1
|
Zhang N, Dong L, Wang Y, Wang X, Wen Y, Lu X, Dong Y, You W. Elucidating the backbone degradation mechanism of poly(7-oxa-2,3-diazanorbornene). Chem Commun (Camb) 2024. [PMID: 39494486 DOI: 10.1039/d4cc04484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Our recent study introduced a novel class of polymers, poly(7-oxa-2,3-diazanorbornene), characterized by synthetic accessibility and the capacity for living polymerization and degradation even under pH = 7.4 buffered conditions. In this work, our research delves into the polymer's degradation behavior, revealing a detailed mechanism of degradation under both acidic and neutral pH environments.
Collapse
Affiliation(s)
- Na Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianqiang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yixing Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei You
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Lei Z, Wang Z, Jiang H, Cahn JR, Chen H, Huang S, Jin Y, Wang X, Yu K, Zhang W. Dual-Factor-Controlled Dynamic Precursors Enable On-Demand Thermoset Degradation and Recycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407854. [PMID: 39225419 DOI: 10.1002/adma.202407854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Thermosets are well known for their advantages such as high stability and chemical resistance. However, developing sustainable thermosets with degradability and recyclability faces several principal challenges, including reconciling the desired characteristics during service with the recycling and reprocessing properties required at the end of life, establishing efficient methods for large-scale synthesis, and aligning with current manufacturing process. Here a general strategy is presented for the on-demand degradation and recycling of thermosets under mild conditions utilizing dynamic precursors with dual-factor-controlled reversibility. Specifically, dynamic triazine crosslinkers are introduced through dynamic nucleophilic aromatic substitution (SNAr) into the precursor polyols used in polyurethane (PU) synthesis. Upon removal of the catalyst and alcohol, the reversibility of SNAr is deactivated, allowing for the use of standard PU polymerization techniques such as injection molding, casting, and foaming. The resulting cyanurate-crosslinked PUs maintain high stability and diverse mechanical properties of traditional crosslinked PUs, yet offer the advantage of easy on-demand depolymerization for recycling by activating the reversibility of SNAr under specific but mild conditions-a combination of base, alcohol, and mild heat. It is envisioned that this approach, involving the pre-installation of dual-factor-controlled dynamic crosslinkers, can be broadly applied to current thermosetting plastic manufacturing processes, introducing enhanced sustainability.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zirui Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Huan Jiang
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Jackson R Cahn
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | | | - Xiaohui Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
3
|
Ma Y, Zheng C, Slor G, Özkan M, Gubelmann OJ, Stellacci F. Reaction of β-Ketoester and 1,3-Diol to Access Chemically Recyclable and Mechanically Robust Poly(vinyl alcohol) Thermosets through Incorporation of β-(1,3-dioxane)ester. Angew Chem Int Ed Engl 2024; 63:e202410624. [PMID: 39106110 DOI: 10.1002/anie.202410624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
The development of mechanically robust, chemically stable, and yet recyclable polymers represents an essential undertaking in the context of advancing a circular economy for plastics. Here, we introduce a novel cleavable β-(1,3-dioxane)ester (DXE) linkage, synthesized through the catalyst-free reaction of β-ketoester and 1,3-diol, to cross-link poly(vinyl alcohol) (PVA) for the formation of high-performance thermosets with inherent chemical recyclability. PVA, modified with β-ketoester groups through the transesterification reaction with excess tert-butyl acetoacetate, undergoes cross-linking reactions with the unmodified 1,3-diols within PVA itself upon thermal treatment. The cross-linking architecture improves PVA's mechanical properties, with Young's modulus and toughness that can reach up to 656 MPa and 84 MJ cm-3, i.e. approximately 3- and 12-fold those of linear PVA, respectively. Thermal treatment of the cross-linked PVA polymers under acid conditions leads to deconstruction of the networks, enabling the excellent recovery (>90 %) of PVA. In the absence of either thermal or acidic treatment, the cross-linked PVA maintains its dimensional stability. We show that the recovery of PVA is also possible when the treatment is performed in the presence of other plastics commonly found in recycling mixtures. Furthermore, PVA-based composites comprising carbon fibers and activated charcoal cross-linked by the DXE linkages are also shown to be recyclable with recovery of the PVA and the fillers.
Collapse
Affiliation(s)
- Youwei Ma
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Chihui Zheng
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gadi Slor
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melis Özkan
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Oliviero Julien Gubelmann
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Francesco Stellacci
- Department Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Zhang X, Feng X, Guo W, Zhang C, Zhang X. Chemically recyclable polyvinyl chloride-like plastics. Nat Commun 2024; 15:8536. [PMID: 39358344 PMCID: PMC11447067 DOI: 10.1038/s41467-024-52852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Polyvinyl chloride (PVC) is the world's third-most widely manufactured thermoplastic, but has the lowest recycling rate. The development of PVC-like plastics that can be depolymerized back to monomer contributes to a circular plastic economy, but has not been accessed. Here, we develop a series of chemically recyclable plastics from the reversible copolymerization of cyclic anhydride with chloral. The copolymerization is highly efficient through the anionic or cationic mechanism under mild conditions, yielding polyesters with tunable structure and properties from multiple commercial monomers. Notably, these polyesters manifest mechanical properties comparable to PVC and polystyrene. Meanwhile, such polyesters are flame-retardant like PVC due to high chloride content. Of significance, these polyesters can be depolymerized back to starting monomers at high temperatures owing to the reversibility of the copolymerization, leading to a circular economy. Overall, the readily available monomers, simple synthesis, advantageous performance, and practical recyclability make the polymers promising for applications.
Collapse
Affiliation(s)
- Xun Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ximin Feng
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenqi Guo
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
5
|
Sha Y, Chen X, Sun W, Zhou J, He Y, Xu E, Luo Z, Zhou Y, Jia P. Biorenewable and circular polyolefin thermoplastic elastomers. Nat Commun 2024; 15:8480. [PMID: 39353954 PMCID: PMC11445454 DOI: 10.1038/s41467-024-52850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Polymers capable of depolymerizing back to their own monomers offer a promising solution to address the challenges in polymer sustainability. Despite significant progress has been achieved in plastics circularity, chemical recycling of thermoplastic elastomers is relatively less concerned, largely because of their intrinsic complex multicomponents. This work creates a homopolymer-based platform towards chemically recyclable but tough thermoplastic elastomers. It is enabled by a semicrystalline polymer with high molecular weight but low crystallinity, which is prepared through ring-opening metathesis polymerization of a fully biobased cyclic olefin. By shifting the ring-chain equilibrium, quantitative conversions were achieved for both forward polymerization and reverse depolymerization. This simple circular, high-performance thermoplastic elastomer platform based on biomass highlights the importance of monomer design in addressing three challenges in sustainable polymers: the feedstock renewability, depolymerization selectivity, and performance trade-offs.
Collapse
Affiliation(s)
- Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiaofan Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Sun
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Key Lab of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Junfeng Zhou
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yucheng He
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Enhua Xu
- Graduate School of System Informatics, Kobe University, Kobe, 657-8501, Japan
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Key Lab of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Puyou Jia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Key Lab of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| |
Collapse
|
6
|
Zhao J, Yu H, Jin X, Qin B, Mei S, Xu JF, Zhang X. Radical-mediated click-clip reactions. Science 2024; 385:1354-1359. [PMID: 39298588 DOI: 10.1126/science.adn2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Click reactions, which are characterized by rapid, high-yielding, and highly selective coupling of two reaction partners, are powerful tools in synthesis but are rarely reversible. Innovative strategies that reverse such couplings in a precise and on-demand manner, enabling a click-clip sequence, would greatly expand the technique's versatility. Herein, a click and clip reaction pair is demonstrated by manipulation of a sulfilimine linkage. Phenothiazines and amines are rapidly and quantitatively coupled through oxidative sulfilimine bond formation with N-bromosuccinimide, and the resulting sulfilimine bromides then undergo quantitative reversion to the phenothiazines and amines through photoreduction at 380 nanometers. This protocol enables fabrication of depolymerizable macromolecules and reversible modification of aminosaccharides, demonstrating high selectivity and efficiency for manipulating sulfilimine linkages in complex systems.
Collapse
Affiliation(s)
- Jiantao Zhao
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huacheng Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xingchen Jin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo Qin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shan Mei
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Park Y, Kim J, Ahn D, Yu Y, Lee W, Kwon MS. Biomass-Derived Optically Clear Adhesives for Foldable Displays. CHEMSUSCHEM 2024; 17:e202301795. [PMID: 38551333 DOI: 10.1002/cssc.202301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Indexed: 05/24/2024]
Abstract
Novel acrylate monomers, derived from terpenes are synthesized for use in optically clear adhesives (OCAs) suitable for foldable displays. These OCAs are prepared using visible-light-driven polymerization, an eco-friendly method. Through physical, rheological, and mechanical characterization, the prepared OCAs possess low modulus and exhibit outstanding creep and recovery properties, making them suitable for foldable devices.
