1
|
Tang L, Chen K. Association Between Periodontitis and Adverse Pregnancy Outcomes: Two-Sample Mendelian Randomisation Study. Int Dent J 2024; 74:1397-1404. [PMID: 38797633 DOI: 10.1016/j.identj.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
AIM This Mendelian randomisation (MR) study endeavoured to delineate the causal relationship between periodontitis and adverse pregnancy outcomes (APOs), encompassing low birthweight (LBW), pre-term birth (PTB), stillbirth, miscarriage, and gestational hypertension (GH). METHODS Utilising genetic instruments for periodontitis (acute and chronic periodontitis) from the Genome-Wide Association Study (GWAS) database among individuals of European descent, this study explored the causal relationship with adverse pregnancy outcomes, and vice versa. The Inverse Variance Weighted (IVW) method was employed as the primary analytical approach to assess causality, with MR-Egger serving as a sensitivity analysis method. RESULTS The primary analytical method employed in this study, IVW, did not reveal any impact of periodontitis (acute and chronic periodontitis) on PTB, stillbirth, miscarriage, and gestational hypertension, and vice versa. Heterogeneity testing using the MR-Egger method confirmed the null causal hypothesis, with odds ratios (OR) approximating 1, and P-values exceeding 0.05. Notably, the results from the IVW analysis (OR 1.410, CI 1.039-1.915, P-value 0.028) indicate statistically significant evidence supporting a causal relationship between chronic periodontitis and LBW. However, caution is advised in interpreting the causal relationship, considering the non-significant P-values obtained from other methods. CONCLUSION Within the limitations of this MR study, the findings do not support the influence of periodontitis on LBW, PTB, stillbirth, miscarriage, and GH, nor vice versa.
Collapse
Affiliation(s)
- Liying Tang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Chen
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Qiu T, Fang Q, Tian X, Cao Y, Fan X, Li Y, Tu Y, Liu L, Chen Z, Wei Y, Bai J, Huang J, Liu Y. Time-varying ambient air pollution exposure is associated with gut microbiome variation in the first 2 years of life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124705. [PMID: 39134171 DOI: 10.1016/j.envpol.2024.124705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The infant gut microbiome matures greatly in the first year of life. Ambient air pollution (AAP) exposure is associated with the infant gut microbiome. However, whether time-varying AAP influences infant gut microbiome variation is rarely investigated. This study aimed to investigate the effects of PM2.5, PM10, and O3 on infant gut microbiome variation longitudinally. Demographic information, stool samples, and AAP exposure concentrations were collected at 6, 12, 24 months from infants. Gut microbiome was processed and analyzed using 16S rRNA V3-V4 gene regions. AAP exposure concentrations were calculated using the China High Air Pollutants (CHAP) database. Multiple pollutant models were used to assess the mixed effects of PM2.5, PM10, and O3 on infant gut microbiome variation. Infants' gut microbiomes at 6, 12, 24 months old had significant differences in alpha diversity, beta diversity, and community composition. PM2.5 and O3 respectively explained 6.3% and 5.3% of the differences in community composition for 24-month-old infants. Single pollutant exposure and multiple pollutant exposure in different periods were both associated with alpha diversity indices and specific gut microbial phyla and genera. AAP was more associated with infant gut microbial alpha diversity indices, phyla variations, and genera variations at 12-24 months than 6-12 months. Multiple pollutant exposure in 0-2 lag months showed negative correlations with 12-24 months variation in Escherichia-Shigella (β = -0.854, 95%CI: 1.398 to -0.310) and Enterococcus (β = -0.979, 95%CI: 1.429 to -0.530). This study highlighted that time-varying PM2.5, PM10, and O3 synergistically influenced the variation of alpha diversity and abundance of gut microbial taxa in infants. Further research is needed to explore the effects and mechanisms of other environmental exposures on infant gut microbiome variation.
Collapse
Affiliation(s)
- Tianlai Qiu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Qingbo Fang
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xuqi Tian
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanan Cao
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanting Li
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yiming Tu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Linxia Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Zitong Chen
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yi Wei
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China; Research Center for Lifespan Health, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
3
|
Gulliver EL, Di Simone SK, Chonwerawong M, Forster SC. Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing. Microb Biotechnol 2024; 17:e70041. [PMID: 39487814 PMCID: PMC11531172 DOI: 10.1111/1751-7915.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Sara K. Di Simone
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Ritchie Centre, HudsonInstitute of Medical ResearchMelbourneVictoriaAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
Zhou X, Zhang Y, Zheng Q, Ding Y, Zhang D, Pu J, Xu Z. Exposures to great Chinese Famine during embryo, foetal or infant stages link differently with risks of cardiovascular diseases in late middle age. J Nutr Sci 2024; 13:e67. [PMID: 39473435 PMCID: PMC11518625 DOI: 10.1017/jns.2024.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 11/07/2024] Open
Abstract
Perinatal malnutrition is a critical cause of diseases in offspring. Based on the different rates of organ development, we hypothesised that malnutrition at varying early life stages would have a differential impact on cardiovascular disease in middle-aged and older adults. This study sought to assess the long-term impact of exposure to the 1959-1961 Great Chinese Famine (GCF) during early developmental periods on risks of cardiovascular diseases in the late middle-aged offspring. A total 6, 662 individuals, born between 1958 and 1964, were divided into six groups according to the birth date. The generalised line model was used to control age and estimate differences with 95% confidence interval (CI) in blood pressure. Binary logistic regression was applied to evaluate the association between famine exposure and cardiovascular diseases. Compared to the unexposed late middle-aged persons, blood pressure was elevated in the entire gestation exposure group, regardless of postnatal exposure to GCF. Increased blood pressure was also found in the female offspring exposed to GCF during early and middle gestation. The early-childhood exposure was associated with the risk of bradycardia in the offspring. The risks of vertebral artery atherosclerosis were elevated in GCF famine-exposed groups except first trimester exposed group. The chronic influence of GCF in early life periods was specific to the developmental timing window, sexesand organs, suggesting an essential role of interactions among multiple factors and prenatal malnutrition in developmentally "programming" cardiovascular diseases.
Collapse
Affiliation(s)
- Xiuwen Zhou
- Institute for Fetology, The First Affiliated Hospital of Soochow University and Maternal and Children Hospital of Wuxi, Jiangsu, China
| | - Yumeng Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University and Maternal and Children Hospital of Wuxi, Jiangsu, China
| | - Qiutong Zheng
- Institute for Fetology, The First Affiliated Hospital of Soochow University and Maternal and Children Hospital of Wuxi, Jiangsu, China
| | - Yi Ding
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Daiyi Zhang
- Department of Preventive Medicine, College of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Jianhong Pu
- The Center of Health Management, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University and Maternal and Children Hospital of Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Dai DLY, Petersen C, Turvey SE. Reduce, reinforce, and replenish: safeguarding the early-life microbiota to reduce intergenerational health disparities. Front Public Health 2024; 12:1455503. [PMID: 39507672 PMCID: PMC11537995 DOI: 10.3389/fpubh.2024.1455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Socioeconomic (SE) disparity and health inequity are closely intertwined and associated with cross-generational increases in the rates of multiple chronic non-communicable diseases (NCDs) in North America and beyond. Coinciding with this social trend is an observed loss of biodiversity within the community of colonizing microbes that live in and on our bodies. Researchers have rightfully pointed to the microbiota as a key modifiable factor with the potential to ease existing health inequities. Although a number of studies have connected the adult microbiome to socioeconomic determinants and health outcomes, few studies have investigated the role of the infant microbiome in perpetuating these outcomes across generations. It is an essential and important question as the infant microbiota is highly sensitive to external forces, and observed shifts during this critical window often portend long-term outcomes of health and disease. While this is often studied in the context of direct modulators, such as delivery mode, family size, antibiotic exposure, and breastfeeding, many of these factors are tied to underlying socioeconomic and/or cross-generational factors. Exploring cross-generational socioeconomic and health inequities through the lens of the infant microbiome may provide valuable avenues to break these intergenerational cycles. In this review, we will focus on the impact of social inequality in infant microbiome development and discuss the benefits of prioritizing and restoring early-life microbiota maturation for reducing intergenerational health disparities.
