1
|
Athavale D, Balch C, Zhang Y, Yao X, Song S. The role of Hippo/YAP1 in cancer-associated fibroblasts: Literature review and future perspectives. Cancer Lett 2024; 604:217244. [PMID: 39260668 DOI: 10.1016/j.canlet.2024.217244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are activated fibroblasts that play a role in numerous malignant phenotypes, including hyperproliferation, invasion, and metastasis. These phenotypes correlate with activity of the Hippo pathway oncoprotein, Yes-associated protein-1 (YAP1), and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ). YAP1/TAZ are normally involved in organ growth, under the regulation of various kinases and upon phosphorylation, are retained in the cytoplasm by chaperone proteins, leading to their proteasomal degradation. In CAFs and tumor cells, however, a lack of YAP1 phosphorylation results in its translocation to the nucleus, binding to TEAD transcription factors, and activation of mitogenic pathways. In this review we summarize the literature discussing the central role of YAP1 in CAF activation, the upstream cues that promote YAP1-mediated CAF activation and extracellular matrix remodeling, and how CAFs mediate tumor-stroma crosstalk to support progression, invasion and metastasis in various cancer models. We further highlight YAP1+CAFs functions in modulating an immunosuppressive tumor microenvironment and propose evaluation of several YAP1 targets regarding their role in regulating intra-tumoral immune landscapes. Finally, we propose that co-administration of YAP1- targeted therapies with immune checkpoint inhibitors can improve therapeutic outcomes in patients with advanced tumors.
Collapse
Affiliation(s)
- Dipti Athavale
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Curt Balch
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Yanting Zhang
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Xiaodan Yao
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA
| | - Shumei Song
- Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA; MD Anderson Cancer Center at Cooper, Cooper University Hospital, 2 Cooper Plaza, Camden, NJ, 08103, USA; Departments of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
2
|
Wang L, Guo W, Tian Y, Wang J, Xu S, Shu W, Liang H, Chen M. Carboxypeptidase inhibitor Latexin (LXN) regulates intestinal organogenesis and intestinal remodeling involved in intestinal injury repair in mice. Int J Biol Macromol 2024; 279:135129. [PMID: 39208900 DOI: 10.1016/j.ijbiomac.2024.135129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The self-renewal and regeneration of intestinal epithelium are mainly driven by intestinal stem cells resided in crypts, which are crucial for rapid recovery intestinal tissue following injury. Latexin (LXN) is a highly expressed stem cell proliferation and differentiation related gene in intestinal tissue. However, it is still ambiguous whether LXN participates in intestine regeneration by regulating intestinal stem cells (ISCs). Here, we report that LXN colocalizes with Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) in intestinal crypts, and deletion of LXN upregulates the expression of Lgr5 in intestinal crypts. LXN deficiency promotes the proliferation of ISCs, thereby enhances the development of intestinal organoids. Mechanically, we show that LXN deficiency enhances the expression of Lgr5 in ISCs by activating the Yes-associated protein (YAP) and wingless (Wnt) signal pathways, thus accelerating intestinal normal growth and regeneration post-injury. In summary, these findings uncover a novel function of LXN in intestinal regeneration post-injury and intestinal organogenesis, suggesting the potential role of LXN in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wenwen Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Yang Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Jingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Shaohua Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Biotechnology, Guilin Medical University, Guilin, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| |
Collapse
|
3
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
4
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024:10.1038/s41568-024-00754-y. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Stavely R, Rahman AA, Mueller JL, Leavitt AR, Han CY, Pan W, Kaiser KN, Ott LC, Ohkura T, Guyer RA, Burns AJ, Koppes AN, Hotta R, Goldstein AM. Mature enteric neurons have the capacity to reinnervate the intestine with glial cells as their guide. Neuron 2024; 112:3143-3160.e6. [PMID: 39019043 PMCID: PMC11427168 DOI: 10.1016/j.neuron.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kyla N Kaiser
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail N Koppes
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Oh SJ, Seo Y, Kim HS. Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming. Int J Stem Cells 2024; 17:213-223. [PMID: 38267367 PMCID: PMC11361849 DOI: 10.15283/ijsc23176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.
Collapse
Affiliation(s)
- Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
8
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Fey SK, Vaquero-Siguero N, Jackstadt R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43:114270. [PMID: 38787726 DOI: 10.1016/j.celrep.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Collapse
Affiliation(s)
- Sigrid K Fey
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
11
|
Sipos F, Műzes G. Colonic Tuft Cells: The Less-Recognized Therapeutic Targets in Inflammatory Bowel Disease and Colorectal Cancer. Int J Mol Sci 2024; 25:6209. [PMID: 38892399 PMCID: PMC11172904 DOI: 10.3390/ijms25116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Tuft cells are more than guardian chemosensory elements of the digestive tract. They produce a variety of immunological effector molecules in response to stimulation; moreover, they are essential for defense against protozoa and nematodes. Beyond the description of their characteristics, this review aims to elucidate the potential pathogenic and therapeutic roles of colonic tuft cells in inflammatory bowel disease and colorectal cancer, focusing on their primarily immunomodulatory action. Regarding inflammatory bowel disease, tuft cells are implicated in both maintaining the integrity of the intestinal epithelial barrier and in tissue repair and regeneration processes. In addition to maintaining intestinal homeostasis, they display complex immune-regulatory functions. During the development of colorectal cancer, tuft cells can promote the epithelial-to-mesenchymal transition, alter the gastrointestinal microenvironment, and modulate both the anti-tumor immune response and the tumor microenvironment. A wide variety of their biological functions can be targeted for anti-inflammatory or anti-tumor therapies; however, the adverse side effects of immunomodulatory actions must be strictly considered.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
12
|
Love JR, Karthaus WR. Next-Generation Modeling of Cancer Using Organoids. Cold Spring Harb Perspect Med 2024; 14:a041380. [PMID: 37734867 PMCID: PMC11146310 DOI: 10.1101/cshperspect.a041380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In the last decade, organoid technology has become a cornerstone in cancer research. Organoids are long-term primary cell cultures, usually of epithelial origin, grown in a three-dimensional (3D) protein matrix and a fully defined medium. Organoids can be derived from many organs and cancer types and sites, encompassing both murine and human tissues. Importantly, they can be established from various stages during tumor evolution and recapitulate with high accuracy patient genomics and phenotypes in vitro, offering a platform for personalized medicine. Additionally, organoids are remarkably amendable for experimental manipulation. Taken together, these features make organoids a powerful tool with applications in basic cancer research and personalized medicine. Here, we will discuss the origins of organoid culture, applications in cancer research, and how cancer organoids can synergize with other models of cancer to drive basic discoveries as well as to translate these toward clinical solutions.
