Zhang S, Bai H, Zha Y, Luo D, Chen D, Chen S, Ning K, Liu W. Hidden Links Between Skin Microbiome and Skin Imaging Phenome. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae040. [PMID: 39436239 DOI: 10.1093/gpbjnl/qzae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 10/23/2024]
Abstract
Despite the skin microbiome has been linked to skin health and diseases, its role in modulating human skin appearance remains understudied. Using a total of 1244 face imaging phenomes and 246 cheek metagenomes, we first established three skin age indices by machine learning, including skin phenotype age (SPA), skin microbiota age (SMA), and skin integration age (SIA) as surrogates of phenotypic aging, microbial aging, and their combination, respectively. Moreover, we found that besides aging and gender as intrinsic factors, skin microbiome might also play a role in shaping skin imaging phenotypes (SIPs). Skin taxonomic and functional α diversity was positively linked to melanin, pore, pigment, and ultraviolet spot levels, but negatively linked to sebum, lightening, and porphyrin levels. Furthermore, certain species were correlated with specific SIPs, such as sebum and lightening levels negatively correlated with Corynebacterium matruchotii, Staphylococcus capitis, and Streptococcus sanguinis. Notably, we demonstrated skin microbial potential in predicting SIPs, among which the lightening level presented the least error of 1.8%. Lastly, we provided a reservoir of potential mechanisms through which skin microbiome adjusted the SIPs, including the modulation of pore, wrinkle, and sebum levels by cobalamin and heme synthesis pathways, predominantly driven by Cutibacterium acnes. This pioneering study unveils the paradigm for the hidden links between skin microbiome and skin imaging phenome, providing novel insights into how skin microbiome shapes skin appearance and its healthy aging.
Collapse
Affiliation(s)
- Mingyue Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haobo Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinchao Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuting Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Bai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yugo Zha
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Luo
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Chen
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 211816, China
| | - Kang Ning
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Shaw J, Yu YW. Rapid species-level metagenome profiling and containment estimation with sylph. Nat Biotechnol 2024:10.1038/s41587-024-02412-y. [PMID: 39379646 DOI: 10.1038/s41587-024-02412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Profiling metagenomes against databases allows for the detection and quantification of microorganisms, even at low abundances where assembly is not possible. We introduce sylph, a species-level metagenome profiler that estimates genome-to-metagenome containment average nucleotide identity (ANI) through zero-inflated Poisson k-mer statistics, enabling ANI-based taxa detection. On the Critical Assessment of Metagenome Interpretation II (CAMI2) Marine dataset, sylph was the most accurate profiling method of seven tested. For multisample profiling, sylph took >10-fold less central processing unit time compared to Kraken2 and used 30-fold less memory. Sylph's ANI estimates provided an orthogonal signal to abundance, allowing for an ANI-based metagenome-wide association study for Parkinson disease (PD) against 289,232 genomes while confirming known butyrate-PD associations at the strain level. Sylph took <1 min and 16 GB of random-access memory to profile metagenomes against 85,205 prokaryotic and 2,917,516 viral genomes, detecting 30-fold more viral sequences in the human gut compared to RefSeq. Sylph offers precise, efficient profiling with accurate containment ANI estimation even for low-coverage genomes.
Collapse
Affiliation(s)
- Jim Shaw
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Yun William Yu
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Ju Y, Zhang Z, Liu M, Lin S, Sun Q, Song Z, Liang W, Tong X, Jie Z, Lu H, Cai K, Chen P, Jin X, Zhang W, Xu X, Yang H, Wang J, Hou Y, Xiao L, Jia H, Zhang T, Guo R. Integrated large-scale metagenome assembly and multi-kingdom network analyses identify sex differences in the human nasal microbiome. Genome Biol 2024; 25:257. [PMID: 39380016 PMCID: PMC11463039 DOI: 10.1186/s13059-024-03389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Respiratory diseases impose an immense health burden worldwide. Epidemiological studies have revealed extensive disparities in the incidence and severity of respiratory tract infections between men and women. It has been hypothesized that there might also be a nasal microbiome axis contributing to the observed sex disparities. RESULTS Here, we study the nasal microbiome of healthy young adults in the largest cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We compile the most comprehensive reference catalog for the nasal bacterial community containing 4197 metagenome-assembled genomes and integrate the mycobiome, to provide a valuable resource and a more holistic perspective for the understudied human nasal microbiome. We systematically evaluate sex differences and reveal extensive sex-specific features in both taxonomic and functional levels in the nasal microbiome. Through network analyses, we capture markedly higher ecological stability and antagonistic potentials in the female nasal microbiome compared to the male's. The analysis of the keystone bacteria reveals that the sex-dependent evolutionary characteristics might have contributed to these differences. CONCLUSIONS In summary, we construct the most comprehensive catalog of metagenome-assembled-genomes for the nasal bacterial community to provide a valuable resource for the understudied human nasal microbiome. On top of that, comparative analysis in relative abundance and microbial co-occurrence networks identify extensive sex differences in the respiratory tract community, which may help to further our understanding of the observed sex disparities in the respiratory diseases.
Collapse
Affiliation(s)
- Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Mingliang Liu
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shutian Lin
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Sun
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- Department of Statistical Sciences, University of Toronto, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
| | | | - Weiting Liang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Zhuye Jie
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI Research, Shenzhen, 518210, China
| | - Kaiye Cai
- BGI Research, Shenzhen, 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D, Watson Institute of Genome Sciences, Hangzhou, 310013, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
| | - Yong Hou
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI Research, Shenzhen, 518083, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, 266555, China
| | - Huijue Jia
- School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Greater Bay Area Institute of Precision Medicine, Guangzhou, 511458, China.
| | - Tao Zhang
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| | - Ruijin Guo
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI Research, Shenzhen, 518083, China.
- BGI Research, Wuhan, 430074, China.
| |
Collapse
|
14
|
Messaritakis I, Vougiouklakis G, Koulouridi A, Agouridis AP, Spernovasilis N. Hidden army within: Harnessing the microbiome to improve cancer treatment outcomes. World J Clin Cases 2024; 12:6159-6164. [PMID: 39371567 PMCID: PMC11362890 DOI: 10.12998/wjcc.v12.i28.6159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
The gut microbiome has emerged as a critical player in cancer pathogenesis and treatment response. Dysbiosis, an imbalance in the gut microbial community, impacts tumor initiation, progression, and therapy outcomes. Specific bacterial species have been associated with either promoting or inhibiting tumor growth, offering potential targets for therapeutic intervention. The gut microbiome influences the efficacy and toxicity of conventional treatments and cutting-edge immunotherapies, highlighting its potential as a therapeutic target in cancer care. However, translating microbiome research into clinical practice requires addressing challenges such as standardizing methodologies, validating microbial biomarkers, and ensuring ethical considerations. Here, we provide a comprehensive overview of the gut microbiome's role in cancer highlighting the need for ongoing research, collaboration, and innovation to harness its full potential for improving patient outcomes in oncology. The current editorial aims to explore these insights and emphasizes the need for standardized methodologies, validation of microbial biomarkers, and interdisciplinary collaboration to translate microbiome research into clinical applications. Furthermore, it underscores ethical considerations and regulatory challenges surrounding the use of microbiome-based therapies. Together, this article advocates for ongoing research, collaboration, and innovation to realize the full potential of microbiome-guided oncology in improving patient care and outcomes.
