1
|
Bae JW, Yi JH, Choe SY, Li Y, Jung MW. Cortical VIP neurons as a critical node for dopamine actions. SCIENCE ADVANCES 2025; 11:eadn3221. [PMID: 39742499 DOI: 10.1126/sciadv.adn3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Dopamine modulates a wide range of cognitive processes in the prefrontal cortex, but the underlying mechanisms remain unclear. Here, we examined the roles of prefrontal vasoactive intestinal polypeptide (VIP)-expressing neurons and their D1 receptors (D1Rs) in working memory using a delayed match-to-sample task in mice. VIP neurons conveyed robust working-memory signals, and their inactivation impaired behavioral performance. Moreover, selective knockdown of D1Rs in VIP neurons also resulted in impaired performance, indicating the critical role of VIP neurons and their D1Rs in supporting working memory. Additionally, we found that dopamine release dynamics during the delay period varied depending on the target location. Furthermore, dopaminergic terminal stimulation induced a contralateral response bias and enhanced neuronal target selectivity in a laterality-dependent manner. These results suggest that prefrontal dopamine modulates behavioral responses and delay-period activity based on laterality. Overall, these findings shed light on dopamine-modulated prefrontal neural processes underlying higher-order cognitive functions.
Collapse
Affiliation(s)
- Jung Won Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Seo Yeon Choe
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
2
|
Park AJ. Novelty triggers time-dependent theta oscillatory dynamics in cortical-hippocampal-midbrain circuitry. Mol Brain 2024; 17:94. [PMID: 39696423 DOI: 10.1186/s13041-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Rapid adaptation to novel environments is crucial for survival, and this ability is impaired in many neuropsychiatric disorders. Understanding neural adaptation to novelty exposure therefore has therapeutic implications. Here, I found that novelty induces time-dependent theta (4-12Hz) oscillatory dynamics in brain circuits including the medial prefrontal cortex (mPFC), ventral hippocampus (vHPC), and ventral tegmental area (VTA), but not dorsal hippocampus (dHPC), as mice adapt to a novel environment. Local field potential (LFP) recordings were performed while mice were freely behaving in a novel or a familiar arena for 10 min. Initially, mice exhibited increased exploratory behavior upon exposure to novelty, which gradually decreased to levels observed in mice exposed to the familiar arena. Over the same time course, the mPFC, vHPC, and VTA displayed progressively increasing theta power through novelty exposure. Additionally, theta coherence and theta phase synchrony measures demonstrated that novelty weakened the connectivity between these areas, which then gradually strengthened to the level observed in the familiar group. Conversely, mice exposed to the familiar arena showed steady and consistent behavior as well as theta dynamics in all areas. Treatment with a dopamine D1-receptor (D1R) antagonist in the vHPC disrupted neurophysiological adaptation to novelty specifically in the vHPC-mPFC and vHPC-VTA circuits, without affecting behavior. Thus, novelty induces distinct theta dynamics that are not readily dictated by behavior in the mPFC, vHPC, and VTA circuits, a process mediated by D1Rs in the vHPC. The observed time-dependent circuit dynamics in the key learning and memory circuit would provide new insights for treating neuropsychiatric disorders that often show impaired novelty processing.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea.
- The Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Zhao Y, Peng Y, Pan Y, Lv Y, Zhou H, Wu J, Gong J, Wang X. The role of ventral hippocampal-medial prefrontal glutamatergic pathway on the non-affected side in post-stroke cognitive impairment. Brain Res 2024; 1845:149168. [PMID: 39153591 DOI: 10.1016/j.brainres.2024.149168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Elucidate the pathogenesis mechanism of post-stroke cognitive impairment (PSCI) can help to develop precision interventions. In this study, we established a mouse model of PSCI using the photochemical method, and behavioral tests including Y-maze and Novel object recognition task for accessing cognitive impairment were observed at week 2 post-stroke. Besides, synaptic plasticity, theta nerve oscillatory and the activity of glutamatergic neurons related to the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere (contralateral hemisphere to the lesion site) were observed. The result indicated the cognitive function declined at week 2 post-stroke. Synaptic plasticity, theta nerve oscillatory synchronization and the activity of glutamatergic neurons of the ventral hippocampal-medial prefrontal glutamatergic neural pathway in the non-affected hemisphere was down-regulated in the PSCI group compared to those of the SHAM group. Therefore, we concluded that the declined function of the ventral hippocampal-medial prefrontal glutamatergic pathway in the non-affected hemisphere is a biomarker in the occurrence of cognitive dysfunction after stroke.
Collapse
Affiliation(s)
- Yuehan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, Shandong, China; Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, Guangdong, China.
| | - Yao Pan
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, Shandong, China; Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Yichen Lv
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Hongyu Zhou
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Jiahao Wu
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Jianwei Gong
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Xin Wang
- Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, Jiangsu, China; Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
4
|
Yang C, Zhang H, Tian J, Li Z, Liu R, Huang G, Zhao L. Structural alteration of hippocampal subfields in type 2 diabetes mellitus patients with dyslipidemia. Brain Res 2024; 1850:149368. [PMID: 39622483 DOI: 10.1016/j.brainres.2024.149368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE To explore alterations in hippocampal subfield volumes in type 2 diabetes mellitus (T2DM) patients with dyslipidemia using hippocampal subfield segmentation. METHODS A total of 99 T2DM patients were prospectively recruited and divided into two groups based on the presence or absence of dyslipidemia: the T2DM dyslipidemia group and the T2DM normal lipidemia group. Additionally, 57 healthy volunteers were recruited as the healthy control (HC) group. General clinical data and cognitive psychological scale scores were collected. Subgroup analyses of T2DM patients were conducted based on the presence or absence of mild cognitive impairment (MCI). Hippocampal subfield volumes were analyzed using a general linear model with post-hoc Bonferroni correction. Significant differential hippocampal subfields were further analyzed in subgroups using the general linear model with post-hoc Bonferroni tests. Partial correlation analyses were performed to assess correlations between subfield-specific volumes and lipid and glucose metabolism indicators, as well as cognitive psychological scale scores. P-values from partial correlation analyses were corrected using the false discovery rate (FDR). RESULTS Volumes of the bilateral hippocampal tail, left presubiculum_body, and right subiculum_body were significantly reduced in the T2DM dyslipidemia group compared to both the HC group and the T2DM normal lipidemia group. Post-hoc analyses revealed that the T2DM dyslipidemia group had the smallest hippocampal subfield volumes. Further subgroup analysis showed that T2DM dyslipidemia patients with MCI exhibited the most pronounced volume reductions in the bilateral hippocampal tail and right subiculum_body. After FDR correction, partial correlation analysis indicated that, in the T2DM dyslipidemia group, the left hippocampal tail volume was positively correlated with the Montreal Cognitive Assessment score. In the T2DM dyslipidemia without MCI group, the volume of the right subiculum_body was negatively correlated with fasting insulin levels and the insulin resistance index, but positively correlated with total cholesterol and low-density lipoprotein cholesterol levels. In T2DM patients with normal lipidemia without MCI, the volume of the right subiculum_body was positively correlated with TC levels. CONCLUSION T2DM patients with dyslipidemia, especially those with MCI, exhibit significant atrophy in hippocampal subfield volumes, with correlations observed between lipid levels and hippocampal subfield volume changes. These findings suggest that lipid alterations may play an essential role in hippocampal structural abnormalities and cognitive impairment in T2DM patients. This study provides new insights into the neuropathophysiological mechanisms underlying brain alterations and cognitive decline in T2DM.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Huiyan Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, China
| | - Jing Tian
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhoule Li
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Ruifang Liu
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
5
|
Chimento M, Alarcón-Nieto G, Aplin LM. Immigrant birds learn from socially observed differences in payoffs when their environment changes. PLoS Biol 2024; 22:e3002699. [PMID: 39541398 PMCID: PMC11563421 DOI: 10.1371/journal.pbio.3002699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Longstanding theory predicts that strategic flexibility in when and how to use social information can help individuals make adaptive decisions, especially when environments are temporally or spatially variable. A short-term increase in reliance on social information under these conditions has been experimentally shown in primates, including humans, but whether this occurs in other taxa is unknown. We asked whether migration between spatially variable environments affected social information use with a large-scale cultural diffusion experiment with wild great tits (Parus major) in captivity, a small passerine bird that can socially learn novel behaviors. We simulated an immigration event where knowledgeable birds were exchanged between groups with opposing preferences for a socially learned foraging puzzle, living in similar or different environments. We found evidence that both immigrants and residents were influenced by social information and attended to the rewards that others received. Our analysis supported the use of a payoff-biased social learning by immigrants when both resources and habitat features were spatially variable. In contrast, immigrants relied more-so on individual learning when payoffs or the environment were unchanged. In summary, our results suggest that great tits assess the payoffs others receive and are more influenced by socially observed differences in payoffs when environmental cues differ in their new environment. Our results provide experimental support for the hypothesis that spatial variability is a strong driver for the evolution of social learning strategies.
