1
|
Fan X, He C, Ding J, Gao Q, Ma H, Lemme MC, Zhang W. Graphene MEMS and NEMS. MICROSYSTEMS & NANOENGINEERING 2024; 10:154. [PMID: 39468030 PMCID: PMC11519522 DOI: 10.1038/s41378-024-00791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 10/30/2024]
Abstract
Graphene is being increasingly used as an interesting transducer membrane in micro- and nanoelectromechanical systems (MEMS and NEMS, respectively) due to its atomical thickness, extremely high carrier mobility, high mechanical strength, and piezoresistive electromechanical transductions. NEMS devices based on graphene feature increased sensitivity, reduced size, and new functionalities. In this review, we discuss the merits of graphene as a functional material for MEMS and NEMS, the related properties of graphene, the transduction mechanisms of graphene MEMS and NEMS, typical transfer methods for integrating graphene with MEMS substrates, methods for fabricating suspended graphene, and graphene patterning and electrical contact. Consequently, we provide an overview of devices based on suspended and nonsuspended graphene structures. Finally, we discuss the potential and challenges of applications of graphene in MEMS and NEMS. Owing to its unique features, graphene is a promising material for emerging MEMS, NEMS, and sensor applications.
Collapse
Affiliation(s)
- Xuge Fan
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 100081, Beijing, China.
- Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, 100081, Beijing, China.
| | - Chang He
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 100081, Beijing, China
| | - Jie Ding
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, 100081, Beijing, China.
| | - Qiang Gao
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 100081, Beijing, China
| | - Hongliang Ma
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 100081, Beijing, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, 100081, Beijing, China
| | - Max C Lemme
- Chair of Electronic Devices, Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
- AMO GmbH, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Wendong Zhang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, 030051, China.
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
2
|
Wu X, Yu M, Chen Y, Si Z, Sun P, Gao P. Effectively Sieving Alkali Metal Ions Using Functionalized Graphene Oxide Membranes by Exploiting Water-Repellent Interactions. NANO LETTERS 2024. [PMID: 39356045 DOI: 10.1021/acs.nanolett.4c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Sieving membranes capable of discerning different alkali metal ions are important for many technologies, such as energy, environment, and life science. Recently, two-dimensional (2D) materials have been extensively explored for the creation of sieving membranes with angstrom-scale channels. However, because of the same charge and similar hydrated sizes, mostly laminated membranes typically show low selectivity (<10). Herein, we report a facile and scalable method for functionalizing graphene oxide (GO) laminates by dually grafting cations and water-repellent dimethylsiloxane (DMDMS) molecules to achieve high selectivities of ∼50 and ∼20 toward the transport of Cs+/Li+ and K+/Li+ ion pairs, surpassing many of the state-of-the-art laminated membranes. The enhanced selectivity for alkali metal ions can be credited to a dual impact: (i) strong hydrophobic interactions between the incident cations' hydration shells and the water-repellent DMDMS; (ii) the efficient screening of electrostatic interactions that hamper selectivity.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Miao Yu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yajie Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhixiao Si
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Pengzhan Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Yashima Y, Yamazaki T, Kimura Y. Micrometer-Scale Graphene-Based Liquid Cells of Highly Concentrated Salt Solutions for In Situ Liquid-Cell Transmission Electron Microscopy. ACS OMEGA 2024; 9:39914-39924. [PMID: 39346859 PMCID: PMC11425617 DOI: 10.1021/acsomega.4c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
In situ liquid-cell transmission microscopy has attracted much attention as a method for the direct observations of the dynamics of soft matter. A graphene liquid cell (GLC) has previously been investigated as an alternative to a conventional SiN x liquid cell. Although GLCs are capable of scavenging radicals and providing high spatial resolutions, their production is fundamentally stochastic, and a significant compositional change in liquids encapsulated in GLCs has recently been pointed out. We found that graphene-based liquid cells were formed in nano- to micrometer sizes with high reproducibility when the concentration of the encapsulated aqueous salt solution was high. In contrast, when we revisited conventional fabrication methods, water-encapsulated GLC was formed with low yield, and any electron diffraction spots from ice were not confirmed by a cooling experiment. The reason for this was the presence of intrinsic defects in the graphene, the presence of which we confirmed by the etch-pit method. The shrinkage of a water-encapsulated cell and a decrease in the bubble area in an aqueous (NH4)2SO4 solution cell suggested that volatile water molecules and gas molecules can leak from the cells during the fabrication and observation processes. Further revision of the conditions for the formation of liquid cells and a reduction in the number of intrinsic graphene defects are expected to lead to the provision of graphene-based liquid cells capable of encapsulating dilute aqueous solutions or pure water.
Collapse
Affiliation(s)
- Yuga Yashima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
5
|
Lukas S, Esteki A, Rademacher N, Jangra V, Gross M, Wang Z, Ngo HD, Bäuscher M, Mackowiak P, Höppner K, Wehenkel DJ, van Rijn R, Lemme MC. High-Yield Large-Scale Suspended Graphene Membranes over Closed Cavities for Sensor Applications. ACS NANO 2024; 18:25614-25624. [PMID: 39244663 PMCID: PMC11411726 DOI: 10.1021/acsnano.4c06827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Suspended membranes of monatomic graphene exhibit great potential for applications in electronic and nanoelectromechanical devices. In this work, a "hot and dry" transfer process is demonstrated to address the fabrication and patterning challenges of large-area graphene membranes on top of closed, sealed cavities. Here, "hot" refers to the use of high temperature during transfer, promoting the adhesion. Additionally, "dry" refers to the absence of liquids when graphene and target substrate are brought into contact. The method leads to higher yields of intact suspended monolayer chemical vapor deposition (CVD) graphene and artificially stacked double-layer CVD graphene membranes than previously reported. The yield evaluation is performed using neural-network-based object detection in scanning electron microscopy (SEM) images, ascertaining high yields of intact membranes with large statistical accuracy. The suspended membranes are examined by Raman tomography and atomic force microscopy (AFM). The method is verified by applying the suspended graphene devices as piezoresistive pressure sensors. Our technology advances the application of suspended graphene membranes and can be extended to other two-dimensional materials.
Collapse
Affiliation(s)
- Sebastian Lukas
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Ardeshir Esteki
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Nico Rademacher
- AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Vikas Jangra
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Michael Gross
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Zhenxing Wang
- AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Ha-Duong Ngo
- University of Applied Sciences Berlin, Wilhelminenhofstr. 75A (C 525), 12459 Berlin, Germany
| | - Manuel Bäuscher
- Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Piotr Mackowiak
- Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Katrin Höppner
- Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Richard van Rijn
- Applied Nanolayers B.V., Feldmannweg 17, 2628 CT Delft, The Netherlands
| | - Max C Lemme
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
- AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| |
Collapse
|
6
|
Yu X, Peng Z, Xu L, Shi W, Li Z, Meng X, He X, Wang Z, Duan S, Tong L, Huang X, Miao X, Hu W, Ye L. Manipulating 2D Materials through Strain Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402561. [PMID: 38818684 DOI: 10.1002/smll.202402561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
This review explores the growing interest in 2D layered materials, such as graphene, h-BN, transition metal dichalcogenides (TMDs), and black phosphorus (BP), with a specific focus on recent advances in strain engineering. Both experimental and theoretical results are delved into, highlighting the potential of strain to modulate physical properties, thereby enhancing device performance. Various strain engineering methods are summarized, and the impact of strain on the electrical, optical, magnetic, thermal, and valleytronic properties of 2D materials is thoroughly examined. Finally, the review concludes by addressing potential applications and challenges in utilizing strain engineering for functional devices, offering valuable insights for further research and applications in optoelectronics, thermionics, and spintronics.
Collapse
Affiliation(s)
- Xiangxiang Yu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- School of Physic and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Zhuiri Peng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Langlang Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenhao Shi
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaohan Meng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiao He
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Shikun Duan
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Tong
- Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xinyu Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| |
Collapse
|
7
|
Wu Y, Wu Y, Sun Y, Zhao W, Wang L. 2D Nanomaterials Reinforced Organic Coatings for Marine Corrosion Protection: State of the Art, Challenges, and Future Prospectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312460. [PMID: 38500264 DOI: 10.1002/adma.202312460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Indexed: 03/20/2024]
Abstract
2D nanomaterials, with extraordinary physical and chemical characteristics, have long been regarded as promising nanofillers in organic coatings for marine corrosion protection. The past decade has witnessed the high-speed progress of 2D nanomaterial-reinforced organic composite coatings, and plenty of breakthroughs have been achieved as yet. This review covers an in-depth and all-around outline of the up-to-date advances in 2D nanomaterial-modified organic coatings employed for the marine corrosion protection realm. Starting from a brief introduction to 2D nanomaterials, the preparation strategies and properties are illustrated. Subsequently, diverse protection models based on composite coatings for marine corrosion protection are also introduced, including physical barrier, self-healing, as well as cathodic protection, respectively. Furthermore, computational simulations and critical factors on the corrosion protection properties of composite coatings are clarified in detail. Finally, the remaining challenges and prospects for marine corrosion protection based on 2D nanomaterials reinforced organic coatings are highlighted.