Collapse
Affiliation(s)
- Youngjoo Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junkyu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dowon Ahn
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Youngchang Yu
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Li P, Jiang X, Gu R, Tian H, Qu DH. Catalyst-Free Dynamic Covalent C=C/C=N Metathesis Reaction for Associative Covalent Adaptable Networks. Angew Chem Int Ed Engl 2024; 63:e202406708. [PMID: 38828797 DOI: 10.1002/anie.202406708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.
Collapse
Affiliation(s)
- Pengyun Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xin Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ruirui Gu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
9
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
10
|
Hu J, Gao Y, Teng J, Li L, Zhang T, Zheng S. Recycling of Polydicyclopentadiene Enabled with N-Coordinated Boronic Ester Bonds. Macromol Rapid Commun 2024; 45:e2400169. [PMID: 38722044 DOI: 10.1002/marc.202400169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Indexed: 05/24/2024]
Abstract
In this contribution, the transformation of polydicyclopentadiene (PDCPD) from thermoset into vitrimer is introduced. First, two N-coordinated diboronic diols are successfully synthesized via the reaction of N,N,N-tri(2-hydroxyethyl)amine and/or N,N,N",N"-tetrakis(2-hydroxyethyl)ethylene diamine with 4-(hydroxymethyl) phenylboronic acid and then they are transformed into two N-coordinated cyclic boronic diacrylates. The latter two dienes carrying electron-withdrawing substituents are used for the ring opening insertion metathesis copolymerization (ROIMP) of dicyclopentadiene to afford the crosslinked PDCPD. In the crosslinked PDCPD networks, N-coordinated cyclic boronic ester bonds are integrated. It is found that the as-obtained PDCPD networks displayed the excellent reprocessing properties. In the meantime, the fracture toughness is significantly improved. Owing to the inclusion of N-coordinated cyclic boronic ester bonds, the modified PDCPDs have the thermal stability much superior to plain PDCPD. The results reported in this work demonstrate that PDCPD can successfully be transformed into the vitrimers via the introduction of N-coordinated cyclic boronic ester bonds.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuan Gao
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianglu Teng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Li
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tao Zhang
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Castro J, Westworth X, Shrestha R, Yokoyama K, Guan Z. Efficient and Robust Dynamic Crosslinking for Compatibilizing Immiscible Mixed Plastics through In Situ Generated Singlet Nitrenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406203. [PMID: 38848581 DOI: 10.1002/adma.202406203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Indexed: 06/09/2024]
Abstract
Creating a sustainable economy for plastics demands the exploration of new strategies for efficient management of mixed plastic waste. The inherent incompatibility of different plastics poses a major challenge in plastic mechanical recycling, resulting in phase-separated materials with inferior mechanical properties. Here, this study presents a robust and efficient dynamic crosslinking chemistry that effectively compatibilizes mixed plastics. Composed of aromatic sulfonyl azides, the dynamic crosslinker shows high thermal stability and generates singlet nitrene species in situ during solvent-free melt-extrusion, effectively promoting C─H insertion across diverse plastics. This new method demonstrates successful compatibilization of binary polymer blends and model mixed plastics, enhancing mechanical performance and improving phase morphology. It holds promise for managing mixed plastic waste, supporting a more sustainable lifecycle for plastics.
Collapse
Affiliation(s)
- Jordan Castro
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Xavier Westworth
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Roman Shrestha
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Kosuke Yokoyama
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Zhibin Guan
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
12
|
Du S, Yang S, Wang B, Li P, Zhu J, Ma S. Acetal-thiol Click-like Reaction: Facile and Efficient Synthesis of Dynamic Dithioacetals and Recyclable Polydithioacetals. Angew Chem Int Ed Engl 2024; 63:e202405653. [PMID: 38764409 DOI: 10.1002/anie.202405653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/21/2024]
Abstract
Dithioacetals are heavily used in organic, material and medical chemistries, and exhibit huge potential to synthesize degradable or recyclable polymers. However, the current synthetic approaches of dithioacetals and polydithioacetals are overwhelmingly dependent on external catalysts and organic solvents. Herein, we disclose a catalyst- and solvent-free acetal-thiol click-like reaction for synthesizing dithioacetals and polydithioacetals. High conversion, higher than acid catalytic acetal-thiol reaction, can be achieved. High universality was confirmed by monitoring the reactions of linear and cyclic acetals (including renewable bio-sourced furan-acetal) with aliphatic and aromatic thiols, and the reaction mechanism of monomolecular nucleophilic substitution (SN1) and auto-protonation (activation) by thiol was clarified by combining experiments and density functional theory computation. Subsequently, we utilize this reaction to synthesize readily recyclable polydithioacetals. By simple heating and stirring, linear polydithioacetals withM ‾ ${\bar M}$ w of ~110 kDa were synthesized from acetal and dithiol, and depolymerization into macrocyclic dithioacetal and repolymerization into polydithioacetal can be achieved; through reactive extrusion, a semi-interpenetrating polymer dynamic network with excellent mechanical properties and continuous reprocessability was prepared from poly(vinyl butyral) and pentaerythritol tetrakis(3-mercaptopropionate). This green and high-efficient synthesis method for dithioacetals and polydithioacetals is beneficial to the sustainable development of chemistry.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Binbo Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Pengyun Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
13
|
Cui Z, Kawada M, Hui Y, Sim S. Programming aliphatic polyester degradation by engineered bacterial spores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603759. [PMID: 39071336 PMCID: PMC11275931 DOI: 10.1101/2024.07.16.603759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enzymatic degradation of plastics is a sustainable approach to addressing the growing issue of plastic accumulation. The primary challenges for using enzymes as catalysts are issues with their stability and recyclability, further exacerbated by their costly production and delicate structures. Here, we demonstrate an approach that leverages engineered spores that display target enzymes in high density on their surface to catalyze aliphatic polyester degradation and create self-degradable materials. Engineered spores display recombinant enzymes on their surface, eliminating the need for costly purification processes. The intrinsic physical and biological characteristics of spores enable easy separation from the reaction mixture, repeated reuse, and renewal. Engineered spores displaying lipases completely degrade aliphatic polyesters and retain activity through four cycles, with full activity recovered through germination and sporulation. Directly incorporating spores into polyesters results in robust materials that are completely degradable. Our study offers a straightforward and sustainable biocatalytic approach to plastic degradation.
Collapse
Affiliation(s)
- Ziyu Cui
- Department of Chemical and Biomolecular Engineering, University of California Irvine, California 92697, United States
| | - Masamu Kawada
- Department of Chemistry, University of California Irvine, California 92697, United States
| | - Yue Hui
- Department of Chemistry, University of California Irvine, California 92697, United States
| | - Seunghyun Sim
- Department of Chemical and Biomolecular Engineering, University of California Irvine, California 92697, United States
- Department of Chemistry, University of California Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, California 92697, United States
- Center for Synthetic Biology, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
14
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
15
|
Wang L, Zhang K, Zhang X, Tan Y, Guo L, Xia Y, Wang X. Mismatched Supramolecular Interactions Facilitate the Reprocessing of Super-Strong and Ultratough Thermoset Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311758. [PMID: 38758171 DOI: 10.1002/adma.202311758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Thermoset elastomers have been extensively applied in many fields because of their excellent mechanical strengths and durable characteristics, such as an excellent chemical resistance. However, in the context of environmental issues, the nonrecyclability of thermosets has become a major barrier to the further development of these materials. Here, a well-tailored strategy is reported to solve this problem by introducing mismatched supramolecular interactions (MMSIs) into a covalently cross-linked poly(urethane-urea) network with dynamic acylsemicarbazide moieties. The MMSIs significantly strengthen and toughen the thermoset elastomer by effectively dissipating energy and resisting external stress. In addition, the elastomer recycling efficiency is improved 2.7-fold due to the superior reversibility of the MMSIs. The optimized thermoset elastomer features outstanding characteristics, including an ultrahigh tensile strength (110.8 MPa), an unprecedented tensile toughness (1245.2 MJ m-3), as well as remarkable resistance to chemical media, creep, and damage. Most importantly, it exhibits an extraordinary multirecyclability, and the 4th recycling efficiency remains close to 100%. This scalable method promotes the development of thermosets with both high performance and excellent recyclability, thereby providing valuable guidance for addressing the issue of nonrecyclability from a molecular design standpoint.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xingxue Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Longfei Guo
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuguo Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
16
|
Cooper JC, Paul JE, Ramlawi N, Saengow C, Sharma A, Suslick BA, Ewoldt RH, Sottos NR, Moore JS. Reprocessability in Engineering Thermosets Achieved Through Frontal Ring-Opening Metathesis Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402627. [PMID: 38652482 DOI: 10.1002/adma.202402627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Indexed: 04/25/2024]
Abstract
While valued for their durability and exceptional performance, crosslinked thermosets are challenging to recycle and reuse. Here, inherent reprocessability in industrially relevant polyolefin thermosets is unveiled. Unlike prior methods, this approach eliminates the need to introduce exchangeable functionality to regenerate the material, relying instead on preserving the activity of the metathesis catalyst employed in the curing reaction. Frontal ring-opening metathesis polymerization (FROMP) proves critical to preserving this activity. Conditions controlling catalytic viability are explored to successfully reclaim performance across multiple generations of material, thus demonstrating long-term reprocessability. This straightforward and scalable remolding strategy is poised for widespread adoption. Given the anticipated growth in polyolefin thermosets, these findings represent an important conceptual advance in the pursuit of a fully circular lifecycle for thermoset polymers.