Collapse
Affiliation(s)
- Jillian R Love
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Wouter R Karthaus
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
14
|
Liu S, Liu M, Li Y, Song Q. N6-methyladenosine-dependent signaling in colorectal cancer: Functions and clinical potential. Crit Rev Oncol Hematol 2024; 198:104360. [PMID: 38615872 DOI: 10.1016/j.critrevonc.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Yuxuan Li
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Qing Song
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Drew DA, Kim AE, Lin Y, Qu C, Morrison J, Lewinger JP, Kawaguchi E, Wang J, Fu Y, Zemlianskaia N, Díez-Obrero V, Bien SA, Dimou N, Albanes D, Baurley JW, Wu AH, Buchanan DD, Potter JD, Prentice RL, Harlid S, Arndt V, Barry EL, Berndt SI, Bouras E, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Chang-Claude J, Conti DV, Devall MA, Figueiredo JC, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kundaje A, Le Marchand L, Li L, Lynch BM, Murphy N, Nassir R, Newcomb PA, Newton CC, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Stern MC, Su YR, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, Um CY, van Duijnhoven FJ, Van Guelpen B, White E, Hsu L, Moreno V, Peters U, Chan AT, Gauderman WJ. Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer. SCIENCE ADVANCES 2024; 10:eadk3121. [PMID: 38809988 PMCID: PMC11135391 DOI: 10.1126/sciadv.adk3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Regular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.
Collapse
Affiliation(s)
- David A. Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre E. Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yubo Fu
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natalia Zemlianskaia
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L. Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V. Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew A.M. Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jane C. Figueiredo
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen B. Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M. Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Brigid M. Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Mecca, Saudi Arabia
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J. Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariana C. Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Duncan C. Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Andrew T. Chan
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W. James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Zhang H, Li M, Hu CJ, Stenmark KR. Fibroblasts in Pulmonary Hypertension: Roles and Molecular Mechanisms. Cells 2024; 13:914. [PMID: 38891046 PMCID: PMC11171669 DOI: 10.3390/cells13110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Fibroblasts, among the most prevalent and widely distributed cell types in the human body, play a crucial role in defining tissue structure. They do this by depositing and remodeling extracellular matrixes and organizing functional tissue networks, which are essential for tissue homeostasis and various human diseases. Pulmonary hypertension (PH) is a devastating syndrome with high mortality, characterized by remodeling of the pulmonary vasculature and significant cellular and structural changes within the intima, media, and adventitia layers. Most research on PH has focused on alterations in the intima (endothelial cells) and media (smooth muscle cells). However, research over the past decade has provided strong evidence of the critical role played by pulmonary artery adventitial fibroblasts in PH. These fibroblasts exhibit the earliest, most dramatic, and most sustained proliferative, apoptosis-resistant, and inflammatory responses to vascular stress. This review examines the aberrant phenotypes of PH fibroblasts and their role in the pathogenesis of PH, discusses potential molecular signaling pathways underlying these activated phenotypes, and highlights areas of research that merit further study to identify promising targets for the prevention and treatment of PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8 + T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Adv Immunol 2024; 162:23-58. [PMID: 38866438 DOI: 10.1016/bs.ai.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-β, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisong Mei
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichun Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
18
|
Varinelli L, Battistessa D, Guaglio M, Zanutto S, Illescas O, Lorenc EJ, Pisati F, Kusamura S, Cattaneo L, Sabella G, Milione M, Perbellini A, Noci S, Paolino C, Kuhn E, Galassi M, Cavalleri T, Deraco M, Gariboldi M, Baratti D. Colorectal carcinoma peritoneal metastases-derived organoids: results and perspective of a model for tailoring hyperthermic intraperitoneal chemotherapy from bench-to-bedside. J Exp Clin Cancer Res 2024; 43:132. [PMID: 38698446 PMCID: PMC11064374 DOI: 10.1186/s13046-024-03052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Peritoneal metastases from colorectal cancer (CRCPM) are related to poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been reported to improve survival, but peritoneal recurrence rates are still high and there is no consensus on the drug of choice for HIPEC. The aim of this study was to use patient derived organoids (PDO) to build a relevant CRCPM model to improve HIPEC efficacy in a comprehensive bench-to-bedside strategy. METHODS Oxaliplatin (L-OHP), cisplatin (CDDP), mitomycin-c (MMC) and doxorubicin (DOX) were used to mimic HIPEC on twelve PDO lines derived from twelve CRCPM patients, using clinically relevant concentrations. After chemotherapeutic interventions, cell viability was assessed with a luminescent assay, and the obtained dose-response curves were used to determine the half-maximal inhibitory concentrations. Also, induction of apoptosis by different HIPEC interventions on PDOs was studied by evaluating CASPASE3 cleavage. RESULTS Response to drug treatments varied considerably among PDOs. The two schemes with better response at clinically relevant concentrations included MMC alone or combined with CDDP. L-OHP showed relative efficacy only when administered at low concentrations over a long perfusion period. PDOs showed that the short course/high dose L-OHP scheme did not appear to be an effective choice for HIPEC in CRCPM. HIPEC administered under hyperthermia conditions enhanced the effect of chemotherapy drugs against cancer cells, affecting PDO viability and apoptosis. Finally, PDO co-cultured with cancer-associated fibroblast impacted HIPEC treatments by increasing PDO viability and reducing CASPASES activity. CONCLUSIONS Our study suggests that PDOs could be a reliable in vitro model to evaluate HIPEC schemes at individual-patient level and to develop more effective treatment strategies for CRCPM.