Collapse
Affiliation(s)
- Yangmin Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yinghao Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yingxiang Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenjie Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
8
|
Tsugawa T, Hatakeyama K, Koinuma M, Moriyama N, Ida S. Anomalous Proton Blocking Property of Pore-Free Graphene Oxide Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400707. [PMID: 39183516 DOI: 10.1002/smll.202400707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Graphene oxide (GO) has been attracting intensive attention as a flexible barrier film, however, provides no barrier for proton transfer due to its out-of-plane proton conductivity (10-6 S cm-1) based on nanoscale defects with oxygen functional groups. In this study, it is reported that a pore-free GO (Pf-GO) membrane with controlled oxygen functional groups exhibits unexpected proton blocking behavior (10-11 S cm-1). Proton permeation tests conducted in aqueous solution demonstrate that proton permeation is below the detection limit, and lithium metal foils coated with the Pf-GO show higher chemical stability to water than those coated with previously reported GO. The Pf-GO has periodic honeycomb atomic structure, which is found to impart the Pf-GO membrane with novel performance characteristics distinct from those of conventional GO.
Collapse
Affiliation(s)
- Tatsuki Tsugawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kazuto Hatakeyama
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Michio Koinuma
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Norihiro Moriyama
- Chemsical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
| | - Shintaro Ida
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Center for Energy Systems Design (CESD), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
9
|
Gao X, Yang H, Qiu J, Liu L, Peng J. Ultrathin Carbon Shell Protecting Copper Sites to Boost Anodic Hydrogen Production via Low-Potential Formaldehyde Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43582-43590. [PMID: 39116300 DOI: 10.1021/acsami.4c08722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The oxidation of aldehydes on a copper-based electrocatalyst within a small potential window can produce hydrogen at the anode, thus offering a bipolar hydrogen production system. However, the inherent activity and stability of Cu-based electrocatalysts for aldehyde oxidation are still not satisfactory in practical application. Herein, by coating an ultrathin carbon shell on the copper sphere, an effective and stable formaldehyde oxidation reaction (FOR) can be realized to produce H2 at a very low potential. FOR needs only a potential of 0.13 V (vs RHE) to reach a current density of 100 mA cm-2. By coupling FOR with hydrogen evolution reaction (HER), hydrogen is generated simultaneously at both the cathode and the anode. The Faraday efficiency of H2 at the bipolar state is close to 100%. In a flow cell, it needs a low cell voltage of 0.1 V to reach a current density of 100 mA cm-2. Moreover, it can be operated steadily for more than 30 h at high current density. The carbon shell acts as an armor to protect the Cu(0) sites, avoid the oxidation of copper, and keep the catalyst activity for a long time in the electrolytic process. Experimental and theoretical calculation results indicate that electron transfer occurs at the interface between the copper core and ultrathin carbon shell. The ultrathin carbon-coated Cu reduces the reaction energy barrier, making the C-H bond more easily fractured and facilitating H coupling to generate H2. This study provides a basic principle for the design of copper-based electrocatalysts with long durability and activity.
Collapse
Affiliation(s)
- Xiafei Gao
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Heng Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Jianghui Qiu
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Limin Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Jian 343009, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Juan Peng
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
10
|
Wan Z, Li C, Wu Z, Liu Y, Liu R, Zhou W, Wang Q. Enhanced Pressure Response of Edge-Deposited Graphene Nanomechanical Resonators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38792-38798. [PMID: 38980283 DOI: 10.1021/acsami.4c08045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Nanomechanical resonators made of suspended graphene exhibit high sensitivity to pressure changes. Nevertheless, the graphene resonator pressure performance is affected owing to the gas permeation problem between the graphene film and the substrate. Therefore, we prepared edge-deposited graphene resonators by focused ion beam (FIB) deposition of SiO2, and their gas leakage velocities and pressure-sensing ability were demonstrated. In this paper, we characterize the pressure-sensing response and gas leakage velocities of graphene membranes using an all-optical actuation system. The gas leakage velocities of graphene resonators with diameters of 10, 20, and 40 μm are reduced by 5.0 × 106, 2.0 × 107, and 8.1 × 107 atoms/s, respectively, which demonstrates that the edge deposition structure can reduce the gas leakage of the resonator. Furthermore, the pressure-sensing performance of three graphene resonators with different diameters was evaluated, and their average pressure sensitivities were calculated to be 3.4, 2.4, and 1.9 kHz/kPa, with the largest full-range hysteresis errors of 0.6, 0.7, and 1.0%, respectively. The temperature stabilities of the three sizes of resonators in the temperature range of 300-400 K are 0.016, 0.015, and 0.016%/K, and the maximum resonance frequency drift over 1 h is 0.0058, 0.0048, and 0.0112%, respectively. This work has great significance for the improvement of gas leakage velocity characterization of graphene membrane and graphene resonant pressure sensor performance optimization.
Collapse
Affiliation(s)
- Zhen Wan
- School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Cheng Li
- School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
- Research Institute of Beihang University in Shenzhen, Shenzhen 518055, China
| | - Zhengwei Wu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujian Liu
- School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Ronghui Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Wei Zhou
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Qingyan Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
11
|
Guo L, Wu N, Zhang S, Zeng H, Yang J, Han X, Duan H, Liu Y, Wang L. Emerging Advances around Nanofluidic Transport and Mass Separation under Confinement in Atomically Thin Nanoporous Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404087. [PMID: 39031097 DOI: 10.1002/smll.202404087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Membrane separation stands as an environmentally friendly, high permeance and selectivity, low energy demand process that deserves scientific investigation and industrialization. To address intensive demand, seeking appropriate membrane materials to surpass trade-off between permeability and selectivity and improve stability is on the schedule. 2D materials offer transformational opportunities and a revolutionary platform for researching membrane separation process. Especially, the atomically thin graphene with controllable porosity and structure, as well as unique properties, is widely considered as a candidate for membrane materials aiming to provide extreme stability, exponentially large selectivity combined with high permeability. Currently, it has shown promising opportunities to develop separation membranes to tackle bottlenecks of traditional membranes, and it has been of great interest for tremendously versatile applications such as separation, energy harvesting, and sensing. In this review, starting from transport mechanisms of separation, the material selection bank is narrowed down to nanoporous graphene. The study presents an enlightening overview of very recent developments in the preparation of atomically thin nanoporous graphene and correlates surface properties of such 2D nanoporous materials to their performance in critical separation applications. Finally, challenges related to modulation and manufacturing as well as potential avenues for performance improvements are also pointed out.
Collapse
Affiliation(s)
- Liping Guo
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Ningran Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Shengping Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Haiou Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Jing Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Xiao Han
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Hongwei Duan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
| | - Yuancheng Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
| | - Luda Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies and Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing, 100871, China
- Beijing Graphene Institute, Beijing, 100095, China
| |
Collapse
|
12
|
Yu C, Cao J, Zhu S, Dai Z. Preparation and Modeling of Graphene Bubbles to Obtain Strain-Induced Pseudomagnetic Fields. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2889. [PMID: 38930258 PMCID: PMC11204662 DOI: 10.3390/ma17122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
It has been both theoretically predicted and experimentally demonstrated that strain can effectively modulate the electronic states of graphene sheets through the creation of a pseudomagnetic field (PMF). Pressurizing graphene sheets into bubble-like structures has been considered a viable approach for the strain engineering of PMFs. However, the bubbling technique currently faces limitations such as long manufacturing time, low durability, and challenges in precise control over the size and shape of the pressurized bubble. Here, we propose a rapid bubbling method based on an oxygen plasma chemical reaction to achieve rapid induction of out-of-plane deflections and in-plane strains in graphene sheets. We introduce a numerical scheme capable of accurately resolving the strain field and resulting PMFs within the pressurized graphene bubbles, even in cases where the bubble shape deviates from perfect spherical symmetry. The results provide not only insights into the strain engineering of PMFs in graphene but also a platform that may facilitate the exploration of the strain-mediated electronic behaviors of a variety of other 2D materials.