Collapse
Affiliation(s)
| | | | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Olaniyi KS, Mackraj I, Moodley J, Moodley R. Evaluation of the Human Placental Microbiota in Early- and Late-Onset Pre-Eclampsia. High Blood Press Cardiovasc Prev 2024:10.1007/s40292-024-00679-5. [PMID: 39414750 DOI: 10.1007/s40292-024-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Despite many decades of research, the exact etiology of pre-eclampsia (PE) remains unknown. Several etiopathologies have been suggested, including the role of the placental microbiota. However, the existence of placental microbiota and its possible contribution to pregnancy complications, particularly PE has remained controversial. AIM The present study was designed to identify different microbes that co-exist the placenta of women with early- and late-onset PE. METHODS Thirty age-matched normotensive and early-onset as well as age-matched normotensive and late-onset pre-eclamptic women respectively, were recruited. After obtaining an informed consent, the placental tissues were obtained through caesarian section with sterile and standardized clinical procedures. DNA was extracted from each tissue and microbiome analysis was conducted using a targeted 16 S analysis and the reads were analyzed with bioinformatics. RESULTS There was a significance difference between the blood pressure of early-/late-onset PE compared with age-matched normotensive controls, respectively. In addition, the reads from placencental samples were classified as belonging to the phyla, Actinobacteria, Firmicutes, Bacteroidetes, Proteobacteria, with Proteobacteria dominated by the classes Pseudomonadales and Gammaproteobacteria with smaller amounts of Actinobacteria and Bacteroidetes. There was no significant difference between the placental bacterial species of early-/late-onset PE compared with age-matched normotensive controls, respectively. Further analysis found no correlation between bacterial species and early- or late-onset PE. CONCLUSION The present results demonstrate a low biomass of bacterial species, which might further indicate that the placental samples had very low levels of bacteria species and there is no correlation between the bacterial composition and early- or late-onset PE.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of Kwa-Zulu-Natal, Durban, South Africa.
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of Kwa-Zulu-Natal, Durban, South Africa
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, College of Health Sciences, University of Kwa-Zulu-Natal, Durban, South Africa
| | - Roshila Moodley
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Gu Q, Draheim M, Planchais C, He Z, Mu F, Gong S, Shen C, Zhu H, Zhivaki D, Shahin K, Collard JM, Su M, Zhang X, Mouquet H, Lo-Man R. Intestinal newborn regulatory B cell antibodies modulate microbiota communities. Cell Host Microbe 2024; 32:1787-1804.e9. [PMID: 39243760 DOI: 10.1016/j.chom.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The role of immunoglobulins produced by IL-10-producing regulatory B cells remains unknown. We found that a particular newborn regulatory B cell population (nBreg) negatively regulates the production of immunoglobulin M (IgM) via IL-10 in an autocrine manner, limiting the intensity of the polyreactive antibody response following innate activation. Based on nBreg scRNA-seq signature, we identify these cells and their repertoire in fetal and neonatal intestinal tissues. By characterizing 205 monoclonal antibodies cloned from intestinal nBreg, we show that newborn germline-encoded antibodies display reactivity against bacteria representing six different phyla of the early microbiota. nBreg-derived antibodies can influence the diversity and the cooperation between members of early microbial communities, at least in part by modulating energy metabolism. These results collectively suggest that nBreg populations help facilitate early-life microbiome establishment and shed light on the paradoxical activities of regulatory B cells in early life.
Collapse
Affiliation(s)
- Qisheng Gu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France
| | - Marion Draheim
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France
| | - Zihan He
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Mu
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Gong
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chun Shen
- Children's Hospital of Fudan University, Shanghai, China
| | - Haitao Zhu
- Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, China
| | - Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Khashayar Shahin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jean-Marc Collard
- Enteric Bacterial Pathogens Unit & French National Reference Center for Escherichia Coli, Shigella and Salmonella, Institut Pasteur, Paris, France
| | - Min Su
- Obstetrics department, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoming Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Innate Defense and Immune Modulation, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cite, INSERM U1222, Paris, France.
| | - Richard Lo-Man
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Unit of Immunity and Pediatric Infectious Diseases, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; Université Paris Cite, Paris, France.
| |
Collapse
|
8
|
Zha X, Elsabagh M, Zheng Y, Zhang B, Wang H, Bai Y, Zhao J, Wang M, Zhang H. Impact of Bisphenol A exposure on maternal gut microbial homeostasis, placental function, and fetal development during pregnancy. Reprod Toxicol 2024; 129:108677. [PMID: 39067774 DOI: 10.1016/j.reprotox.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Pregnancy is extremely vulnerable to external environmental influences. Bisphenol A, an endocrine-disrupting chemical, poses a significant environmental hazard to individuals of all ages and stages, particularly during pregnancy. The placenta is a temporary organ facilitating the connection between the mother and fetus. While it can detoxify certain exogenous substances, it is also vulnerable to the impacts of endocrine disruptors. Likewise, the intestinal flora is highly sensitive to exogenous stresses and environmental pollutants. The regulation of gut microbiota plays a crucial role in ensuring the health of both the mother and the fetus. The gut-placental axis connects the gut, gut microbes, placenta, and fetus. Exploring possible effects on placental function and fetal development involves analyzing changes in gut microbiota composition. Given that bisphenol A may cross the intestine and affect intestinal function, gut microorganisms, and their metabolites, as well as its potential impact on the placenta, resulting in impaired placental function and fetal development, this study aims to establish a link between bisphenol A exposure, intestinal microorganisms, placental function, and fetal development. This paper seeks to analyze the effects of maternal exposure to bisphenol A during pregnancy on the balance of the maternal gut microbiota, placental function, and fetal development, considering the key role of the gut-placental axis. Additionally, this paper proposes potential directions for future research emphasizing the importance of mitigating the adverse outcomes of bisphenol A exposure during pregnancy in both human and animal studies.
Collapse
Affiliation(s)
- Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde ¨Omer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yila Bai
- Xilin Gol League Animal Husbandry Xilinhot 026000, PR China
| | - Jingwen Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi 832000, PR China.
| |
Collapse
|
9
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
10
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
11
|
Tewari N, Dey P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol Res 2024; 286:127832. [PMID: 39013300 DOI: 10.1016/j.micres.2024.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.
Collapse
Affiliation(s)
- Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
12
|
Loch M, Dorbek-Sundström E, Husso A, Pessa-Morikawa T, Niine T, Kaart T, Mõtus K, Niku M, Orro T. Associations of Neonatal Dairy Calf Faecal Microbiota with Inflammatory Markers and Future Performance. Animals (Basel) 2024; 14:2533. [PMID: 39272317 PMCID: PMC11394540 DOI: 10.3390/ani14172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
After birth, the immune system is challenged by numerous elements of the extrauterine environment, reflected in fluctuations of inflammatory markers. The concentrations of these markers in the first month of life are associated with the future performance of dairy youngstock. It is thought that bacterial genera colonizing the calf intestinal tract can cause inflammation and thus affect their host's performance via immunomodulation. This study explored how the faecal microbiota of newborn dairy calves were related to inflammatory markers during the first three weeks of life, and if the abundance of specific genera was associated with first-lactation performance. Ninety-five female Holstein calves were studied. Once a week, serum and faecal samples were collected, serum concentrations of serum amyloid A, haptoglobin, tumour necrosis factor-α, and interleukin-6 were measured, and faecal microbiota composition was examined by 16S rRNA gene amplicon sequencing. Faecal Gallibacterium abundance in the first week of age and Collinsella abundance in the second week were negatively associated with inflammatory response as well as with calving-conception interval. Peptostreptococcus abundance in the second week of life was positively associated with inflammatory response and calving-conception interval, and negatively with average daily weight gain. In the third week, Dorea abundance was positively, Bilophila abundance was negatively associated with inflammatory response, and both genera were negatively associated with age at first calving. These bacterial genera may be able to influence the inflammatory response and through this, possibly the future performance of the dairy heifer. Deciphering such microbiota-host interactions can help improve calf management to benefit production and welfare.