Collapse
Affiliation(s)
- Julian C Cooper
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justine E Paul
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nabil Ramlawi
- Department of Mechanical Science and Engineering, University of Illinois Urban-Champaign, Urbana, IL, 61801, USA
| | - Chaimongkol Saengow
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urban-Champaign, Urbana, IL, 61801, USA
| | - Anisha Sharma
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Randy H Ewoldt
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urban-Champaign, Urbana, IL, 61801, USA
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Prince E, Cheng HF, Banal JL, Johnson JA. Reversible Nucleic Acid Storage in Deconstructable Glassy Polymer Networks. J Am Chem Soc 2024; 146:17066-17074. [PMID: 38865160 DOI: 10.1021/jacs.4c01925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The rapid decline in DNA sequencing costs has fueled the demand for nucleic acid collection to unravel genomic information, develop treatments for genetic diseases, and track emerging biological threats. Current approaches to maintaining these nucleic acid collections hinge on continuous electricity for maintaining low-temperature and intricate cold-chain logistics. Inspired by the millennia-long preservation of fossilized biological specimens in calcified minerals or glassy amber, we present Thermoset-REinforced Xeropreservation (T-REX): a method for storing DNA in deconstructable glassy polymer networks. Key to T-REX is the development of polyplexes for nucleic acid encapsulation, streamlining the transfer of DNA from aqueous to organic phases, replete with initiators, monomers, cross-linkers, and thionolactone-based cleavable comonomers required to form the polymer networks. This process successfully encapsulates DNA that spans different length scales, from tens of bases to gigabases, in a matter of hours compared to days with traditional silica-based encapsulation. Further, T-REX permits the extraction of DNA using comparatively benign reagents, unlike the hazardous hydrofluoric acid required for recovery from silica. T-REX provides a path toward low-cost, time-efficient, and long-term nucleic acid preservation for synthetic biology, genomics, and digital information storage, potentially overcoming traditional low-temperature storage challenges.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ho Fung Cheng
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James L Banal
- Cache DNA, Inc., 733 Industrial Road, San Carlos, California 94070, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Wang S, Feng H, Li B, Lim JYC, Rusli W, Zhu J, Hadjichristidis N, Li Z. Knoevenagel C═C Metathesis Enabled Glassy Vitrimers with High Rigidity, Toughness, and Malleability. J Am Chem Soc 2024; 146:16112-16118. [PMID: 38803151 PMCID: PMC11177252 DOI: 10.1021/jacs.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Thermosets, characterized by their permanent cross-linked networks, present significant challenges in recyclability and brittleness. In this work, we explore a polarized Knoevenagel C═C metathesis reaction for the development of rigid yet tough and malleable thermosets. Initial investigation on small molecule model reactions reveals the feasibility of conducting the base-catalyzed C═C metathesis reaction in a solvent-free environment. Subsequently, thermosetting poly(α-cyanocinnamate)s (PCCs) were synthesized via Knoevenagel condensation between a triarm cyanoacetate star and a dialdehyde. The thermal and mechanical properties of the developed PCCs can be easily modulated by altering the structure of the dialdehyde. Remarkably, the introduction of ether groups into the PCC leads to a combination of high rigidity and toughness with Young's modulus of ∼1590 MPa, an elongation at break of ∼79%, and a toughness reaching ∼30 MJ m3. These values are competitive to traditional thermosets, in Young's modulus but far exceed them in ductility and toughness. Moreover, the C═C metathesis facilitates stress relaxation within the bulk polymer networks, thus rendering PCCs excellent malleability and reprocessability. This work overcomes the traditional limitations of thermosets, introducing groundbreaking insights for the design of rigid yet tough and malleable thermosets, and contributing significantly to the sustainability of materials.
Collapse
Affiliation(s)
- Sheng Wang
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Hongzhi Feng
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Key
Laboratory of Bio-Based Polymeric Materials Technology and Application
of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Bofan Li
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jason Y. C. Lim
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wendy Rusli
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jin Zhu
- Key
Laboratory of Bio-Based Polymeric Materials Technology and Application
of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Nikos Hadjichristidis
- Polymer
Synthesis Laboratory, Physical Sciences and Engineering Division,
KAUST Catalysis Center, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Zibiao Li
- Institute
of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency
for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute
of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117576, Republic
of Singapore
| |
Collapse
|
20
|
Zhang J, Jiang C, Deng G, Luo M, Ye B, Zhang H, Miao M, Li T, Zhang D. Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure. Nat Commun 2024; 15:4869. [PMID: 38849328 PMCID: PMC11161517 DOI: 10.1038/s41467-024-49272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The regulation of topological structure of covalent adaptable networks (CANs) remains a challenge for epoxy CANs. Here, we report a strategy to develop strong and tough epoxy supramolecular thermosets with rapid reprocessability and room-temperature closed-loop recyclability. These thermosets were constructed from vanillin-based hyperbranched epoxy resin (VanEHBP) through the introduction of intermolecular hydrogen bonds and dual dynamic covalent bonds, as well as the formation of intramolecular and intermolecular cavities. The supramolecular structures confer remarkable energy dissipation capability of thermosets, leading to high toughness and strength. Due to the dynamic imine exchange and reversible noncovalent crosslinks, the thermosets can be rapidly and effectively reprocessed at 120 °C within 30 s. Importantly, the thermosets can be efficiently depolymerized at room temperature, and the recovered materials retain the structural integrity and mechanical properties of the original samples. This strategy may be employed to design tough, closed-loop recyclable epoxy thermosets for practical applications.
Collapse
Affiliation(s)
- Junheng Zhang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| | - Can Jiang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Guoyan Deng
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Mi Luo
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China.
| | - Menghe Miao
- Department of Mechanical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Tingcheng Li
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Daohong Zhang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
21
|
McFadden TP, Cope RB, Muhlestein R, Layton DJ, Lessard JJ, Moore JS, Sigman MS. Using Data Science Tools to Reveal and Understand Subtle Relationships of Inhibitor Structure in Frontal Ring-Opening Metathesis Polymerization. J Am Chem Soc 2024. [PMID: 38836636 DOI: 10.1021/jacs.4c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The rate of frontal ring-opening metathesis polymerization (FROMP) using the Grubbs generation II catalyst is impacted by both the concentration and choice of monomers and inhibitors, usually organophosphorus derivatives. Herein we report a data-science-driven workflow to evaluate how these factors impact both the rate of FROMP and how long the formulation of the mixture is stable (pot life). Using this workflow, we built a classification model using a single-node decision tree to determine how a simple phosphine structural descriptor (Vbur-near) can bin long versus short pot life. Additionally, we applied a nonlinear kernel ridge regression model to predict how the inhibitor and selection/concentration of comonomers impact the FROMP rate. The analysis provides selection criteria for material network structures that span from highly cross-linked thermosets to non-cross-linked thermoplastics as well as degradable and nondegradable materials.