Collapse
Affiliation(s)
- Luca Varinelli
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Davide Battistessa
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Susanna Zanutto
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Oscar Illescas
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Ewelina J Lorenc
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Federica Pisati
- Cogentech Ltd. Benefit Corporation With a Sole Shareholder, Via Adamello 16, Milan, 20139, Italy
| | - Shigeki Kusamura
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Laura Cattaneo
- Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Giovanna Sabella
- Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Massimo Milione
- Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Alessia Perbellini
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Sara Noci
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Cinzia Paolino
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, 20122, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Margherita Galassi
- Centrale Produzione Farmaci, Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Tommaso Cavalleri
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.
| | - Manuela Gariboldi
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| |
Collapse
|
19
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
20
|
Jiang C, Zhou Q, Yi K, Yuan Y, Xie X. Colorectal cancer initiation: Understanding early-stage disease for intervention. Cancer Lett 2024; 589:216831. [PMID: 38574882 DOI: 10.1016/j.canlet.2024.216831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
How tumors arise or the cause of precancerous lesions is a fundamental question in cancer biology. It is generally accepted that tumors originate from normal cells that undergo uncontrolled proliferation owing to genetic alterations. At the onset of adenoma formation, cancer driver mutations confer clonal growth advantage, enabling mutant cells to outcompete and eliminate the surrounding healthy cells. Hence, the development of precancerous lesions is not only attributed to the expansion of pre-malignant clones, but also relies on the relative fitness of mutated cells compared to the neighboring cells. Colorectal cancer (CRC) is an excellent model to investigate cancer origin as it follows a stereotypical process from mutant cell hyperplasia to adenoma formation and progression. Here, we review the evolving understanding of colonic tumor development, focusing on how cell intrinsic and extrinsic factors impact cell competition and the "clone war" between cancer-initiating cells and normal stem cells. We also discuss the promises and limitations of targeting cell competitiveness in cancer prevention and early intervention. The field of tumor initiation is currently in its infancy, elucidating the adenoma origin is crucial for designing effective prevention strategies and early treatments before cancer becomes incurable.
Collapse
Affiliation(s)
- Chao Jiang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Qiujing Zhou
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Ke Yi
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; Department of Medical Oncology, Cancer Institute and Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Zhang X, Zhu R, Yu D, Wang J, Yan Y, Xu K. Single-cell RNA sequencing to explore cancer-associated fibroblasts heterogeneity: "Single" vision for "heterogeneous" environment. Cell Prolif 2024; 57:e13592. [PMID: 38158643 PMCID: PMC11056715 DOI: 10.1111/cpr.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a phenotypically and functionally heterogeneous stromal cell, are one of the most important components of the tumour microenvironment. Previous studies have consolidated it as a promising target against cancer. However, variable therapeutic efficacy-both protumor and antitumor effects have been observed not least owing to the strong heterogeneity of CAFs. Over the past 10 years, advances in single-cell RNA sequencing (scRNA-seq) technologies had a dramatic effect on biomedical research, enabling the analysis of single cell transcriptomes with unprecedented resolution and throughput. Specifically, scRNA-seq facilitates our understanding of the complexity and heterogeneity of diverse CAF subtypes. In this review, we discuss the up-to-date knowledge about CAF heterogeneity with a focus on scRNA-seq perspective to investigate the emerging strategies for integrating multimodal single-cell platforms. Furthermore, we summarized the clinical application of scRNA-seq on CAF research. We believe that the comprehensive understanding of the heterogeneity of CAFs form different visions will generate innovative solutions to cancer therapy and achieve clinical applications.
Collapse
Affiliation(s)
- Xiangjian Zhang
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ruiqiu Zhu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Die Yu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Juan Wang
- School of MedicineShanghai UniversityShanghaiChina
| | - Yuxiang Yan
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| |
Collapse
|
22
|
Dupuy J, Cogo E, Fouché E, Guéraud F, Pierre F, Plaisancié P. Epithelial-mesenchymal interaction protects normal colonocytes from 4-HNE-induced phenotypic transformation. PLoS One 2024; 19:e0302932. [PMID: 38669265 PMCID: PMC11051638 DOI: 10.1371/journal.pone.0302932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 μM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.
Collapse
Affiliation(s)
- Jacques Dupuy
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Emma Cogo
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice Pierre
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pascale Plaisancié
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
23
|
Prochera A, Muppirala AN, Kuziel GA, Soualhi S, Shepherd A, Sun L, Issac B, Rosenberg HJ, Karim F, Perez K, Smith KH, Archibald TH, Rakoff-Nahoum S, Hagen SJ, Rao M. Enteric glia regulate Paneth cell secretion and intestinal microbial ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589545. [PMID: 38659931 PMCID: PMC11042301 DOI: 10.1101/2024.04.15.589545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions [1]. To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express PLP1 in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.