Collapse
Affiliation(s)
- Michael Chimento
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Gustavo Alarcón-Nieto
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, Konstanz University, Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- International Max Planck Research School for Quantitative Behavior, Ecology and Evolution, Radolfzell, Germany
| | - Lucy M. Aplin
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
6
|
Yang C, Zhang H, Ma Z, Fan Y, Xu Y, Tan J, Tian J, Cao J, Zhang W, Huang G, Zhao L. Structural and functional alterations of the hippocampal subfields in T2DM with mild cognitive impairment and insulin resistance: A prospective study. J Diabetes 2024; 16:e70029. [PMID: 39537579 PMCID: PMC11560383 DOI: 10.1111/1753-0407.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/26/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR) and is often accompanied by mild cognitive impairment (MCI). The detrimental effects of T2DM and IR on the hippocampus have been extensively demonstrated. Few studies have examined the effects of IR on structure and function of hippocampal subfields in T2DM-MCI patients. METHOD A total of 104 T2DM patients were recruited in this prospective study and divided into four groups (T2DM-MCI-higherIR, n = 17; T2DM-MCI-lowerIR, n = 32; T2DM-nonMCI-higherIR, n = 19; T2DM-nonMCI-lowerIR, n = 36). Structure and function MRI data were captured. Clinical variables and neuropsychological scores were determined for all participants. Hippocampal subfield volume and functional connectivity were compared among four groups. Partial correlation analysis was performed between imaging indicators, clinical variables, and neuropsychological scores in all patients. RESULTS T2DM-MCI-higher IR group had the smallest volumes of bilateral hippocampal tail, right subiculum-body, right GC-ML-DG-body, and right CA4-body. IR in right hippocampal tail, right subiculum-body, and right GC-ML-DG-body exerted main effect. Furthermore, elevated functional connectivity was found between right subiculum-body and bilateral dorsolateral prefrontal cortex and right anterior cingulate-medial prefrontal cortex. Hippocampal subfield volume positively correlates with total cholesterol and triglycerides and negatively correlates with fasting insulin. CONCLUSION The present study found that T2DM-MCI patients have structural and functional alterations in hippocampal subfields, and IR is a negative factor influencing the alteration of hippocampal subfields volume. These findings support the importance of IR in T2DM-MCI patients and might be potential neuroimaging biomarkers of cerebral impairment in T2DM-MCI patients.
Collapse
Affiliation(s)
- Chen Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Huiyan Zhang
- School of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Zihan Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Yanjun Fan
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Yanan Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Jian Tan
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital)Gansu University of Chinese MedicineLanzhouChina
| | - Jing Tian
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Jiancang Cao
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Wenwen Zhang
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Gang Huang
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| | - Lianping Zhao
- Department of RadiologyGansu Provincial HospitalLanzhouChina
| |
Collapse
|
7
|
Wingert JC, Ramos JD, Reynolds SX, Gonzalez AE, Rose RM, Hegarty DM, Aicher SA, Bailey LG, Brown TE, Abbas AI, Sorg BA. Perineuronal Nets in the Rat Medial Prefrontal Cortex Alter Hippocampal-Prefrontal Oscillations and Reshape Cocaine Self-Administration Memories. J Neurosci 2024; 44:e0468242024. [PMID: 38991791 PMCID: PMC11340292 DOI: 10.1523/jneurosci.0468-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory. However, self-administration memories are more difficult to disrupt. Here we report in male rats that ABC treatment in the mPFC attenuated the consolidation and blocked the reconsolidation of a cocaine self-administration memory. However, reconsolidation was blocked when rats were given a novel, but not familiar, type of retrieval session. Furthermore, ABC treatment prior to, but not after, memory retrieval blocked reconsolidation. This same treatment did not alter a sucrose memory, indicating specificity for cocaine-induced memory. In naive rats, ABC treatment in the mPFC altered levels of PV intensity and cell firing properties. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during the novel retrieval session revealed that ABC prevented reward-associated increases in high-frequency oscillations and synchrony of these oscillations between the dHIP and mPFC. Together, this is the first study to show that ABC treatment disrupts reconsolidation of the original memory when combined with a novel retrieval session that elicits coupling between the dHIP and mPFC. This coupling after ABC treatment may serve as a fundamental signature for how to disrupt reconsolidation of cocaine memories and reduce relapse.
Collapse
Affiliation(s)
- Jereme C Wingert
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | - Jonathan D Ramos
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | | | - Angela E Gonzalez
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
- Program in Neuroscience, Washington State University, Vancouver, Washington 98686
| | - R Mae Rose
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
| | - Deborah M Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Lydia G Bailey
- Program in Neuroscience, Washington State University, Pullman, Washington 99164
| | - Travis E Brown
- Program in Neuroscience, Washington State University, Pullman, Washington 99164
| | - Atheir I Abbas
- Departments of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
- Research Division, VA Portland Health Care System, Portland, Oregon 97239
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon 97232
- Program in Neuroscience, Washington State University, Vancouver, Washington 98686
| |
Collapse
|
8
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2024:10.1007/s12264-024-01270-7. [PMID: 39120643 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Dubinsky JM, Hamid AA. The neuroscience of active learning and direct instruction. Neurosci Biobehav Rev 2024; 163:105737. [PMID: 38796122 DOI: 10.1016/j.neubiorev.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Throughout the educational system, students experiencing active learning pedagogy perform better and fail less than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, direct instruction comprehensively describes academic content, while active learning provides structured opportunities for learners to explore, apply, and manipulate content. Synaptic plasticity and its modulation by arousal or novelty are central to all learning and both approaches. As a form of social learning, direct instruction relies upon working memory. The reinforcement learning circuit, associated agency, curiosity, and peer-to-peer social interactions combine to enhance motivation, improve retention, and build higher-order-thinking skills in active learning environments. When working memory becomes overwhelmed, additionally engaging the reinforcement learning circuit improves retention, providing an explanation for the benefits of active learning. This analysis provides a mechanistic examination of how emerging neuroscience principles might inform pedagogical choices at all educational levels.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Arif A Hamid
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Bhandari K, Kanodia H, Donato F, Caroni P. Selective vulnerability of the ventral hippocampus-prelimbic cortex axis parvalbumin interneuron network underlies learning deficits of fragile X mice. Cell Rep 2024; 43:114124. [PMID: 38630591 DOI: 10.1016/j.celrep.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
High-penetrance mutations affecting mental health can involve genes ubiquitously expressed in the brain. Whether the specific patterns of dysfunctions result from ubiquitous circuit deficits or might reflect selective vulnerabilities of targetable subnetworks has remained unclear. Here, we determine how loss of ubiquitously expressed fragile X mental retardation protein (FMRP), the cause of fragile X syndrome, affects brain networks in Fmr1y/- mice. We find that in wild-type mice, area-specific knockout of FMRP in the adult mimics behavioral consequences of area-specific silencing. By contrast, the functional axis linking the ventral hippocampus (vH) to the prelimbic cortex (PreL) is selectively affected in constitutive Fmr1y/- mice. A chronic alteration in late-born parvalbumin interneuron networks across the vH-PreL axis rescued by VIP signaling specifically accounts for deficits in vH-PreL theta-band network coherence, ensemble assembly, and learning functions of Fmr1y/- mice. Therefore, vH-PreL axis function exhibits a selective vulnerability to loss of FMRP in the vH or PreL, leading to learning and memory dysfunctions in fragile X mice.