Collapse
Affiliation(s)
- Ippokratis Messaritakis
- Department of Microbiology, German Oncology Center & Yiannoukas Labs LTD, Bioiatriki Group, Limassol 4108, Cyprus
| | | | | | - Aris P Agouridis
- Department of Internal Medicine, German Oncology Center, Limassol 4108, Cyprus
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | | |
Collapse
|
15
|
Gordon JI, Barratt MJ, Hibberd MC, Rahman M, Ahmed T. Establishing human microbial observatory programs in low- and middle-income countries. Ann N Y Acad Sci 2024; 1540:13-20. [PMID: 39298326 DOI: 10.1111/nyas.15224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Studies of the human microbiome are progressing rapidly but have largely focused on populations living in high-income countries. With increasing evidence that the microbiome contributes to the pathogenesis of diseases that affect infants, children, and adults in low- and middle-income countries (LMICs), and with profound and rapid ongoing changes occurring in our lifestyles and biosphere, understanding the origins of and developing microbiome-directed therapeutics for treating a number of global health challenges requires the development of programs for studying human microbial ecology in LMICs. Here, we discuss how the establishment of long-term human microbial observatory programs in selected LMICs could provide one timely approach.
Collapse
Affiliation(s)
- Jeffrey I Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew C Hibberd
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Newman Center for Human Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mustafizur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
16
|
Lu Y, Yang J, Li C, Tian Y, Chang R, Kong D, Yang S, Wang Y, Zhang Y, Zhu X, Pan W, Kong S. Efficient and easy-to-use capturing three-dimensional metagenome interactions with GutHi-C. IMETA 2024; 3:e227. [PMID: 39429879 PMCID: PMC11487548 DOI: 10.1002/imt2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 10/22/2024]
Abstract
Hi-C can obtain three-dimensional chromatin structure information and is widely used for genome assembly. We constructed the GutHi-C technology. As shown in the graphical abstract, it is a highly efficient and quick-to-operate method and can be widely used for human, livestock, and poultry gut microorganisms. It provides a reference for the Hi-C methodology of the microbial metagenome. DPBS, Dulbecco's phosphate-buffered saline; Hi-C, high-through chromatin conformation capture; LB, Luria-Bertani; NGS, next-generation sequencing; PCR, polymerase chain reaction; QC, quality control.
Collapse
Affiliation(s)
- Yu‐Xi Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- School of Life SciencesHenan UniversityKaifengChina
- Shenzhen Research Institute of Henan UniversityShenzhenChina
| | - Jin‐Bao Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Chen‐Ying Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdaoChina
| | - Yun‐Han Tian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdaoChina
| | - Rong‐Rong Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- School of Life SciencesHenan UniversityKaifengChina
- Shenzhen Research Institute of Henan UniversityShenzhenChina
| | - Da‐Shuai Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- School of Life SciencesHenan UniversityKaifengChina
- Shenzhen Research Institute of Henan UniversityShenzhenChina
| | - Shu‐Lin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yan‐Fang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Yu‐Bo Zhang
- Frederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Xiu‐Sheng Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Wei‐Hua Pan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Si‐Yuan Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi‐Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
17
|
Gundogdu A, Nalbantoglu OU, Karis G, Sarikaya I, Erdogan MN, Hora M, Aslan H. Comparing microbial communities in mucilage and seawater samples: Metagenomic insights into mucilage formation in the Marmara Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58363-58374. [PMID: 39307865 DOI: 10.1007/s11356-024-34968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Marine environments are subject to various naturally occurring phenomena, including marine snow and mucilage. In 2021, the rapid emergence of mucilage in the Marmara Sea raised concerns about its environmental impact. This study investigates the microbial communities in mucilage and seawater samples from the Marmara Sea using metagenomic-scale comparative analyses. The results indicate significant differences in microbial composition and diversity, with mucilage samples showing higher levels of polysaccharide biosynthesis-related enzymes. Over 50% of reads in mucilage samples remained unclassified (dark matter), highlighting unknown microbial taxa. Clean seawater was characterized by a higher presence of Euryarchaeota, Proteobacteria, and Rhodothermaeota, while Chlamydiae and Fusobacteria were dominant in mucilage. The study underscores the necessity for comprehensive metagenomic analyses to understand microbial roles in mucilage formation and persistence. Early detection of microbial shifts could serve as a warning system for mucilage outbreaks, aiding in the development of management strategies.
Collapse
Affiliation(s)
- Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Turkey.
| | - Ozkan Ufuk Nalbantoglu
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Turkey
- Department of Computer Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Gizem Karis
- Department of Molecular Biology and Genetics, Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Ilknur Sarikaya
- Department of Bioinformatics Systems Biology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Meryem Nisa Erdogan
- Department of Molecular Biology and Genetics, Gevher Nesibe Genome and Stem Cell Institute, Erciyes University, Kayseri, Turkey
| | - Mehmet Hora
- Department of Bioinformatics Systems Biology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
- Enbiosis Biotechnology, Istanbul, Turkey
| | - Herdem Aslan
- Department of Biology, Faculty of Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
18
|
Peng Y, Liu Y, Liu Y, Wang J. Comprehensive data optimization and risk prediction framework: machine learning methods for inflammatory bowel disease prediction based on the human gut microbiome data. Front Microbiol 2024; 15:1483084. [PMID: 39411443 PMCID: PMC11474110 DOI: 10.3389/fmicb.2024.1483084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past decade, the prevalence of inflammatory bowel disease (IBD) has significantly increased, making early detection crucial for improving patient survival rates. Medical research suggests that changes in the human gut microbiome are closely linked to IBD onset, playing a critical role in its prediction. However, the current gut microbiome data often exhibit missing values and high dimensionality, posing challenges to the accuracy of predictive algorithms. To address these issues, we proposed the comprehensive data optimization and risk prediction framework (CDORPF), an ensemble learning framework designed to predict IBD risk based on the human gut microbiome, aiding early diagnosis. The framework comprised two main components: data optimization and risk prediction. The data optimization module first employed triple optimization imputation (TOI) to impute missing data while preserving the biological characteristics of the microbiome. It then utilized importance-weighted variational autoencoder (IWVAE) to reduce redundant information from the high-dimensional microbiome data. This process resulted in a complete, low-dimensional representation of the data, laying the foundation for improved algorithm efficiency and accuracy. In the risk prediction module, the optimized data was classified using a random forest (RF) model, and hyperparameters were globally optimized using improved aquila optimizer (IAO), which incorporated multiple strategies. Experimental results on IBD-related gut microbiome datasets showed that the proposed framework achieved classification accuracy, recall, and F1 scores exceeding 0.9, outperforming comparison models and serving as a valuable tool for predicting IBD onset risk.
Collapse
Affiliation(s)
- Yan Peng
- School of Management, Capital Normal University, Beijing, China
| | - Yue Liu
- School of Management, Capital Normal University, Beijing, China
| | - Yifei Liu
- School of Mathematical Sciences, Capital Normal University, Beijing, China
| | - Jie Wang
- School of Management, Capital Normal University, Beijing, China
| |
Collapse
|
19
|
Gu S, Shao Y, Rehm K, Bigler L, Zhang D, He R, Xu R, Shao J, Jousset A, Friman VP, Bian X, Wei Z, Kümmerli R, Li Z. Feature sequence-based genome mining uncovers the hidden diversity of bacterial siderophore pathways. eLife 2024; 13:RP96719. [PMID: 39352117 PMCID: PMC11444679 DOI: 10.7554/elife.96719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Microbial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here, we developed a knowledge-guided bioinformatic pipeline to solve these issues. We analyzed 1928 genomes of Pseudomonas bacteria and focused on iron-scavenging pyoverdines as model metabolites. Our pipeline predicted 188 chemically different pyoverdines with nearly 100% structural accuracy and the presence of 94 distinct receptor groups required for the uptake of iron-loaded pyoverdines. Our pipeline unveils an enormous yet overlooked diversity of siderophores (151 new structures) and receptors (91 new groups). Our approach, combining feature sequence with phylogenetic approaches, is extendable to other metabolites and microbial genera, and thus emerges as powerful tool to reconstruct bacterial secondary metabolism pathways based on sequence data.