Collapse
Affiliation(s)
- Chuanli Yu
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| | - Jiacong Cao
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| | - Shuze Zhu
- Center for X-Mechanics, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou 310000, China;
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| |
Collapse
|
13
|
Tong J, Fu Y, Domaretskiy D, Della Pia F, Dagar P, Powell L, Bahamon D, Huang S, Xin B, Costa Filho RN, Vega LF, Grigorieva IV, Peeters FM, Michaelides A, Lozada-Hidalgo M. Control of proton transport and hydrogenation in double-gated graphene. Nature 2024; 630:619-624. [PMID: 38898294 PMCID: PMC11186788 DOI: 10.1038/s41586-024-07435-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
The basal plane of graphene can function as a selective barrier that is permeable to protons1,2 but impermeable to all ions3,4 and gases5,6, stimulating its use in applications such as membranes1,2,7,8, catalysis9,10 and isotope separation11,12. Protons can chemically adsorb on graphene and hydrogenate it13,14, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices13-17. However, both processes face energy barriers1,12,18 and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies4,7,8, incorporating catalytic metals1,19 or chemically functionalizing the lattice18,20. But these techniques can compromise other properties, such as ion selectivity21,22 or mechanical stability23. Here we show that independent control of the electric field, E, at around 1 V nm-1, and charge-carrier density, n, at around 1 × 1014 cm-2, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on-off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of E and n, which is a new technique for the study of 2D electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- J Tong
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
| | - Y Fu
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - D Domaretskiy
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - F Della Pia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - P Dagar
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - L Powell
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - D Bahamon
- Research and Innovation Center on CO2 and Hydrogen (RICH Center) and Chemical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center for Graphene and 2D materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates
| | - S Huang
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - B Xin
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - R N Costa Filho
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | - L F Vega
- Research and Innovation Center on CO2 and Hydrogen (RICH Center) and Chemical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center for Graphene and 2D materials (RIC2D), Khalifa University, Abu Dhabi, United Arab Emirates
| | - I V Grigorieva
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - F M Peeters
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
- Departement Fysica, Universiteit Antwerpen, Antwerp, Belgium
| | - A Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Liu S, Cao R, Hu J, Tian H, Ma Y, Xue H, Li Z, Yao Z, Li R, Liao P, Wang Y, Yang Zhang L, Yin G, Sasaki U, Guo J, Wang L, Zhang X, Zhou W, Chen J, Fu W, Liu L. Degree of disorder-regulated ion transport through amorphous monolayer carbon. RSC Adv 2024; 14:17032-17040. [PMID: 38808236 PMCID: PMC11130763 DOI: 10.1039/d4ra01523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Nanopore technology, re-fueled by two-dimensional (2D) materials such as graphene and MoS2, controls mass transport by allowing certain species while denying others at the nanoscale and has a wide application range in DNA sequencing, nano-power generation, and others. With their low transmembrane transport resistance and high permeability stemming from their ultrathin nature, crystalline 2D materials do not possess nanoscale holes naturally, thus requiring additional fabrication to create nanopores. Herein, we demonstrate that nanopores exist in amorphous monolayer carbon (AMC) grown at low temperatures. The size and density of nanopores can be tuned by the growth temperature, which was experimentally verified by atomic images and further corroborated by kinetic Monte Carlo simulation. Furthermore, AMC films with varied degrees of disorder (DOD) exhibit tunable transmembrane ionic conductance over two orders of magnitude when serving as nanopore membranes. This work demonstrates the DOD-tuned property in amorphous monolayer carbon and provides a new candidate for modern membrane science and technology.
Collapse
Affiliation(s)
- Shizhuo Liu
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Ran Cao
- School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
| | - Jiani Hu
- School of Physics, Peking University Beijing 100871 China
| | - Huifeng Tian
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yinhang Ma
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences Beijing 100190 China
| | - Honglei Xue
- School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
| | - Zhenjiang Li
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Zhixin Yao
- School of Materials Science and Engineering, Peking University Beijing 100871 China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology Taiyuan 030024 China
| | - Ruijie Li
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Peichi Liao
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yihan Wang
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Lina Yang Zhang
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Ge Yin
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - U Sasaki
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology Taiyuan 030024 China
| | - Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences Beijing 100190 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Xiaoyan Zhang
- School of Pharmaceutical Sciences, Capita Medical University Beijing 100069 China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences Beijing 100190 China
| | - Ji Chen
- School of Physics, Peking University Beijing 100871 China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University Beijing 100871 China
| | - Wangyang Fu
- School of Materials Science and Engineering, Tsinghua University Beijing 100084 China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University Beijing 100871 China
| | - Lei Liu
- School of Materials Science and Engineering, Peking University Beijing 100871 China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University Beijing 100871 China
| |
Collapse
|
15
|
Xie G, Liu X, Guo B, Tan T, Gong JR. Porous 2D Catalyst Covers Improve Photoelectrochemical Water-Oxidation Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211008. [PMID: 37120723 DOI: 10.1002/adma.202211008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Indexed: 06/19/2023]
Abstract
Confined catalysis under the cover of 2D materials has emerged as a promising approach for achieving highly effective catalysts in various essential reactions. In this work, a porous cover structure is designed to boost the interfacial charge and mass transfer kinetics of 2D-covered catalysts. The improvement in catalytic performance is confirmed by the photoelectrochemical oxidation evolution reaction (OER) on a photoanode based on an n-Si substrate modified with a NiOx thin-film model electrocatalyst covered with a porous graphene (pGr) monolayer. Experimental results demonstrate that the pGr cover enhances the OER kinetics by balancing the charge and mass transfer at the photoanode and electrolyte interface compared to the intrinsic graphene cover and cover-free control samples. Theoretical investigations further corroborate that the pore edges of the pGr cover boost the intrinsic catalytic activity of active sites on NiOx by reducing the reaction overpotential. Furthermore, the optimized pores, which can be easily controlled by plasma bombardment, allow oxygen molecules produced in the OER to pass through without peeling off the pGr cover, thus ensuring the structural stability of the catalyst. This study highlights the significant role of the porous cover structure in 2D-covered catalysts and provides new insight into the design of high-performance catalysts.
Collapse
Affiliation(s)
- Guancai Xie
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Beidou Guo
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of CAS, Beijing, 100049, China
| | - Jian Ru Gong
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of CAS, Beijing, 100049, China
| |
Collapse
|
16
|
Zhu Y, Shi Z, Zhao Y, Bu S, Hu Z, Liao J, Lu Q, Zhou C, Guo B, Shang M, Li F, Xu Z, Zhang J, Xie Q, Li C, Sun P, Mao B, Zhang X, Liu Z, Lin L. Recent trends in the transfer of graphene films. NANOSCALE 2024; 16:7862-7873. [PMID: 38568087 DOI: 10.1039/d3nr05626k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Recent years have witnessed advances in chemical vapor deposition growth of graphene films on metal foils with fine scalability and thickness controllability. However, challenges for obtaining wrinkle-free, defect-free and large-area uniformity remain to be tackled. In addition, the real commercial applications of graphene films still require industrially compatible transfer techniques with reliable performance of transferred graphene, excellent production capacity, and suitable cost. Transferred graphene films, particularly with a large area, still suffer from the presence of transfer-related cracks, wrinkles and contaminants, which would strongly deteriorate the quality and uniformity of transferred graphene films. Potential applications of graphene films include moisture barrier films, transparent conductive films, electromagnetic shielding films, and optical communications; such applications call different requirements for the performance of transferred graphene, which, in turn, determine the suitable transfer techniques. Besides the reliable transfer process, automatic machines should be well developed for the future batch transfer of graphene films, ensuring the repeatability and scalability. This mini-review provides a summary of recent advances in the transfer of graphene films and offers a perspective for future directions of transfer techniques that are compatible for industrial batch transfer.
Collapse
Affiliation(s)
- Yaqi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Zhuofeng Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Yixuan Zhao
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Saiyu Bu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
| | - Zhaoning Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Junhao Liao
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qi Lu
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P. R. China
| | - Chaofan Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Bingbing Guo
- Beijing Graphene Institute, Beijing 100095, P. R. China.
| | - Mingpeng Shang
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Fangfang Li
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Zhiying Xu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Jialin Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Qin Xie
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Chunhu Li
- Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China
| | - Pengzhan Sun
- Institute of Applied Physics and Materials, Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, U.K
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266000, China.
| | - Zhongfan Liu
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Center for Nanochemistry, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
- Beijing Graphene Institute, Beijing 100095, P. R. China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Hermadianti SA, Handayani M, Anggoro MA, Ristiana DD, Anshori I, Esmawan A, Rahmayanti YD, Suhandi A, Timuda GE, Sunnardianto GK, Widagdo BW, Ermawati FU. Flower like-novel nanocomposite of Mg(Ti 0.99Sn 0.01)O 3decorated on reduced graphene oxide (rGO) with high capacitive behavior as supercapacitor electrodes. NANOTECHNOLOGY 2024; 35:255702. [PMID: 38295407 DOI: 10.1088/1361-6528/ad2480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
In this study, ceramic materials of Mg(Ti0.99Sn0.01)O3were synthesized and decorated on reduced graphene oxide, forming a nanocomposite of rGO/Mg(Ti0.99Sn0.01)O3(rGO/MTS001). The successful synthesis results were confirmed by XRD, UV-vis analysis, FT-IR, and SEM-EDS. The MTS001 has a flower-like morphology from scanning electron microscopy (SEM) analysis, and the nanocomposites of rGO/MTS001 showed MTS001 particles decorated on the rGO's surface. The electrochemical performance of rGO/MTS001 and MTS001 was investigated by determining the specific capacitance obtained in 1 M H2SO4solution by cyclic voltammetry, followed by galvanostatic charge-discharge analysis using a three-electrode setup. The rGO/MTS001 achieved a specific capacitance of 361.97 F g‒1, compared to MTS001 (194.90 F g‒1). The capacitance retention of rGO/MTS001 nanocomposite also depicted excellent cyclic stability of 95.72% after 5000 cycles at a current density of 0.1 A g‒1. The result showed that the nanocomposite of ceramics with graphene materials has a potential for high-performance supercapacitor electrodes.