Collapse
Affiliation(s)
- Komal Bhandari
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Harsh Kanodia
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
11
|
McDonald KM, Schantell M, Horne LK, John JA, Rempe MP, Glesinger R, Okelberry HJ, Coutant AT, Springer SD, Mansouri A, Embury CM, Arif Y, Wilson TW. The neural oscillations serving task switching are altered in cannabis users. J Psychopharmacol 2024; 38:471-480. [PMID: 38418434 PMCID: PMC11488983 DOI: 10.1177/02698811241235204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
BACKGROUND Regular cannabis is known to impact higher-order cognitive processes such as attention, but far less is known regarding cognitive flexibility, a component of executive function. Moreover, whether such changes are related to aberrations in the neural oscillatory dynamics serving flexibility remains poorly understood. AIMS Quantify the neural oscillatory dynamics serving cognitive flexibility by having participants complete a task-switching paradigm during magnetoencephalography (MEG). Probe whole-brain maps to identify alterations in chronic cannabis users relative to nonusers and determine how these alterations relate to the degree of cannabis use involvement. METHODS In all, 25 chronic cannabis users and 30 demographically matched nonuser controls completed neuropsychological testing, an interview regarding their substance use, a urinalysis, and a task switch paradigm during MEG. Time-frequency windows of interest were identified using a data-driven statistical approach and these were imaged using a beamformer. Whole-brain neural switch cost maps were computed by subtracting the oscillatory maps of the no-switch condition from the switch condition per participant. These were examined for group differences. RESULTS Cannabis users had weaker theta switch cost responses in the dorsolateral and dorsomedial prefrontal cortices, while nonusers showed the typical pattern of greater recruitment during switch relative to no switch trials. In addition, theta activity in the dorsomedial prefrontal cortex was significantly correlated with cannabis use involvement. CONCLUSIONS Cannabis users exhibited altered theta switch cost activity compared to nonusers in prefrontal cortical regions, which are critical for cognitive flexibility. This activity scaled with cannabis use involvement, indicating a link between cannabis use and aberrant oscillatory activity underlying cognitive flexibility.
Collapse
Affiliation(s)
- Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amirsalar Mansouri
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Gao M, Wang F, Sun C, Zhang S, Su R. Effects of olanzapine on hippocampal CA3 and the prefrontal cortex local field potentials. Eur J Pharmacol 2024; 969:176396. [PMID: 38325793 DOI: 10.1016/j.ejphar.2024.176396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
Olanzapine is an antipsychotic drug applied in psychiatry to treat psychoses, especially schizophrenia and schizoaffective disorders with similar or better improvement than haloperidol and risperidone in the treatment of depressive and negative symptoms. The effect of olanzapine on neural synchrony remains to be explored. We investigated the effects of olanzapine on gamma oscillations in the CA3 region of the hippocampus and frontal association cortex. Olanzapine reduced carbachol (CCh)-induced gamma oscillation power in CA3 slice and gamma oscillation power in the frontal association cortex in vivo. The power of theta oscillations was increased in the presence of olanzapine. The phase amplitude coupling of theta and gamma wave was strengthened by the administration of olanzapine in the frontal association cortex in vivo. Taken together, these results show that olanzapine modulates local field potential and the neuronal activity.
Collapse
Affiliation(s)
- Mingwei Gao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Fuqi Wang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Chuanyao Sun
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shuzhuo Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Ruibin Su
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
13
|
Adeyelu T, Vaughn T, Ogundele OM. VTA Excitatory Neurons Control Reward-driven Behavior by Modulating Infralimbic Cortical Firing. Neuroscience 2024; 548:50-68. [PMID: 38513762 DOI: 10.1016/j.neuroscience.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
The functional dichotomy of anatomical regions of the medial prefrontal cortex (mPFC) has been tested with greater certainty in punishment-driven tasks, and less so in reward-oriented paradigms. In the infralimbic cortex (IL), known for behavioral suppression (STOP), tasks linked with reward or punishment are encoded through firing rate decrease or increase, respectively. Although the ventral tegmental area (VTA) is the brain region governing reward/aversion learning, the link between its excitatory neuron population and IL encoding of reward-linked behavioral expression is unclear. Here, we present evidence that IL ensembles use a population-based mechanism involving broad inhibition of principal cells at intervals when reward is presented or expected. The IL encoding mechanism was consistent across multiple sessions with randomized rewarded target sites. Most IL neurons exhibit FR (Firing Rate) suppression during reward acquisition intervals (T1), and subsequent exploration of previously rewarded targets when the reward is omitted (T2). Furthermore, FR suppression in putative IL ensembles persisted for intervals that followed reward-linked target events. Pairing VTA glutamate inhibition with reward acquisition events reduced the weight of reward-target association expressed as a lower affinity for previously rewarded targets. For these intervals, fewer IL neurons per mouse trial showed FR decrease and were accompanied by an increase in the percentage of units with no change in FR. Together, we conclude that VTA glutamate neurons are likely involved in establishing IL inhibition states that encode reward acquisition, and subsequent reward-target association.
Collapse
Affiliation(s)
- Tolulope Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, United States
| | - Tashonda Vaughn
- Department of Environmental Toxicology, College of Agriculture, Southern University A&M College, Baton Rouge, LA 70813, United States
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, United States.
| |
Collapse
|
14
|
Monosov IE. Curiosity: primate neural circuits for novelty and information seeking. Nat Rev Neurosci 2024; 25:195-208. [PMID: 38263217 DOI: 10.1038/s41583-023-00784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
For many years, neuroscientists have investigated the behavioural, computational and neurobiological mechanisms that support value-based decisions, revealing how humans and animals make choices to obtain rewards. However, many decisions are influenced by factors other than the value of physical rewards or second-order reinforcers (such as money). For instance, animals (including humans) frequently explore novel objects that have no intrinsic value solely because they are novel and they exhibit the desire to gain information to reduce their uncertainties about the future, even if this information cannot lead to reward or assist them in accomplishing upcoming tasks. In this Review, I discuss how circuits in the primate brain responsible for detecting, predicting and assessing novelty and uncertainty regulate behaviour and give rise to these behavioural components of curiosity. I also briefly discuss how curiosity-related behaviours arise during postnatal development and point out some important reasons for the persistence of curiosity across generations.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
15
|
Wingert JC, Ramos JD, Reynolds SX, Gonzalez AE, Rose RM, Hegarty DM, Aicher SA, Bailey LG, Brown TE, Abbas AI, Sorg BA. Perineuronal nets in the rat medial prefrontal cortex alter hippocampal-prefrontal oscillations and reshape cocaine self-administration memories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577568. [PMID: 38370716 PMCID: PMC10871211 DOI: 10.1101/2024.02.05.577568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement behavior in rodent models of cocaine use disorder. Output from the mPFC is modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets (PNNs). Here we tested whether chondroitinase ABC (ABC)- mediated removal of PNNs prevented the acquisition or reconsolidation of a cocaine self-administration memory. ABC injections into the dorsal mPFC prior to training attenuated the acquisition of cocaine self-administration. Also, ABC given 3 days prior to but not 1 hr after memory reactivation blocked cue-induced reinstatement. However, reduced reinstatement was present only in rats given a novel reactivation contingency, suggesting that PNNs are required for the updating of a familiar memory. In naive rats, ABC injections into mPFC did not alter excitatory or inhibitory puncta on PV cells but reduced PV intensity. Whole-cell recordings revealed a greater inter-spike interval 1 hr after ABC, but not 3 days later. In vivo recordings from the mPFC and dorsal hippocampus (dHIP) during novel memory reactivation revealed that ABC in the mPFC prevented reward-associated increases in beta and gamma activity as well as phase-amplitude coupling between the dHIP and mPFC. Together, our findings show that PNN removal attenuates the acquisition of cocaine self-administration memories and disrupts reconsolidation of the original memory when combined with a novel reactivation session. Further, reduced dHIP/mPFC coupling after PNN removal may serve as a key biomarker for how to disrupt reconsolidation of cocaine memories and reduce relapse.