Collapse
Affiliation(s)
- Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Karoline Rehm
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ruichen Xu
- School of Life Science, Shandong University, Qingdao, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, China
| | | | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, China
| | - Rolf Kümmerli
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
20
|
Zheng B, Xu J, Zhang Y, Qin J, Yuan D, Fan T, Wu W, Chen Y, Jiang Y. MBCN: A novel reference database for Effcient Metagenomic analysis of human gut microbiome. Heliyon 2024; 10:e37422. [PMID: 39315152 PMCID: PMC11417245 DOI: 10.1016/j.heliyon.2024.e37422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Metagenomic shotgun sequencing data can identify microbes and their proportions. But metagenomic shotgun data profiling results obtained from multiple projects using different reference databases are difficult to compare and apply meta-analysis. Our work aims to create a novel collection of human gut prokaryotic genomes, named Microbiome Collection Navigator (MBCN). 2379 human gut metagenomic samples are screened, and 16,785 metagenome-assembled genomes (MAGs) are assembled using a standardized pipeline. In addition, MAGs are combined with the representative genomes from public prokaryotic genomes collections to cluster, and pan-genomes for each cluster's genomes are constructed to build Kraken2 and Bracken databases. The databases built by MBCN are more comprehensive and accurate for profiling metagenomic reads comparing with other collections on simulated reads and virtual bio-projects. We profile 1082 human gut metagenomic samples with MBCN database and organize profiles and metadata on the web program. Meanwhile, using MBCN as a reference database, we also develop a unified, standardized, and systematic metagenomic analysis pipeline and platform, named MicrobiotaCN (http://www.microbiota.cn) and common statistical and visualization tools for microbiome research are integrated into the web program. Taken together, MBCN and MicrobiotaCN can be a valuable resource and a powerful tool that allows researchers to perform metagenomic analysis by a unified pipeline efficiently.
Collapse
Affiliation(s)
- Bo Zheng
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Junming Xu
- Department of Human Microbiome, Promegene Institute, Shenzhen, 518000, PR China
| | - Yijie Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Junjie Qin
- Department of Human Microbiome, Promegene Institute, Shenzhen, 518000, PR China
| | - Decai Yuan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| | - Weibin Wu
- Shenzhen Bay Biotechnology Co., Ltd. Shenzhen, 518110, PR China
| | - Yan Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, PR China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
21
|
Patel BK, Patel KH, Lee CN, Moochhala S. Intestinal Microbiota Interventions to Enhance Athletic Performance-A Review. Int J Mol Sci 2024; 25:10076. [PMID: 39337561 PMCID: PMC11432184 DOI: 10.3390/ijms251810076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recent years have witnessed an uptick in research highlighting the gut microbiota's role as a primary determinant of athletes' health, which has piqued interest in the hypothesis that it correlates with athletes' physical performance. Athletes' physical performances could be impacted by the metabolic activity of the assortment of microbes found in their gut. Intestinal microbiota impacts multiple facets of an athlete's physiology, including immune response, gut membrane integrity, macro- and micronutrient absorption, muscle endurance, and the gut-brain axis. Several physiological variables govern the gut microbiota; hence, an intricately tailored and complex framework must be implemented to comprehend the performance-microbiota interaction. Emerging evidence underscores the intricate relationship between the gut microbiome and physical fitness, revealing that athletes who engage in regular physical activity exhibit a richer diversity of gut microbes, particularly within the Firmicutes phylum, e.g., Ruminococcaceae genera, compared to their sedentary counterparts. In elite sport, it is challenging to implement an unconventional strategy whilst simultaneously aiding an athlete to accomplish feasible, balanced development. This review compiles the research on the effects of gut microbiota modulation on performance in sports and illustrates how different supplementation strategies for gut microbiota have the ability to improve athletic performance by enhancing physical capacities. In addition to promoting athletes' overall health, this study evaluates the existing literature in an effort to shed light on how interventions involving the gut microbiota can dramatically improve performance on the field. The findings should inform both theoretical and practical developments in the fields of sports nutrition and training.
Collapse
Affiliation(s)
- Bharati Kadamb Patel
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Kadamb Haribhai Patel
- Temasek Polytechnic, School of Applied Sciences, 21 Tampines Ave 1, Singapore 529757, Singapore;
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Shabbir Moochhala
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD3, 16 Medical Drive, Singapore 117600, Singapore
| |
Collapse
|
22
|
Torres MDT, Brooks EF, Cesaro A, Sberro H, Gill MO, Nicolaou C, Bhatt AS, de la Fuente-Nunez C. Mining human microbiomes reveals an untapped source of peptide antibiotics. Cell 2024; 187:5453-5467.e15. [PMID: 39163860 DOI: 10.1016/j.cell.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin F Brooks
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hila Sberro
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Matthew O Gill
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Cosmos Nicolaou
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Medicine (Hematology; Blood and Marrow Transplantation), Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Lindner BG, Choudhury RA, Pinamang P, Bingham L, D'Amico I, Hatt JK, Konstantinidis KT, Graham KE. Advancing Source Tracking: Systematic Review and Source-Specific Genome Database Curation of Fecally Shed Prokaryotes. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:931-939. [PMID: 39280079 PMCID: PMC11391576 DOI: 10.1021/acs.estlett.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Advancements within fecal source tracking (FST) studies are complicated by a lack of knowledge regarding the genetic content and distribution of fecally shed microbial populations. To address this gap, we performed a systematic literature review and curated a large collection of genomes (n = 26,018) representing fecally shed prokaryotic species across broad and narrow source categories commonly implicated in FST studies of recreational waters (i.e., cats, dogs, cows, seagulls, chickens, pigs, birds, ruminants, human feces, and wastewater). We find that across these sources the total number of prokaryotic genomes recovered from materials meeting our initial inclusion criteria varied substantially across fecal sources: from none in seagulls to 9,085 in pigs. We examined genome sequences recovered from these metagenomic and isolation-based studies extensively via comparative genomic approaches to characterize trends across source categories and produce a finalized genome database for each source category which is available online (n = 12,730). On average, 81% of the genomes representing species-level populations occur only within a single source. Using fecal slurries to test the performance of each source database, we report read capture rates that vary with fecal source alpha diversity and database size. We expect this resource to be useful to FST-related objectives, One Health research, and sanitation efforts globally.
Collapse
Affiliation(s)
- Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rakin A Choudhury
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Princess Pinamang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lilia Bingham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Isabelle D'Amico
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Gamage BD, Ranasinghe D, Sahankumari A, Malavige GN. Metagenomic analysis of colonic tissue and stool microbiome in patients with colorectal cancer in a South Asian population. BMC Cancer 2024; 24:1124. [PMID: 39256724 PMCID: PMC11385143 DOI: 10.1186/s12885-024-12885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The gut microbiome is thought to play an important role in the development of colorectal cancer (CRC). However, as the gut microbiome varies widely based on diet, we sought to investigate the gut microbiome changes in patients with CRC in a South Asian population. METHODS The gut microbiome was assessed by 16s metagenomic sequencing targeting the V4 hypervariable region of the bacterial 16S rRNA in stool samples (n = 112) and colonic tissue (n = 36) in 112 individuals. The cohort comprised of individuals with CRC (n = 24), premalignant lesions (n = 10), healthy individuals (n = 50) and in those with diabetes (n = 28). RESULTS Overall, the relative abundances of genus Fusobacterium (p < 0.001), Acinetobacter (p < 0.001), Escherichia-Shigella (p < 0.05) were significantly higher in gut tissue, while Romboutsia (p < 0.01) and Prevotella (p < 0.05) were significantly higher in stool samples. Bacteroides and Fusobacterium were the most abundant genera found in stool samples in patients with CRC. Patients with pre-malignant lesions had significantly high abundances of Christensenellaceae, Enterobacteriaceae, Mollicutes and Ruminococcaceae (p < 0.001) compared to patients with CRC, and healthy individuals. Romboutsia was significantly more abundant (p < 0.01) in stool samples in healthy individuals compared to those with CRC and diabetes. CONCLUSION Despite marked differences in the Sri Lankan diet compared to the typical Western diet, Bacteroides and Fusobacterium species were the most abundant in those with CRC, with Prevotella species, being most abundant in many individuals. We believe these results pave the way for possible dietary interventions for prevention of CRC in the South Asian population.