Collapse
Affiliation(s)
- Aleksandra Prochera
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Anoohya N Muppirala
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Gavin A Kuziel
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amy Shepherd
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Biju Issac
- Research Computing, Department of Information Technology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Harry J Rosenberg
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Farah Karim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristina Perez
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Kyle H Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tonora H Archibald
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan J Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Meenakshi Rao
- Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
24
|
Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang E, Rone JM, Tooley K, Kye YC, Bod L, Geistlinger L, Lee T, Mertens RT, Ono N, Wang G, Sanmarco L, Quintana FJ, Anderson AC, Kuchroo VK, Moffitt JR, Nowarski R. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 2024; 187:2010-2028.e30. [PMID: 38569542 PMCID: PMC11017707 DOI: 10.1016/j.cell.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.
Collapse
Affiliation(s)
- Paolo Cadinu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalind J Xu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Evan Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Tooley
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yoon-Chul Kye
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lloyd Bod
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tyrone Lee
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA 02115, USA
| | - Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77030, USA
| | - Gang Wang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Sanmarco
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Francisco J Quintana
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
25
|
Dong Y, Johnson BA, Ruan L, Zeineldin M, Bi T, Liu AZ, Raychaudhuri S, Chiu I, Zhu J, Smith B, Zhao N, Searson P, Watanabe S, Donowitz M, Larman TC, Li R. Disruption of epithelium integrity by inflammation-associated fibroblasts through prostaglandin signaling. SCIENCE ADVANCES 2024; 10:eadj7666. [PMID: 38569041 PMCID: PMC10990275 DOI: 10.1126/sciadv.adj7666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Linhao Ruan
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tianhao Bi
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ian Chiu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Barbara Smith
- Microscope Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tatianna C. Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Yan S, He Y, Zhu Y, Ye W, Chen Y, Zhu C, Zhan F, Ma Z. Human patient derived organoids: an emerging precision medicine model for gastrointestinal cancer research. Front Cell Dev Biol 2024; 12:1384450. [PMID: 38638528 PMCID: PMC11024315 DOI: 10.3389/fcell.2024.1384450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality with a poor prognosis. It is one of the leading causes of cancer-related deaths worldwide. Most of these diseases lack effective treatment, occurring as a result of inappropriate models to develop safe and potent therapies. As a novel preclinical model, tumor patient-derived organoids (PDOs), can be established from patients' tumor tissue and cultured in the laboratory in 3D architectures. This 3D model can not only highly simulate and preserve key biological characteristics of the source tumor tissue in vitro but also reproduce the in vivo tumor microenvironment through co-culture. Our review provided an overview of the different in vitro models in current tumor research, the derivation of cells in PDO models, and the application of PDO model technology in gastrointestinal cancers, particularly the applications in combination with CRISPR/Cas9 gene editing technology, tumor microenvironment simulation, drug screening, drug development, and personalized medicine. It also elucidates the ethical status quo of organoid research and the current challenges encountered in clinical research, and offers a forward-looking assessment of the potential paths for clinical organoid research advancement.
Collapse
Affiliation(s)
- Sicheng Yan
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxuan He
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuehong Zhu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wangfang Ye
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Chen
- Department of Colorectal Surgery, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Cong Zhu
- Department of Colorectal Surgery, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Fuyuan Zhan
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
- School of Basic Medicine College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Yuan S, Almagro J, Fuchs E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 2024; 24:274-286. [PMID: 38347101 PMCID: PMC11077468 DOI: 10.1038/s41568-023-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
28
|
Chu Y, Jiang Z, Gong Z, Ji X, Zhu M, Shang Q, Gong P, Cao L, Chen Y, Li P, Shao C, Shi Y. PML-mediated nuclear loosening permits immunomodulation of mesenchymal stem/stromal cells under inflammatory conditions. Cell Prolif 2024; 57:e13566. [PMID: 37864298 PMCID: PMC10984101 DOI: 10.1111/cpr.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Nuclear configuration plays a critical role in the compartmentalization of euchromatin and heterochromatin and the epigenetic regulation of gene expression. Under stimulation by inflammatory cytokines IFN-γ and TNF-α, human mesenchymal stromal cells (hMSCs) acquire a potent immunomodulatory function enabled by drastic induction of various effector genes, with some upregulated several magnitudes. However, whether the transcriptional upregulation of the immunomodulatory genes in hMSCs exposed to inflammatory cytokines is associated with genome-wide nuclear reconfiguration has not been explored. Here, we demonstrate that hMSCs undergo remarkable nuclear reconfiguration characterized by an enlargement of the nucleus, downregulation of LMNB1 and LMNA/C, decondensation of heterochromatin, and derepression of repetitive DNA. Interestingly, promyelocytic leukaemia-nuclear bodies (PML-NBs) were found to mediate the nuclear reconfiguration of hMSCs triggered by the inflammatory cytokines. Significantly, when PML was depleted, the immunomodulatory function of hMSCs conferred by cytokines was compromised, as reflected by the attenuated expression of effector molecules in hMSCs and their failure to block infiltration of immune cells to lipopolysaccharide (LPS)-induced acute lung injury. Our results indicate that the immunomodulatory function of hMSCs conferred by inflammatory cytokines requires PML-mediated chromatin loosening.