Collapse
|
16
|
Xia F, Fascianelli V, Vishwakarma N, Ghinger FG, Fusi S, Kheirbek MA. Identifying and modulating neural signatures of stress susceptibility and resilience enables control of anhedonia. RESEARCH SQUARE 2024:rs.3.rs-3581329. [PMID: 38343839 PMCID: PMC10854313 DOI: 10.21203/rs.3.rs-3581329/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Anhedonia is a core aspect of major depressive disorder. Traditionally viewed as a blunted emotional state in which individuals are unable to experience joy, anhedonia also diminishes the drive to seek rewards and the ability to value and learn about them 1-4.The neural underpinnings of anhedonia and how this emotional state drives related behavioral changes remain unclear. Here, we investigated these questions by taking advantage of the fact that when mice are exposed to traumatic social stress, susceptible animals become socially withdrawn and anhedonic, where they cease to seek high-value rewards, while others remain resilient. By performing high density electrophysiological recordings and comparing neural activity patterns of these groups in the basolateral amygdala (BLA) and ventral CA1 (vCA1) of awake behaving animals, we identified neural signatures of susceptibility and resilience to anhedonia. When animals actively sought rewards, BLA activity in resilient mice showed stronger discrimination between upcoming reward choices. In contrast, susceptible mice displayed a rumination-like signature, where BLA neurons encoded the intention to switch or stay on a previously chosen reward. When animals were at rest, the spontaneous BLA activity of susceptible mice was higher dimensional than in controls, reflecting a greater number of distinct neural population states. Notably, this spontaneous activity allowed us to decode group identity and to infer if a mouse had a history of stress better than behavioral outcomes alone. Finally, targeted manipulation of vCA1 inputs to the BLA in susceptible mice rescued dysfunctional neural dynamics, amplified dynamics associated with resilience, and reversed their anhedonic behavior. This work reveals population-level neural signatures that explain individual differences in responses to traumatic stress, and suggests that modulating vCA1-BLA inputs can enhance resilience by regulating these dynamics.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Valeria Fascianelli
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
| | - Nina Vishwakarma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
| | - Frances Grace Ghinger
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, NY, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, NY, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
17
|
Ruelas M, Medina-Ceja L, Fuentes-Aguilar RQ. A scoping review of the relationship between alcohol, memory consolidation and ripple activity: An overview of common methodologies to analyse ripples. Eur J Neurosci 2023; 58:4137-4154. [PMID: 37827165 DOI: 10.1111/ejn.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Alcohol abuse is not only responsible for 5.3% of the total deaths in the world but also has a substantial impact on neurological and memory disabilities throughout the population. One extensively studied brain area involved in cognitive functions is the hippocampus. Evidence in several rodent models has shown that ethanol produces cognitive impairment in hippocampal-dependent tasks and that the damage is varied according to the stage of development at which the rodent was exposed to ethanol and the dose. To the authors' knowledge, there is a biomarker for cognitive processes in the hippocampus that remains relatively understudied in association with memory impairment by alcohol administration. This biomarker is called sharp wave-ripples (SWRs) which are synchronous neuronal population events that are well known to be involved in memory consolidation. Methodologies for facilitated or automatic identification of ripples and their analysis have been reported for a wider bandwidth than SWRs. This review is focused on communicating the state of the art about the relationship between alcohol, memory consolidation and ripple activity, as well as the use of the common methodologies to identify SWRs automatically.
Collapse
Affiliation(s)
- Marina Ruelas
- School of Engineering and Sciences, Tecnológico de Monterrey, Zapopan, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Zapopan, Jalisco, Mexico
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Zapopan, Jalisco, Mexico
| |
Collapse
|
18
|
Bakoyiannis I, Ducourneau EG, Parkes SL, Ferreira G. Pathway specific interventions reveal the multiple roles of ventral hippocampus projections in cognitive functions. Rev Neurosci 2023; 34:825-838. [PMID: 37192533 DOI: 10.1515/revneuro-2023-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Since the 1950s study of Scoville and Milner on the case H.M., the hippocampus has attracted neuroscientists' attention. The hippocampus has been traditionally divided into dorsal and ventral parts, each of which projects to different brain structures and mediates various functions. Despite a predominant interest in its dorsal part in animal models, especially regarding episodic-like and spatial cognition, recent data highlight the role of the ventral hippocampus (vHPC), as the main hippocampal output, in cognitive processes. Here, we review recent studies conducted in rodents that have used advanced in vivo functional techniques to specifically monitor and manipulate vHPC efferent pathways and delineate the roles of these specific projections in learning and memory processes. Results highlight that vHPC projections to basal amygdala are implicated in emotional memory, to nucleus accumbens in social memory and instrumental actions and to prefrontal cortex in all the above as well as in object-based memory. Some of these hippocampal projections also modulate feeding and anxiety-like behaviours providing further evidence that the "one pathway-one function" view is outdated and future directions are proposed to better understand the role of hippocampal pathways and shed further light on its connectivity and function.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33077 Bordeaux, France
| |
Collapse
|
19
|
Xia F, Fascianelli V, Vishwakarma N, Ghinger FG, Fusi S, Kheirbek MA. Neural signatures of stress susceptibility and resilience in the amygdala-hippocampal network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563652. [PMID: 37961124 PMCID: PMC10634760 DOI: 10.1101/2023.10.23.563652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The neural dynamics that underlie divergent anhedonic responses to stress remain unclear. Here, we identified neuronal dynamics in an amygdala-hippocampal circuit that distinguish stress resilience and susceptibility. In a reward-choice task, basolateral amygdala (BLA) activity in resilient mice showed enhanced discrimination of upcoming reward choices. In contrast, a rumination-like signature emerged in the BLA of susceptible mice; a linear decoder could classify the intention to switch or stay on a previously chosen reward. Spontaneous activity in the BLA of susceptible mice was higher dimensional than controls, reflecting the exploration of a larger number of distinct neural states. Manipulation of vCA1-BLA inputs rescued dysfunctional neural dynamics and anhedonia in susceptible mice, suggesting that targeting this pathway can enhance BLA circuit function and ameliorate of depression-related behaviors.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Valeria Fascianelli
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
| | - Nina Vishwakarma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
| | - Frances Grace Ghinger
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, NY, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, NY, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, NY, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
20
|
Stubbendorff C, Hale E, Bast T, Cassaday HJ, Martin SJ, Suwansawang S, Halliday DM, Stevenson CW. Dopamine D1-like receptors modulate synchronized oscillations in the hippocampal-prefrontal-amygdala circuit in contextual fear. Sci Rep 2023; 13:17631. [PMID: 37848657 PMCID: PMC10582086 DOI: 10.1038/s41598-023-44772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Contextual fear conditioning (CFC) is mediated by a neural circuit that includes the hippocampus, prefrontal cortex, and amygdala, but the neurophysiological mechanisms underlying the regulation of CFC by neuromodulators remain unclear. Dopamine D1-like receptors (D1Rs) in this circuit regulate CFC and local synaptic plasticity, which is facilitated by synchronized oscillations between these areas. In rats, we determined the effects of systemic D1R blockade on CFC and oscillatory synchrony between dorsal hippocampus (DH), prelimbic (PL) cortex, basolateral amygdala (BLA), and ventral hippocampus (VH), which sends hippocampal projections to PL and BLA. D1R blockade altered DH-VH and reduced VH-PL and VH-BLA synchrony during CFC, as inferred from theta and gamma coherence and theta-gamma coupling. D1R blockade also impaired CFC, as indicated by decreased freezing at retrieval, which was characterized by altered DH-VH and reduced VH-PL, VH-BLA, and PL-BLA synchrony. This reduction in VH-PL-BLA synchrony was not fully accounted for by non-specific locomotor effects, as revealed by comparing between epochs of movement and freezing in the controls. These results suggest that D1Rs regulate CFC by modulating synchronized oscillations within the hippocampus-prefrontal-amygdala circuit. They also add to growing evidence indicating that this circuit synchrony at retrieval reflects a neural signature of learned fear.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
- Envigo, Hillcrest, Dodgeford Lane, Belton, LE12 9TE, UK
| | - Tobias Bast
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Helen J Cassaday
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Stephen J Martin
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sopapun Suwansawang
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
- Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand
| | - David M Halliday
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK.