Collapse
Affiliation(s)
- Marina Loch
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Elisabeth Dorbek-Sundström
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Aleksi Husso
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Tarmo Niine
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Kerli Mõtus
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Mikael Niku
- Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66 Helsinki, Finland
| | - Toomas Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, F. R. Kreutzwaldi 62, 51006 Tartu, Estonia
| |
Collapse
|
13
|
Zhao Y, Lyu G. Fetal echogenic bowel may be related to intestinal microbiota: A prospective cohort study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024. [PMID: 39212092 DOI: 10.1002/jcu.23794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The purpose of the current study was to determine the difference in intestinal microbiota after delivery between healthy fetuses and fetuses with hyperechogenic bowel during the second trimester and the relationship between fetal echogenic bowel and microbiota. METHODS Fourteen healthy fetuses (control group), 13 fetuses with echogenic bowel (EB group), and seven fetuses with echogenic bowel and other abnormalities (C-EB group) were selected. The first meconium after delivery was collected for 16S rRNA sequencing. RESULTS A total of 1 222 131 high-quality sequences were generated after sequencing optimization of all samples. Each sample contained an average of 35 945 high-quality sequences and 2036 operational taxonomic units (OTUs). There was no significant difference in the Shannon, Simpson index among the three groups. At the genus level, the abundance of Escherichia coli/Shigella in the EB and C-EB groups was significantly lower than the control group, while the abundance of Staphylococcus, Methylobactrium, and Curvibacter in the EB group was significantly higher than the other groups. There was a difference in abundance of Gammaproteobacteria, Fusobacteria, Enterobacteriaceae, and E. coli in the EB and C-EB groups. CONCLUSIONS The formation of echogenic bowel may be related to the microbiota.
Collapse
Affiliation(s)
- Yanping Zhao
- Department of Medical Imaging, Quanzhou Medical College, Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
14
|
Shi X, Liu Y, Ma T, Jin H, Zhao F, Sun Z. Delivery mode and maternal gestational diabetes are important factors in shaping the neonatal initial gut microbiota. Front Cell Infect Microbiol 2024; 14:1397675. [PMID: 39268487 PMCID: PMC11390658 DOI: 10.3389/fcimb.2024.1397675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background The infant gut microbiome's establishment is pivotal for health and immune development. Understanding it unveils insights into growth, development, and maternal microbial interactions. Research often emphasizes gut bacteria, neglecting the phageome. Methods To investigate the influence of geographic or maternal factors (mode of delivery, mode of breastfeeding, gestational diabetes mellitus) on the gut microbiota and phages of newborns, we collected fecal samples from 34 pairs of mothers and their infants within 24 hours of delivery from three regions (9 pairs from Enshi, 7 pairs from Hohhot, and 18 pairs from Hulunbuir) using sterile containers. Gut microbiota analysis by Shotgun sequencing was subsequently performed. Results Our results showed that geographic location affects maternal gut microbiology (P < 0.05), while the effect on infant gut microbiology was not significant (P = 0.184). Among the maternal factors, mode of delivery had a significant (P < 0.05) effect on the newborn. Specific bacteria (e.g., Bacteroides, Escherichia spp., Phocaeicola vulgatus, Escherichia coli, Staphylococcus hominis, Veillonella spp.), predicted active metabolites, and bacteriophage vOTUs varied with delivery mode. Phocaeicola vulgatus significantly correlated with some metabolites and bacteriophages in the early infant gut (P < 0.05). In the GD group, a strong negative correlation of phage diversity between mother and infants was observed (R = -0.58, P=0.04). Conclusion In conclusion, neonatal early gut microbiome (including bacteria and bacteriophages) colonization is profoundly affected by the mode of delivery, and maternal gestational diabetes mellitus. The key bacteria may interact with bacteriophages to influence the levels of specific metabolites. Our study provides new evidence for the study of the infant microbiome, fills a gap in the analysis of the infant gut microbiota regarding the virome, and emphasizes the importance of maternal health for the infant initial gut virome.
Collapse
Affiliation(s)
- Xuan Shi
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanfang Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
15
|
Austin GI, Korem T. Planning and Analyzing a Low-Biomass Microbiome Study: A Data Analysis Perspective. J Infect Dis 2024:jiae378. [PMID: 39189314 DOI: 10.1093/infdis/jiae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 08/28/2024] Open
Abstract
As investigations of low-biomass microbial communities have become more common, so too has the recognition of major challenges affecting these analyses. These challenges have been shown to compromise biological conclusions and have contributed to several controversies. Here, we review some of the most common and influential challenges in low-biomass microbiome research. We highlight key approaches to alleviate these potential pitfalls, combining experimental planning strategies and data analysis methods.
Collapse
Affiliation(s)
- George I Austin
- Department of Biomedical Informatics
- Program for Mathematical Genomics, Department of Systems Biology
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
16
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
17
|
Broad J, Robertson RC, Evans C, Perussolo J, Lum G, Piper JD, Loucaides E, Ziruma A, Chasekwa B, Ntozini R, Bourke CD, Prendergast AJ. Maternal inflammatory and microbial drivers of low birthweight in low- and middle-income countries. Paediatr Int Child Health 2024; 44:79-93. [PMID: 39066726 DOI: 10.1080/20469047.2024.2380974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Low birthweight (LBW) is when an infant is born too soon or too small, and it affects one in seven infants in low- and middle-income countries. LBW has a significant impact on short-term morbidity and mortality, and it impairs long-term health and human capital. Antenatal microbial and inflammatory exposure may contribute to LBW. METHODS Ovid-Medline, Embase and Cochrane databases were searched for English-language articles evaluating inflammatory, microbial or infective causes of LBW, small-for-gestational age, intra-uterine growth restriction or prematurity. Inclusion criteria were human studies including published data; conference abstracts and grey literature were excluded. A narrative synthesis of the literature was conducted. RESULTS Local infections may drive the underlying causes of LBW: for example, vaginitis and placental infection are associated with a greater risk of prematurity. Distal infection and inflammatory pathways are also associated with LBW, with an association between periodontitis and preterm delivery and environmental enteric dysfunction and reduced intra-uterine growth. Systemic maternal infections such as malaria and HIV are associated with LBW, even when infants are exposed to HIV but not infected. This latter association may be driven by chronic inflammation, co-infections and socio-economic confounders. Antimicrobial prophylaxis against other bacteria in pregnancy has shown minimal impact in most trials, though positive effects on birthweight have been found in some settings with a high infectious disease burden. CONCLUSION Maternal inflammatory and infective processes underlie LBW, and provide treatable pathways for interventions. However, an improved understanding of the mechanisms and pathways underlying LBW is needed, given the impact of LBW on life-course.