Collapse
Affiliation(s)
- Syadza Aisyah Hermadianti
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Department of Chemical Engineering, Pamulang University (UNPAM), Pamulang, Tangerang Selatan, Banten 15417, Indonesia
| | - Muhammad Aulia Anggoro
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Desinta Dwi Ristiana
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Agung Esmawan
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yosephin Dewiani Rahmayanti
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Andi Suhandi
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Gerald Ensang Timuda
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Gagus Ketut Sunnardianto
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Research Collaboration Center for Quantum Technology 2.0, Bandung 40132, Indonesia
| | - Bambang Wisnu Widagdo
- Department of Informatic Engineering, Pamulang University, Tangerang Selatan, 15310, Indonesia
| | - Frida Ulfah Ermawati
- Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, 60213, Indonesia
| |
Collapse
|
18
|
Wu N, Liu Y, Zhang S, Hou D, Yang R, Qi Y, Wang L. Modulation of transport at the interface in the microporous layer for high power density proton exchange membrane fuel cells. J Colloid Interface Sci 2024; 657:428-437. [PMID: 38056047 DOI: 10.1016/j.jcis.2023.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
The proton exchange membrane (PEM) fuel cell is a device that demonstrates a significant potential for environmental sustainability, since it efficiently converts chemical energy into electrical energy. The microporous layer (MPL) in PEM fuel cells promotes gas transport and eliminates water. Nevertheless, the power density of PEM fuel cells is restricted by ohmic losses and mass transport losses in conventional MPLs. In this study, we enhanced the power density of proton exchange membrane (PEM) fuel cells through the identification of appropriate materials and the mitigation of mass transport losses occurring at the interface between the microporous layer and the catalyst layer. The incorporation of high electron conductivity, slip behavior at the interface between graphene and water, and rapid water evaporation facilitated by nanoporous graphene effectively address transport-related challenges. We evaluated two types of graphene as potential substitutes for carbon black in the microporous layer (MPL). The enhanced power density (up to 1.1 W cm-2) under all humidity conditions and reduced mass transport resistance (a 75 % reduction compared to carbon black MPL) make them promising candidates for next-generation PEM fuel cells. Furthermore, these findings provide guidance for controlling interfacial mass transport in colloidal systems.
Collapse
Affiliation(s)
- Ningran Wu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Ye Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Shengping Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Dandan Hou
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Yue Qi
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China
| | - Luda Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing 100095, China.
| |
Collapse
|
19
|
Liu Y, Xiong W, Bera A, Ji Y, Yu M, Chen S, Lin L, Yuan S, Sun P. Catalytic selectivity of nanorippled graphene. NANOSCALE HORIZONS 2024; 9:449-455. [PMID: 38198181 DOI: 10.1039/d3nh00462g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Experiments have shown that nanoscale ripples in a graphene membrane exhibit unexpectedly high catalytic activity with respect to hydrogen dissociation. Nonetheless, the catalytic selectivity of nanorippled graphene remains unknown, which is an equally important property for assessing a catalyst's potential and its fit-for-purpose applications. Herein, we examine the catalytic selectivity of nanorippled graphene using a model reaction of molecular hydrogen with another simple but double-bonded molecule, oxygen, and comparing the measurement results with those from splitting of hydrogen molecules. We show that although nanorippled graphene exhibits a high catalytic activity toward hydrogen dissociation, the activity for catalyzing the hydrogen-oxygen reaction is quite low, translating into a strong catalytic selectivity. The latter reaction involves the reduction of oxygen molecules by the dissociated hydrogen adatoms, which requires additional energy cost and practically determines the selectivity. In this sense, the well-established information about reactions in general of atomic hydrogen with many other species in the literature could potentially predict the selectivity of nanorippled graphene as a catalyst. Our work provides implications for the catalytic properties of nanorippled graphene, especially its selectivity. The results would be important for its extension to a wider range of reactions and for designer technologies involving hydrogen.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.
| | - Wenqi Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Achintya Bera
- National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Yu Ji
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.
| | - Miao Yu
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Pengzhan Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China.
| |
Collapse
|
20
|
Goethem CV, Shen Y, Chi HY, Mensi M, Zhao K, Nijmeijer A, Just PE, Agrawal KV. Advancing Molecular Sieving via Å-Scale Pore Tuning in Bottom-Up Graphene Synthesis. ACS NANO 2024. [PMID: 38324377 PMCID: PMC10883125 DOI: 10.1021/acsnano.3c11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
Collapse
Affiliation(s)
- Cédric Van Goethem
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Yueqing Shen
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Mounir Mensi
- X-ray Diffraction and Surface Analytics Platform (XRD-SAP), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Kangning Zhao
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Arian Nijmeijer
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
- Inorganic Membranes, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Paul-Emmanuel Just
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
| | - Kumar Varoon Agrawal
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| |
Collapse
|
21
|
Xu J, Gao X, Zheng L, Jia X, Xu K, Ma Y, Wei X, Liu N, Peng H, Wang HW. Graphene sandwich-based biological specimen preparation for cryo-EM analysis. Proc Natl Acad Sci U S A 2024; 121:e2309384121. [PMID: 38252835 PMCID: PMC10835136 DOI: 10.1073/pnas.2309384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.
Collapse
Affiliation(s)
- Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yuwei Ma
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Beijing Graphene Institute, Beijing100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| |
Collapse
|
22
|
Tian H, Yao Z, Li Z, Guo J, Liu L. Unlocking More Potentials in Two-Dimensional Space: Disorder Engineering in Two-Dimensional Amorphous Carbon. ACS NANO 2023; 17:24468-24478. [PMID: 38015075 DOI: 10.1021/acsnano.3c09593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The theory of the nature of glass has been described as the deepest but unsolved problem in solid state theory. The fundamental understanding of the structural characteristics of glassy materials and disorder-property correspondence remains incomplete due to difficulties in fully characterizing disordered structures in three-dimensional materials. Recently, two-dimensional amorphous materials were treated as an atomic-level playground to uncover previously unknown structure-property relationships in vitreous materials. Here, we summarize recent research on one prototypical material, two-dimensional amorphous carbon, including atomic structural characterizations, controllable synthesis, exotic properties, and application potentials. Fundamental discrepancies only induced by the amorphous nature, when compared with crystalline materials, will be highlighted. Finally, we discuss the restricted definition of two-dimensional amorphous carbon, existing challenges, and future research directions.
Collapse
Affiliation(s)
- Huifeng Tian
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhixin Yao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Zhenjiang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
23
|
Wu ZF, Sun PZ, Wahab OJ, Tan YT, Barry D, Periyanagounder D, Pillai PB, Dai Q, Xiong WQ, Vega LF, Lulla K, Yuan SJ, Nair RR, Daviddi E, Unwin PR, Geim AK, Lozada-Hidalgo M. Proton and molecular permeation through the basal plane of monolayer graphene oxide. Nat Commun 2023; 14:7756. [PMID: 38012200 PMCID: PMC10682477 DOI: 10.1038/s41467-023-43637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Two-dimensional (2D) materials offer a prospect of membranes that combine negligible gas permeability with high proton conductivity and could outperform the existing proton exchange membranes used in various applications including fuel cells. Graphene oxide (GO), a well-known 2D material, facilitates rapid proton transport along its basal plane but proton conductivity across it remains unknown. It is also often presumed that individual GO monolayers contain a large density of nanoscale pinholes that lead to considerable gas leakage across the GO basal plane. Here we show that relatively large, micrometer-scale areas of monolayer GO are impermeable to gases, including helium, while exhibiting proton conductivity through the basal plane which is nearly two orders of magnitude higher than that of graphene. These findings provide insights into the key properties of GO and demonstrate that chemical functionalization of 2D crystals can be utilized to enhance their proton transparency without compromising gas impermeability.