| |
Collapse
|
21
|
Schoenfeld TJ, Rhee D, Smith JA, Padmanaban V, Brockett AT, Jacobs HN, Cameron HA. Rewarded Maze Training Increases Approach Behavior in Rats Through Neurogenesis-Dependent Growth of Ventral Hippocampus-Prelimbic Circuits. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:725-733. [PMID: 37881563 PMCID: PMC10593943 DOI: 10.1016/j.bpsgos.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 10/27/2023] Open
Abstract
Background Learning complex navigation routes increases hippocampal volume in humans, but it is not clear whether this growth impacts behaviors outside the learning situation or what cellular mechanisms are involved. Methods We trained rats with pharmacogenetic suppression of adult neurogenesis and littermate controls in 3 mazes over 3 weeks and tested novelty approach behavior several days after maze exposure. We then measured hippocampus and prelimbic cortex volumes using magnetic resonance imaging and assessed neuronal and astrocyte morphology. Finally, we investigated the activation and behavioral role of the ventral CA1 (vCA1)-to-prelimbic pathway using immediate-early genes and DREADDs (designer receptors exclusively activated by designer drugs). Results Maze training led to volume increase of both the vCA1 region of the hippocampus and the prelimbic region of the neocortex compared with rats that followed fixed paths. Growth was also apparent in individual neurons and astrocytes in these 2 regions, and behavioral testing showed increased novelty approach in maze-trained rats in 2 different tests. Suppressing adult neurogenesis prevented the effects on structure and approach behavior after maze training without affecting maze learning itself. The vCA1 neurons projecting to the prelimbic area were more activated by novelty in maze-trained animals, and suppression of this pathway decreased approach behavior. Conclusions Rewarded navigational learning experiences induce volumetric and morphologic growth in the vCA1 and prelimbic cortex and enhance activation of the circuit connecting these 2 regions. Both the structural and behavioral effects of maze training require ongoing adult neurogenesis, suggesting a role for new neurons in experience-driven increases in novelty exploration.
Collapse
Affiliation(s)
- Timothy J. Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, Tennessee
| | - Diane Rhee
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jesse A. Smith
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Varun Padmanaban
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Adam T. Brockett
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Hannah N. Jacobs
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Piquet R, Faugère A, Parkes SL. Contribution of dorsal versus ventral hippocampus to the hierarchical modulation of goal-directed actions in rats. Eur J Neurosci 2023; 58:3737-3750. [PMID: 37697949 DOI: 10.1111/ejn.16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Adaptive behaviour often necessitates that animals learn about events in a manner that is specific to a particular context or environment. These hierarchical organisations allow the animal to decide which action is the most appropriate when faced with ambiguous or conflicting possibilities. This study examined the role of hippocampus in enabling animals to use the context to guide action selection. We used a hierarchical instrumental outcome devaluation task in which male rats learn that the context provides information about the unique action-outcome relations that are in effect. We first confirmed that rats encode and use hierarchical context-(action-outcome) relations. We then show that chemogenetic inhibition of ventral hippocampus impairs both the encoding and retrieval of these associations, while inhibition of dorsal hippocampus impairs only the retrieval. Importantly, neither dorsal nor ventral hippocampus was required for goal-directed behaviour per se as these impairments only emerged when rats were forced to use the context to identify the current action-outcome relationships. These findings are discussed with respect to the role of the hippocampus and its broader circuitry in the contextual modulation of goal-directed behaviour and the importance of hierarchical associations in flexible behaviour.
Collapse
Affiliation(s)
- Robin Piquet
- University of Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
23
|
Xie X, Chen R, Wang X, Smith L, Wang J. Activity-dependent labeling and manipulation of fentanyl-recruited striatal ensembles using ArcTRAP approach. STAR Protoc 2023; 4:102369. [PMID: 37354458 PMCID: PMC10320278 DOI: 10.1016/j.xpro.2023.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/26/2023] Open
Abstract
Understanding the memory substrates underlying substance abuse requires the permanent tagging and manipulation of drug-recruited neural ensembles. Here, we present a protocol for activity-dependent labeling and chemogenetic manipulation of fentanyl-activated striatal ensembles using the ArcTRAP approach. We outline the necessary steps to breed ArcTRAP mice, prepare drugs and reagents, conduct behavioral training, and perform tagging and manipulation. This approach can be adapted to investigate drug-recruited ensembles in other brain regions, providing a versatile tool for exploring the neural mechanisms underlying addiction. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Laura Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
24
|
Kremsky I, Ali S, Stanbouly S, Holley J, Justinen S, Pecaut M, Crapo J, Mao X. Spaceflight-Induced Gene Expression Profiles in the Mouse Brain Are Attenuated by Treatment with the Antioxidant BuOE. Int J Mol Sci 2023; 24:13569. [PMID: 37686374 PMCID: PMC10487739 DOI: 10.3390/ijms241713569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The demands of deep space pose a health risk to the central nervous system that has long been a concern when sending humans to space. While little is known about how spaceflight affects transcription spatially in the brain, a greater understanding of this process has the potential to aid strategies that mitigate the effects of spaceflight on the brain. Therefore, we performed GeoMx Digital Spatial Profiling of mouse brains subjected to either spaceflight or grounded controls. Four brain regions were selected: Cortex, Frontal Cortex, Corunu Ammonis I, and Dentate Gyrus. Antioxidants have emerged as a potential means of attenuating the effects of spaceflight, so we treated a subset of the mice with a superoxide dismutase mimic, MnTnBuOE-2-PyP 5+ (BuOE). Our analysis revealed hundreds of differentially expressed genes due to spaceflight in each of the four brain regions. Both common and region-specific transcriptomic responses were observed. Metabolic pathways and pathways sensitive to oxidative stress were enriched in the four brain regions due to spaceflight. These findings enhance our understanding of brain regional variation in susceptibility to spaceflight conditions. BuOE reduced the transcriptomic effects of spaceflight at a large number of genes, suggesting that this compound may attenuate oxidative stress-induced brain damage caused by the spaceflight environment.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (S.A.); (S.S.); (J.H.); (S.J.); (M.P.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Samir Ali
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (S.A.); (S.S.); (J.H.); (S.J.); (M.P.)
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (S.A.); (S.S.); (J.H.); (S.J.); (M.P.)
| | - Jacob Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (S.A.); (S.S.); (J.H.); (S.J.); (M.P.)
| | - Stephen Justinen
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (S.A.); (S.S.); (J.H.); (S.J.); (M.P.)
| | - Michael Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (S.A.); (S.S.); (J.H.); (S.J.); (M.P.)
| | - James Crapo
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, University of Colorado Denver, Denver, CO 80206, USA;
| | - Xiaowen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (I.K.); (S.A.); (S.S.); (J.H.); (S.J.); (M.P.)
| |
Collapse
|
25
|
den Bakker H, Van Dijck M, Sun JJ, Kloosterman F. Sharp-wave-ripple-associated activity in the medial prefrontal cortex supports spatial rule switching. Cell Rep 2023; 42:112959. [PMID: 37590137 DOI: 10.1016/j.celrep.2023.112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Previous studies have highlighted an important role for hippocampal sharp-wave ripples in spatial alternation learning, as well as in modulating activity in the medial prefrontal cortex (mPFC). However, the direct influence of hippocampal sharp-wave ripples on mPFC activity during spatial alternation learning has not been investigated. Here, we train Long Evans rats on a three-arm radial maze to perform a sequence of alternations. Three alternation sequences needed to be learned, and while learning a sequence, the activity in the mPFC was inhibited either directly following sharp-wave ripples in the hippocampus (on-time condition) or with a randomized delay (delayed condition). In the on-time condition, the behavioral performance is significantly worse compared to the same animals in the delayed inhibition condition, as measured by a lower correct alternation performance and more perseverative behavior. This indicates that the activity in the mPFC directly following hippocampal sharp-wave ripples is necessary for spatial rule switching.