Collapse
Affiliation(s)
- Yunpeng Chu
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Zishan Jiang
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Zheng Gong
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Xiaocao Ji
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Mengting Zhu
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Qianwen Shang
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Pixia Gong
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Lijuan Cao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Yongjing Chen
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouChina
| |
Collapse
|
29
|
Asal M, Rep M, Bontkes HJ, van Vliet SJ, Mebius RE, Gibbs S. Towards Full Thickness Small Intestinal Models: Incorporation of Stromal Cells. Tissue Eng Regen Med 2024; 21:369-377. [PMID: 38113015 PMCID: PMC10987430 DOI: 10.1007/s13770-023-00600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION Since small intestine is one of the major barriers of the human body, there is a need to develop reliable in vitro human small intestinal models. These models should incorporate both the epithelial and lamina propria compartments and have similar barrier properties compared to that of the human tissue. These properties are essential for various applications, such as studying cell-cell interaction, intestinal diseases and testing permeability and metabolism of drugs and other compounds. The small intestinal lamina propria contains multiple stromal cell populations with several important functions, such as secretion of extracellular matrix proteins and soluble mediators. In addition, stromal cells influence the intestinal epithelial barrier, support the intestinal stem cell niche and interact with immune cells. METHODS In this review, we provide an extensive overview on the different types of lamina propria stromal cells found in small intestine and describe a combination of molecular markers that can be used to distinguish each different stromal cell type. We focus on studies that incorporated stromal cells into human representative small intestine models cultured on transwells. RESULTS AND CONCLUSION These models display enhanced epithelial morphology, increased cell proliferation and human-like barrier properties, such as low transepithelial electrical resistance (TEER) and intermediate permeability, thus better mimicking the native human small intestine than models only consisting of an epithelium which generally show high TEER and low permeability.
Collapse
Affiliation(s)
- Melis Asal
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mila Rep
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Laboratory Medical Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Eto S, Shinada M, Saeki K, Tsuboi M, Kamoto S, Yoshitake R, Chambers J, Uchida K, Kato D, Nishimura R, Nakagawa T. Pan-tumour analysis of COX-2 expression in dogs. Vet J 2024; 304:106064. [PMID: 38242282 DOI: 10.1016/j.tvjl.2024.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Cyclooxgenase-2 (COX-2) is associated with inflammatory microenvironment and tumour progression. COX-2 expression was reported in canine tumours, and anti-COX treatment showed therapeutic effects in selected tumour types. Currently, direct comparisons between different tumour types or reports were impossible due to varying evaluation protocols. Additionally, COX-2 expression in relatively uncommon tumours were yet to be evaluated. Here, we analysed COX-2 expression across various tumour types in dogs in a consistent protocol, aiming to revisit accumulated evidence in the field and report novel candidate tumours for anti-COX therapy. COX-2 expression in 32 histological types of tumours, which consisted of 347 samples in total, was investigated using immunohistochemistry followed by the Belshaw's method scoring (range: 0-12). More than the half of the samples expressed COX-2 in mast cell tumours, transitional cell carcinoma in the urinary tract, squamous cell carcinoma, liposarcoma, and melanoma, with COX-2 median scores ranging from 1-8. On the other hand, <20% tissues expressed COX-2 in the half of tumour types investigated. Overall COX-2 positive rate was 27%. In conclusion, the results confirmed COX-2 expression in the well-known COX-2-expresing tumour types and suggested novel candidate tumours for anti-COX-2 therapy. At the same time, overall COX-2 expression was low, and inter- and intra-histology heterogeneity was apparent. This study will provide a foundation reference for future research in canine tumours.
Collapse
Affiliation(s)
- Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-0085, Japan.
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Ogasawara N, Kano Y, Yoneyama Y, Kobayashi S, Watanabe S, Kirino S, Velez-Bravo FD, Hong Y, Ostapiuk A, Lutsik P, Onishi I, Yamauchi S, Hiraguri Y, Ito G, Kinugasa Y, Ohashi K, Watanabe M, Okamoto R, Tejpar S, Yui S. Discovery of non-genomic drivers of YAP signaling modulating the cell plasticity in CRC tumor lines. iScience 2024; 27:109247. [PMID: 38439969 PMCID: PMC10910304 DOI: 10.1016/j.isci.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
In normal intestines, a fetal/regenerative/revival cell state can be induced upon inflammation. This plasticity in cell fate is also one of the current topics in human colorectal cancer (CRC). To dissect the underlying mechanisms, we generated human CRC organoids with naturally selected genetic mutation profiles and exposed them to two different conditions by modulating the extracellular matrix (ECM). Among tested mutation profiles, a fetal/regenerative/revival state was induced following YAP activation via a collagen type I-enriched microenvironment. Mechanistically, YAP transcription was promoted by activating AP-1 and TEAD-dependent transcription and suppressing intestinal lineage-determining transcription via mechanotransduction. The phenotypic conversion was also involved in chemoresistance, which could be potentially resolved by targeting the underlying YAP regulatory elements, a potential target of CRC treatment.