Collapse
Affiliation(s)
- Z F Wu
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - P Z Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China.
| | - O J Wahab
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Y T Tan
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - D Barry
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - D Periyanagounder
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - P B Pillai
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Q Dai
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - W Q Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - L F Vega
- Research and Innovation Center on CO2 and Hydrogen (RICH Center) and Chemical Engineering Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - K Lulla
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - S J Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - R R Nair
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - E Daviddi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - P R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - A K Geim
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
24
|
Choi J, Jeong J, Zhu X, Kim J, Kang BK, Wang Q, Park BI, Lee S, Kim J, Kim H, Yoo J, Yi GC, Lee DS, Kim J, Hong S, Kim MJ, Hong YJ. Exceptional Thermochemical Stability of Graphene on N-Polar GaN for Remote Epitaxy. ACS NANO 2023; 17:21678-21689. [PMID: 37843425 DOI: 10.1021/acsnano.3c06828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In this study, we investigate the thermochemical stability of graphene on the GaN substrate for metal-organic chemical vapor deposition (MOCVD)-based remote epitaxy. Despite excellent physical properties of GaN, making it a compelling choice for high-performance electronic and light-emitting device applications, the challenge of thermochemical decomposition of graphene on a GaN substrate at high temperatures has obstructed the achievement of remote homoepitaxy via MOCVD. Our research uncovers an unexpected stability of graphene on N-polar GaN, thereby enabling the MOCVD-based remote homoepitaxy of N-polar GaN. Our comparative analysis of N- and Ga-polar GaN substrates reveals markedly different outcomes: while a graphene/N-polar GaN substrate produces releasable microcrystals (μCs), a graphene/Ga-polar GaN substrate yields nonreleasable thin films. We attribute this discrepancy to the polarity-dependent thermochemical stability of graphene on the GaN substrate and its subsequent reaction with hydrogen. Evidence obtained from Raman spectroscopy, electron microscopic analyses, and overlayer delamination points to a pronounced thermochemical stability of graphene on N-polar GaN during MOCVD-based remote homoepitaxy. Molecular dynamics simulations, corroborated by experimental data, further substantiate that the thermochemical stability of graphene is reliant on the polarity of GaN, due to different reactions with hydrogen at high temperatures. Based on the N-polar remote homoepitaxy of μCs, the practical application of our findings was demonstrated in fabrication of flexible light-emitting diodes composed of p-n junction μCs with InGaN heterostructures.
Collapse
Affiliation(s)
- Joonghoon Choi
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
- GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Junseok Jeong
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
- GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Zhu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Junghwan Kim
- GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
- Graphene Research Institute, Department of Physics, Sejong University, Seoul 05006, Republic of Korea
| | - Bong Kyun Kang
- Department of Display Materials Engineering, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Qingxiao Wang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Bo-In Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seokje Lee
- Science Research Center (SRC) for Novel Epitaxial Quantum Architectures, Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jekyung Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunseok Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Gyu-Chul Yi
- Science Research Center (SRC) for Novel Epitaxial Quantum Architectures, Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Seon Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jeehwan Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Suklyun Hong
- GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
- Graphene Research Institute, Department of Physics, Sejong University, Seoul 05006, Republic of Korea
| | - Moon J Kim
- GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Young Joon Hong
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
- GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
25
|
Ding C, Su J. Ionic transport through a bilayer nanoporous graphene with cationic and anionic functionalization. J Chem Phys 2023; 159:174502. [PMID: 37909454 DOI: 10.1063/5.0170313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the ionic transport through multilayer nanoporous graphene (NPG) holds great promise for the design of novel nanofluidic devices. Bilayer NPG with different structures, such as nanopore offset and interlayer space, should be the most simple but representative multilayer NPG. In this work, we use molecular dynamics simulations to systematically investigate the ionic transport through a functionalized bilayer NPG, focusing on the effect of pore functionalization, offset, applied pressure and interlayer distance. For a small interlayer space, the fluxes of water and ions exhibit a sudden reduction to zero with the increase in offset that indicates an excellent on-off gate, which can be deciphered by the increasing potential of mean force barriers. With the increase in pressure, the fluxes increase almost linearly for small offsets while always maintain zero for large offsets. Finally, with the increase in interlayer distance, the fluxes increase drastically, resulting in the reduction in ion rejection. Notably, for a specific interlayer distance with monolayer water structure, the ion rejection maintains high levels (almost 100% for coions) with considerable water flux, which could be the best choice for desalination purpose. The dynamics of water and ions also exhibit an obvious bifurcation for cationic and anionic functionalization. Our work comprehensively addresses the ionic transport through a bilayer NPG and provides a route toward the design of novel desalination devices.
Collapse
Affiliation(s)
- Chuxuan Ding
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
26
|
Rørbech Ambjørner H, Bjørnlund AS, Bonczyk TG, Dollekamp E, Kaas LM, Colding-Fagerholt S, Mølhave KS, Damsgaard CD, Helveg S, Vesborg PCK. Thermal dynamics of few-layer-graphene seals. NANOSCALE 2023; 15:16896-16903. [PMID: 37850513 DOI: 10.1039/d3nr03459c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO2 cavities versus time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology.
Collapse
Affiliation(s)
- Hjalte Rørbech Ambjørner
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Anton Simon Bjørnlund
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Tobias Georg Bonczyk
- Surface Physics and Catalysis (SURFCAT), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Edwin Dollekamp
- Surface Physics and Catalysis (SURFCAT), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Lau Morten Kaas
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Sofie Colding-Fagerholt
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Kristian Speranza Mølhave
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Danvad Damsgaard
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Surface Physics and Catalysis (SURFCAT), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stig Helveg
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Peter Christian Kjærgaard Vesborg
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Surface Physics and Catalysis (SURFCAT), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Huang S, Griffin E, Cai J, Xin B, Tong J, Fu Y, Kravets V, Peeters FM, Lozada-Hidalgo M. Gate-controlled suppression of light-driven proton transport through graphene electrodes. Nat Commun 2023; 14:6932. [PMID: 37907470 PMCID: PMC10618495 DOI: 10.1038/s41467-023-42617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infra-red spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene's electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light.
Collapse
Affiliation(s)
- S Huang
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - E Griffin
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
| | - J Cai
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- College of Advanced Interdisciplinary Studies, National University of Defence Technology, Changsha, Hunan, 410073, China
| | - B Xin
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - J Tong
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Y Fu
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - V Kravets
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - F M Peeters
- Departamento de Fisica, Universidade Federal do Ceara, 60455-900, Fortaleza, Ceara, Brazil
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
- Research and Innovation Center for graphene and 2D materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
28
|
Liu Y, Li C, Li B, Lu S, Fan S, Dong S, Wan Z, Shen M. Ultrasensitive Acoustic Detection Using an Enlarged Fabry-Perot Cavity with a Graphene Diaphragm. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37883526 DOI: 10.1021/acsami.3c11220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
For exerting high sensitivity of ultrathin graphene to detection deformation, an enlarged backing air cavity (EBC) structure is developed to further enhance the mechanical sensitivity (SM) of a graphene-based Fabry-Perot (F-P) acoustic sensor. COMSOL acoustic field simulation on the air cavity size-dependent SM confirms the optimal length and radius of the EBC of 0.2 and 1.5 mm, respectively, with the maximum simulation SM of 26.16 nm/Pa@1 kHz. Acoustic experiments further demonstrate that the frequency response of the fabricated graphene-based F-P acoustic sensor after the use of the EBC is enhanced by 5.73-79.33 times in the range of 0.5-18 kHz, compared with the conventional one without the EBC. Especially the maximum SM is up to 187.32 nm/Pa@16 kHz, which is at least 17% higher than the SM values ranging from 1.1 to 160 nm/Pa in previously reported F-P acoustic sensors using various diaphragm materials. More acoustic characteristics are examined to highlight various merits of the EBC structure, including a signal-to-noise ratio (SNR) of 60-75 dB@0.5-18 kHz, a time stability of less than ±1.3% for 90 min, a detection resolution of 0.01 Hz, and a high-fidelity speech detection with a cross-correlation coefficient of greater than 0.9, thereby revealing its high-performance weak acoustic sensing and speech recognition applications.
Collapse
Affiliation(s)
- Yang Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Cheng Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Shenzhen Institute of Beihang University, Shenzhen 518063, China
| | - Buxuan Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shanshan Lu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Shangchun Fan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Shuxuan Dong
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Zhen Wan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Mengxian Shen
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
29
|
Liang J, Ma K, Zhao X, Lu G, Riffle J, Andrei CM, Dong C, Furkan T, Rajabpour S, Prabhakar RR, Robinson JA, Magdaleno V, Trinh QT, Ager JW, Salmeron M, Aloni S, Caldwell JD, Hollen S, Bechtel HA, Bassim ND, Sherburne MP, Al Balushi ZY. Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene-Substrate Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47649-47660. [PMID: 37782678 PMCID: PMC10571006 DOI: 10.1021/acsami.3c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.
Collapse
Affiliation(s)
- Jiayun Liang
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Ma
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Xiao Zhao
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Guanyu Lu
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jake Riffle
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Carmen M. Andrei
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Chengye Dong
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Turker Furkan
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Siavash Rajabpour
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rajiv Ramanujam Prabhakar
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joshua A. Robinson
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vasquez Magdaleno
- Department
of Mining, Metallurgy, and Materials Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Quang Thang Trinh
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, Brisbane, 4111 Australia
| | - Joel W. Ager
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Miquel Salmeron
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Shaul Aloni
- The Molecular Foundry, Lawrence
Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Joshua D. Caldwell
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shawna Hollen
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Hans A. Bechtel
- Advanced
Light Source, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Nabil D. Bassim
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
- Department of
Materials Science and Engineering, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Matthew P. Sherburne
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Zakaria Y. Al Balushi
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Xu J, Liu W, Tang W, Liu G, Zhu Y, Yuan G, Wang L, Xi X, Gao L. Trapping Hydrogen Molecules between Perfect Graphene. NANO LETTERS 2023; 23:8203-8210. [PMID: 37584336 DOI: 10.1021/acs.nanolett.3c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
There is a lack of deep understanding of hydrogen intercalation into graphite due to many challenges faced during characterization of the systems. Therefore, a suitable route to trap isolated hydrogen molecules (H2) between the perfect graphite lattices needs to be found. Here we realize the formation of hydrogen bubbles in graphite with controllable density, size, and layer number. We find that the molecular H2 cannot be diffused between nor escape from the defect-free graphene lattices, and it remains stable in the pressurized bubbles up to 400 °C. The internal pressure of H2 inside the bubbles is strongly temperature dependent, and it decreases as the temperature rises. The proton permeation rate can be estimated at a specific plasma power. The producing method of H2 bubbles offers a useful way for storing hydrogen in layered materials, and these materials provide a prospective research platform for studying nontrivial quantum effects in confined H2.