Collapse
Affiliation(s)
- Hanna den Bakker
- Neuro-Electronics Research Flanders, Leuven, Belgium; Brain & Cognition, KU Leuven, Leuven, Belgium
| | - Marie Van Dijck
- Neuro-Electronics Research Flanders, Leuven, Belgium; Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jyh-Jang Sun
- Neuro-Electronics Research Flanders, Leuven, Belgium
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium; Brain & Cognition, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Godino A, Salery M, Minier-Toribio AM, Patel V, Fullard JF, Parise EM, Martinez-Rivera FJ, Morel C, Roussos P, Blitzer RD, Nestler EJ. Dopaminoceptive D1 and D2 neurons in ventral hippocampus arbitrate approach and avoidance in anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550554. [PMID: 37546856 PMCID: PMC10402022 DOI: 10.1101/2023.07.25.550554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The hippocampus 1-7, as well as dopamine circuits 8-11, coordinate decision-making in anxiety-eliciting situations. Yet, little is known about how dopamine modulates hippocampal representations of emotionally-salient stimuli to inform appropriate resolution of approach versus avoidance conflicts. We here study dopaminoceptive neurons in mouse ventral hippocampus (vHipp), molecularly distinguished by their expression of dopamine D1 or D2 receptors. We show that these neurons are transcriptionally distinct and topographically organized across vHipp subfields and cell types. In the ventral subiculum where they are enriched, both D1 and D2 neurons are recruited during anxiogenic exploration, yet with distinct profiles related to investigation and behavioral selection. In turn, they mediate opposite approach/avoidance responses, and are differentially modulated by dopaminergic transmission in that region. Together, these results suggest that vHipp dopamine dynamics gate exploratory behaviors under contextual uncertainty, implicating dopaminoception in the complex computation engaged in vHipp to govern emotional states.
Collapse
Affiliation(s)
- Arthur Godino
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angelica M. Minier-Toribio
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishwendra Patel
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F. Fullard
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences & Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric M. Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Freddyson J. Martinez-Rivera
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carole Morel
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences & Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Robert D. Blitzer
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Hassan SI, Bigler S, Siegelbaum SA. Social odor discrimination and its enhancement by associative learning in the hippocampal CA2 region. Neuron 2023; 111:2232-2246.e5. [PMID: 37192623 PMCID: PMC10524117 DOI: 10.1016/j.neuron.2023.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Although the hippocampus is crucial for social memory, how social sensory information is combined with contextual information to form episodic social memories remains unknown. Here, we investigated the mechanisms for social sensory information processing using two-photon calcium imaging from hippocampal CA2 pyramidal neurons (PNs)-which are crucial for social memory-in awake head-fixed mice exposed to social and non-social odors. We found that CA2 PNs represent social odors of individual conspecifics and that these representations are refined during associative social odor-reward learning to enhance the discrimination of rewarded compared with unrewarded odors. Moreover, the structure of the CA2 PN population activity enables CA2 to generalize along categories of rewarded versus unrewarded and social versus non-social odor stimuli. Finally, we found that CA2 is important for learning social but not non-social odor-reward associations. These properties of CA2 odor representations provide a likely substrate for the encoding of episodic social memory.
Collapse
Affiliation(s)
- Sami I Hassan
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Shivani Bigler
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, The Kavli Institute for Brain Science, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
28
|
Kong Q, Sacca V, Zhu M, Ursitti AK, Kong J. Anatomical and Functional Connectivity of Critical Deep Brain Structures and Their Potential Clinical Application in Brain Stimulation. J Clin Med 2023; 12:4426. [PMID: 37445460 DOI: 10.3390/jcm12134426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Subcortical structures, such as the hippocampus, amygdala, and nucleus accumbens (NAcc), play crucial roles in human cognitive, memory, and emotional processing, chronic pain pathophysiology, and are implicated in various psychiatric and neurological diseases. Interventions modulating the activities of these deep brain structures hold promise for improving clinical outcomes. Recently, non-invasive brain stimulation (NIBS) has been applied to modulate brain activity and has demonstrated its potential for treating psychiatric and neurological disorders. However, modulating the above deep brain structures using NIBS may be challenging due to the nature of these stimulations. This study attempts to identify brain surface regions as source targets for NIBS to reach these deep brain structures by integrating functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). We used resting-state functional connectivity (rsFC) and probabilistic tractography (PTG) analysis to identify brain surface stimulation targets that are functionally and structurally connected to the hippocampus, amygdala, and NAcc in 119 healthy participants. Our results showed that the medial prefrontal cortex (mPFC) is functionally and anatomically connected to all three subcortical regions, while the precuneus is connected to the hippocampus and amygdala. The mPFC and precuneus, two key hubs of the default mode network (DMN), as well as other cortical areas distributed at the prefrontal cortex and the parietal, temporal, and occipital lobes, were identified as potential locations for NIBS to modulate the function of these deep structures. The findings may provide new insights into the NIBS target selections for treating psychiatric and neurological disorders and chronic pain.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Amy Katherine Ursitti
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| |
Collapse
|
29
|
Miller AMP, Jacob AD, Ramsaran AI, De Snoo ML, Josselyn SA, Frankland PW. Emergence of a predictive model in the hippocampus. Neuron 2023; 111:1952-1965.e5. [PMID: 37015224 PMCID: PMC10293047 DOI: 10.1016/j.neuron.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
The brain organizes experiences into memories that guide future behavior. Hippocampal CA1 population activity is hypothesized to reflect predictive models that contain information about future events, but little is known about how they develop. We trained mice on a series of problems with or without a common statistical structure to observe how memories are formed and updated. Mice that learned structured problems integrated their experiences into a predictive model that contained the solutions to upcoming novel problems. Retrieving the model during learning improved discrimination accuracy and facilitated learning. Using calcium imaging to track CA1 activity during learning, we found that hippocampal ensemble activity became more stable as mice formed a predictive model. The hippocampal ensemble was reactivated during training and incorporated new activity patterns from each training problem. These results show how hippocampal activity supports building predictive models by organizing new information with respect to existing memories.
Collapse
Affiliation(s)
- Adam M P Miller
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alex D Jacob
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mitchell L De Snoo
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sheena A Josselyn
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Brain, Mind, & Consciousness Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
30
|
Luo Z, Chen J, Dai Y, So KF, Zhang L. Treadmill exercise modulates the medial prefrontal-amygdala neural circuit to improve the resilience against chronic restraint stress. Commun Biol 2023; 6:624. [PMID: 37296310 PMCID: PMC10256706 DOI: 10.1038/s42003-023-05003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Aerobic exercise effectively ameliorates mental disorders including anxiety and depression. Current findings mainly attribute its neural mechanism to the improvement of adult neurogenesis, while leaving the possible circuitry mechanism unclear. In the current study, we identify the overexcitation of the medial prefrontal cortex (mPFC) to basolateral amygdala (BLA) pathway under chronic restraint stress (CRS), and 14-day treadmill exercise selectively reverses such abnormalities. Using chemogenetic approaches, we find that the mPFC-BLA circuit is necessary for preventing anxiety-like behaviors in CRS mice. These results collectively suggest a neural circuitry mechanism by which exercise training improves the resilience against environmental stress.