Collapse
Affiliation(s)
- Nobuhiko Ogasawara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakurako Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakura Kirino
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Pavlo Lutsik
- Computational Cancer Biology and Epigenomics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Iichiroh Onishi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shinichi Yamauchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
32
|
Tape CJ. Plastic persisters: revival stem cells in colorectal cancer. Trends Cancer 2024; 10:185-195. [PMID: 38071119 DOI: 10.1016/j.trecan.2023.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 03/16/2024]
Abstract
Colorectal cancer (CRC) is traditionally considered to be a genetically driven disease. However, nongenetic plasticity has recently emerged as a major driver of tumour initiation, metastasis, and therapy response in CRC. Central to these processes is a recently discovered cell type, the revival colonic stem cell (revCSC). In contrast to traditional proliferative CSCs (proCSCs), revCSCs prioritise survival over propagation. revCSCs play an essential role in primary tumour formation, metastatic dissemination, and nongenetic chemoresistance. Current evidence suggests that CRC tumours leverage intestinal stem cell plasticity to both proliferate (via proCSCs) when unchallenged and survive (via revCSCs) in response to cell-extrinsic pressures. Although revCSCs likely represent a major source of therapeutic failure in CRC, our increasing knowledge of this important stem cell fate provides novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
33
|
Wang L, Zhang G, Li Q, Lu F, Yang K, Dai X. Carrageenan oligosaccharide alleviates intestinal damage via gut microflora through activating IMD/relish pathway in female Drosophila melanogaster. FASEB J 2024; 38:e23455. [PMID: 38308636 DOI: 10.1096/fj.202301218r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Recent evidence suggests the anti-inflammatory effect of carrageenan oligosaccharides (COS). The effects of COS on intestinal injury induced by 0.6% sodium dodecyl sulfate (SDS) and the molecular mechanisms involved were investigated in this study. 0.625, 1.25, and 2.5 mg/mL COS in diet had no toxic effect in flies, and they could all prolong SDS-treated female flies' survival rate. 1.25 mg/mL COS prevented the development of inflammation by improving the intestinal barrier integrity and maintaining the intestinal morphology stability, inhibited the proliferation of intestine stem cells (ISCs), and the production of lysosomes induced by SDS, accompanied by a decrease in the expression of autophagy-related genes. Moreover, COS decreased the active oxygen species (ROS) content in gut and increased the antioxidant activity in SDS-induced female flies, while COS still played a role in increasing survival rate and decreasing intestinal leakage in CncC-RNAi flies. The improvement of anti-inflammation capacity may be associated with the regulation of intestinal microflora with COS supplementation for Drosophila melanogaster. COS changed the gut microbiota composition, and COS had no effect on germ-free (GF) flies. It is highlighted that COS could not work in Relish-RNAi flies, indicating relish is required for COS to perform beneficial effects. These results provide insights into the study of gut microbiota interacting with COS to modulate intestinal inflammation in specific hosts.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Guocai Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Qiaowei Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Fangyuan Lu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Kun Yang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Abudukelimu S, de Miranda NFCC, Hawinkels LJAC. Fibroblasts in Orchestrating Colorectal Tumorigenesis and Progression. Cell Mol Gastroenterol Hepatol 2024; 17:821-826. [PMID: 38307492 PMCID: PMC10966773 DOI: 10.1016/j.jcmgh.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.
Collapse
Affiliation(s)
- Subinuer Abudukelimu
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
35
|
Qin X, Cardoso Rodriguez F, Sufi J, Vlckova P, Claus J, Tape CJ. An oncogenic phenoscape of colonic stem cell polarization. Cell 2023; 186:5554-5568.e18. [PMID: 38065080 DOI: 10.1016/j.cell.2023.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-β-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.
Collapse
Affiliation(s)
- Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
36
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
38
|
Kim J, Kim S, Lee SY, Jo BK, Oh JY, Kwon EJ, Kim KT, Adpaikar AA, Kim EJ, Jung HS, Kim HR, Roe JS, Hong CP, Kim JK, Koo BK, Cha HJ. Partial in vivo reprogramming enables injury-free intestinal regeneration via autonomous Ptgs1 induction. SCIENCE ADVANCES 2023; 9:eadi8454. [PMID: 38000027 PMCID: PMC10672161 DOI: 10.1126/sciadv.adi8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.
Collapse
Affiliation(s)
- Jumee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung-Yeon Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Beom-Ki Jo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Anish Ashok Adpaikar
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Chang Pyo Hong
- Theragen Bio Co., Ltd, Seongnam 13488, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Yan L, Zheng J, Wang Q, Hao H. Role of cancer-associated fibroblasts in colorectal cancer and their potential as therapeutic targets. Biochem Biophys Res Commun 2023; 681:127-135. [PMID: 37774570 DOI: 10.1016/j.bbrc.2023.09.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are mesenchymal cells in the tumor microenvironment (TME). CAFs are the most abundant cellular components in the TME of solid tumors. They affect the progression and course of chemotherapy and radiotherapy in various types of tumors including colorectal cancer (CRC). CAFs can promote tumor proliferation, invasion, and metastasis; protect tumor cells from immune surveillance; and resist tumor cell apoptosis caused by chemotherapy, resulting in drug resistance to chemotherapy. In recent years, researchers have become increasingly interested CAF functions and have conducted extensive research. However, compared to other types of malignancies, our understanding of the interaction between CRC cells and CAFs remains limited. Therefore, we searched the relevant literature published in the past 10 years, and reviewed the origin, biological characteristics, heterogeneity, role in the TME, and potential therapeutic targets of CAFs, to aid future research on CAFs and tumors.
Collapse
Affiliation(s)
- Liping Yan
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China
| | - Qingyu Wang
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China.