Collapse
Affiliation(s)
- Bawantha Dilshan Gamage
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Diyanath Ranasinghe
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Agp Sahankumari
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
25
|
Park H, Yeo S, Ryu CB, Huh CS. A streamlined culturomics case study for the human gut microbiota research. Sci Rep 2024; 14:20361. [PMID: 39223323 PMCID: PMC11368911 DOI: 10.1038/s41598-024-71370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Bacterial culturomics is a set of techniques to isolate and identify live bacteria from complex microbial ecosystems. Despite its potential to revolutionize microbiome research, bacterial culturomics has significant challenges when applied to human gut microbiome studies due to its labor-intensive nature. Therefore, we established a streamlined culturomics approach with minimal culture conditions for stool sample preincubation. We evaluated the suitability of non-selective medium candidates for maintaining microbial diversity during a 30-day incubation period based on 16S rRNA gene amplicon analysis. Subsequently, we applied four culture conditions (two preincubation media under an aerobic/anaerobic atmosphere) to isolate gut bacteria on a large scale from eight stool samples of healthy humans. We identified 8141 isolates, classified into 263 bacterial species, including 12 novel species candidates. Our analysis of cultivation efficiency revealed that seven days of aerobic and ten days of anaerobic incubation captured approximately 91% and 95% of the identified species within each condition, respectively, with a synergistic effect confirmed when selected preincubation media were combined. Moreover, our culturomics findings expanded the coverage of gut microbial diversity compared to 16S rRNA gene amplicon sequencing results. In conclusion, this study demonstrated the potential of a streamlined culturomics approach for the efficient isolation of gut bacteria from human stool samples. This approach might pave the way for the broader adoption of culturomics in human gut microbiome studies, ultimately leading to a more comprehensive understanding of this complex microbial ecosystem.
Collapse
Affiliation(s)
- Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| | - Soyoung Yeo
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Chang Beom Ryu
- Department of Internal Medicine, Digestive Disease Center and Research Institute, Soon Chun Hyang University School of Medicine, Bucheon, 14584, South Korea
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
26
|
Sardar P, Almeida A, Pedicord VA. Integrating functional metagenomics to decipher microbiome-immune interactions. Immunol Cell Biol 2024; 102:680-691. [PMID: 38952337 DOI: 10.1111/imcb.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome-immune interactions and their contributions to health and disease states.
Collapse
Affiliation(s)
- Puspendu Sardar
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexandre Almeida
- Department of Veterinary Medicine, University of Cambridge School of Biological Sciences, Cambridge, UK
| | - Virginia A Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
27
|
Kirtipal N, Seo Y, Son J, Lee S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab J 2024; 48:821-836. [PMID: 39313228 PMCID: PMC11449821 DOI: 10.4093/dmj.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Youngchang Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jangwon Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
28
|
Sipkema D. Improving the odds: Artificial intelligence and the great plate count anomaly. Microb Biotechnol 2024; 17:e70004. [PMID: 39215402 PMCID: PMC11364511 DOI: 10.1111/1751-7915.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Next-generation DNA sequencing has shown that the great plate count anomaly, that is, the difference between bacteria present in the environment and those that can be obtained in culture from that environment, is even greater and more persisting than initially thought. This hampers fundamental understanding of bacterial physiology and biotechnological application of the unculture majority. With big sequence data as foundation, artificial intelligence (AI) may be a game changer in bacterial isolation efforts and provide directions for the cultivation media and conditions that are most promising and as such be used to canalize limited human and financial resources. This opinion paper discusses how AI is or can be used to improve the success of bacterial isolation.
Collapse
Affiliation(s)
- Detmer Sipkema
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
29
|
Endale HT, Tesfaye W, Hassen FS, Asrat WB, Temesgen EY, Shibabaw YY, Asefa T. Harmony unveiled: Intricate the interplay of dietary factor, gut microbiota, and colorectal cancer-A narrative review. SAGE Open Med 2024; 12:20503121241274724. [PMID: 39224896 PMCID: PMC11367611 DOI: 10.1177/20503121241274724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Diet plays a critical role in shaping the gut microbiome, which in turn regulates molecular activities in the colonic mucosa. The state and composition of the gut microbiome are key factors in the development of colorectal cancer. An altered gut microbiome, linked to weakened immune responses and the production of carcinogenic substances, is a significant contributor to colorectal cancer pathogenesis. Dietary changes that involve low-fiber and phytomolecule intake, coupled with higher consumption of red meat, can raise the risk of colorectal cancer. Salutary filaments, which reach the colon undigested, are metabolized by the gut microbiome, producing short-chain fatty acids. Short-chain fatty acids possess beneficial anti-inflammatory and antiproliferative properties that promote colon health. A well-balanced microbiome, supported by beneficial fibers and phytochemicals, can regulate the activation of proto-oncogenes and oncogenic pathways, thereby reducing cell proliferation. Recent research suggests that an overabundance of specific microbes, such as Fusobacterium nucleatum, may contribute to adverse changes in the colonic mucosa. Positive lifestyle adjustments have been demonstrated to effectively inhibit the growth of harmful opportunistic organisms. Synbiotics, which combine probiotics and prebiotics, can protect the intestinal mucosa by enhancing immune responses and decreasing the production of harmful metabolites, oxidative stress, and cell proliferation. This narrative review provides a concise understanding of evolving evidence regarding how diet influences the gut microbiome, leading to the restoration of the colonic epithelium. It underscores the importance of a healthy, plant-based diet and associated supplements in preventing colorectal cancer by enhancing gut microbiome health.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Yadelew Yimer Shibabaw
- Department of Medical Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tseganesh Asefa
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
30
|
Guo J, Gong L, Yu H, Li M, An Q, Liu Z, Fan S, Yang C, Zhao D, Han J, Xiang H. Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells. Nat Commun 2024; 15:7277. [PMID: 39179566 PMCID: PMC11343773 DOI: 10.1038/s41467-024-51695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Type I CRISPR-Cas systems are widespread and have exhibited high versatility and efficiency in genome editing and gene regulation in prokaryotes. However, due to the multi-subunit composition and large size, their application in eukaryotes has not been thoroughly investigated. Here, we demonstrate that the type I-F2 Cascade, the most compact among type I systems, with a total gene size smaller than that of SpCas9, can be developed for transcriptional activation in human cells. The efficiency of the engineered I-F2 tool can match or surpass that of dCas9. Additionally, we create a base editor using the I-F2 Cascade, which induces a considerably wide editing window (~30 nt) with a bimodal distribution. It can expand targetable sites, which is useful for disrupting functional sequences and genetic screening. This research underscores the application of compact type I systems in eukaryotes, particularly in the development of a base editor with a wide editing window.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaohui An
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenquan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuru Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Changjialian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
31
|
Cheraghpour M, Fatemi N, Shadnoush M, Talebi G, Tierling S, Bermúdez-Humarán LG. Immunomodulation aspects of gut microbiome-related interventional strategies in colorectal cancer. Med Oncol 2024; 41:231. [PMID: 39162936 DOI: 10.1007/s12032-024-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, develops mainly due to the accumulation of genetic and epigenetic changes over many years. Substantial evidence suggests that gut microbiota plays a significant role in the initiation, progression, and control of CRC, depending on the balance between beneficial and pathogenic microorganisms. Nonetheless, gut microbiota composition by regulating the host immune response may either promote or inhibit CRC. Thus, modification of gut microbiota potentially impacts clinical outcomes of immunotherapy. Previous studies have indicated that therapeutic strategies such as probiotics, prebiotics, and postbiotics enhance the intestinal immune system and improve the efficacy of immunotherapeutic agents, potentially serving as a complementary strategy in cancer immunotherapy. This review discusses the role of the gut microbiota in the onset and development of CRC in relation to the immune response. Additionally, we focus on the effect of strategies manipulating gut microbiome on the immune response and efficacy of immunotherapy against CRC. We demonstrate that manipulation of gut microbiome can enhance immune response and outcomes of immunotherapy through downregulating Treg cells and other immunosuppressive cells while improving the function of T cells within the tumor; however, further research, especially clinical trials, are needed to evaluate its efficacy in cancer treatment.