Collapse
Affiliation(s)
- Jonathan Broad
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
- Paediatrics Department, Croydon University Hospital, London, UK
| | - Ruairi C Robertson
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Ceri Evans
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
- Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Jeniffer Perussolo
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Gina Lum
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, London, UK
| | - Joe D Piper
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Eva Loucaides
- Paediatrics Department, Croydon University Hospital, London, UK
| | - Asaph Ziruma
- Blizard Institute, Queen Mary University of London, London, UK
| | - Bernard Chasekwa
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Robert Ntozini
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Claire D Bourke
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Andrew J Prendergast
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Zangirolamo AF, Souza AK, Yokomizo DN, Miguel AKA, da Costa MC, Alfieri AA, Seneda MM. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals (Basel) 2024; 14:1971. [PMID: 38998083 PMCID: PMC11240322 DOI: 10.3390/ani14131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
Collapse
Affiliation(s)
- Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Anne Kemmer Souza
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Ana Karolyne Alves Miguel
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | | | - Amauri Alcindo Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
| | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| |
Collapse
|
20
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
22
|
Kozlov M. So you got a null result. Will anyone publish it? Nature 2024; 631:728-730. [PMID: 39048681 DOI: 10.1038/d41586-024-02383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
|
23
|
Leech SM, Borg DJ, Rae KM, Kumar S, Clifton VL, Dekker Nitert M. Delivery mode is a larger determinant of infant gut microbiome composition at 6 weeks than exposure to peripartum antibiotics. Microb Genom 2024; 10:001269. [PMID: 38995243 PMCID: PMC11316550 DOI: 10.1099/mgen.0.001269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Background. Previous research has shown that delivery mode can shape infant gut microbiome composition. However, mothers delivering by caesarean section routinely receive prophylactic antibiotics prior to delivery, resulting in antibiotic exposure to the infant via the placenta. Previously, only a small number of studies have examined the effect of delivery mode versus antibiotic exposure on the infant gut microbiome with mixed findings.Objective. We aimed to determine the effect of delivery mode compared to antibiotic use during labour and delivery on the infant and maternal gut microbiome at 6 weeks post-partum.Methodology. Twenty-five mother-infant dyads were selected from the longitudinal Queensland Family Cohort Study. The selected dyads comprised nine vaginally delivered infants without antibiotics, seven vaginally delivered infants exposed to antibiotics and nine infants born by caesarean section with routine maternal prophylactic antibiotics. Shotgun-metagenomic sequencing of DNA from stool samples collected at 6 weeks post-partum from mother and infant was used to assess microbiome composition.Results. Caesarean section infants exhibited decreases in Bacteroidetes (ANCOM-BC q<0.0001, MaAsLin 2 q=0.041), changes to several functional pathways and altered beta diversity (R 2=0.056, P=0.029), while minimal differences due to antibiotic exposure were detected. For mothers, caesarean delivery (P=0.0007) and antibiotic use (P=0.016) decreased the evenness of the gut microbiome at 6 weeks post-partum without changing beta diversity. Several taxa in the maternal microbiome were altered in association with antibiotic use, with few differentially abundant taxa associated with delivery mode.Conclusion. For infants, delivery mode appears to have a larger effect on gut microbiome composition at 6 weeks post-partum than intrapartum antibiotic exposure. For mothers, both delivery mode and intrapartum antibiotic use have a small effect on gut microbiome composition at 6 weeks post-partum.
Collapse
Affiliation(s)
- Sophie M. Leech
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Danielle J. Borg
- Pregnancy and Development Group, Mater Research Institute, South Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Kym M. Rae
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Indigenous Health Group, Mater Research Institute, South Brisbane, QLD, Australia
| | - Sailesh Kumar
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Mater Mothers’ Hospital, Brisbane, QLD, Australia
| | - Vicki L. Clifton
- Pregnancy and Development Group, Mater Research Institute, South Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
24
|
Fagan BT, Constable GWA, Law R. Maternal transmission as a microbial symbiont sieve, and the absence of lactation in male mammals. Nat Commun 2024; 15:5341. [PMID: 38937464 PMCID: PMC11211401 DOI: 10.1038/s41467-024-49559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Gut microbiomes of mammals carry a complex symbiotic assemblage of microorganisms. Feeding newborn infants milk from the mammary gland allows vertical transmission of the parental milk microbiome to the offspring's gut microbiome. This has benefits, but also has hazards for the host population. Using mathematical models, we demonstrate that biparental vertical transmission enables deleterious microbial elements to invade host populations. In contrast, uniparental vertical transmission acts as a sieve, preventing these invasions. Moreover, we show that deleterious symbionts generate selection on host modifier genes that keep uniparental transmission in place. Since microbial transmission occurs during birth in placental mammals, subsequent transmission of the milk microbiome needs to be maternal to avoid the spread of deleterious elements. This paper therefore argues that viviparity and the hazards from biparental transmission of the milk microbiome, together generate selection against male lactation in placental mammals.
Collapse
Affiliation(s)
- Brennen T Fagan
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK.
- Department of Mathematics, University of York, York, UK.
| | | | - Richard Law
- Department of Mathematics, University of York, York, UK
| |
Collapse
|
25
|
Trøseid M, Nielsen SD, Vujkovic-Cvijin I. Gut microbiome and cardiometabolic comorbidities in people living with HIV. MICROBIOME 2024; 12:106. [PMID: 38877521 PMCID: PMC11177534 DOI: 10.1186/s40168-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Despite modern antiretroviral therapy (ART), people living with HIV (PLWH) have increased relative risk of inflammatory-driven comorbidities, including cardiovascular disease (CVD). The gut microbiome could be one of several driving factors, along with traditional risk factors and HIV-related risk factors such as coinfections, ART toxicity, and past immunodeficiency. RESULTS PLWH have an altered gut microbiome, even after adjustment for known confounding factors including sexual preference. The HIV-related microbiome has been associated with cardiometabolic comorbidities, and shares features with CVD-related microbiota profiles, in particular reduced capacity for short-chain fatty acid (SCFA) generation. Substantial inter-individual variation has so far been an obstacle for applying microbiota profiles for risk stratification. This review covers updated knowledge and recent advances in our understanding of the gut microbiome and comorbidities in PLWH, with specific focus on cardiometabolic comorbidities and inflammation. It covers a comprehensive overview of HIV-related and comorbidity-related dysbiosis, microbial translocation, and microbiota-derived metabolites. It also contains recent data from studies in PLWH on circulating metabolites related to comorbidities and underlying gut microbiota alterations, including circulating levels of the SCFA propionate, the histidine-analogue imidazole propionate, and the protective metabolite indole-3-propionic acid. CONCLUSIONS Despite recent advances, the gut microbiome and related metabolites are not yet established as biomarkers or therapeutic targets. The review gives directions for future research needed to advance the field into clinical practice, including promises and pitfalls for precision medicine. Video Abstract.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen Oe, 2100, Denmark
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Karsh Division of Gastroenterology & Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Surmacz B, Stec D, Prus-Frankowska M, Buczek M, Michalczyk Ł, Łukasik P. Pinpointing the microbiota of tardigrades: What is really there? Environ Microbiol 2024; 26:e16659. [PMID: 38899728 DOI: 10.1111/1462-2920.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Microbiota are considered significant in the biology of tardigrades, yet their diversity and distribution remain largely unexplored. This is partly due to the methodological challenges associated with studying the microbiota of small organisms that inhabit microbe-rich environments. In our study, we characterized the microbiota of 31 species of cultured tardigrades using 16S rRNA amplicon sequencing. We employed various sample preparation strategies and multiple types of controls and estimated the number of microbes in samples using synthetic DNA spike-ins. We also reanalysed data from previous tardigrade microbiome studies. Our findings suggest that the microbial communities of cultured tardigrades are predominantly composed of bacterial genotypes originating from food, medium, or reagents. Despite numerous experiments, we found it challenging to identify strains that were enriched in certain tardigrades, which would have indicated likely symbiotic associations. Putative tardigrade-associated microbes rarely constituted more than 20% of the datasets, although some matched symbionts identified in other studies. We also uncovered serious contamination issues in previous tardigrade microbiome studies, casting doubt on some of their conclusions. We concluded that tardigrades are not universally dependent on specialized microbes. Our work underscores the need for rigorous safeguards in studies of the microbiota of microscopic organisms and serves as a cautionary tale for studies involving samples with low microbiome abundance.