| |
Collapse
|
40
|
Chen L, Qiu X, Dupre A, Pellon-Cardenas O, Fan X, Xu X, Rout P, Walton KD, Burclaff J, Zhang R, Fang W, Ofer R, Logerfo A, Vemuri K, Bandyopadhyay S, Wang J, Barbet G, Wang Y, Gao N, Perekatt AO, Hu W, Magness ST, Spence JR, Verzi MP. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 2023; 30:1520-1537.e8. [PMID: 37865088 PMCID: PMC10841757 DOI: 10.1016/j.stem.2023.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Xiaojiao Fan
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Katherine D Walton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenxin Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Gaetan Barbet
- Child Health Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Ansu O Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
41
|
Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, Barresi S, Pellegatta M, Canevazzi P, Dunsmore G, Leonardi C, Montaldo E, Lusito E, Dugnani E, Citro A, Ng MSF, Schiavo Lena M, Drago D, Andolfo A, Brugiapaglia S, Scagliotti A, Mortellaro A, Corbo V, Liu Z, Mondino A, Dellabona P, Piemonti L, Taveggia C, Doglioni C, Cappello P, Novelli F, Iannacone M, Ng LG, Ginhoux F, Crippa S, Falconi M, Bonini C, Naldini L, Genua M, Ostuni R. IL-1β + macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 2023; 623:415-422. [PMID: 37914939 DOI: 10.1038/s41586-023-06685-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1β (IL-1β)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1β+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1β activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1β axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco M Vittoria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Barbiera
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mezzanzanica
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vincenzo Cuzzola
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Barresi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Carlo Leonardi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Lusito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
| | | | - Denise Drago
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna Mondino
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Iannacone
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Stefano Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
42
|
Jiang Z, Waterbury QT, Malagola E, Fu N, Kim W, Ochiai Y, Wu F, Guha C, Shawber CJ, Yan KS, Wang TC. Microbial-Dependent Recruitment of Immature Myeloid Cells Promotes Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2023; 17:321-346. [PMID: 37898454 PMCID: PMC10821484 DOI: 10.1016/j.jcmgh.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND & AIMS The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated. METHODS By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc+ IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc+ cells using the HdcCreERT2 tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (Ptgs2) in Hdc+ cells using HdcCre; Ptgs2 floxed mice, and visualization of LECs using Prox1tdTomato mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages. RESULTS We found that Hdc+ IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc+ IMCs express Ptgs2 (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E2. Prostaglandin E2 acts on the prostaglandin E2 receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs. CONCLUSIONS Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Na Fu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Woosook Kim
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Feijing Wu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Kelley S Yan
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Columbia Center for Human Development, Columbia University, New York, NY, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
43
|
Vornewald PM, Forman R, Yao R, Parmar N, Lindholm HT, Lee LSK, Martín-Alonso M, Else KJ, Oudhoff MJ. Mmp17-deficient mice exhibit heightened goblet cell effector expression in the colon and increased resistance to chronic Trichuris muris infection. Front Immunol 2023; 14:1243528. [PMID: 37869014 PMCID: PMC10587605 DOI: 10.3389/fimmu.2023.1243528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal epithelial homeostasis is maintained by intrinsic and extrinsic signals. The extrinsic signals include those provided by mesenchymal cell populations that surround intestinal crypts and is further facilitated by the extracellular matrix (ECM), which is modulated by proteases such as matrix metalloproteinases (MMPs). Extrinsic signals ensure an appropriate balance between intestinal epithelial proliferation and differentiation. This study explores the role of MMP17, which is preferentially expressed by smooth muscle cells in the intestine, in intestinal homeostasis and during immunity to infection. Mice lacking MMP17 expressed high levels of goblet-cell associated genes and proteins, such as CLCA1 and RELM-β, which are normally associated with immune responses to infection. Nevertheless, Mmp17 KO mice did not have altered resistance during a bacterial Citrobacter rodentium infection. However, when challenged with a low dose of the helminth Trichuris muris, Mmp17 KO mice had increased resistance, without a clear role for an altered immune response during infection. Mechanistically, we did not find changes in traditional modulators of goblet cell effectors such as the NOTCH pathway or specific cytokines. We found MMP17 expression in smooth muscle cells as well as lamina propria cells such as macrophages. Together, our data suggest that MMP17 extrinsically alters goblet cell maturation which is sufficient to alter clearance in a helminth infection model.
Collapse
Affiliation(s)
- Pia M. Vornewald
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Ruth Forman
- Lydia Becker Institute of Immunology & Inflammation, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Rouan Yao
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard T. Lindholm
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lilith S. K. Lee
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Mara Martín-Alonso
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology & Inflammation, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Menno J. Oudhoff
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
44
|
Brügger MD, Basler K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol 2023; 33:834-849. [PMID: 37080817 DOI: 10.1016/j.tcb.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Only in recent years have we begun to appreciate the involvement of fibroblasts in intestinal development, tissue homeostasis, and disease. These insights followed the advent of single-cell transcriptomics that allowed researchers to explore the heterogeneity of intestinal fibroblasts in unprecedented detail. Since researchers often defined cell types and their associated function based on the biological process they studied, there are a plethora of partially overlapping markers for different intestinal fibroblast populations. This ambiguity complicates putting different research findings into context. Here, we provide a census on the function and identity of intestinal fibroblasts in mouse and human. We propose a simplified framework consisting of three colonic and four small intestinal fibroblast populations to aid navigating the diversity of intestinal fibroblasts.
Collapse
Affiliation(s)
- Michael David Brügger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
45
|
Sun M, Tan Z, Lin K, Li X, Zhu J, Zhan L, Zheng H. Advanced Progression for the Heterogeneity and Homeostasis of Intestinal Stem Cells. Stem Cell Rev Rep 2023; 19:2109-2119. [PMID: 37351833 DOI: 10.1007/s12015-023-10578-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Current understanding of the leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in intestinal stem cells (ISCs) is well established, however, the implications of ISC heterogeneity and homeostasis are poorly understood. Prior studies have provided important evidence for the association between heterogeneity of ISC pools with pathogenesis and therapeutic response of malignant disease. Leveraging the advantages of organoids and single cell RNA sequencing (scRNA-seq), glandular development has been simulated and cell heterogeneity has been clarified. Based on this research, several potential ISCs were identified, such as LGR5 + p27 + quiescent ISCs, LGR5 + Mex3a + slowly proliferating stem cells, and CLU + reverse stem cells. We also illustrated major factors responsible for ISC homeostasis including metabolism-related (LKB1, TGR5, HMGCS2), inflammation-related (IFB-b, IFN2, TNF), and Wnt signaling-related (CREPT, Mex3a, MTG16) factors. ISCs play complex roles in intestinal tumorigenesis, chemoresistance and occasional relapse of colon cancer, which bear discussion. In this review, we focus on novel technical challenges in ISCs fate drawing upon recent research with the goals of clarifying our understanding of complex ISCs, elucidating the integrated intestinal crypt niche, and creating new opportunities for therapeutic development.