Collapse
Affiliation(s)
- Timothy P McFadden
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reid B Cope
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rachel Muhlestein
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dustin J Layton
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jacob J Lessard
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, Departments of Chemistry and Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Wang L, Meng Y, Wang X. Sustainable Supramolecular Polymers. Chempluschem 2024; 89:e202300694. [PMID: 38355904 DOI: 10.1002/cplu.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Polymer waste is a pressing issue that requires innovative solutions from the scientific community. As a beacon of hope in addressing this challenge, the concept of sustainable supramolecular polymers (SSPs) emerges. This article discusses challenges and efforts in fabricating SSPs. Addressing the trade-offs between mechanical performance and sustainability, the ultra-tough and multi-recyclable supramolecular polymers are fabricated via tailoring mismatched supramolecular interactions. Additionally, the healing of kinetically inert polymer materials is realized through transient regulation of the interfacial reactivity. Furthermore, a possible development trajectory for SSPs is proposed, and the transient materials can be regarded as the next generation in this field. The evolution of SSPs promises to be a pivotal stride towards a regenerative economy, sparking further exploration and innovation in the realm of sustainable materials.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuwen Meng
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
23
|
Yang T, Lu X, Wang X, Wei X, An N, Li Y, Wang W, Li X, Fang X, Sun J. Upcycling of Carbon Fiber/Thermoset Composites into High-Performance Elastomers and Repurposed Carbon Fibers. Angew Chem Int Ed Engl 2024; 63:e202403972. [PMID: 38491769 DOI: 10.1002/anie.202403972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Recycling of carbon fiber-reinforced polymer composites (CFRCs) based on thermosetting plastics is difficult. In the present study, high-performance CFRCs are fabricated through complexation of aromatic pinacol-cross-linked polyurethane (PU-AP) thermosets with carbon fiber (CF) cloths. PU-AP thermosets exhibit a breaking strength of 95.5 MPa and toughness of 473.6 MJ m-3 and contain abundant hydrogen-bonding groups, which can have strong adhesion with CFs. Because of the high interfacial adhesion between CF cloths and PU-AP thermosets and high toughness of PU-AP thermosets, CF/PU-AP composites possess a high tensile strength of >870 MPa. Upon heating in N,N-dimethylacetamide (DMAc) at 100 °C, the aromatic pinacols in the CF/PU-AP composites can be cleaved, generating non-destructive CF cloths and linear polymers that can be converted to high-performance elastomers. The elastomers are mechanically robust, healable, reprocessable, and damage-resistant with an extremely high tensile strength of 74.2 MPa and fracture energy of 149.6 kJ m-2. As a result, dissociation of CF/PU-AP composites enables the recovery of reusable CF cloths and high-performance elastomers, thus realizing the upcycling of CF/PU-AP composites.
Collapse
Affiliation(s)
- Tiantian Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ni An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
24
|
Lundberg DJ, Ko K, Kilgallon LJ, Johnson JA. Defining Reactivity-Deconstructability Relationships for Copolymerizations Involving Cleavable Comonomer Additives. ACS Macro Lett 2024; 13:521-527. [PMID: 38626454 DOI: 10.1021/acsmacrolett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The incorporation of cleavable comonomers as additives into polymers can imbue traditional polymers with controlled deconstructability and expanded end-of-life options. The efficiency with which cleavable comonomer additives (CCAs) can enable deconstruction is sensitive to their local distribution within a copolymer backbone, which is dictated by their copolymerization behavior. While qualitative heuristics exist that describe deconstructability, comprehensive quantitative connections between CCA loadings, reactivity ratios, polymerization mechanisms, and deconstruction reactions on the deconstruction efficiency of copolymers containing CCAs have not been established. Here, we broadly define these relationships using stochastic simulations characterizing various polymerization mechanisms (e.g., coltrolled/living, free-radical, and reversible ring-opening polymerizations), reactivity ratio pairs (spanning 2 orders of magnitude between 0.01 and 100), CCA loadings (2.5% to 20%), and deconstruction reactions (e.g., comonomer sequence-dependent deconstruction behavior). We show general agreement between simulated and experimentally observed deconstruction fragment sizes from the literature, demonstrating the predictive power of the methods used herein. These results will guide the development of more efficient CCAs and inform the formulation of deconstructable materials.
Collapse
Affiliation(s)
- David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Sample CS, Hoehn BD, Hillmyer MA. Cross-Linked Polyolefins through Tandem ROMP/Hydrogenation. ACS Macro Lett 2024; 13:395-400. [PMID: 38502944 DOI: 10.1021/acsmacrolett.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cross-linked polyolefins have important advantages over their thermoplastic analogues, particularly improved impact strength and abrasion resistance, as well as increased chemical and thermal stability; however, most strategies for their production involve postpolymerization cross-linking of polyolefin chains. Here, a tandem ring-opening metathesis polymerization (ROMP)/hydrogenation approach is presented. Cyclooctene (COE)-co-dicyclopentadiene (DCPD) networks are first synthesized using ROMP, after which the dispersed Ru metathesis catalyst is activated for hydrogenation through the addition of hydrogen gas. The reaction temperature for hydrogenation must be sufficiently high to allow mobility within the system, as dictated by thermal transitions (i.e., glass and melting transitions) of the polymeric matrix. COE-rich materials exhibit branched-polyethylene-like crystallinity (25% crystallinity) and melting points (Tm = 107 °C), as well as excellent ductility (>750% extension), while majority DCPD materials are glassy (Tg = 84 °C) and much stiffer (E = 710 MPa); all materials exhibit high tensile toughness. Importantly, hydrogenation of olefins in these cross-linked materials leads to notable improvements in oxidative stability, as saturated networks do not experience the same substantial degradation of mechanical performance as their unsaturated counterparts upon prolonged exposure to air.
Collapse
Affiliation(s)
- Caitlin S Sample
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Brenden D Hoehn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
26
|
Lu H, Ye H, You L. Photoswitchable Cascades for Allosteric and Bidirectional Control over Covalent Bonds and Assemblies. J Am Chem Soc 2024. [PMID: 38620077 DOI: 10.1021/jacs.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Studies of complex systems and emerging properties to mimic biosystems are at the forefront of chemical research. Dynamic multistep cascades, especially those exhibiting allosteric regulation, are challenging. Herein, we demonstrate a versatile platform of photoswitchable covalent cascades toward remote and bidirectional control of reversible covalent bonds and ensuing assemblies. The relay of a photochromic switch, keto-enol equilibrium, and ring-chain equilibrium allows light-mediated reversible allosteric structural changes. The accompanying distinct reactivity further enables photoswitchable dynamic covalent bonding and release of substrates bidirectionally through alternating two wavelengths of light, essentially realizing light-mediated signaling cycles. The downfall of energy by covalent bond formation/scission upon photochemical reactions offers the driving force for the controlled direction of the cascade. To show the molecular diversity, photoswitchable on-demand assembly/disassembly of covalent polymers, including structurally reconfigurable polymers, was realized. This work achieves photoswitchable allosteric regulation of covalent architectures within dynamic multistep cascades, which has rarely been reported before. The results resemble allosteric control within biological signaling networks and should set the stage for many endeavors, such as dynamic assemblies, molecular motors, responsive polymers, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
27
|
Wu X, Hartmann P, Berne D, De Bruyn M, Cuminet F, Wang Z, Zechner JM, Boese AD, Placet V, Caillol S, Barta K. Closed-loop recyclability of a biomass-derived epoxy-amine thermoset by methanolysis. Science 2024; 384:eadj9989. [PMID: 38603486 DOI: 10.1126/science.adj9989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/13/2024]
Abstract
Epoxy resin thermosets (ERTs) are an important class of polymeric materials. However, owing to their highly cross-linked nature, they suffer from poor recyclability, which contributes to an unacceptable level of environmental pollution. There is a clear need for the design of inherently recyclable ERTs that are based on renewable resources. We present the synthesis and closed-loop recycling of a fully lignocellulose-derivable epoxy resin (DGF/MBCA), prepared from dimethyl ester of 2,5-furandicarboxylic acid (DMFD), 4,4'-methylenebis(cyclohexylamine) (MBCA), and glycidol, which displays excellent thermomechanical properties (a glass transition temperature of 170°C, and a storage modulus at 25°C of 1.2 gigapascals). Notably, the material undergoes methanolysis in the absence of any catalyst, regenerating 90% of the original DMFD. The diamine MBCA and glycidol can subsequently be reformed by acetolysis. Application and recycling of DGF/MBCA in glass and plant fiber composites are demonstrated.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, Netherlands
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Peter Hartmann
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Mario De Bruyn
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Florian Cuminet
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Zhiwen Wang
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | | | - Adrian Daniel Boese
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Vincent Placet
- Université de Franche-Comté, CNRS, institut FEMTO-ST, 2500 Besançon, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Katalin Barta
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| |
Collapse
|
28
|
Wang S, Feng H, Lim JYC, Li K, Li B, Mah JJQ, Xing Z, Zhu J, Loh XJ, Li Z. Recyclable, Malleable, and Strong Thermosets Enabled by Knoevenagel Adducts. J Am Chem Soc 2024; 146:9920-9927. [PMID: 38557104 DOI: 10.1021/jacs.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Plastic recycling is critical for waste management and achieving a circular economy, but it entails difficult trade-offs between performance and recyclability. Here, we report a thermoset, poly(α-cyanocinnamate) (PCC), synthesized using Knoevenagel condensation between terephthalaldehyde (TPA) and a triarm cyanoacetate star, that tackles this difficulty by harnessing its intrinsically conjugated and dynamic chemical characteristics. PCCs exhibit extraordinary thermal and mechanical properties with a typical Tg of ∼178 °C, Young's modulus of 3.8 GPa, and tensile strength of 102 MPa, along with remarkable flexibility and dimensional and chemical stabilities. Furthermore, end-of-life PCCs can be selectively degraded and partially recycled back into one starting monomer TPA for a new production cycle or reprocessed through dynamic exchange aided by cyanoacetate chain-ends. This study lays the scientific groundwork for the design of robust and recyclable thermosets, with transformative potential in plastic engineering.