Collapse
Affiliation(s)
- Jie Xu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Weilin Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenna Tang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Gan Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yujian Zhu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Guowen Yuan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lei Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoxiang Xi
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Libo Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
31
|
Wahab OJ, Daviddi E, Xin B, Sun PZ, Griffin E, Colburn AW, Barry D, Yagmurcukardes M, Peeters FM, Geim AK, Lozada-Hidalgo M, Unwin PR. Proton transport through nanoscale corrugations in two-dimensional crystals. Nature 2023; 620:782-786. [PMID: 37612394 PMCID: PMC10447238 DOI: 10.1038/s41586-023-06247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/23/2023] [Indexed: 08/25/2023]
Abstract
Defect-free graphene is impermeable to all atoms1-5 and ions6,7 under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom2,5. Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium6,7. By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms8,9. There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability10-14 or even on whether it requires defects in graphene's crystal lattice6,8,15-17. Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials.
Collapse
Affiliation(s)
- O J Wahab
- Department of Chemistry, University of Warwick, Coventry, UK
| | - E Daviddi
- Department of Chemistry, University of Warwick, Coventry, UK
| | - B Xin
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - P Z Sun
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - E Griffin
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - A W Colburn
- Department of Chemistry, University of Warwick, Coventry, UK
| | - D Barry
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - M Yagmurcukardes
- Department of Photonics, Izmir Institute of Technology, Urla, Turkey
| | - F M Peeters
- Departement Fysica, Universiteit Antwerpen, Antwerp, Belgium
- Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, Brazil
| | - A K Geim
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
| | - M Lozada-Hidalgo
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
| | - P R Unwin
- Department of Chemistry, University of Warwick, Coventry, UK.
| |
Collapse
|
32
|
Bjørnlund AS, Ambjørner HR, Bonczyk TG, Dollekamp E, Kaas LM, Colding-Fagerholt S, Mølhave KS, Damsgaard CD, Helveg S, Vesborg PCK. Graphene Seals for in situ TEM in Catalysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1610. [PMID: 37613786 DOI: 10.1093/micmic/ozad067.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Anton S Bjørnlund
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Hjalte R Ambjørner
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Tobias G Bonczyk
- Surface Physics and Catalysis (SURFCAT), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Edwin Dollekamp
- Surface Physics and Catalysis (SURFCAT), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Lau M Kaas
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Sofie Colding-Fagerholt
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Kristian S Mølhave
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby, Denmark
| | - Christian D Damsgaard
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby, Denmark
| | - Stig Helveg
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Peter C K Vesborg
- Center for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, Lyngby, Denmark
- Surface Physics and Catalysis (SURFCAT), Department of Physics, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
33
|
Arguello Cruz E, Ducos P, Gao Z, Johnson ATC, Niebieskikwiat D. Exchange Coupling Effects on the Magnetotransport Properties of Ni-Nanoparticle-Decorated Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1861. [PMID: 37368291 DOI: 10.3390/nano13121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
We characterize the effect of ferromagnetic nickel nanoparticles (size ∼6 nm) on the magnetotransport properties of chemical-vapor-deposited (CVD) graphene. The nanoparticles were formed by thermal annealing of a thin Ni film evaporated on top of a graphene ribbon. The magnetoresistance was measured while sweeping the magnetic field at different temperatures, and compared against measurements performed on pristine graphene. Our results show that, in the presence of Ni nanoparticles, the usually observed zero-field peak of resistivity produced by weak localization is widely suppressed (by a factor of ∼3), most likely due to the reduction of the dephasing time as a consequence of the increase in magnetic scattering. On the other hand, the high-field magnetoresistance is amplified by the contribution of a large effective interaction field. The results are discussed in terms of a local exchange coupling, J∼6 meV, between the graphene π electrons and the 3d magnetic moment of nickel. Interestingly, this magnetic coupling does not affect the intrinsic transport parameters of graphene, such as the mobility and transport scattering rate, which remain the same with and without Ni nanoparticles, indicating that the changes in the magnetotransport properties have a purely magnetic origin.
Collapse
Affiliation(s)
- Erick Arguello Cruz
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Pedro Ducos
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dario Niebieskikwiat
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
34
|
Liu Y, Li C, Shi X, Wu Z, Fan S, Wan Z, Han S. High-Sensitivity Graphene MOEMS Resonant Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307273 DOI: 10.1021/acsami.3c04520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomechanical resonators made from suspended graphene exhibit high sensitivity toward pressure variations. Nevertheless, these devices exhibit significant energy loss in nonvacuum environments due to air damping, as well as inevitably weak gas leakage within the reference cavity because of the slight permeation of graphene. We present a new type of graphene resonant pressure sensor utilizing micro-opto-electro-mechanical systems technology, which features a multilayer graphene membrane that is sealed in vacuum and adhered to pressure-sensitive silicon film with grooves. This approach innovatively employs an indirectly sensitive method, exhibiting 60 times smaller energy loss in atmosphere, and solving the long-standing issue of gas permeation between the substrate and graphene. Notably, the proposed sensor exhibits a high pressure sensitivity of 1.7 Hz/Pa, which is 5 times higher than the sensitivity of the silicon counterparts. Also, the all-optical encapsulating cavity structure contributes a high signal-to-noise ratio of 6.9 × 10-5 Pa-1 and a low temperature drift (0.014%/◦C). The proposed method offers a promising solution for long-term stability and energy loss suppression of pressure sensors using two-dimensional materials as the sensitive membrane.
Collapse
Affiliation(s)
- Yujian Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Cheng Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Shenzhen Institute of Beihang University, Shenzhen 518063, China
| | - Xiaodong Shi
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A★STAR), 138634 Singapore
| | - Zhengwei Wu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Shangchun Fan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Zhen Wan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Song Han
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
35
|
Ferrari MC. Recent developments in 2D materials for gas separation membranes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
36
|
Wang G. Graphene nanoripples enable unexpected catalytic reactivity. Proc Natl Acad Sci U S A 2023; 120:e2303353120. [PMID: 37094169 PMCID: PMC10160948 DOI: 10.1073/pnas.2303353120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW2007, Australia
| |
Collapse
|
37
|
Jang DJ, Haidari MM, Kim JH, Ko JY, Yi Y, Choi JS. A Modified Wet Transfer Method for Eliminating Interfacial Impurities in Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091494. [PMID: 37177039 PMCID: PMC10179892 DOI: 10.3390/nano13091494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Graphene has immense potential as a material for electronic devices owing to its unique electrical properties. However, large-area graphene produced by chemical vapor deposition (CVD) must be transferred from the as-grown copper substrate to an arbitrary substrate for device fabrication. The conventional wet transfer technique, which uses FeCl3 as a Cu etchant, leaves microscale impurities from the substrate, and the etchant adheres to graphene, thereby degrading its electrical performance. To address this limitation, this study introduces a modified transfer process that utilizes a temporary UV-treated SiO2 substrate to adsorb impurities from graphene before transferring it onto the final substrate. Optical microscopy and Raman mapping confirmed the adhesion of impurities to the temporary substrate, leading to a clean graphene/substrate interface. The retransferred graphene shows a reduction in electron-hole asymmetry and sheet resistance compared to conventionally transferred graphene, as confirmed by the transmission line model (TLM) and Hall effect measurements (HEMs). These results indicate that only the substrate effects remain in action in the retransferred graphene, and most of the effects of the impurities are eliminated. Overall, the modified transfer process is a promising method for obtaining high-quality graphene suitable for industrial-scale utilization in electronic devices.
Collapse
Affiliation(s)
- Dong Jin Jang
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Jin Hong Kim
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin-Yong Ko
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoonsik Yi
- Superintelligent Creative Research Laboratory, Electronics and Telecommunication Research Institute (ETRI), Daejeon 34129, Republic of Korea
| | - Jin Sik Choi
- Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
38
|
Calis M, Lloyd D, Boddeti N, Bunch JS. Adhesion of 2D MoS 2 to Graphite and Metal Substrates Measured by a Blister Test. NANO LETTERS 2023; 23:2607-2614. [PMID: 37011413 DOI: 10.1021/acs.nanolett.2c04886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Using a blister test, we measured the work of separation between MoS2 membranes from metal, semiconductor, and graphite substrates. We found a work of separation ranging from 0.11 ± 0.05 J/m2 for chromium to 0.39 ± 0.1 J/m2 for graphite substrates. In addition, we measured the work of adhesion of MoS2 membranes over these substrates and observed a dramatic difference between the work of separation and adhesion, which we attribute to adhesion hysteresis. Due to the prominent role that adhesive forces play in the fabrication and functionality of devices made from 2D materials, an experimental determination of the work of separation and adhesion as provided here will help guide their development.