Collapse
Affiliation(s)
- Makan Cheraghpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shadnoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Talebi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Luis G Bermúdez-Humarán
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
32
|
Zampieri G, Cabrol L, Urra C, Castro-Nallar E, Schwob G, Cleary D, Angione C, Deacon RMJ, Hurley MJ, Cogram P. Microbiome alterations are associated with apolipoprotein E mutation in Octodon degus and humans with Alzheimer's disease. iScience 2024; 27:110348. [PMID: 39148714 PMCID: PMC11324989 DOI: 10.1016/j.isci.2024.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk.
Collapse
Affiliation(s)
- Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Léa Cabrol
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Aix Marseille University, University Toulon, CNRS, IRD, Méditerranéen Institute of Océanographie (MIO) UM 110, Avenue de Luminy, 13009 Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - Claudio Urra
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Avenida República 239, Santiago 7591538, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - David Cleary
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Robert M J Deacon
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Michael J Hurley
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Anatomy and Neurobiology, School of Medicine, B240 Med Sci, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
33
|
Djeghout B, Le-Viet T, Martins LDO, Savva GM, Evans R, Baker D, Page A, Elumogo N, Wain J, Janecko N. Capturing clinically relevant Campylobacter attributes through direct whole genome sequencing of stool. Microb Genom 2024; 10. [PMID: 39213166 DOI: 10.1099/mgen.0.001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is the leading bacterial cause of infectious intestinal disease, but the pathogen typically accounts for a very small proportion of the overall stool microbiome in each patient. Diagnosis is even more difficult due to the fastidious nature of Campylobacter in the laboratory setting. This has, in part, driven a change in recent years, from culture-based to rapid PCR-based diagnostic assays which have improved diagnostic detection, whilst creating a knowledge gap in our clinical and epidemiological understanding of Campylobacter genotypes - no isolates to sequence. In this study, direct metagenomic sequencing approaches were used to assess the possibility of replacing genome sequences with metagenome sequences; metagenomic sequencing outputs were used to describe clinically relevant attributes of Campylobacter genotypes. A total of 37 diarrhoeal stool samples with Campylobacter and five samples with an unknown pathogen result were collected and processed with and without filtration, DNA was extracted, and metagenomes were sequenced by short-read sequencing. Culture-based methods were used to validate Campylobacter metagenome-derived genome (MDG) results. Sequence output metrics were assessed for Campylobacter genome quality and accuracy of characterization. Of the 42 samples passing quality checks for analysis, identification of Campylobacter to the genus and species level was dependent on Campylobacter genome read count, coverage and genome completeness. A total of 65% (24/37) of samples were reliably identified to the genus level through Campylobacter MDG, 73% (27/37) by culture and 97% (36/37) by qPCR. The Campylobacter genomes with a genome completeness of over 60% (n=21) were all accurately identified at the species level (100%). Of those, 72% (15/21) were identified to sequence types (STs), and 95% (20/21) accurately identified antimicrobial resistance (AMR) gene determinants. Filtration of stool samples enhanced Campylobacter MDG recovery and genome quality metrics compared to the corresponding unfiltered samples, which improved the identification of STs and AMR profiles. The phylogenetic analysis in this study demonstrated the clustering of the metagenome-derived with culture-derived genomes and revealed the reliability of genomes from direct stool sequencing. Furthermore, Campylobacter genome spiking percentages ranging from 0 to 2% total metagenome abundance in the ONT MinION sequencer, configured to adaptive sequencing, exhibited better assembly quality and accurate identification of STs, particularly in the analysis of metagenomes containing 2 and 1% of Campylobacter jejuni genomes. Direct sequencing of Campylobacter from stool samples provides clinically relevant and epidemiologically important genomic information without the reliance on cultured genomes.
Collapse
Affiliation(s)
- Bilal Djeghout
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Thanh Le-Viet
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - George M Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrew Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ngozi Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Eastern Pathology Alliance, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
34
|
Tyagi S, Katara P. Metatranscriptomics: A Tool for Clinical Metagenomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:394-407. [PMID: 39029911 DOI: 10.1089/omi.2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In the field of bioinformatics, amplicon sequencing of 16S rRNA genes has long been used to investigate community membership and taxonomic abundance in microbiome studies. As we can observe, shotgun metagenomics has become the dominant method in this field. This is largely owing to advancements in sequencing technology, which now allow for random sequencing of the entire genetic content of a microbiome. Furthermore, this method allows profiling both genes and the microbiome's membership. Although these methods have provided extensive insights into various microbiomes, they solely assess the existence of organisms or genes, without determining their active role within the microbiome. Microbiome scholarship now includes metatranscriptomics to decipher how a community of microorganisms responds to changing environmental conditions over a period of time. Metagenomic studies identify the microbes that make up a community but metatranscriptomics explores the diversity of active genes within that community, understanding their expression profile and observing how these genes respond to changes in environmental conditions. This expert review article offers a critical examination of the computational metatranscriptomics tools for studying the transcriptomes of microbial communities. First, we unpack the reasons behind the need for community transcriptomics. Second, we explore the prospects and challenges of metatranscriptomic workflows, starting with isolation and sequencing of the RNA community, then moving on to bioinformatics approaches for quantifying RNA features, and statistical techniques for detecting differential expression in a community. Finally, we discuss strengths and shortcomings in relation to other microbiome analysis approaches, pipelines, use cases and limitations, and contextualize metatranscriptomics as a tool for clinical metagenomics.
Collapse
Affiliation(s)
- Shivani Tyagi
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| |
Collapse
|
35
|
Ding G, Yang X, Li Y, Wang Y, Du Y, Wang M, Ye R, Wang J, Zhang Y, Chen Y, Zhang Y. Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol Cell Biochem 2024:10.1007/s11010-024-05077-y. [PMID: 39060829 DOI: 10.1007/s11010-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
The intestinal microbiome constitutes a sophisticated and massive ecosystem pivotal for maintaining gastrointestinal equilibrium and mucosal immunity via diverse pathways. The gut microbiota is continuously reshaped by multiple environmental factors, thereby influencing overall wellbeing or predisposing individuals to disease state. Many observations reveal an altered microbiome composition in individuals with autoimmune conditions, coupled with shifts in metabolic profiles, which has spurred ongoing development of therapeutic interventions targeting the microbiome. This review delineates the microbial consortia of the intestine, their role in sustaining gastrointestinal stability, the association between the microbiome and immune-mediated pathologies, and therapeutic modalities focused on microbiome modulation. We emphasize the entire role of the intestinal microbiome in human health and recommend microbiome modulation as a viable strategy for disease prophylaxis and management. However, the application of gut microbiota modification for the treatment of immune-related diseases, such as fecal microbiota transplantation and probiotics, remain quite challenging. Therefore, more research is needed into the role and mechanisms of these therapeutics.