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Hongzhi Feng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Justin J Q Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhenxiang Xing
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jin Zhu
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
29
|
Hu Y, Wang L, Kevlishvili I, Wang S, Chiou CY, Shieh P, Lin Y, Kulik HJ, Johnson JA, Craig SL. Self-Amplified HF Release and Polymer Deconstruction Cascades Triggered by Mechanical Force. J Am Chem Soc 2024; 146:10115-10123. [PMID: 38554100 DOI: 10.1021/jacs.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Hydrogen fluoride (HF) is a versatile reagent for material transformation, with applications in self-immolative polymers, remodeled siloxanes, and degradable polymers. The responsive in situ generation of HF in materials therefore holds promise for new classes of adaptive material systems. Here, we report the mechanochemically coupled generation of HF from alkoxy-gem-difluorocyclopropane (gDFC) mechanophores derived from the addition of difluorocarbene to enol ethers. Production of HF involves an initial mechanochemically assisted rearrangement of gDFC mechanophore to α-fluoro allyl ether whose regiochemistry involves preferential migration of fluoride to the alkoxy-substituted carbon, and ab initio steered molecular dynamics simulations reproduce the observed selectivity and offer insights into the mechanism. When the alkoxy gDFC mechanophore is derived from poly(dihydrofuran), the α-fluoro allyl ether undergoes subsequent hydrolysis to generate 1 equiv of HF and cleave the polymer chain. The hydrolysis is accelerated via acid catalysis, leading to self-amplifying HF generation and concomitant polymer degradation. The mechanically generated HF can be used in combination with fluoride indicators to generate an optical response and to degrade polybutadiene with embedded HF-cleavable silyl ethers (11 mol %). The alkoxy-gDFC mechanophore thus provides a mechanically coupled mechanism of releasing HF for polymer remodeling pathways that complements previous thermally driven mechanisms.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Liqi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Chun-Yu Chiou
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yangju Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
30
|
Shi C, Rorrer NA, Shaw AL, Clarke RW, Buss BL, Beckham GT, Broadbelt LJ, Chen EYX. Topology-Accelerated and Selective Cascade Depolymerization of Architecturally Complex Polyesters. J Am Chem Soc 2024; 146:9261-9271. [PMID: 38517949 DOI: 10.1021/jacs.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Despite considerable recent advances already made in developing chemically circular polymers (CPs), the current framework predominantly focuses on CPs with linear-chain structures of different monomer types. As polymer properties are determined by not only composition but also topology, manipulating the topology of the single-monomer-based CP systems from linear-chain structures to architecturally complex polymers could potentially modulate the resulting polymer properties without changing the chemical composition, thereby advancing the concept of monomaterial product design. To that end, here, we introduce a chemically circular hyperbranched polyester (HBPE), synthesized by a mixed chain-growth and step-growth polymerization of a rationally designed bicyclic lactone with a pendent hydroxyl group (BiLOH). This HBPE exhibits full chemical recyclability despite its architectural complexity, showing quantitative selectivity for regeneration of BiLOH, via a unique cascade depolymerization mechanism. Moreover, distinct differences in materials properties and performance arising from topological variations between HBPE, hb-PBiLOH, and its linear analogue, l-PBiLOH, have been revealed where generally the branched structure led to more favorable interchain interactions, and topology-amplified optical activity has also been observed for chiral (1S, 4S, 5S)-hb-PBiLOH. More intriguingly, depolymerization of l-PBiLOH proceeds through an unexpected, initial topological transformation to the HBPE polymer, followed by the faster cascade depolymerization pathway adopted by hb-PBiLOH. Overall, these results demonstrate that CP design can go beyond typical linear polymers, and rationally redesigned, architecturally complex polymers for their unique properties may synergistically impart advantages in topology-augmented depolymerization acceleration and selectivity for exclusive monomer regeneration.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Alexander L Shaw
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan W Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Bonnie L Buss
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
31
|
Ko K, Lundberg DJ, Johnson AM, Johnson JA. Mechanism-Guided Discovery of Cleavable Comonomers for Backbone Deconstructable Poly(methyl methacrylate). J Am Chem Soc 2024; 146:9142-9154. [PMID: 38526229 DOI: 10.1021/jacs.3c14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.
Collapse
Affiliation(s)
- Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Zotov V, Vijjamarri S, Mousavi SD, Du G. Poly(silyl ether)s as Degradable and Sustainable Materials: Synthesis and Applications. Molecules 2024; 29:1498. [PMID: 38611778 PMCID: PMC11013004 DOI: 10.3390/molecules29071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Polymer research is currently focused on sustainable and degradable polymers which are cheap, easy to synthesize, and environmentally friendly. Silicon-based polymers are thermally stable and can be utilized in various applications, such as columns and coatings. Poly(silyl ether)s (PSEs) are an interesting class of silicon-based polymers that are easily hydrolyzed in either acidic or basic conditions due to the presence of the silyl ether Si-O-C bond. Synthetically, these polymers can be formed in several different ways, and the most effective and environmentally friendly synthesis is dehydrogenative cross coupling, where the byproduct is H2 gas. These polymers have a lot of promise in the polymeric materials field due to their sustainability, thermal stability, hydrolytic degradability, and ease of synthesis, with nontoxic byproducts. In this review, we will summarize the synthetic approaches for the PSEs in the recent literature, followed by the properties and applications of these materials. A conclusion and perspective will be provided at the end.
Collapse
Affiliation(s)
| | | | | | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA; (V.Z.); (S.V.)
| |
Collapse
|
33
|
Zhang X, Xia Y, Sun Y, Zhang C, Zhang X. Water-Degradable Oxygen-Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization. Angew Chem Int Ed Engl 2024; 63:e202315524. [PMID: 38279840 DOI: 10.1002/anie.202315524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Researchers have been chasing plastics that can automatically and fully degrade into valuable products under natural conditions. Here, we develop a series of water-degradable polymers from the first reported fast and selective cationic copolymerization of formaldehyde (B) with cyclic anhydrides (A). In addition to readily accessible monomers, the method is performed at industrially relevant temperatures (~100 °C), takes tens or even minutes, and uses common acid as the catalyst. Interestingly, such polymers possess tunable AB/ABB-type repeating units, which are considered to be thermodynamic and kinetic products, respectively, resulting in low carbon content ([O] : [C] up to 1 : 1). Notably, the polymers can completely degrade to valuable diacids within 150 days in water at ambient temperature owing to the incorporation of carboxyl terminals and acid-responsive acetal units. By washing with aqueous sodium carbonate, the polymers are relatively stable over several months.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yanni Xia
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
34
|
Hughes RW, Lott ME, Zastrow IS, Young JB, Maity T, Sumerlin BS. Bulk Depolymerization of Methacrylate Polymers via Pendent Group Activation. J Am Chem Soc 2024; 146:6217-6224. [PMID: 38382047 DOI: 10.1021/jacs.3c14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, we present an efficient approach for the depolymerization of poly(methyl methacrylate) (PMMA) copolymers synthesized via conventional radical polymerization. By incorporating low mol % phthalimide ester-containing monomers during the polymerization process, colorless and transparent polymers closely resembling unfunctionalized PMMA are obtained, which can achieve >95% reversion to methyl methacrylate (MMA). Notably, our catalyst-free bulk depolymerization method exhibits exceptional efficiency, even for high-molecular-weight polymers, including ultrahigh-molecular-weight (106-107 g/mol) PMMA, where near-quantitative depolymerization is achieved. Moreover, this approach yields polymer byproducts of significantly lower molecular weight, distinguishing it from bulk depolymerization methods initiated from chain ends. Furthermore, we extend our investigation to polymethacrylate networks, demonstrating high extents of depolymerization. This innovative depolymerization strategy offers promising opportunities for the development of sustainable polymethacrylate materials, holding great potential for various applications in polymer science.