Collapse
Affiliation(s)
- Bartłomiej Surmacz
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Daniel Stec
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Monika Prus-Frankowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Łukasz Michalczyk
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Schlunck G, Maier P, Maier B, Maier W, Strempel S, Reinhard T, Heinzelmann S. Next-Generation Sequencing of the Human Aqueous Humour Microbiome. Int J Mol Sci 2024; 25:6128. [PMID: 38892316 PMCID: PMC11173048 DOI: 10.3390/ijms25116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The microbiome of the ocular surface has been characterised, but only limited information is available on a possible silent intraocular microbial colonisation in normal eyes. Therefore, we performed next-generation sequencing (NGS) of 16S rDNA genes in the aqueous humour. The aqueous humour was sampled from three patients during cataract surgery. Air swabs, conjunctival swabs from patients as well as from healthy donors served as controls. Following DNA extraction, the V3 and V4 hypervariable regions of the 16S rDNA gene were amplified and sequenced followed by denoising. The resulting Amplicon Sequence Variants were matched to a subset of the Ribosomal Database Project 16S database. The deduced bacterial community was then statistically analysed. The DNA content in all samples was low (0-1.49 ng/µL) but sufficient for analysis. The main phyla in the samples were Acinetobacteria (48%), Proteobacteria (26%), Firmicutes (14%), Acidobacteria (8%), and Bacteroidetes (2%). Patients' conjunctival control samples and anterior chamber fluid showed similar patterns of bacterial species containing many waterborne species. Non-disinfected samples showed a different bacterial spectrum than the air swab samples. The data confirm the existence of an ocular surface microbiome. Meanwhile, a distinct intraocular microbiome was not discernible from the background, suggesting the absence of an intraocular microbiome in normal eyes.
Collapse
Affiliation(s)
- Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| | - Philip Maier
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| | - Barbara Maier
- Institute for Infection Prevention and Control, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany;
| | - Wolfgang Maier
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg im Breisgau, Germany;
| | | | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| | - Sonja Heinzelmann
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (G.S.); (P.M.); (T.R.)
| |
Collapse
|
28
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Miyamoto J, Ando Y, Nishida A, Yamano M, Suzuki S, Takada H, Kimura I. Fructooligosaccharides Intake during Pregnancy Improves Metabolic Phenotype of Offspring in High Fat Diet-Induced Obese Mice. Mol Nutr Food Res 2024; 68:e2300758. [PMID: 38639319 DOI: 10.1002/mnfr.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/17/2024] [Indexed: 04/20/2024]
Abstract
SCOPE Obesity and metabolic diseases are closely associated, and individuals who become obese are also prone to type 2 diabetes and cardiovascular disorders. Gut microbiota is mediated by diet and can influence host metabolism and the incidence of metabolic disorders. Recent studies have suggested that improving gut microbiota through a fructooligosaccharide (FOS)-supplemented diet may ameliorate obesity and other metabolic disorders. Although accumulating evidence supports the notion of the developmental origins of health and disease, the underlying mechanisms remain obscure. METHODS AND RESULTS ICR mice are fed AIN-93G formula-based cellulose -, FOS-, acetate-, or propionate-supplemented diets during pregnancy. Offspring are reared by conventional ICR foster mothers for 4 weeks; weaned mice are fed high fat diet for 12 weeks and housed individually. The FOS and propionate offspring contribute to suppressing obesity and improving glucose intolerance. Gut microbial compositions in FOS-fed mothers and their offspring are markedly changed. However, the beneficial effect of FOS diet on the offspring is abolished when antibiotics are administered to pregnant mice. CONCLUSION The findings highlight the link between the maternal gut environment and the developmental origin of metabolic syndrome in offspring. These results open novel research avenues into preemptive therapies for metabolic disorders by targeting the maternal gut microbiota.
Collapse
Affiliation(s)
- Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuna Ando
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akari Nishida
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Shunsuke Suzuki
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hiromi Takada
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
30
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
31
|
Foessleitner P, Pjevac P, Granser S, Wisgrill L, Pummer L, Eckel F, Seki D, Berry D, Hausmann B, Farr A. The maternal microbiome in pregnancy, delivery, and early-stage development of neonatal microbiome after cesarean section: A prospective longitudinal study. Acta Obstet Gynecol Scand 2024; 103:832-841. [PMID: 38268221 PMCID: PMC11019516 DOI: 10.1111/aogs.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Changes within the maternal microbiome during the last trimester of pregnancy and the determinants of the subsequent neonatal microbiome establishment after delivery by elective cesarean section are described. MATERIAL AND METHODS Maternal vaginal and rectal microbiome samples were collected in the last trimester and before cesarean section; intrauterine cavity, placenta, neonatal buccal mucosa, skin, and meconium samples were obtained at birth; neonatal sample collection was repeated 2-3 days postnatally. Microbial community composition was analyzed by 16S rRNA gene amplicon sequencing. Relative abundance measurements of amplicon sequencing variants and sum counts at higher taxonomic levels were compared to test for significant overlap or differences in microbial community compositions. CLINICALTRIALS gov ID: NCT04489056. RESULTS A total of 30 mothers and their neonates were included with available microbiome samples for all maternal, intrauterine cavity and placenta samples, as well as for 18 of 30 neonates. The composition of maternal vaginal and rectal microbiomes during the last trimester of healthy pregnancies did not significantly change (permutational multivariate analysis of variance [PERMANOVA], p > 0.05). No robust microbial signature was detected in the intrauterine cavity, placenta, neonatal buccal mucosa, skin swabs, or meconium samples collected at birth. After birth, the neonatal microbiome was rapidly established, and significantly different microbial communities were detectable 2-3 days postnatally in neonate buccal mucosa and stool samples (PERMANOVA, p < 0.01). CONCLUSIONS Maternal vaginal and rectal microbiomes in healthy pregnancies remain stable during the third trimester. No microbial colonization of the neonate was observed before birth in healthy pregnancies. Neonatal microbiomes in infants delivered by cesarean section displayed a taxonomic composition distinct from maternal vaginal and rectal microbiomes at birth, indicating that postnatal exposure to the extrauterine environment is the driving source of initial neonatal microbiome development in this cohort.
Collapse
Affiliation(s)
- Philipp Foessleitner
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto‐Maternal MedicineMedical University of Vienna, and Comprehensive Center for Pediatrics (CCP), Medical University of ViennaViennaAustria
| | - Petra Pjevac
- Joint Microbiome FacilityMedical University of Vienna and University of ViennaViennaAustria
- University of ViennaCenter for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem ScienceViennaAustria
| | - Sonja Granser
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto‐Maternal MedicineMedical University of Vienna, and Comprehensive Center for Pediatrics (CCP), Medical University of ViennaViennaAustria
| | - Lukas Wisgrill
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care Medicine, and Neuropediatrics, and Comprehensive Center for Pediatrics (CCP)Medical University of ViennaViennaAustria
| | - Lisa Pummer
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Intensive Care Medicine, and Neuropediatrics, and Comprehensive Center for Pediatrics (CCP)Medical University of ViennaViennaAustria
| | - Fanny Eckel
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto‐Maternal MedicineMedical University of Vienna, and Comprehensive Center for Pediatrics (CCP), Medical University of ViennaViennaAustria
| | - David Seki
- University of ViennaCenter for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem ScienceViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - David Berry
- Joint Microbiome FacilityMedical University of Vienna and University of ViennaViennaAustria
- University of ViennaCenter for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem ScienceViennaAustria
| | - Bela Hausmann
- Joint Microbiome FacilityMedical University of Vienna and University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Alex Farr
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto‐Maternal MedicineMedical University of Vienna, and Comprehensive Center for Pediatrics (CCP), Medical University of ViennaViennaAustria
| |
Collapse
|
32
|
Magalhães MI, Azevedo MJ, Castro F, Oliveira MJ, Costa ÂM, Sampaio Maia B. The link between obesity and the gut microbiota and immune system in early-life. Crit Rev Microbiol 2024:1-21. [PMID: 38651972 DOI: 10.1080/1040841x.2024.2342427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
In early-life, the gut microbiota is highly modifiable, being modulated by external factors such as maternal microbiota, mode of delivery, and feeding strategies. The composition of the child's gut microbiota will deeply impact the development and maturation of its immune system, with consequences for future health. As one of the main sources of microorganisms to the child, the mother represents a crucial factor in the establishment of early-life microbiota, impacting the infant's wellbeing. Recent studies have proposed that dysbiotic maternal gut microbiota could be transmitted to the offspring, influencing the development of its immunity, and leading to the development of diseases such as obesity. This paper aims to review recent findings in gut microbiota and immune system interaction in early-life, highlighting the benefits of a balanced gut microbiota in the regulation of the immune system.