Collapse
Affiliation(s)
- Zhihua Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junlin Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yelin Dai
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
31
|
Sherrill KR, Molitor RJ, Karagoz AB, Atyam M, Mack ML, Preston AR. Generalization of cognitive maps across space and time. Cereb Cortex 2023; 33:7971-7992. [PMID: 36977625 PMCID: PMC10492577 DOI: 10.1093/cercor/bhad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Prominent theories posit that associative memory structures, known as cognitive maps, support flexible generalization of knowledge across cognitive domains. Here, we evince a representational account of cognitive map flexibility by quantifying how spatial knowledge formed one day was used predictively in a temporal sequence task 24 hours later, biasing both behavior and neural response. Participants learned novel object locations in distinct virtual environments. After learning, hippocampus and ventromedial prefrontal cortex (vmPFC) represented a cognitive map, wherein neural patterns became more similar for same-environment objects and more discriminable for different-environment objects. Twenty-four hours later, participants rated their preference for objects from spatial learning; objects were presented in sequential triplets from either the same or different environments. We found that preference response times were slower when participants transitioned between same- and different-environment triplets. Furthermore, hippocampal spatial map coherence tracked behavioral slowing at the implicit sequence transitions. At transitions, predictive reinstatement of virtual environments decreased in anterior parahippocampal cortex. In the absence of such predictive reinstatement after sequence transitions, hippocampus and vmPFC responses increased, accompanied by hippocampal-vmPFC functional decoupling that predicted individuals' behavioral slowing after a transition. Collectively, these findings reveal how expectations derived from spatial experience generalize to support temporal prediction.
Collapse
Affiliation(s)
- Katherine R Sherrill
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J Molitor
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA
| | - Ata B Karagoz
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA
| | - Manasa Atyam
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael L Mack
- Department of Psychology, University of Toronto, Toronto, ON M5G 1E6, Canada
| | - Alison R Preston
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
32
|
Watanabe Y, Dezawa S, Takei H, Nagasaka K, Takashima I. Hippocampal-prefrontal long-term potentiation-like plasticity with transcranial direct current stimulation in rats. Neurobiol Learn Mem 2023; 201:107750. [PMID: 37023973 DOI: 10.1016/j.nlm.2023.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been explored as a new treatment method for improving cognitive and motor functions. However, the neuronal mechanisms of tDCS in modulating brain functions, especially cognitive and memory functions, are not well understood. In the present study, we assessed whether tDCS could promote neuronal plasticity between the hippocampus and prefrontal cortex in rats. This is important because the hippocampus-prefrontal pathway is a key pathway in cognitive and memory functions and is involved in various psychiatric and neurodegenerative disorders. Specifically, the effect of anodal or cathodal tDCS on the medial prefrontal cortex was investigated in rats by measuring the medial prefrontal cortex response to electrical stimulation applied to the CA1 region of the hippocampus. Following anodal tDCS, the evoked prefrontal response was potentiated compared to that in the pre-tDCS condition. However, the evoked prefrontal response did not show any significant changes following cathodal tDCS. Furthermore, the plastic change of the prefrontal response following anodal tDCS was only induced when hippocampal stimulation was continuously applied during tDCS. Anodal tDCS without hippocampal activation showed little or no changes. These results indicate that combining anodal tDCS of the prefrontal cortex with hippocampal activation induces long-term potentiation (LTP)-like plasticity in the hippocampus-prefrontal pathway. This LTP-like plasticity can facilitate smooth information transmission between the hippocampus and the prefrontal cortex and may lead to improvements in cognitive and memory function.
Collapse
Affiliation(s)
- Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan.
| | - Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Faculty of Medical and Health Sciences, Tsukuba International University, 6-8-33, Manabe, Tsuchiura 300-0051, Japan
| | - Hiroyuki Takei
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan; raduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-9577, Japan
| |
Collapse
|
33
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
34
|
Cope EC, Wang SH, Waters RC, Gore IR, Vasquez B, Laham BJ, Gould E. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice. Nat Commun 2023; 14:1750. [PMID: 36991001 PMCID: PMC10060401 DOI: 10.1038/s41467-023-37248-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Mutation or deletion of the SHANK3 gene, which encodes a synaptic scaffolding protein, is linked to autism spectrum disorder and Phelan-McDermid syndrome, conditions associated with social memory impairments. Shank3B knockout mice also exhibit social memory deficits. The CA2 region of the hippocampus integrates numerous inputs and sends a major output to the ventral CA1 (vCA1). Despite finding few differences in excitatory afferents to the CA2 in Shank3B knockout mice, we found that activation of CA2 neurons as well as the CA2-vCA1 pathway restored social recognition function to wildtype levels. vCA1 neuronal oscillations have been linked to social memory, but we observed no differences in these measures between wildtype and Shank3B knockout mice. However, activation of the CA2 enhanced vCA1 theta power in Shank3B knockout mice, concurrent with behavioral improvements. These findings suggest that stimulating adult circuitry in a mouse model with neurodevelopmental impairments can invoke latent social memory function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Samantha H Wang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Renée C Waters
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Betsy Vasquez
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Blake J Laham
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
35
|
Park AJ. Novelty selectively permits learning-associated plasticity in ventral tegmental-hippocampal-prefrontal circuitry. Front Behav Neurosci 2023; 16:1091082. [PMID: 36699657 PMCID: PMC9868659 DOI: 10.3389/fnbeh.2022.1091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Modifying established behavior in novel situations is essential, and patients with neuropsychiatric disorders often lack this flexibility. Understanding how novelty affects behavioral flexibility therefore has therapeutic potential. Here, novelty differentially impacts connectivity within the ventral tegmental-hippocampal-medial prefrontal (VTA-HPC-mPFC) circuit, thereby enhancing the ability of mice to overcome established behavioral bias and adapt to new rules. Circuit connectivity was measured by local field potential (LFP) coherence. As mice exposed to novelty learned to overcome previously established spatial bias, the ventral HPC (vHPC) strengthens its coherence with the VTA and mPFC in theta frequency (4-8 Hz). Novelty or learning did not affect circuits involving the dorsal HPC (dHPC). Without novelty, however, mice continued following established spatial bias and connectivity strength remained stable in the VTA-HPC-mPFC circuit. Pharmacologically blocking dopamine D1-receptors (D1Rs) in the vHPC abolished the behavioral and physiological impacts of novelty. Thus, novelty promotes behavioral adaptation by permitting learning-associated plasticity in the vHPC-mPFC and VTA-vHPC circuit, a process mediated by D1Rs in the vHPC.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea,The Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, United States,*Correspondence: Alan Jung Park,
| |
Collapse
|
36
|
Kim J, Joshi A, Frank L, Ganguly K. Cortical-hippocampal coupling during manifold exploration in motor cortex. Nature 2023; 613:103-110. [PMID: 36517602 DOI: 10.1038/s41586-022-05533-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Systems consolidation-a process for long-term memory stabilization-has been hypothesized to occur in two stages1-4. Whereas new memories require the hippocampus5-9, they become integrated into cortical networks over time10-12, making them independent of the hippocampus. How hippocampal-cortical dialogue precisely evolves during this and how cortical representations change in concert is unknown. Here, we use a skill learning task13,14 to monitor the dynamics of cross-area coupling during non-rapid eye movement sleep along with changes in primary motor cortex (M1) representational stability. Our results indicate that precise cross-area coupling between hippocampus, prefrontal cortex and M1 can demarcate two distinct stages of processing. We specifically find that each animal demonstrates a sharp increase in prefrontal cortex and M1 sleep slow oscillation coupling with stabilization of performance. This sharp increase then predicts a drop in hippocampal sharp-wave ripple (SWR)-M1 slow oscillation coupling-suggesting feedback to inform hippocampal disengagement and transition to a second stage. Notably, the first stage shows significant increases in hippocampal SWR-M1 slow oscillation coupling in the post-training sleep and is closely associated with rapid learning and variability of the M1 low-dimensional manifold. Strikingly, even after consolidation, inducing new manifold exploration by changing task parameters re-engages hippocampal-M1 coupling. We thus find evidence for dynamic hippocampal-cortical dialogue associated with manifold exploration during learning and adaptation.
Collapse
Affiliation(s)
- Jaekyung Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Abhilasha Joshi
- HHMI and Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Loren Frank
- HHMI and Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Abstract
Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.