Collapse
Affiliation(s)
- Metehan Calis
- Boston University, Department of Mechanical Engineering, Boston, Massachusetts 02215, United States
| | - David Lloyd
- Analog Garage, Analog Devices Inc., Boston, Massachusetts 02110, United States
| | - Narasimha Boddeti
- Washington State University, School of Mechanical and Materials Engineering, Pullman, Washington 99163, United States
| | - J Scott Bunch
- Boston University, Department of Mechanical Engineering, Boston, Massachusetts 02215, United States
- Boston University, Division of Materials Science and Engineering, Brookline, Massachusetts 02446, United States
| |
Collapse
|
39
|
Nuriakhmetov Z, Chernousov Y, Sakhapov S, Smovzh D. Graphene passivation effect on copper cavity resonator preserves Q-factor. NANOTECHNOLOGY 2023; 34:205704. [PMID: 36780663 DOI: 10.1088/1361-6528/acbb7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Proposed resonator design and measurement technique is a promising solution to estimate the value of materials surface conductivity. In the developed device, there are no mechanical connections, that interrupt the flowing microwave currents, which eliminates losses due to poor metal contact and related measurement errors. The main losses (60%) in the resonator are concentrated in a small sample under study - resonance element sample, which ensures high sensitivity to changes in surface conductivity. The influence of annealing the copper cavity resonator surface conducting microwave currents, as well as the effect of graphene coating on its intrinsic quality factor and frequency, was experimentally studied. Technological procedures for modifying a copper surface such as annealing in an H2/Ar atmosphere at a temperature of 1070 °C and subsequent coating with graphene by chemical vapor deposition method are studied. The modification of copper resonator surface texture during heat treatment in hydrogen and argon atmospheres has been studied. It is shown that during annealing, the resonator quality factor increases. The increase of the quality factor was associated with a decrease of resistance of copper, with the growth of crystalline grains, this effect disappears when the resonator is exposed to an air atmosphere. It was found that the graphene coating does not make a significant contribution to the change in the quality factor, but prevents the active growth of the oxide layer and prevents impurities deposition on the copper surface from the atmosphere. Thus, after annealing in hydrogen atmosphere and subsequent coating with graphene, the increased quality factor is retained. The considered procedures can be used to increase and stabilize the resonators quality factor, to eliminate oxidation and contamination of their surface. The results of this work can be used in the designing of microwave devices to study the thin films surface impedance.
Collapse
Affiliation(s)
- Zaur Nuriakhmetov
- Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Yuri Chernousov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| | - Salavat Sakhapov
- Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia
| | - Dmitry Smovzh
- Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
40
|
Comprehensive characterization of gas diffusion through graphene oxide membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
41
|
Ling F, Liao R, Yuan C, Shi X, Li L, Zhou X, Tang X, Jing C, Wang Y, Jiang S. Geometric, electronic and transport properties of bulged graphene: A theoretical study. J Chem Phys 2023; 158:084702. [PMID: 36859079 DOI: 10.1063/5.0134654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Out-of-plane deformation in graphene is unavoidable during both synthesis and transfer procedures due to its special flexibility, which distorts the lattice and eventually imposes crucial effects on the physical features of graphene. Nowadays, however, little is known about this phenomenon, especially for zero-dimensional bulges formed in graphene. In this work, employing first-principles-based theoretical calculations, we systematically studied the bulge effect on the geometric, electronic, and transport properties of graphene. We demonstrate that the bulge formation can introduce mechanical strains (lower than 2%) to the graphene's lattice, which leads to a significant charge redistribution throughout the structure. More interestingly, a visible energy band splitting was observed with the occurrence of zero-dimensional bulges in graphene, which can be attributed to the interlayer coupling that stems from the bulged structure. In addition, it finds that the formed bulges in graphene increase the electron states near the Fermi level, which may account for the enhanced carrier concentration. However, the lowered carrier mobility and growing phonon scattering caused by the formed bulges diminish the transport of both electrons and heat in graphene. Finally, we indicate that bulges arising in graphene increase the possibility of intrinsic defect formation. Our work will evoke attention to the out-of-plane deformation in 2D materials and provide new light to tune their physical properties in the future.
Collapse
Affiliation(s)
- Faling Ling
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Rui Liao
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Chao Yuan
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xiaowen Shi
- Hongzhiwei Technology (Shanghai) CO. LTD., 1599 Xinjinqiao Road, Pudong, Shanghai, China
| | - Li Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xiao Tang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Chuan Jing
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Yongjie Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Sha Jiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| |
Collapse
|
42
|
Guo L, Liu F, Koyama K, Regis N, Alexander AM, Wang G, DeFazio J, Valdez JA, Poudel A, Yamamoto M, Moody NA, Takashima Y, Yamaguchi H. Rugged bialkali photocathodes encapsulated with graphene and thin metal film. Sci Rep 2023; 13:2412. [PMID: 36765084 PMCID: PMC9918551 DOI: 10.1038/s41598-023-29374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Protection of free-electron sources has been technically challenging due to lack of materials that transmit electrons while preventing corrosive gas molecules. Two-dimensional materials uniquely possess both of required properties. Here, we report three orders of magnitude increase in active pressure and factor of two enhancement in the lifetime of high quantum efficiency (QE) bialkali photocathodes (cesium potassium antimonide (CsK2Sb)) by encapsulating them in graphene and thin nickel (Ni) film. The photoelectrons were extracted through the graphene protection layer in a reflection mode, and we achieved QE of ~ 0.17% at ~ 3.4 eV, 1/e lifetime of 188 h with average current of 8.6 nA under continuous illumination, and no decrease of QE at the pressure of as high as ~ 1 × 10-3 Pa. In comparison, the QE decreased drastically at 10-6 Pa for bare, non-protected CsK2Sb photocathodes and their 1/e lifetime under continuous illumination was ~ 48 h. We attributed the improvements to the gas impermeability and photoelectron transparency of graphene.
Collapse
Affiliation(s)
- Lei Guo
- Nagoya University Synchrotron Radiation Research Center (NUSR), Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan.
- School of Engineering/Graduate School of Engineering, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| | - Fangze Liu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Kazuki Koyama
- School of Engineering/Graduate School of Engineering, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Nolan Regis
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Anna M Alexander
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Gaoxue Wang
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Jeffrey DeFazio
- Photonis Defense Inc., 1000 New Holland Ave., Lancaster, PA, 17601, USA
| | - James A Valdez
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Anju Poudel
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Masahiro Yamamoto
- Innovation Center for Applied Superconducting Accelerators, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Nathan A Moody
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Yoshifumi Takashima
- Nagoya University Synchrotron Radiation Research Center (NUSR), Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
- School of Engineering/Graduate School of Engineering, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Hisato Yamaguchi
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, NM, 87545, USA.
| |
Collapse
|
43
|
Wy Y, Park J, Huh S, Kwon H, Goo BS, Jung JY, Han SW. Monitoring hydrogen transport through graphene by in situ surface-enhanced Raman spectroscopy. NANOSCALE 2023; 15:1537-1541. [PMID: 36625199 DOI: 10.1039/d2nr06010h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the atomic or molecular transport properties of two-dimensional materials is vital to understand their inherent functions and, thus, to expedite their use in various applications. Herein, a surface-enhanced Raman spectroscopy (SERS)-based in situ analytical tool for the sensitive and rapid monitoring of hydrogen transport through graphene is reported. In this method, a reducing agent, which can provide hydrogen species, and a Raman dye self-assembled on a SERS platform are separated by a graphene membrane, and the reduction of the Raman dye by hydrogen species transferred through graphene is monitored with SERS. For validating the efficacy of our method, the catalytic reduction of surface-bound 4-nitrothiophenol by sodium borohydride was chosen in this study. The experimental results distinctly demonstrate that the high sensitivity and rapid detection ability of SERS can allow the effective analysis of the hydrogen transport properties of graphene.
Collapse
Affiliation(s)
- Younghyun Wy
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Jaesung Park
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Sung Huh
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Hyuksang Kwon
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Bon Seung Goo
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Jung Young Jung
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
44
|
Fei Y, Tong T, Bao J, Hu YH. In Situ Observation of Electron-Beam-Induced NaH Decomposition in Graphene Nanoreactors by Transmission Electron Microscopy. J Phys Chem Lett 2023; 14:1-8. [PMID: 36562535 DOI: 10.1021/acs.jpclett.2c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sodium hydride (NaH) was unprecedently embedded inside graphene nanobubbles via the discovered reaction between NaH and CO. With the graphene nanobubble as a nanoreactor for NaH, we directly observed the electron-beam-induced decomposition process of graphene-covered NaH by in situ high-resolution transmission electron microscopy with energy dispersive spectrometry and electron energy loss spectroscopy, revealing its decomposition mechanism. This can provide guidance for the design of hydrogen storage materials.