Collapse
Affiliation(s)
- Maria Inês Magalhães
- Doctoral Program in Biomedical Sciences, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
| | - Maria João Azevedo
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
- Academic Center for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Flávia Castro
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ângela M Costa
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Benedita Sampaio Maia
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
| |
Collapse
|
33
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
34
|
Tian Z, Zhang X, Yao G, Jin J, Zhang T, Sun C, Wang Z, Zhang Q. Intestinal flora and pregnancy complications: Current insights and future prospects. IMETA 2024; 3:e167. [PMID: 38882493 PMCID: PMC11170975 DOI: 10.1002/imt2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 06/18/2024]
Abstract
Numerous studies have demonstrated the pivotal roles of intestinal microbiota in many physiopathological processes through complex interactions with the host. As a unique period in a woman's lifespan, pregnancy is characterized by changes in hormones, immunity, and metabolism. The gut microbiota also changes during this period and plays a crucial role in maintaining a healthy pregnancy. Consequently, anomalies in the composition and function of the gut microbiota, namely, gut microbiota dysbiosis, can predispose individuals to various pregnancy complications, posing substantial risks to both maternal and neonatal health. However, there are still many controversies in this field, such as "sterile womb" versus "in utero colonization." Therefore, a thorough understanding of the roles and mechanisms of gut microbiota in pregnancy and its complications is essential to safeguard the health of both mother and child. This review provides a comprehensive overview of the changes in gut microbiota during pregnancy, its abnormalities in common pregnancy complications, and potential etiological implications. It also explores the potential of gut microbiota in diagnosing and treating pregnancy complications and examines the possibility of gut-derived bacteria residing in the uterus/placenta. Our aim is to expand knowledge in maternal and infant health from the gut microbiota perspective, aiding in developing new preventive and therapeutic strategies for pregnancy complications based on intestinal microecology.
Collapse
Affiliation(s)
- Zhenyu Tian
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Xinjie Zhang
- Department of Biology University College London London UK
| | - Guixiang Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Jiajia Jin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Tongxue Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Chunhua Sun
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan China
| | - Zhe Wang
- Department of Geriatrics Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology Qilu Hospital of Shandong University Jinan China
- Cardiovascular Disease Research Center of Shandong First Medical University Central Hospital Affiliated to Shandong First Medical University Jinan China
| |
Collapse
|
35
|
Allara M, Girard JR. Towards an integrated understanding of inflammatory pathway influence on hematopoietic stem and progenitor cell differentiation. Bioessays 2024; 46:e2300142. [PMID: 38488673 DOI: 10.1002/bies.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Recent research highlights that inflammatory signaling pathways such as pattern recognition receptor (PRR) signaling and inflammatory cytokine signaling play an important role in both on-demand hematopoiesis as well as steady-state hematopoiesis. Knockout studies have demonstrated the necessity of several distinct pathways in these processes, but often lack information about the contribution of specific cell types to the phenotypes in question. Transplantation studies have increased the resolution to the level of specific cell types by testing the necessity of inflammatory pathways specifically in donor hematopoietic stem and progenitor cells (HSPCs) or in recipient niche cells. Here, we argue that for an integrated understanding of how these processes occur in vivo and to inform the development of therapies that modulate hematopoietic responses, we need studies that knockout inflammatory signaling receptors in a cell-specific manner and compare the phenotypes caused by knockout in individual niche cells versus HSPCs.
Collapse
Affiliation(s)
- Michael Allara
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Pax K, Buduneli N, Alan M, Meric P, Gurlek O, Dabdoub SM, Kumar PS. Placental TLR recognition of salivary and subgingival microbiota is associated with pregnancy complications. MICROBIOME 2024; 12:64. [PMID: 38532461 DOI: 10.1186/s40168-024-01761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/08/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Pre-term birth, the leading cause of neonatal mortality, has been associated with maternal periodontal disease and the presence of oral pathogens in the placenta. However, the mechanisms that underpin this link are not known. This investigation aimed to identify the origins of placental microbiota and to interrogate the association between parturition complications and immune recognition of placental microbial motifs. Video Abstract METHODS: Saliva, plaque, serum, and placenta were collected during 130 full-term (FT), pre-term (PT), or pre-term complicated by pre-eclampsia (PTPE) deliveries and subjected to whole-genome shotgun sequencing. Real-time quantitative PCR was used to measure toll-like receptors (TLR) 1-10 expression in placental samples. Source tracking was employed to trace the origins of the placental microbiota. RESULTS We discovered 10,007 functionally annotated genes representing 420 taxa in the placenta that could not be attributed to contamination. Placental microbial composition was the biggest discriminator of pregnancy complications, outweighing hypertension, BMI, smoking, and maternal age. A machine-learning algorithm trained on this microbial dataset predicted PTPE and PT with error rates of 4.05% and 8.6% (taxonomy) and 6.21% and 7.38% (function). Logistic regression revealed 32% higher odds of parturition complication (95% CI 2.8%, 81%) for every IQR increase in the Shannon diversity index after adjusting for maternal smoking status, maternal age, and gravida. We also discovered distinct expression patterns of TLRs that detect RNA- and DNA-containing antigens in the three groups, with significant upregulation of TLR9, and concomitant downregulation of TLR7 in PTPE and PT groups, and dense correlation networks between microbial genes and these TLRs. 70-82% of placental microbiota were traced to serum and thence to the salivary and subgingival microbiomes. The oral and serum microbiomes of PTPE and PT groups displayed significant enrichment of genes encoding iron transport, exosome, adhesion, quorum sensing, lipopolysaccharide, biofilm, and steroid degradation. CONCLUSIONS Within the limits of cross-sectional analysis, we find evidence to suggest that oral bacteria might translocate to the placenta via serum and trigger immune signaling pathways capable of inducing placental vascular pathology. This might explain, in part, the higher incidence of obstetric syndromes in women with periodontal disease.
Collapse
Affiliation(s)
- Kazune Pax
- Division of Oral Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Nurcan Buduneli
- Faculty of Clinical Sciences, Department of Periodontology, Ege University, İzmir, Turkey
| | - Murat Alan
- Department of Obstetrics and Gynecology, Izmir Tepecik Training and Research Hospital, Tepecik, 35120, Izmir, Türkiye
| | - Pinar Meric
- Faculty of Clinical Sciences, Department of Periodontology, Ege University, İzmir, Turkey
| | - Onder Gurlek
- Faculty of Clinical Sciences, Department of Periodontology, Ege University, İzmir, Turkey
| | - Shareef M Dabdoub
- Department of Periodontics, Division of Biostatistics and Computational Biology, The University of Iowa School of Dentistry, Iowa City, IA, 52242-1010, USA
| | - Purnima S Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Sun D, Bian G, Zhang K, Liu N, Yin Y, Hou Y, Xie F, Zhu W, Mao S, Liu J. Early-life ruminal microbiome-derived indole-3-carboxaldehyde and prostaglandin D2 are effective promoters of rumen development. Genome Biol 2024; 25:64. [PMID: 38438919 PMCID: PMC10910749 DOI: 10.1186/s13059-024-03205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The function of diverse ruminal microbes is tightly linked to rumen development and host physiology. The system of ruminal microbes is an excellent model to clarify the fundamental ecological relationships among complex nutrient-microbiome-host interactions. Here, neonatal lambs are introduced to different dietary regimes to investigate the influences of early-life crosstalk between nutrients and microbiome on rumen development. RESULTS We find starchy corn-soybean starter-fed lambs exhibit the thickest ruminal epithelia and fiber-rich alfalfa hay-fed lambs have the thickest rumen muscle. Metabolome and metagenome data reveal that indole-3-carboxaldehyde (3-IAld) and prostaglandin D2 (PGD2) are the top characteristic ruminal metabolites associated with ruminal epithelial and muscular development, which depend on the enhanced ruminal microbial synthesis potential of 3-IAld and PGD2. Moreover, microbial culture experiment first demonstrates that Bifidobacterium pseudolongum is able to convert tryptophan into 3-IAld and Candida albicans is a key producer for PGD2. Transcriptome sequencing of the ruminal epithelia and smooth muscle shows that ruminal epithelial and muscular development is accompanied by Wnt and Ca2+ signaling pathway activation. Primary cell cultures further confirm that 3-IAld promotes ruminal epithelial cell proliferation depending on AhR-wnt/β-catenin signaling pathway and PGD2 accelerates ruminal smooth muscle cell proliferation via Ca2+ signaling pathway. Furthermore, we find that 3-IAld and PGD2 infusion promote ruminal epithelial and musculature development in lambs. CONCLUSIONS This study demonstrates that early-life ruminal microbiome-derived 3-IAld and PGD2 are effective promoters of rumen development, which enhances our understanding of nutrient-microbiome-host interactions in early life.