Collapse
Affiliation(s)
- Rhys W Hughes
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Megan E Lott
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Isabella S Zastrow
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - James B Young
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Tanmoy Maity
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
35
|
Zhou YN, Yong H, Guo R, Wang K, Li Z, Hua W, Zhou D. Self-reporting and Biodegradable Thermosetting Solid Polymer Electrolyte. Angew Chem Int Ed Engl 2024; 63:e202319003. [PMID: 38131604 DOI: 10.1002/anie.202319003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
To date, significant efforts have been dedicated to improve their ionic conductivity, thermal stability, and mechanical strength of solid polymer electrolytes (SPEs). However, direct monitoring of physical and chemical changes in SPEs is still lacking. Moreover, existing thermosetting SPEs are hardly degradable. Herein, by overcoming the limitation predicted by Flory theory, self-reporting and biodegradable thermosetting hyperbranched poly(β-amino ester)-based SPEs (HPAE-SPEs) are reported. HPAE is successfully synthesized through a well-controlled "A2+B4" Michael addition strategy and then crosslinked it in situ to produce HPAE-SPEs. The multiple tertiary aliphatic amines at the branching sites confer multicolour luminescence to HPAE-SPEs, enabling direct observation of its physical and chemical damage. After use, HPAE-SPEs can be rapidly hydrolysed into non-hazardous β-amino acids and polyols via self-catalysis. Optimized HPAE-SPE exhibits an ionic conductivity of 1.3×10-4 S/cm at 60 °C, a Na+ transference number (t N a + ${{t}_{Na}^{+}}$ ) of 0.67, a highly stable sodium plating-stripping behaviour and a low overpotential of ≈190 mV. This study establishes a new paradigm for developing SPEs by engineering multifunctional polymers. The self-reporting and biodegradable properties would greatly expand the scope of applications for SPEs.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Rui Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kaixuan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Weibo Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
36
|
Li K, Tran NV, Pan Y, Wang S, Jin Z, Chen G, Li S, Zheng J, Loh XJ, Li Z. Next-Generation Vitrimers Design through Theoretical Understanding and Computational Simulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302816. [PMID: 38058273 PMCID: PMC10837359 DOI: 10.1002/advs.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/03/2023] [Indexed: 12/08/2023]
Abstract
Vitrimers are an innovative class of polymers that boast a remarkable fusion of mechanical and dynamic features, complemented by the added benefit of end-of-life recyclability. This extraordinary blend of properties makes them highly attractive for a variety of applications, such as the automotive sector, soft robotics, and the aerospace industry. At their core, vitrimer materials consist of crosslinked covalent networks that have the ability to dynamically reorganize in response to external factors, including temperature changes, pressure variations, or shifts in pH levels. In this review, the aim is to delve into the latest advancements in the theoretical understanding and computational design of vitrimers. The review begins by offering an overview of the fundamental principles that underlie the behavior of these materials, encompassing their structures, dynamic behavior, and reaction mechanisms. Subsequently, recent progress in the computational design of vitrimers is explored, with a focus on the employment of molecular dynamics (MD)/Monte Carlo (MC) simulations and density functional theory (DFT) calculations. Last, the existing challenges and prospective directions for this field are critically analyzed, emphasizing the necessity for additional theoretical and computational advancements, coupled with experimental validation.
Collapse
Affiliation(s)
- Ke Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Nam Van Tran
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuqing Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sheng Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zhicheng Jin
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Zheng
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
37
|
Ferretti F, Damonte G, Cantamessa F, Arrigo R, Athanassiou A, Zych A, Fina A, Monticelli O. On a Biobased Epoxy Vitrimer from a Cardanol Derivative Prepared by a Simple Thiol-Epoxy "Click" Reaction. ACS OMEGA 2024; 9:1242-1250. [PMID: 38222589 PMCID: PMC10785085 DOI: 10.1021/acsomega.3c07459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2024]
Abstract
The development of this work lies in the relevant interest in epoxy resins, which, despite their wide use, do not meet the requirements for sustainable materials. Therefore, the proposed approach considers the need to develop environmentally friendly systems, in terms of both the starting material and the synthetic method applied as well as in terms of end-of-life. The above issues were taken into account by (i) using a monomer from renewable sources, (ii) promoting the formation of dynamic covalent bonds, allowing for material reprocessing, and (iii) evaluating the degradability of the material. Indeed, an epoxy derived from cardanol was used, which, for the first time, was applied in the development of a vitrimer system. The exploitation of a diboronic ester dithiol ([2,2'-(1,4-phenylene)-bis[4-mercaptan-1,3,2-dioxaborolane], DBEDT) as a cross-linker allowed the cross-linking reaction to be carried out without the use of solvents and catalysts through a thiol-epoxy "click" mechanism. The dynamicity of the network was demonstrated by gel fraction experiments and rheological and DMA measurements. In particular, the formation of a vitrimer was highlighted, characterized by low relaxation times (around 4 s at 70 °C) and an activation energy of ca. 48 kJ/mol. Moreover, the developed material, which is easily biodegradable in seawater, was found to show promising flame reaction behavior. Preliminary experiments demonstrated that, unlike an epoxy resin prepared from the same monomer and using a classical cross-linker, our boron-containing material exhibited no dripping under combustion conditions, a phenomenon that will allow this novel biobased system to be widely used.
Collapse
Affiliation(s)
- Federico Ferretti
- Dipartimento
di Chimica e Chimica Industriale, Università
degli studi di Genova, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Giacomo Damonte
- Dipartimento
di Chimica e Chimica Industriale, Università
degli studi di Genova, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Francesco Cantamessa
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Viale Teresa
Michel 5, 15121 Alessandria, Italy
| | - Rossella Arrigo
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Viale Teresa
Michel 5, 15121 Alessandria, Italy
| | | | - Arkadiusz Zych
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alberto Fina
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Viale Teresa
Michel 5, 15121 Alessandria, Italy
| | - Orietta Monticelli
- Dipartimento
di Chimica e Chimica Industriale, Università
degli studi di Genova, Via Dodecaneso 31, 16146 Genoa, Italy
| |
Collapse
|
38
|
Zhang Y, Yan H, Yu R, Yuan J, Yang K, Liu R, He Y, Feng W, Tian W. Hyperbranched Dynamic Crosslinking Networks Enable Degradable, Reconfigurable, and Multifunctional Epoxy Vitrimer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306350. [PMID: 37933980 PMCID: PMC10787098 DOI: 10.1002/advs.202306350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Degradation and reprocessing of thermoset polymers have long been intractable challenges to meet a sustainable future. Star strategies via dynamic cross-linking hydrogen bonds and/or covalent bonds can afford reprocessable thermosets, but often at the cost of properties or even their functions. Herein, a simple strategy coined as hyperbranched dynamic crosslinking networks (HDCNs) toward in-practice engineering a petroleum-based epoxy thermoset into degradable, reconfigurable, and multifunctional vitrimer is provided. The special characteristics of HDCNs involve spatially topological crosslinks for solvent adaption and multi-dynamic linkages for reversible behaviors. The resulting vitrimer displays mild room-temperature degradation to dimethylacetamide and can realize the cycling of carbon fiber and epoxy powder from composite. Besides, they have supra toughness and high flexural modulus, high transparency as well as fire-retardancy surpassing their original thermoset. Notably, it is noted in a chance-following that ethanol molecule can induce the reconstruction of vitrimer network by ester-exchange, converting a stiff vitrimer into elastomeric feature, and such material records an ultrahigh modulus (5.45 GPa) at -150 °C for their ultralow-temperature condition uses. This is shaping up to be a potentially sustainable advanced material to address the post-consumer thermoset waste, and also provide a newly crosslinked mode for the designs of high-performance polymer.
Collapse
Affiliation(s)
- Yuanbo Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ruizhi Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Junshan Yuan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kaiming Yang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Rui Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yanyun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
39
|
Si G, Li C, Chen M, Chen C. Polymer Multi-Block and Multi-Block + Strategies for the Upcycling of Mixed Polyolefins and Other Plastics. Angew Chem Int Ed Engl 2023; 62:e202311733. [PMID: 37850388 DOI: 10.1002/anie.202311733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Due to a continued rise in the production and use of plastic products, their end-of-life pollution has become a pressing global issue. One of the biggest challenges in plastics recycling is the separation of different polymers. Multi-block copolymers (MBCPs) represent an efficient strategy for the upcycling of mixed plastics via induced compatibilization, but this approach is limited by difficulties associated with synthesis and structural modification. In this contribution, several synthetic strategies are explored to prepare MBCPs with tunable microstructures, which were then used as compatibilizer additives to upcycle mixtures of polyolefins with other plastics. A multi-block+ strategy based on a reactive telechelic block copolymer platform was introduced, which enabled block extension during the in situ melt blending of mixed plastics, leading to better compatibilizing properties as well as better 3D printing capability. This strategy was also applicable to more complex ternary plastic blends. The polymer multi-block strategy enabled by versatile MBCPs synthesis and the multi-block+ strategy enabled by in situ block extension show exciting opportunities for the upcycling of mixed plastics.