Collapse
Affiliation(s)
- Guoao Ding
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
- Department of Life Science, Anhui University, Hefei, 230061, China
| | - Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ying Li
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ying Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yujie Du
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Meng Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Ruxin Ye
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Jingjing Wang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yongkang Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yajun Chen
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China
| | - Yan Zhang
- School of Biological and Food Engineering, Hefei Normal University, Hefei, 230061, China.
- Department of Life Science, Anhui University, Hefei, 230061, China.
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
36
|
Lee S, Portlock T, Le Chatelier E, Garcia-Guevara F, Clasen F, Oñate FP, Pons N, Begum N, Harzandi A, Proffitt C, Rosario D, Vaga S, Park J, von Feilitzen K, Johansson F, Zhang C, Edwards LA, Lombard V, Gauthier F, Steves CJ, Gomez-Cabrero D, Henrissat B, Lee D, Engstrand L, Shawcross DL, Proctor G, Almeida M, Nielsen J, Mardinoglu A, Moyes DL, Ehrlich SD, Uhlen M, Shoaie S. Global compositional and functional states of the human gut microbiome in health and disease. Genome Res 2024; 34:967-978. [PMID: 39038849 PMCID: PMC11293553 DOI: 10.1101/gr.278637.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and functionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional analyses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learning classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were observed in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, disease, and regional signatures of the gut microbiota across different cohorts.
Collapse
Affiliation(s)
- Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), 61005, Gwangju, Republic of Korea
| | - Theo Portlock
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | | | - Fernando Garcia-Guevara
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Frederick Clasen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | | | - Nicolas Pons
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Azadeh Harzandi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Ceri Proffitt
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Dorines Rosario
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Stefania Vaga
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Junseok Park
- Department of Bio and Brain Engineering, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Kalle von Feilitzen
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Fredric Johansson
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Lindsey A Edwards
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Vincent Lombard
- INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille 13288, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille 13288, France
| | - Franck Gauthier
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Claire J Steves
- Department of Twin Research & Genetic Epidemiology, King's College London, London WC2R 2LS, United Kingdom
| | - David Gomez-Cabrero
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Translational Bioinformatics Unit, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Debbie L Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Mathieu Almeida
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- BioInnovation Institute, DK-2200 Copenhagen N, Denmark
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Stanislav Dusko Ehrlich
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London NW3 2PF, United Kingdom
| | - Mathias Uhlen
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom;
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| |
Collapse
|
37
|
Huang Y, Xu W, Dong W, Chen G, Sun Y, Zeng X. Anti-diabetic effect of dicaffeoylquinic acids is associated with the modulation of gut microbiota and bile acid metabolism. J Adv Res 2024:S2090-1232(24)00264-9. [PMID: 38969095 DOI: 10.1016/j.jare.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3β) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.
Collapse
Affiliation(s)
- Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
38
|
Sun H, Chen F, Zheng W, Huang Y, Peng H, Hao H, Wang KJ. Impact of captivity and natural habitats on gut microbiome in Epinephelus akaara across seasons. BMC Microbiol 2024; 24:239. [PMID: 38961321 PMCID: PMC11221007 DOI: 10.1186/s12866-024-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The gut microbiota significantly influences the health and growth of red-spotted grouper (Epinephelus akaara), a well-known commercial marine fish from Fujian Province in southern China. However, variations in survival strategies and seasons can impact the stability of gut microbiota data, rendering it inaccurate in reflecting the state of gut microbiota. Which impedes the effective enhancement of aquaculture health through a nuanced understanding of gut microbiota. Inspired by this, we conducted a comprehensive analysis of the gut microbiota of wild and captive E. akaara in four seasons. RESULTS Seventy-two E. akaara samples were collected from wild and captive populations in Dongshan city, during four different seasons. Four sections of the gut were collected to obtain comprehensive information on the gut microbial composition and sequenced using 16S rRNA next-generation Illumina MiSeq. We observed the highest gut microbial diversity in both captive and wild E. akaara during the winter season, and identified strong correlations with water temperature using Mantel analysis. Compared to wild E. akaara, we found a more complex microbial network in captive E. akaara, as evidenced by increased abundance of Bacillaceae, Moraxellaceae and Enterobacteriaceae. In contrast, Vibrionaceae, Clostridiaceae, Flavobacteriaceae and Rhodobacteraceae were found to be more active in wild E. akaara. However, some core microorganisms, such as Firmicutes and Photobacterium, showed similar distribution patterns in both wild and captive groups. Moreover, we found the common community composition and distribution characteristics of top 10 core microbes from foregut to hindgut in E. akaara. CONCLUSIONS Collectively, the study provides relatively more comprehensive description of the gut microbiota in E. akaara, taking into account survival strategies and temporal dimensions, which yields valuable insights into the gut microbiota of E. akaara and provides a valuable reference to its aquaculture.
Collapse
Affiliation(s)
- Hang Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yixin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
39
|
WU E, QIAO L. [Microbial metaproteomics--From sample processing to data acquisition and analysis]. Se Pu 2024; 42:658-668. [PMID: 38966974 PMCID: PMC11224941 DOI: 10.3724/sp.j.1123.2024.02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 07/06/2024] Open
Abstract
Microorganisms are closely associated with human diseases and health. Understanding the composition and function of microbial communities requires extensive research. Metaproteomics has recently become an important method for throughout and in-depth study of microorganisms. However, major challenges in terms of sample processing, mass spectrometric data acquisition, and data analysis limit the development of metaproteomics owing to the complexity and high heterogeneity of microbial community samples. In metaproteomic analysis, optimizing the preprocessing method for different types of samples and adopting different microbial isolation, enrichment, extraction, and lysis schemes are often necessary. Similar to those for single-species proteomics, the mass spectrometric data acquisition modes for metaproteomics include data-dependent acquisition (DDA) and data-independent acquisition (DIA). DIA can collect comprehensive peptide information from a sample and holds great potential for future development. However, data analysis for DIA is challenged by the complexity of metaproteome samples, which hinders the deeper coverage of metaproteomes. The most important step in data analysis is the construction of a protein sequence database. The size and completeness of the database strongly influence not only the number of identifications, but also analyses at the species and functional levels. The current gold standard for metaproteome database construction is the metagenomic sequencing-based protein sequence database. A public database-filtering method based on an iterative database search has been proven to have strong practical value. The peptide-centric DIA data analysis method is a mainstream data analysis strategy. The development of deep learning and artificial intelligence will greatly promote the accuracy, coverage, and speed of metaproteomic analysis. In terms of downstream bioinformatics analysis, a series of annotation tools that can perform species annotation at the protein, peptide, and gene levels has been developed in recent years to determine the composition of microbial communities. The functional analysis of microbial communities is a unique feature of metaproteomics compared with other omics approaches. Metaproteomics has become an important component of the multi-omics analysis of microbial communities, and has great development potential in terms of depth of coverage, sensitivity of detection, and completeness of data analysis.