Collapse
Affiliation(s)
- Daming Sun
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Gaorui Bian
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, China
| | - Kai Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, China
| | - Yuanlong Hou
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fei Xie
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhua Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Charitos IA, Aliani M, Tondo P, Venneri M, Castellana G, Scioscia G, Castellaneta F, Lacedonia D, Carone M. Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome. Int J Mol Sci 2024; 25:2841. [PMID: 38474087 DOI: 10.3390/ijms25052841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host's metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome's relate endotoxemia.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Maria Aliani
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri IRCCS, Genomics and Proteomics Laboratory, "Istitute" of Bari, 70124 Bari, Italy
| | - Giorgio Castellana
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari (Aldo Moro), 70124 Bari, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Mauro Carone
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| |
Collapse
|
39
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Turroni F, van Sinderen D, Ventura M. The infant gut microbiota as the cornerstone for future gastrointestinal health. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:93-119. [PMID: 38637108 DOI: 10.1016/bs.aambs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
40
|
Mercado-Evans V, Mejia ME, Zulk JJ, Ottinger S, Hameed ZA, Serchejian C, Marunde MG, Robertson CM, Ballard MB, Ruano SH, Korotkova N, Flores AR, Pennington KA, Patras KA. Gestational diabetes augments group B Streptococcus infection by disrupting maternal immunity and the vaginal microbiota. Nat Commun 2024; 15:1035. [PMID: 38310089 PMCID: PMC10838280 DOI: 10.1038/s41467-024-45336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Group B Streptococcus (GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination in utero are poorly defined. Gestational diabetes mellitus (GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. Using a murine GDM model of GBS colonization and perinatal transmission, we find that GDM mice display greater GBS in utero dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing reveals differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (yfhO), and altered host responses. GDM immune disruptions include reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered maternofetal cytokines. Lastly, we observe distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Here, we show a model of GBS dissemination in GDM hosts that recapitulates several clinical aspects and identifies multiple host and bacterial drivers of GBS perinatal disease.
Collapse
Affiliation(s)
- Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zainab A Hameed
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Camille Serchejian
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Madelynn G Marunde
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clare M Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mallory B Ballard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Simone H Ruano
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, UTHealth Houston, Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Kathleen A Pennington
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Caprara GL, von Ameln Lovison O, Martins AF, Bernardi JR, Goldani MZ. Gut microbiota transfer evidence from mother to newborn. Eur J Pediatr 2024; 183:749-757. [PMID: 37987847 DOI: 10.1007/s00431-023-05341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Early life microbiota is a risk factor for future diseases. The main purpose of this study was to investigate the transfer of gut microbiota from mother to newborn. A biological sample was collected from the anal mucosa of the pregnant women before delivery and from the newborns between 24 and 48 h after delivery, as it was not possible to collect a meconium sample at that time. The microbiome of the samples was analyzed by sequencing the hypervariable regions V3-V4 of the 16S gene. To determine the likelihood of microbiota transfer from mother to newborn and examine the relationship with the mode of delivery, we utilized Fisher's exact test and odds ratio. A weighted transfer ratio was employed as a comprehensive measure of transfer. A total of 5767 ASVs were identified in newborn samples (n = 30) and 7253 in maternal samples (n = 30). In the analysis of transfer correlated with the mode of delivery, we observed significant ASVs (p < 0.05). Vaginal delivery showed a positive probability of transfer (OR = 2.184 and WTR = 1.852). We found a negative correlation (OR < 1) between the abundance of maternal ASVs and the likelihood of microbiota transfer to the newborn in both delivery modes. The relationship was inversely proportional for both cesarean section (log10 = - 0.2229) and vaginal delivery (log10 = - 0.1083), with statistical significance observed only for cesarean section (p = 0.0083). Conclusion: In our sample, the maternal gut microbiome was found to be associated with the infant gut microbiome, indicating evidence of ASV-specific transfer from the maternal microbiome to newborns. What is Known: • There is a relationship of early-life microbiota composition with future health outcomes. What is New: • This was the first study to evaluate maternal gut microbiota transfer to newborns in Brazil.
Collapse
Affiliation(s)
- Gabriele Luiza Caprara
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Otávio von Ameln Lovison
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andreza Francisco Martins
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Núcleo de Bioinformática (Bioinformatics Core), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Rombaldi Bernardi
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Zubaran Goldani
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Liu X, Tong X, Zou L, Ju Y, Liu M, Han M, Lu H, Yang H, Wang J, Zong Y, Liu W, Xu X, Jin X, Xiao L, Jia H, Guo R, Zhang T. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun Biol 2024; 7:139. [PMID: 38291185 PMCID: PMC10828421 DOI: 10.1038/s42003-024-05822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
The nasal cavity harbors diverse microbiota that contributes to human health and respiratory diseases. However, whether and to what extent the host genome shapes the nasal microbiome remains largely unknown. Here, by dissecting the human genome and nasal metagenome data from 1401 healthy individuals, we demonstrated that the top three host genetic principal components strongly correlated with the nasal microbiota diversity and composition. The genetic association analyses identified 63 genome-wide significant loci affecting the nasal microbial taxa and functions, of which 2 loci reached study-wide significance (p < 1.7 × 10-10): rs73268759 within CAMK2A associated with genus Actinomyces and family Actinomycetaceae; and rs35211877 near POM121L12 with Gemella asaccharolytica. In addition to respiratory-related diseases, the associated loci are mainly implicated in cardiometabolic or neuropsychiatric diseases. Functional analysis showed the associated genes were most significantly expressed in the nasal airway epithelium tissue and enriched in the calcium signaling and hippo signaling pathway. Further observational correlation and Mendelian randomization analyses consistently suggested the causal effects of Serratia grimesii and Yokenella regensburgei on cardiometabolic biomarkers (cystine, glutamic acid, and creatine). This study suggested that the host genome plays an important role in shaping the nasal microbiome.
Collapse
Affiliation(s)
- Xiaomin Liu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Tong
- BGI Research, Shenzhen, 518083, China
| | | | - Yanmei Ju
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Mo Han
- BGI Research, Shenzhen, 518083, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Jian Wang
- BGI Research, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Yang Zong
- BGI Research, Shenzhen, 518083, China
| | | | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huijue Jia
- Greater Bay Area Institute of Precision Medicine, Guangzhou, Guangdong, China.
- School of Life Sciences, Fudan University, Shanghai, China.
| | | | | |
Collapse
|
43
|
Těšický M, Schmiedová L, Krajzingrová T, Samblas MG, Bauerová P, Kreisinger J, Vinkler M. Nearly (?) sterile avian egg in a passerine bird. FEMS Microbiol Ecol 2024; 100:fiad164. [PMID: 38115624 PMCID: PMC10791042 DOI: 10.1093/femsec/fiad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
During early ontogeny, microbiome affects development of the gastrointestinal tract, immunity, and survival in vertebrates. Bird eggs are thought to be (1) initially sterile (sterile egg hypothesis) and (2) colonized after oviposition through horizontal trans-shell migration, or (3) initially seeded with bacteria by vertical transfer from mother oviduct. To date, however, little empirical data illuminate the contribution of these mechanisms to gut microbiota formation in avian embryos. We investigated microbiome of the egg content (day 0; E0-egg), embryonic gut at day 13 (E13) and female faeces in a free-living passerine, the great tit (Parus major), using a methodologically advanced procedure combining 16S rRNA gene sequencing and microbe-specific qPCR assays. Our metabarcoding revealed that the avian egg is (nearly) sterile, but acquires a slightly richer microbiome during the embryonic development. Of the three potentially pathogenic bacteria targeted by qPCR, only Dietzia was found in E0-egg (yet also in negative controls), E13 gut and female samples, which might indicate possible vertical transfer. Unlike in poultry, we have shown that major bacterial colonization of the gut in passerines does not occur before hatching. We emphasize that protocols that carefully check for environmental contamination are critical in studies with low-bacterial biomass samples.