Collapse
Affiliation(s)
- Guifu Si
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Min Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
40
|
Hou Y, Zhu G, Catt SO, Yin Y, Xu J, Blasco E, Zhao N. Closed-Loop Recyclable Silica-Based Nanocomposites with Multifunctional Properties and Versatile Processability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304147. [PMID: 37844996 PMCID: PMC10724396 DOI: 10.1002/advs.202304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Indexed: 10/18/2023]
Abstract
Most plastics originate from limited petroleum reserves and cannot be effectively recycled at the end of their life cycle, making them a significant threat to the environment and human health. Closed-loop chemical recycling, by depolymerizing plastics into monomers that can be repolymerized, offers a promising solution for recycling otherwise wasted plastics. However, most current chemically recyclable polymers may only be prepared at the gram scale, and their depolymerization typically requires harsh conditions and high energy consumption. Herein, it reports less petroleum-dependent closed-loop recyclable silica-based nanocomposites that can be prepared on a large scale and have a fully reversible polymerization/depolymerization capability at room temperature, based on catalysis of free aminopropyl groups with the assistance of diethylamine or ethylenediamine. The nanocomposites show glass-like hardness yet plastic-like light weight and toughness, exhibiting the highest specific mechanical strength superior even to common materials such as poly(methyl methacrylate), glass, and ZrO2 ceramic, as well as demonstrating multifunctionality such as anti-fouling, low thermal conductivity, and flame retardancy. Meanwhile, these nanocomposites can be easily processed by various plastic-like scalable manufacturing methods, such as compression molding and 3D printing. These nanocomposites are expected to provide an alternative to petroleum-based plastics and contribute to a closed-loop materials economy.
Collapse
Affiliation(s)
- Yi Hou
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| | - Guangda Zhu
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| | - Samantha O. Catt
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| | - Yuhan Yin
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Jian Xu
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| | - Ning Zhao
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| |
Collapse
|
41
|
Liu Z, Fang Z, Zheng N, Yang K, Sun Z, Li S, Li W, Wu J, Xie T. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat Chem 2023; 15:1773-1779. [PMID: 37640848 DOI: 10.1038/s41557-023-01308-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Polyurethane thermosets are indispensable to modern life, but their widespread use has become an increasingly pressing environmental burden. Current recycling approaches are economically unattractive and/or lead to recycled products of inferior properties, making their large-scale implementation unviable. Here we report a highly efficient chemical strategy for upcycling thermoset polyurethane foams that yields products of much higher economic values than the original material. Starting from a commodity foam, we show that the polyurethane network is chemically fragmented into a dissolvable mixture under mild conditions. We demonstrate that three-dimensional photo-printable resins with tunable material mechanical properties-which are superior to commercial high-performance counterparts-can be formulated with the addition of various network reforming additives. Our direct upcycling of commodity foams is economically attractive and can be implemented with ease, and the principle can be expanded to other commodity thermosets.
Collapse
Affiliation(s)
- Zenghe Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zizheng Fang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Kexuan Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Sujing Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Wei Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jingjun Wu
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
An T, Ryu H, Choi TL. Living Alternating Ring-Opening Metathesis Copolymerization of 2,3-Dihydrofuran to Provide Completely Degradable Polymers. Angew Chem Int Ed Engl 2023; 62:e202309632. [PMID: 37789610 DOI: 10.1002/anie.202309632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
2,3-Dihydrofuran (DHF) has recently been gaining significant attention as a comonomer in metathesis polymerization, thanks to its ability to provide the resultant polymer backbones with stimuli-responsive degradability. In this report, we present living alternating copolymerization of DHF with less reactive endo-tricyclo[4.2.2.02,5 ]deca-3,9-dienes (TDs) and endo-oxonorbornenes (oxoNBs). By carefully controlling the reactivity of both the Ru initiators and the monomers, we have achieved outstanding A, B-alternation (up to 98 %) under near stoichiometric DHF loading conditions. Notably, we have also found that the use of a more sterically hindered Ru initiator helps to attain polymer backbones with higher DHF incorporation and superior A, B-alternation. While preserving the living characteristics of DHF copolymerization, as evidenced by controlled molecular weights (up to 73.9 kDa), narrow dispersities (down to 1.05), and block copolymer formation, our DHF copolymers could be broken down to a single repeat unit level under acidic conditions. 1 H NMR analysis of the model copolymer revealed that after 24 hours of degradation, up to 80 % of the initial polymer was transformed into a single small molecule product, and after purification, up to 66 % of the degradation product was retrieved. This study provides a versatile approach to improve the alternation and degradability of DHF copolymers.
Collapse
Affiliation(s)
- Taeyang An
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hanseul Ryu
- Department of Chemistry, Seoul National University, 08826, Seoul, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
43
|
Su Z, Yu L, Cui L, Zhou G, Zhang X, Qiu X, Chen C, Wang X. Reconstruction of Cellulose Intermolecular Interactions from Hydrogen Bonds to Dynamic Covalent Networks Enables a Thermo-processable Cellulosic Plastic with Tunable Strength and Toughness. ACS NANO 2023; 17:21420-21431. [PMID: 37922190 DOI: 10.1021/acsnano.3c06175] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Its excellent renewability and biodegradability make cellulose an attractive resource to prepare fossil-based plastic alternatives. However, cellulose itself exhibits strong intermolecular hydrogen bond (H-bond) interactions, significantly restricting the mobility of cellulose chains, thus leading to poor thermo-processing performance. Here, we reconstructed the intermolecular interactions of cellulose chains via replacing the original H-bonds with dynamic covalent bonds. By this, cellulose can be easily thermo-processed into a cellulosic plastic under mild conditions (70 °C). Through adjusting the chemical structure of dynamic covalent networks, the cellulosic plastic shows tunable mechanical strength (3.0-33.5 MPa) and toughness (43-321 kJ m-2). The cellulosic plastic also exhibits excellent resistance to water, organic solvent, acid solution, alkali solution, and high temperature (>400 °C). Moreover, it owns good chemical and biological degradability and recyclability. This work provides an effective method to develop high-performance cellulosic plastics for fossil-based plastic substitution.
Collapse
Affiliation(s)
- Zhiping Su
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Lan Cui
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
44
|
Johnson AM, Johnson JA. Thermally Robust yet Deconstructable and Chemically Recyclable High-Density Polyethylene (HDPE)-Like Materials Based on Si-O Bonds. Angew Chem Int Ed Engl 2023:e202315085. [PMID: 37903133 DOI: 10.1002/anie.202315085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Polyethylene (PE) is the most widely produced synthetic polymer. By installing chemically cleavable bonds into the backbone of PE, it is possible to produce chemically deconstructable PE derivatives; to date, however, such designs have primarily relied on carbonyl- and olefin-related functional groups. Bifunctional silyl ethers (BSEs; SiR2 (OR'2 )) could expand the functional scope of PE mimics as they possess strong Si-O bonds and facile chemical tunability. Here, we report BSE-containing high-density polyethylene (HDPE)-like materials synthesized through a one-pot catalytic ring-opening metathesis polymerization (ROMP) and hydrogenation sequence. The crystallinity of these materials can be adjusted by varying the BSE concentration or the steric bulk of the Si-substituents, providing handles to control thermomechanical properties. Two methods for chemical recycling of HDPE mimics are introduced, including a circular approach that leverages acid-catalyzed Si-O bond exchange with 1-propanol. Additionally, despite the fact that the starting HDPE mimics were synthesized by chain-growth polymerization (ROMP), we show that it is possible to recover the molar mass and dispersity of recycled HDPE products using step-growth Si-O bond formation or exchange, generating high molecular weight recycled HDPE products with mechanical properties similar to commercial HDPE.