Collapse
Affiliation(s)
- Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Keqiong Lin
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Xiaofei Li
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Jicheng Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
46
|
Dong Y, Johnson BA, Ruan L, Zeineldin M, Liu AZ, Raychaudhuri S, Chiu I, Zhu J, Smith B, Zhao N, Searson P, Watanabe S, Donowitz M, Larman TC, Li R. Disruption of Epithelium Integrity by Inflammation-Associated Fibroblasts through Prostaglandin Signaling: IAFs disrupt colon epithelium via PGE2-EP4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560060. [PMID: 37808771 PMCID: PMC10557697 DOI: 10.1101/2023.09.28.560060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Inflammation-associated fibroblasts (IAFs) are associated with the progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial function and architecture is unknown. In this study, we developed an in vitro model whereby human colon fibroblasts are induced to become IAFs by specific cytokines and recapitulate key features of IAFs in vivo. When co-cultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid swelling and barrier disruption due to swelling and rupture of individual epithelial cells. Epithelial cells co-cultured with IAFs also exhibit increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated through a paracrine pathway involving prostaglandin E2 (PGE2) and the PGE2 receptor EP4, leading to PKA-dependent activation of the CFTR chloride channel. Importantly, EP4-specific chemical inhibitors effectively prevented colonoid swelling and restored normal proliferation and genome stability of IAF-exposed epithelial cells. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a potential treatment to mitigate inflammation-associated epithelial injury.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Blake A. Johnson
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Linhao Ruan
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Maged Zeineldin
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Albert Z. Liu
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Sumana Raychaudhuri
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Ian Chiu
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore
| | - Barbara Smith
- Microscope Facility, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, Maryland, 21218, U.S.A
| | - Peter Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, Maryland, 21218, U.S.A
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD, 21218, U.S.A
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
- Department of Physiology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Tatianna C. Larman
- Department of Pathology, Division of GI/Liver Pathology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
| | - Rong Li
- Department of Cell Biology, Johns Hopkins School of Medicine; Baltimore, MD, 21205, U.S.A
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore
- Department of Biological Sciences, National University of Singapore; Singapore
| |
Collapse
|
47
|
Tao T, Du L, Teng P, Guo Y, Wang X, Hu Y, Zhao H, Xu Q, Ma L. Stem cell antigen-1 +cell-derived fibroblasts are crucial for cardiac fibrosis during heart failure. Cell Mol Life Sci 2023; 80:300. [PMID: 37740736 PMCID: PMC11073062 DOI: 10.1007/s00018-023-04957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
AIMS Mesenchymal stem cells (MSCs) present in the heart cannot differentiate into cardiomyocytes, but may play a role in pathological conditions. Therefore, the aim of this study was to scrutinise the role and mechanism of MSC differentiation in vivo during heart failure. METHODS AND RESULTS We performed single-cell RNA sequencing of total non-cardiomyocytes from murine and adult human hearts. By analysing the transcriptomes of single cells, we illustrated the dynamics of the cell landscape during the progression of heart hypertrophy, including those of stem cell antigen-1 (Sca1)+ stem/progenitor cells and fibroblasts. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone marrow-derived Sca1+ cells give rise to fibroblasts. Interestingly, partial depletion of Sca1+ cells alleviated the severity of myocardial fibrosis and led to a significant improvement in cardiac function in Sca1-CreERT2;Rosa26-eGFP-DTA mice. Similar non-cardiomyocyte cell composition and heterogeneity were observed in human patients with heart failure. Mechanistically, our study revealed that Sca1+ cells can transform into fibroblasts and affect the severity of fibrosis through the Wnt4-Pdgfra pathway. CONCLUSIONS Our study describes the cellular landscape of hypertrophic hearts and reveals that fibroblasts derived from Sca1+ cells with a non-bone marrow source largely account for cardiac fibrosis. These findings provide novel insights into the pathogenesis of cardiac fibrosis and have potential therapeutic implications for heart failure. Non-bone marrow-derived Sca1+ cells differentiate into fibroblasts involved in cardiac fibrosis via Wnt4-PDGFRα pathway.
Collapse
Affiliation(s)
- Tingting Tao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Luping Du
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Peng Teng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yan Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Haige Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
48
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
50
|
Yang Q, Li M, Yang X, Xiao Z, Tong X, Tuerdi A, Li S, Lei L. Flourishing tumor organoids: History, emerging technology, and application. Bioeng Transl Med 2023; 8:e10559. [PMID: 37693042 PMCID: PMC10487342 DOI: 10.1002/btm2.10559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant tumors are one of the leading causes of death which impose an increasingly heavy burden on all countries. Therefore, the establishment of research models that closely resemble original tumor characteristics is crucial to further understanding the mechanisms of malignant tumor development, developing safer and more effective drugs, and formulating personalized treatment plans. Recently, organoids have been widely used in tumor research owing to their advantages including preserving the structure, heterogeneity, and cellular functions of the original tumor, together with the ease of manipulation. This review describes the history and characteristics of tumor organoids and the synergistic combination of three-dimensional (3D) culture approaches for tumor organoids with emerging technologies, including tissue-engineered cell scaffolds, microfluidic devices, 3D bioprinting, rotating wall vessels, and clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). Additionally, the progress in research and the applications in basic and clinical research of tumor organoid models are summarized. This includes studies of the mechanism of tumor development, drug development and screening, precision medicine, immunotherapy, and simulation of the tumor microenvironment. Finally, the existing shortcomings of tumor organoids and possible future directions are discussed.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ayinuer Tuerdi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|