Collapse
|
40
|
Kim N, Ma J, Kim W, Kim J, Belenky P, Lee I. Genome-resolved metagenomics: a game changer for microbiome medicine. Exp Mol Med 2024; 56:1501-1512. [PMID: 38945961 PMCID: PMC11297344 DOI: 10.1038/s12276-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junyeong Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wonjong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
41
|
Jia M, Zhu S, Xue MY, Chen H, Xu J, Song M, Tang Y, Liu X, Tao Y, Zhang T, Liu JX, Wang Y, Sun HZ. Single-cell transcriptomics across 2,534 microbial species reveals functional heterogeneity in the rumen microbiome. Nat Microbiol 2024; 9:1884-1898. [PMID: 38866938 DOI: 10.1038/s41564-024-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Deciphering the activity of individual microbes within complex communities and environments remains a challenge. Here we describe the development of microbiome single-cell transcriptomics using droplet-based single-cell RNA sequencing and pangenome-based computational analysis to characterize the functional heterogeneity of the rumen microbiome. We generated a microbial genome database (the Bovine Gastro Microbial Genome Map) as a functional reference map for the construction of a single-cell transcriptomic atlas of the rumen microbiome. The atlas includes 174,531 microbial cells and 2,534 species, of which 172 are core active species grouped into 12 functional clusters. We detected single-cell-level functional roles, including a key role for Basfia succiniciproducens in the carbohydrate metabolic niche of the rumen microbiome. Furthermore, we explored functional heterogeneity and reveal metabolic niche trajectories driven by biofilm formation pathway genes within B. succiniciproducens. Our results provide a resource for studying the rumen microbiome and illustrate the diverse functions of individual microbial cells that drive their ecological niche stability or adaptation within the ecosystem.
Collapse
Affiliation(s)
- Minghui Jia
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Senlin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ming-Yuan Xue
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Hongyi Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Jinghong Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Mengdi Song
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- M20 Genomics, Hangzhou, China
| | - Yifan Tang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xiaohan Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Ye Tao
- Shanghai Biozeron Biotechnology Company, Shanghai, China
| | - Tianyu Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- M20 Genomics, Hangzhou, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yongcheng Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China.
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Wu E, Xu G, Xie D, Qiao L. Data-independent acquisition in metaproteomics. Expert Rev Proteomics 2024; 21:271-280. [PMID: 39152734 DOI: 10.1080/14789450.2024.2394190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Metaproteomics offers insights into the function of complex microbial communities, while it is also capable of revealing microbe-microbe and host-microbe interactions. Data-independent acquisition (DIA) mass spectrometry is an emerging technology, which holds great potential to achieve deep and accurate metaproteomics with higher reproducibility yet still facing a series of challenges due to the inherent complexity of metaproteomics and DIA data. AREAS COVERED This review offers an overview of the DIA metaproteomics approaches, covering aspects such as database construction, search strategy, and data analysis tools. Several cases of current DIA metaproteomics studies are presented to illustrate the procedures. Important ongoing challenges are also highlighted. Future perspectives of DIA methods for metaproteomics analysis are further discussed. Cited references are searched through and collected from Google Scholar and PubMed. EXPERT OPINION Considering the inherent complexity of DIA metaproteomics data, data analysis strategies specifically designed for interpretation are imperative. From this point of view, we anticipate that deep learning methods and de novo sequencing methods will become more prevalent in the future, potentially improving protein coverage in metaproteomics. Moreover, the advancement of metaproteomics also depends on the development of sample preparation methods, data analysis strategies, etc. These factors are key to unlocking the full potential of metaproteomics.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Guanyang Xu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Gryaznova M, Burakova I, Smirnova Y, Morozova P, Chirkin E, Gureev A, Mikhaylov E, Korneeva O, Syromyatnikov M. Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation. Microorganisms 2024; 12:1341. [PMID: 39065109 PMCID: PMC11278525 DOI: 10.3390/microorganisms12071341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The role of lipopolysaccharide (LPS) in the development of diseases is clear, but the specific mechanisms remain poorly understood. This study aimed to investigate the microbiome aberrations in the guts of mice against the background of LPS, as well as the anti-inflammatory effect of probiotic supplementation with Lactobacillus plantarum from the gut, a mix of commercial probiotic lactic acid bacteria, and Weissella confusa isolated from milk using next-generation sequencing. LPS injections were found to induce inflammatory changes in the intestinal mucosa. These morphological changes were accompanied by a shift in the microbiota. We found no significant changes in the microbiome with probiotic supplementation compared to the LPS group. However, when Lactobacillus plantarum and a mix of commercial probiotic lactic acid bacteria were used, the intestinal mucosa was restored. Weissella confusa did not contribute to the morphological changes of the intestinal wall or the microbiome. Changes in the microbiome were observed with probiotic supplementation of Lactobacillus plantarum and a mix of commercial probiotic lactic acid bacteria compared to the control group. In addition, when Lactobacillus plantarum was used, we observed a decrease in the enrichment of the homocysteine and cysteine interconversion pathways with an increase in the L-histidine degradation pathway.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| | - Egor Chirkin
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| | - Artem Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| | - Evgeny Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia;
| | - Olga Korneeva
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (I.B.); (Y.S.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (E.C.); (A.G.)
| |
Collapse
|
44
|
Shaw J, Gounot JS, Chen H, Nagarajan N, Yu YW. Floria: fast and accurate strain haplotyping in metagenomes. Bioinformatics 2024; 40:i30-i38. [PMID: 38940183 PMCID: PMC11211831 DOI: 10.1093/bioinformatics/btae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Shotgun metagenomics allows for direct analysis of microbial community genetics, but scalable computational methods for the recovery of bacterial strain genomes from microbiomes remains a key challenge. We introduce Floria, a novel method designed for rapid and accurate recovery of strain haplotypes from short and long-read metagenome sequencing data, based on minimum error correction (MEC) read clustering and a strain-preserving network flow model. Floria can function as a standalone haplotyping method, outputting alleles and reads that co-occur on the same strain, as well as an end-to-end read-to-assembly pipeline (Floria-PL) for strain-level assembly. Benchmarking evaluations on synthetic metagenomes show that Floria is > 3× faster and recovers 21% more strain content than base-level assembly methods (Strainberry) while being over an order of magnitude faster when only phasing is required. Applying Floria to a set of 109 deeply sequenced nanopore metagenomes took <20 min on average per sample and identified several species that have consistent strain heterogeneity. Applying Floria's short-read haplotyping to a longitudinal gut metagenomics dataset revealed a dynamic multi-strain Anaerostipes hadrus community with frequent strain loss and emergence events over 636 days. With Floria, accurate haplotyping of metagenomic datasets takes mere minutes on standard workstations, paving the way for extensive strain-level metagenomic analyses. AVAILABILITY AND IMPLEMENTATION Floria is available at https://github.com/bluenote-1577/floria, and the Floria-PL pipeline is available at https://github.com/jsgounot/Floria_analysis_workflow along with code for reproducing the benchmarks.