Collapse
Affiliation(s)
- Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Huang YS, Zhou Y, Zeng X, Zhang D, Wu S. Reversible Crosslinking of Commodity Polymers via Photocontrolled Metal-Ligand Coordination for High-Performance and Recyclable Thermoset Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305517. [PMID: 37401043 DOI: 10.1002/adma.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermoset plastics, highly desired for their stability, durability, and chemical resistance, are currently consumed in over 60 million tons annually across the globe, but they are difficult to recycle due to their crosslinked structures. The development of recyclable thermoset plastics is an important but challenging task. In this work, recyclable thermoset plastics are prepared by crosslinking a commodity polymer, polyacrylonitrile (PAN), with a small percentage of a Ru complex via nitrile-Ru coordination. PAN is obtained from industry and the Ru complex is synthesized in one step, which enables the production of recyclable thermoset plastics in an efficient way. In addition, the thermoset plastics exhibit impressive mechanical performance, boasting a Young's modulus of 6.3 GPa and a tensile strength of 109.8 MPa. Moreover, they can be de-crosslinked when exposed to both light and a solvent and can then be re-crosslinked upon heating. This reversible crosslinking mechanism enables the recycling of thermosets from a mixture of plastic waste. The preparation of recyclable thermosets from other commodity polymers such as poly(styrene-coacrylonitrile) (SAN) resins and polymer composites through reversible crosslinking is also demonstrated. This study shows that reversible crosslinking via metal-ligand coordination is a new strategy for designing recyclable thermosets using commodity polymers.
Collapse
Affiliation(s)
- Yun-Shuai Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zeng
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Dachuan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
46
|
AlFaraj Y, Mohapatra S, Shieh P, Husted KEL, Ivanoff DG, Lloyd EM, Cooper JC, Dai Y, Singhal AP, Moore JS, Sottos NR, Gomez-Bombarelli R, Johnson JA. A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime. ACS CENTRAL SCIENCE 2023; 9:1810-1819. [PMID: 37780353 PMCID: PMC10540282 DOI: 10.1021/acscentsci.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 10/03/2023]
Abstract
Thermosets present sustainability challenges that could potentially be addressed through the design of deconstructable variants with tunable properties; however, the combinatorial space of possible thermoset molecular building blocks (e.g., monomers, cross-linkers, and additives) and manufacturing conditions is vast, and predictive knowledge for how combinations of these molecular components translate to bulk thermoset properties is lacking. Data science could overcome these problems, but computational methods are difficult to apply to multicomponent, amorphous, statistical copolymer materials for which little data exist. Here, leveraging a data set with 101 examples, we introduce a closed-loop experimental, machine learning (ML), and virtual screening strategy to enable predictions of the glass transition temperature (Tg) of polydicyclopentadiene (pDCPD) thermosets containing cleavable bifunctional silyl ether (BSE) comonomers and/or cross-linkers with varied compositions and loadings. Molecular features and formulation variables are used as model inputs, and uncertainty is quantified through model ensembling, which together with heavy regularization helps to avoid overfitting and ultimately achieves predictions within <15 °C for thermosets with compositionally diverse BSEs. This work offers a path to predicting the properties of thermosets based on their molecular building blocks, which may accelerate the discovery of promising plastics, rubbers, and composites with improved functionality and controlled deconstructability.
Collapse
Affiliation(s)
- Yasmeen
S. AlFaraj
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States of America
| | - Somesh Mohapatra
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Peyton Shieh
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States of America
| | - Keith E. L. Husted
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States of America
| | - Douglass G. Ivanoff
- Department
of Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States of America
- The
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
of America
| | - Evan M. Lloyd
- The
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
of America
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States of America
| | - Julian C. Cooper
- The
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
of America
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States of America
| | - Yutong Dai
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States of America
| | - Avni P. Singhal
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Jeffrey S. Moore
- Department
of Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States of America
- The
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
of America
| | - Nancy R. Sottos
- Department
of Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States of America
- The
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
of America
| | - Rafael Gomez-Bombarelli
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Jeremiah A. Johnson
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
47
|
Yang S, Liu W, Guo J, Yang Z, Qiao Z, Zhang C, Li J, Xu J, Zhao N. Direct and Catalyst-Free Ester Metathesis Reaction for Covalent Adaptable Networks. J Am Chem Soc 2023; 145:20927-20935. [PMID: 37710975 DOI: 10.1021/jacs.3c06262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Thermosetting polymers possess excellent environmental resistance and mechanical properties but cannot be reprocessed due to their covalently cross-linked structures. Recycling of thermosets via the implantation of dynamic covalent bonds offers a promising solution. Here, we report the direct and catalyst-free ester metathesis of N-acyloxyphthalimide (NAPI) at about 100 °C without the requirement of hydroxyl groups and its utilization for the fabrication of covalent adaptable networks (CANs). NAPI metathesis has interesting sigmoid kinetics with a fast exchange rate, which proceeds via a free radical chain mechanism, guaranteeing a fast associative exchange under a rather low dissociation. The bifunctional molecule of NAPI as both the radical precursor and substrate is the key to the dissociatively initiated associative (DAssociative) mechanism and kinetic behavior. Based on the efficient NAPI metathesis, polyester networks, poly(N-acyloxyphthalimides) (PNAPIs), show excellent malleability. Notably, PNAPIs exhibit exceptional solvent resistance and mechanical stability at elevated temperatures owing to the unique DAssociative mechanism, suggesting exciting opportunities for designing recyclable thermosetting polymers.
Collapse
Affiliation(s)
- Shijia Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenguang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jikun Li
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Čamdžić L, Stache EE. Controlled Radical Polymerization of Acrylates and Isocyanides Installs Degradable Functionality into Novel Copolymers. J Am Chem Soc 2023; 145:20311-20318. [PMID: 37669233 DOI: 10.1021/jacs.3c04595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Installing ketones into a polymer backbone is a known method for introducing photodegradability into polymers; however, most current methods are limited to ethylene-carbon monoxide copolymerization. Here we use isocyanides in place of carbon monoxide in a copolymerization strategy to access degradable nonalternating poly(ketones) that either maintain or enhance the thermal properties. A cobalt-mediated radical polymerization of acrylates and isocyanides synthesizes nonalternating poly(acrylate-co-isocyanide) copolymers with tunable incorporation using monomer feed ratios. The kinetic product of the polymerization is a dynamic β-imine ester that tautomerizes to the β-enamine ester. Hydrolysis of this copolymer affords a third copolymer microstructure─the elusive nonalternating poly(ketone)─from a single copolymerization strategy. Analysis of the copolymer properties demonstrates tunable thermal properties with the degree of incorporation. Finally, we show that poly(acrylate-co-isocyanide) and poly(acrylate-co-ketone) are photodegradable with 390 nm light, enabling chain cleavage.
Collapse
Affiliation(s)
- Lejla Čamdžić
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
49
|
Zhang X, Guo W, Zhang C, Zhang X. A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride. Nat Commun 2023; 14:5423. [PMID: 37669954 PMCID: PMC10480228 DOI: 10.1038/s41467-023-41136-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
Our society is pursuing chemically recyclable polymers to accelerate the green revolution in plastics. Here, we develop a recyclable polyester library from the alternating copolymerization of aldehyde and cyclic anhydride. Although these two monomer sets have little or no thermodynamic driving force for homopolymerization, their copolymerization demonstrates the unexpected alternating characteristics. In addition to readily available monomers, the method is performed under mild conditions, uses common Lewis/Brønsted acids as catalysts, achieves the facile tuning of polyester structure using two distinct monomer sets, and yields 60 polyesters. Interestingly, the copolymerization exhibits the chemical reversibility attributed to its relatively low enthalpy, which makes the resulting polyesters perform closed-loop recycling to monomers at high temperatures. This study provides a modular, efficient, and facile synthesis of recyclable polyesters using sustainable monomers.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenqi Guo
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
50
|
Brown CM, Husted KEL, Wang Y, Kilgallon LJ, Shieh P, Zafar H, Lundberg DJ, Johnson JA. Thiol-triggered deconstruction of bifunctional silyl ether terpolymers via an S NAr-triggered cascade. Chem Sci 2023; 14:8869-8877. [PMID: 37621440 PMCID: PMC10445473 DOI: 10.1039/d3sc02868b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023] Open
Abstract
While Si-containing polymers can often be deconstructed using chemical triggers such as fluoride, acids, and bases, they are resistant to cleavage by mild reagents such as biological nucleophiles, thus limiting their end-of-life options and potential environmental degradability. Here, using ring-opening metathesis polymerization, we synthesize terpolymers of (1) a "functional" monomer (e.g., a polyethylene glycol macromonomer or dicyclopentadiene); (2) a monomer containing an electrophilic pentafluorophenyl (PFP) substituent; and (3) a cleavable monomer based on a bifunctional silyl ether . Exposing these polymers to thiols under basic conditions triggers a cascade of nucleophilic aromatic substitution (SNAr) at the PFP groups, which liberates fluoride ions, followed by cleavage of the backbone Si-O bonds, inducing polymer backbone deconstruction. This method is shown to be effective for deconstruction of polyethylene glycol (PEG) based graft terpolymers in organic or aqueous conditions as well as polydicyclopentadiene (pDCPD) thermosets, significantly expanding upon the versatility of bifunctional silyl ether based functional polymers.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Keith E L Husted
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Yuyan Wang
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Hadiqa Zafar
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|