Collapse
Affiliation(s)
- Yuhuan Fei
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan49931, United States
| | - Tian Tong
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas77204, United States
| | - Jiming Bao
- Department of Electrical and Computer Engineering and Texas Center for Superconductivity (TcSUH), University of Houston, Houston, Texas77204, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan49931, United States
| |
Collapse
|
45
|
Carpenter J, Kim H, Suarez J, van der Zande A, Miljkovic N. The Surface Energy of Hydrogenated and Fluorinated Graphene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2429-2436. [PMID: 36563177 DOI: 10.1021/acsami.2c18329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The surface energy of graphene and its chemical derivatives governs fundamental interfacial interactions like molecular assembly, wetting, and doping. However, quantifying the surface energy of supported two-dimensional (2D) materials, such as graphene, is difficult because (1) they are so thin that electrostatic interactions emanating from the underlying substrate are not completely screened, (2) the contribution from the monolayer is sensitive to its exact chemical state, and (3) the adsorption of airborne contaminants, as well as contaminants introduced during transfer processing, screens the electrostatic interactions from the monolayer and underlying substrate, changing the determined surface energy. Here, we determine the polar and dispersive surface energy of bare, fluorinated, and hydrogenated graphene through contact angle measurements with water and diiodomethane. We accounted for many contributing factors, including substrate surface energies and combating adsorption of airborne contaminants. Hydrogenating graphene raises its polar surface energy with little effect on its dispersive surface energy. Fluorinating graphene lowers its dispersive surface energy with a substrate-dependent effect on its polar surface energy. These results unravel how changing the chemical structure of graphene modifies its surface energy, with applications for hybrid nanomaterials, bioadhesion, biosensing, and thin-film assembly.
Collapse
Affiliation(s)
- James Carpenter
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jules Suarez
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Arend van der Zande
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
46
|
Cai J, Griffin E, Guarochico-Moreira V, Barry D, Xin B, Huang S, Geim AK, Peeters FM, Lozada-Hidalgo M. Photoaccelerated Water Dissociation Across One-Atom-Thick Electrodes. NANO LETTERS 2022; 22:9566-9570. [PMID: 36449567 PMCID: PMC9756329 DOI: 10.1021/acs.nanolett.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.
Collapse
Affiliation(s)
- Junhao Cai
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, U.K.
- College
of Advanced Interdisciplinary Studies, National
University of Defense Technology, Changsha, Hunan 410073, China
| | - Eoin Griffin
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Victor Guarochico-Moreira
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, U.K.
- Escuela
Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Donnchadh Barry
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
| | - Benhao Xin
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Shiqi Huang
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Andre K. Geim
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Francois. M. Peeters
- Departement
Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Marcelo Lozada-Hidalgo
- National
Graphene Institute, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Physics and Astronomy, The University
of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
47
|
Guo K, Chang L, Li N, Bao L, Shubeita SDM, Baidak A, Yu Z, Lu X. Two Birds with One Stone: Concurrent Ligand Removal and Carbon Encapsulation Decipher Thickness-Dependent Catalytic Activity. NANO LETTERS 2022; 22:8763-8770. [PMID: 36154126 PMCID: PMC9650766 DOI: 10.1021/acs.nanolett.2c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
A carbon shell encapsulating a transition metal-based core has emerged as an intriguing type of catalyst structure, but the effect of the shell thickness on the catalytic properties of the buried components is not well known. Here, we present a proof-of-concept study to reveal the thickness effect by carbonizing the isotropic and homogeneous oleylamine (OAm) ligands that cover colloidal MoS2. A thermal treatment turns OAm into a uniform carbon shell, while the size of MoS2 monolayers remains identical. When evaluated toward an acidic hydrogen evolution reaction, the calcined MoS2 catalysts deliver a volcano-type activity trend that depends on the calcination temperature. Rutherford backscattering spectrometry and depth-profiling X-ray photoelectron spectroscopy consistently provide an accurate quantification of the carbon shell thickness. The same variation pattern of catalytic activity and carbon shell thickness, aided by kinetic studies, is then persuasively justified by the respective limitations of electron and proton conductivities on the two branches of the volcano curve.
Collapse
Affiliation(s)
- Kun Guo
- State
Key Laboratory of Materials Processing and Die & Mould Technology,
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
- Department
of Chemistry, The University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Litao Chang
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201800, People’s Republic of China
| | - Ning Li
- State
Key Laboratory of Materials Processing and Die & Mould Technology,
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| | - Lipiao Bao
- State
Key Laboratory of Materials Processing and Die & Mould Technology,
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| | | | - Aliaksandr Baidak
- Department
of Chemistry, The University of Manchester, ManchesterM13 9PL, United Kingdom
- Dalton
Cumbrian Facility, The University of Manchester, CumbriaCA24 3HA, United Kingdom
| | - Zhixin Yu
- Institute
of New Energy, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, People’s
Republic of China
- Department
of Energy and Petroleum Engineering, University
of Stavanger, 4036Stavanger, Norway
| | - Xing Lu
- State
Key Laboratory of Materials Processing and Die & Mould Technology,
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan430074, People’s Republic of China
| |
Collapse
|
48
|
Rojas-Cuervo A, Rey-González R. Electronic band gap on graphene induced by interaction with hydrogen cyanide. An DFT analysis. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Moehring NK, Chaturvedi P, Cheng P, Ko W, Li AP, Boutilier MSH, Kidambi PR. Kinetic Control of Angstrom-Scale Porosity in 2D Lattices for Direct Scalable Synthesis of Atomically Thin Proton Exchange Membranes. ACS NANO 2022; 16:16003-16018. [PMID: 36201748 DOI: 10.1021/acsnano.2c03730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Angstrom-scale pores introduced into atomically thin 2D materials offer transformative advances for proton exchange membranes in several energy applications. Here, we show that facile kinetic control of scalable chemical vapor deposition (CVD) can allow for direct formation of angstrom-scale proton-selective pores in monolayer graphene with significant hindrance to even small, hydrated ions (K+ diameter ∼6.6 Å) and gas molecules (H2 kinetic diameter ∼2.9 Å). We demonstrate centimeter-scale Nafion|Graphene|Nafion membranes with proton conductance ∼3.3-3.8 S cm-2 (graphene ∼12.7-24.6 S cm-2) and H+/K+ selectivity ∼6.2-44.2 with liquid electrolytes. The same membranes show proton conductance ∼4.6-4.8 S cm-2 (graphene ∼39.9-57.5 S cm-2) and extremely low H2 crossover ∼1.7 × 10-1 - 2.2 × 10-1 mA cm-2 (∼0.4 V, ∼25 °C) with H2 gas feed. We rationalize our findings via a resistance-based transport model and introduce a stacking approach that leverages combinatorial effects of interdefect distance and interlayer transport to allow for Nafion|Graphene|Graphene|Nafion membranes with H+/K+ selectivity ∼86.1 (at 1 M) and record low H2 crossover current density ∼2.5 × 10-2 mA cm-2, up to ∼90% lower than state-of-the-art ionomer Nafion membranes ∼2.7 × 10-1 mA cm-2 under identical conditions, while still maintaining proton conductance ∼4.2 S cm-2 (graphene stack ∼20.8 S cm-2) comparable to that for Nafion of ∼5.2 S cm-2. Our experimental insights enable functional atomically thin high flux proton exchange membranes with minimal crossover.
Collapse
Affiliation(s)
- Nicole K Moehring
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, Tennessee37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee37212, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee37212, United States
| | - Pavan Chaturvedi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee37212, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee37212, United States
| | - Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee37212, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee37212, United States
| | - Wonhee Ko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Michael S H Boutilier
- Department of Chemical and Biochemical Engineering, Western University, London, OntarioN6A 3K7, Canada
| | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee37212, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee37212, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee37212, United States
| |
Collapse
|
50
|
Cai J, Griffin E, Guarochico-Moreira VH, Barry D, Xin B, Yagmurcukardes M, Zhang S, Geim AK, Peeters FM, Lozada-Hidalgo M. Wien effect in interfacial water dissociation through proton-permeable graphene electrodes. Nat Commun 2022; 13:5776. [PMID: 36182944 PMCID: PMC9526707 DOI: 10.1038/s41467-022-33451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 107 V m-1, sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O [Formula: see text] H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 108 V m-1. The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
Collapse
Affiliation(s)
- J Cai
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - E Griffin
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - V H Guarochico-Moreira
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - D Barry
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - B Xin
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - M Yagmurcukardes
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
- Department of Photonics, Izmir Institute of Technology, 35430, Izmir, Urla, Turkey
| | - S Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - A K Geim
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
| | - F M Peeters
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - M Lozada-Hidalgo
- National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.
- Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|