Collapse
Affiliation(s)
- Jim Shaw
- Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2E4, Canada
| | - Jean-Sebastien Gounot
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Hanrong Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Yun William Yu
- Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2E4, Canada
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| |
Collapse
|
45
|
Ishizawa K, Tamahara T, Suzuki S, Hatayama Y, Li B, Abe M, Aoki Y, Arita R, Saito N, Ohsawa M, Kaneko S, Ono R, Takayama S, Shimada M, Kumada K, Koike T, Masamune A, Onodera K, Ishii T, Shimizu R, Kanno T. Sequential Sampling of the Gastrointestinal Tract to Characterize the Entire Digestive Microbiome in Japanese Subjects. Microorganisms 2024; 12:1324. [PMID: 39065094 PMCID: PMC11279317 DOI: 10.3390/microorganisms12071324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract harbors trillions of microorganisms known to influence human health and disease, and next-generation sequencing (NGS) now enables the in-depth analysis of their diversity and functions. Although a significant amount of research has been conducted on the GI microbiome, comprehensive metagenomic datasets covering the entire tract are scarce due to cost and technical challenges. Despite the widespread use of fecal samples, integrated datasets encompassing the entire digestive process, beginning at the mouth and ending with feces, are lacking. With this study, we aimed to fill this gap by analyzing the complete metagenome of the GI tract, providing insights into the dynamics of the microbiota and potential therapeutic avenues. In this study, we delved into the complex world of the GI microbiota, which we examined in five healthy Japanese subjects. While samples from the whole GI flora and fecal samples provided sufficient bacteria, samples obtained from the stomach and duodenum posed a challenge. Using a principal coordinate analysis (PCoA), clear clustering patterns were identified; these revealed significant diversity in the duodenum. Although this study was limited by its small sample size, the flora in the overall GI tract showed unwavering consistency, while the duodenum exhibited unprecedented phylogenetic diversity. A visual heat map illustrates the discrepancy in abundance, with Fusobacteria and Bacilli dominating the upper GI tract and Clostridia and Bacteroidia dominating the fecal samples. Negativicutes and Actinobacteria were found throughout the digestive tract. This study demonstrates that it is possible to continuously collect microbiome samples throughout the human digestive tract. These findings not only shed light on the complexity of GI microbiota but also provide a basis for future research.
Collapse
Affiliation(s)
- Kota Ishizawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
| | - Toru Tamahara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Suguo Suzuki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Yutaka Hatayama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Bin Li
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| | - Ryutaro Arita
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Natsumi Saito
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Minoru Ohsawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Soichiro Kaneko
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Rie Ono
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Shin Takayama
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Muneaki Shimada
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
| | - Ko Onodera
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Department of Kampo Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.T.); (B.L.); (Y.A.); (M.S.); (K.K.); (R.S.)
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Takeshi Kanno
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan; (M.A.); (R.A.); (N.S.); (M.O.); (S.K.); (R.O.); (S.T.); (K.O.); (T.I.)
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.S.); (Y.H.); (T.K.); (A.M.)
- R & D Division of Career Education for Medical Professionals, Medical Education Center, Jichi Medical University, Shimotsuke 329-0431, Japan
| |
Collapse
|
46
|
Pinto Y, Bhatt AS. Sequencing-based analysis of microbiomes. Nat Rev Genet 2024:10.1038/s41576-024-00746-6. [PMID: 38918544 DOI: 10.1038/s41576-024-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Microbiomes occupy a range of niches and, in addition to having diverse compositions, they have varied functional roles that have an impact on agriculture, environmental sciences, and human health and disease. The study of microbiomes has been facilitated by recent technological and analytical advances, such as cheaper and higher-throughput DNA and RNA sequencing, improved long-read sequencing and innovative computational analysis methods. These advances are providing a deeper understanding of microbiomes at the genomic, transcriptional and translational level, generating insights into their function and composition at resolutions beyond the species level.
Collapse
Affiliation(s)
- Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA.
| |
Collapse
|
47
|
Semenova N, Garashchenko N, Kolesnikov S, Darenskaya M, Kolesnikova L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. PATHOPHYSIOLOGY 2024; 31:309-330. [PMID: 39051221 PMCID: PMC11270257 DOI: 10.3390/pathophysiology31030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Understanding how gut flora interacts with oxidative stress has been the subject of significant research in recent years. There is much evidence demonstrating the existence of the microbiome-oxidative stress interaction. However, the biochemical basis of this interaction is still unclear. In this narrative review, possible pathways of the gut microbiota and oxidative stress interaction are presented, among which genetic underpinnings play an important role. Trimethylamine-N-oxide, mitochondria, short-chain fatty acids, and melatonin also appear to play roles. Moreover, the relationship between oxidative stress and the gut microbiome in obesity, metabolic syndrome, chronic ethanol consumption, dietary supplements, and medications is considered. An investigation of the correlation between bacterial community features and OS parameter changes under normal and pathological conditions might provide information for the determination of new research methods. Furthermore, such research could contribute to establishing a foundation for determining the linkers in the microbiome-OS association.
Collapse
Affiliation(s)
- Natalya Semenova
- Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (N.G.); (S.K.); (M.D.); (L.K.)
| | | | | | | | | |
Collapse
|
48
|
Wang Y, Zhang Z, Chen Q, Chen T. Simultaneous application of oral and intravaginal probiotics for Helicobacter pylori and its antibiotic-therapy-induced vaginal dysbacteriosis. NPJ Biofilms Microbiomes 2024; 10:49. [PMID: 38902244 PMCID: PMC11190290 DOI: 10.1038/s41522-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori is a prevalent bacterial pathogen globally, implicated in various gastrointestinal disorders. Current recommended antibiotic therapies for H. pylori infection have been proven to be therapeutically insufficient, with low eradication rates and high recurrence rates. Emerging evidence suggests that antibiotic therapy for H. pylori can lead to gastrointestinal and subsequent vaginal dysbiosis, posing challenges for conventional antibiotic approaches. Thus, this article proposes a novel probiotic therapy involving simultaneous oral and intra-vaginal probiotic administration alongside antibiotics for H. pylori treatment, aiming to enhance eradication rates and mitigate dysbiosis. We begin by providing an overview of gastrointestinal and vaginal microbiota and their interconnectedness through the vagina-gut axis. We then review the efficacy of current antibiotic regimens for H. pylori and discuss how antibiotic treatment impacts the vaginal microenvironment. To explore the feasibility of this approach, we evaluate the effectiveness of oral and intra-vaginal probiotics in restoring normal microbiota in the gastrointestinal and vaginal tracts, respectively. Additionally, we analyze the direct mechanisms by which oral and intra-vaginal probiotics act on their respective tracts and discuss potential cross-tract mechanisms. Considering the potential synergistic therapeutic effects of probiotics in both the gastrointestinal and vaginal tracts, dual-channel probiotic therapy holds promise as a more effective approach for H. pylori eradication and dysbiosis mitigation, presenting a novel concept in the collaborative treatment of gastrointestinal and genital disorders.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
49
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
50
|
Fang Z, Ma M, Wang Y, Dai W, Shang Q, Yu G. Degradation and fermentation of hyaluronic acid by Bacteroides spp. from the human gut microbiota. Carbohydr Polym 2024; 334:122074. [PMID: 38553207 DOI: 10.1016/j.carbpol.2024.122074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Abstract
Bacteroides spp. are prominent members of the human gut microbiota that play critical roles in the metabolism of complex carbohydrates from the daily diet. Hyaluronic acid (HA) is a multifunctional polysaccharide which has been extensively used in the food and biomedical industry. However, how HA is degraded and fermented by Bacteroides spp. has not been fully characterized. Here, we comprehensively investigated the detailed degradation profiles and fermentation characteristics of four different HAs with discrete molecular weight (Mw) by fourteen distinctive Bacteroides spp. from the human gut microbiota. Our results indicated that high-Mw HAs were more degradable and fermentable than low-Mw HAs. Interestingly, B. salyersiae showed the best degrading capability for both high-Mw and low-Mw HAs, making it a keystone species for HA degradation among Bacteroides spp.. Specifically, HA degradation by B. salyersiae produced significant amounts of unsaturated tetrasaccharide (udp4). Co-culture experiments indicated that the produced udp4 could be further fermented and utilized by non-proficient HA-degraders, suggesting a possible cross-feeding interaction in the utilization of HA within the Bacteroides spp.. Altogether, our study provides novel insights into the metabolism of HA by the human gut microbiota, which has considerable implications for the development of new HA-based nutraceuticals and medicines.
Collapse
Affiliation(s)
- Ziyi Fang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yamin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Dai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China; Qingdao Marine Biomedical Research Institute, Qingdao 266071, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|