Collapse
Affiliation(s)
- Martin Těšický
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
- Institute of Vertebrate Biology, v.v.i., The Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
- Institute of Paleonatomy, Domestification Research and History of Veterinary Medicine, Ludwig Maxmilian University of Munich, Kaulbachstr. 37 III, 80539 Munich, Germany
| | - Lucie Schmiedová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
- Institute of Vertebrate Biology, v.v.i., The Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
| | - Tereza Krajzingrová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
| | - Mercedes Gomez Samblas
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
- Faculty of Science, Department of Parasitology, Campus Universitario de Fuentenueva, University of Granada, Profesor Adolfo Rancano, 18071 Granada, Spain
| | - Petra Bauerová
- Division of Air Quality, Czech Hydrometeorological Institute
, Tušimice Observatory, Tušimice 6, 432 01 Kadaň, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
| | - Michal Vinkler
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
| |
Collapse
|
44
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
45
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
46
|
Placental group B Streptococcus is associated with increased risk of adverse foetal outcome. Nat Microbiol 2024; 9:15-16. [PMID: 38052975 DOI: 10.1038/s41564-023-01539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
|
47
|
Joerger AK, Albrecht C, Rothhammer V, Neuhaus K, Wagner A, Meyer B, Wostrack M. The Role of Gut and Oral Microbiota in the Formation and Rupture of Intracranial Aneurysms: A Literature Review. Int J Mol Sci 2023; 25:48. [PMID: 38203219 PMCID: PMC10779325 DOI: 10.3390/ijms25010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, there has been a growing interest in the role of the microbiome in cardiovascular and cerebrovascular diseases. Emerging research highlights the potential role of the microbiome in intracranial aneurysm (IA) formation and rupture, particularly in relation to inflammation. In this review, we aim to explore the existing literature regarding the influence of the gut and oral microbiome on IA formation and rupture. In the first section, we provide background information, elucidating the connection between inflammation and aneurysm formation and presenting potential mechanisms of gut-brain interaction. Additionally, we explain the methods for microbiome analysis. The second section reviews existing studies that investigate the relationship between the gut and oral microbiome and IAs. We conclude with a prospective overview, highlighting the extent to which the microbiome is already therapeutically utilized in other fields. Furthermore, we address the challenges associated with the context of IAs that still need to be overcome.
Collapse
Affiliation(s)
- Ann-Kathrin Joerger
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Carolin Albrecht
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, 91054 Erlangen, Germany;
| | - Klaus Neuhaus
- Core Facility Microbiom, ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany;
| | - Arthur Wagner
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| | - Maria Wostrack
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University, 81675 Munich, Germany; (A.-K.J.); (B.M.)
| |
Collapse
|
48
|
Ruiz-Triviño J, Álvarez D, Cadavid J. ÁP, Alvarez AM. From gut to placenta: understanding how the maternal microbiome models life-long conditions. Front Endocrinol (Lausanne) 2023; 14:1304727. [PMID: 38161976 PMCID: PMC10754986 DOI: 10.3389/fendo.2023.1304727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
The microbiome -defined as the microbiota (bacteria, archaea, lower and higher eukaryotes), their genomes, and the surrounding environmental conditions- has a well-described range of physiological functions. Thus, an imbalance of the microbiota composition -dysbiosis- has been associated with pregnancy complications or adverse fetal outcomes. Although there is controversy about the existence or absence of a microbiome in the placenta and fetus during healthy pregnancy, it is known that gut microbiota can produce bioactive metabolites that can enter the maternal circulation and may be actively or passively transferred through the placenta. Furthermore, the evidence suggests that such metabolites have some effect on the fetus. Since the microbiome can influence the epigenome, and modifications of the epigenome could be responsible for fetal programming, it can be experimentally supported that the maternal microbiome and its metabolites could be involved in fetal programming. The developmental origin of health and disease (DOHaD) approach looks to understand how exposure to environmental factors during periods of high plasticity in the early stages of life (e.g., gestational period) influences the program for disease risk in the progeny. Therefore, according to the DOHaD approach, the influence of maternal microbiota in disease development must be explored. Here, we described some of the diseases of adulthood that could be related to alterations in the maternal microbiota. In summary, this review aims to highlight the influence of maternal microbiota on both fetal development and postnatal life, suggesting that dysbiosis on this microbiota could be related to adulthood morbidity.
Collapse
Affiliation(s)
- Jonathan Ruiz-Triviño
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Daniel Álvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Ángela P. Cadavid J.
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Semillero de Investigación en Alteraciones de la Gestación y Autoinmunidad (SIAGA), Universidad de Antioquia - UdeA, Medellín, Colombia
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| | - Angela M. Alvarez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Antioquia - UdeA, Medellín, Colombia
| |
Collapse
|
49
|
Cheddadi R, Yeramilli V, Martin C. From Mother to Infant, from Placenta to Gut: Understanding Varied Microbiome Profiles in Neonates. Metabolites 2023; 13:1184. [PMID: 38132866 PMCID: PMC10745069 DOI: 10.3390/metabo13121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The field of human microbiome and gut microbial diversity research has witnessed a profound transformation, driven by advances in omics technologies. These advancements have unveiled essential connections between microbiome alterations and severe conditions, prompting the development of new frameworks through epidemiological studies. Traditionally, it was believed that each individual harbored unique microbial communities acquired early in life, evolving over the course of their lifetime, with little acknowledgment of any prenatal microbial development, but recent research challenges this belief. The neonatal microbiome's onset, influenced by factors like delivery mode and maternal health, remains a subject of intense debate, hinting at potential intrauterine microbial processes. In-depth research reveals associations between microbiome profiles and specific health outcomes, ranging from obesity to neurodevelopmental disorders. Understanding these diverse microbiome profiles is essential for unraveling the intricate relationships between the microbiome and health outcomes.
Collapse
Affiliation(s)
- Riadh Cheddadi
- Department of Surgery, Division of Pediatric Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA (C.M.)
| | | | | |
Collapse
|
50
|
Austin GI, Park H, Meydan Y, Seeram D, Sezin T, Lou YC, Firek BA, Morowitz MJ, Banfield JF, Christiano AM, Pe'er I, Uhlemann AC, Shenhav L, Korem T. Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data. Nat Biotechnol 2023; 41:1820-1828. [PMID: 36928429 PMCID: PMC10504420 DOI: 10.1038/s41587-023-01696-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Sequencing-based approaches for the analysis of microbial communities are susceptible to contamination, which could mask biological signals or generate artifactual ones. Methods for in silico decontamination using controls are routinely used, but do not make optimal use of information shared across samples and cannot handle taxa that only partially originate in contamination or leakage of biological material into controls. Here we present Source tracking for Contamination Removal in microBiomes (SCRuB), a probabilistic in silico decontamination method that incorporates shared information across multiple samples and controls to precisely identify and remove contamination. We validate the accuracy of SCRuB in multiple data-driven simulations and experiments, including induced contamination, and demonstrate that it outperforms state-of-the-art methods by an average of 15-20 times. We showcase the robustness of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, most notably the prediction of treatment response in melanoma patients using decontaminated tumor microbiome data.
Collapse
Affiliation(s)
- George I Austin
- Department of Computer Science, Columbia University, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoli Meydan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Tanya Sezin
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Brian A Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Liat Shenhav
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY, USA.
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
- CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Canada.
| |
Collapse
|