Collapse
|
38
|
de Bartolomeis A, De Simone G, Ciccarelli M, Castiello A, Mazza B, Vellucci L, Barone A. Antipsychotics-Induced Changes in Synaptic Architecture and Functional Connectivity: Translational Implications for Treatment Response and Resistance. Biomedicines 2022; 10:3183. [PMID: 36551939 PMCID: PMC9776416 DOI: 10.3390/biomedicines10123183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a severe mental illness characterized by alterations in processes that regulate both synaptic plasticity and functional connectivity between brain regions. Antipsychotics are the cornerstone of schizophrenia pharmacological treatment and, beyond occupying dopamine D2 receptors, can affect multiple molecular targets, pre- and postsynaptic sites, as well as intracellular effectors. Multiple lines of evidence point to the involvement of antipsychotics in sculpting synaptic architecture and remodeling the neuronal functional unit. Furthermore, there is an increasing awareness that antipsychotics with different receptor profiles could yield different interregional patterns of co-activation. In the present systematic review, we explored the fundamental changes that occur under antipsychotics' administration, the molecular underpinning, and the consequences in both acute and chronic paradigms. In addition, we investigated the relationship between synaptic plasticity and functional connectivity and systematized evidence on different topographical patterns of activation induced by typical and atypical antipsychotics.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Monosov IE, Ogasawara T, Haber SN, Heimel JA, Ahmadlou M. The zona incerta in control of novelty seeking and investigation across species. Curr Opin Neurobiol 2022; 77:102650. [PMID: 36399897 DOI: 10.1016/j.conb.2022.102650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Many organisms rely on a capacity to rapidly replicate, disperse, and evolve when faced with uncertainty and novelty. But mammals do not evolve and replicate quickly. They rely on a sophisticated nervous system to generate predictions and select responses when confronted with these challenges. An important component of their behavioral repertoire is the adaptive context-dependent seeking or avoiding of perceptually novel objects, even when their values have not yet been learned. Here, we outline recent cross-species breakthroughs that shed light on how the zona incerta (ZI), a relatively evolutionarily conserved brain area, supports novelty-seeking and novelty-related investigations. We then conjecture how the architecture of the ZI's anatomical connectivity - the wide-ranging top-down cortical inputs to the ZI, and its specifically strong outputs to both the brainstem action controllers and to brain areas involved in action value learning - place the ZI in a unique role at the intersection of cognitive control and learning.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - J Alexander Heimel
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Mehran Ahmadlou
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland St., W1T4JG London, UK
| |
Collapse
|
40
|
Kupferschmidt DA, Cummings KA, Joffe ME, MacAskill A, Malik R, Sánchez-Bellot C, Tejeda HA, Yarur Castillo H. Prefrontal Interneurons: Populations, Pathways, and Plasticity Supporting Typical and Disordered Cognition in Rodent Models. J Neurosci 2022; 42:8468-8476. [PMID: 36351822 PMCID: PMC9665918 DOI: 10.1523/jneurosci.1136-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Prefrontal cortex (PFC) inhibitory microcircuits regulate the gain and timing of pyramidal neuron firing, coordinate neural ensemble interactions, and gate local and long-range neural communication to support adaptive cognition and contextually tuned behavior. Accordingly, perturbations of PFC inhibitory microcircuits are thought to underlie dysregulated cognition and behavior in numerous psychiatric diseases and relevant animal models. This review, based on a Mini-Symposium presented at the 2022 Society for Neuroscience Meeting, highlights recent studies providing novel insights into: (1) discrete medial PFC (mPFC) interneuron populations in the mouse brain; (2) mPFC interneuron connections with, and regulation of, long-range mPFC afferents; and (3) circuit-specific plasticity of mPFC interneurons. The contributions of such populations, pathways, and plasticity to rodent cognition are discussed in the context of stress, reward, motivational conflict, and genetic mutations relevant to psychiatric disease.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892
| | - Kirstie A Cummings
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35233
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Andrew MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
| | - Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, 94158
| | - Candela Sánchez-Bellot
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
- Laboratorio de Circuitos Neuronales, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 28002
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| | - Hector Yarur Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| |
Collapse
|
41
|
Machado TA, Kauvar IV, Deisseroth K. Multiregion neuronal activity: the forest and the trees. Nat Rev Neurosci 2022; 23:683-704. [PMID: 36192596 PMCID: PMC10327445 DOI: 10.1038/s41583-022-00634-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed remarkable advances in the simultaneous measurement of neuronal activity across many brain regions, enabling fundamentally new explorations of the brain-spanning cellular dynamics that underlie sensation, cognition and action. These recently developed multiregion recording techniques have provided many experimental opportunities, but thoughtful consideration of methodological trade-offs is necessary, especially regarding field of view, temporal acquisition rate and ability to guarantee cellular resolution. When applied in concert with modern optogenetic and computational tools, multiregion recording has already made possible fundamental biological discoveries - in part via the unprecedented ability to perform unbiased neural activity screens for principles of brain function, spanning dozens of brain areas and from local to global scales.
Collapse
Affiliation(s)
- Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Samborska V, Butler JL, Walton ME, Behrens TEJ, Akam T. Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems. Nat Neurosci 2022; 25:1314-1326. [PMID: 36171429 PMCID: PMC9534768 DOI: 10.1038/s41593-022-01149-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Humans and other animals effortlessly generalize prior knowledge to solve novel problems, by abstracting common structure and mapping it onto new sensorimotor specifics. To investigate how the brain achieves this, in this study, we trained mice on a series of reversal learning problems that shared the same structure but had different physical implementations. Performance improved across problems, indicating transfer of knowledge. Neurons in medial prefrontal cortex (mPFC) maintained similar representations across problems despite their different sensorimotor correlates, whereas hippocampal (dCA1) representations were more strongly influenced by the specifics of each problem. This was true for both representations of the events that comprised each trial and those that integrated choices and outcomes over multiple trials to guide an animal's decisions. These data suggest that prefrontal cortex and hippocampus play complementary roles in generalization of knowledge: PFC abstracts the common structure among related problems, and hippocampus maps this structure onto the specifics of the current situation.
Collapse
Affiliation(s)
- Veronika Samborska
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - James L Butler
- Department of Clinical and Movement Neurosciences, University College London, London, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Mark E Walton
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Thomas Akam
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Turner VS, O'Sullivan RO, Kheirbek MA. Linking external stimuli with internal drives: A role for the ventral hippocampus. Curr Opin Neurobiol 2022; 76:102590. [PMID: 35753108 PMCID: PMC9818033 DOI: 10.1016/j.conb.2022.102590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
The ventral hippocampus (vHPC) has long been thought of as the "emotional" hippocampus. Over the past several years, the complexity of vHPC has come to light, highlighting the diversity of cell types, inputs, and outputs that coordinate a constellation of positively and negatively motivated behaviors. Here, we review recent work on how vCA1 contributes to a network that associates external stimuli with internal motivational drive states to promote the selection of adaptive behavioral responses. We propose a model of vHPC function that emphasizes its role in the integration and transformation of internal and external cues to guide behavioral selection when faced with multiple potential outcomes.
Collapse
Affiliation(s)
- Victoria S Turner
- Neuroscience Graduate Program, University of California, San Francisco, USA. https://twitter.com/vs_turner
| | - Rachel O O'Sullivan
- Neuroscience Graduate Program, University of California, San Francisco, USA. https://twitter.com/itsROsulli
| | - Mazen A Kheirbek
- Neuroscience Graduate Program, University of California, San Francisco, USA; Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience and Weill Institute for Neurosciences, University of California, San Francisco, USA.
| |
Collapse
|
44
|
Fernandez-Ruiz A, Oliva A, Chang H. High-resolution optogenetics in space and time. Trends Neurosci 2022; 45:854-864. [PMID: 36192264 DOI: 10.1016/j.tins.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
To understand the neural mechanisms of behavior, it is necessary to both monitor and perturb the activity of ensembles of neurons with high specificity. While neural ensemble recordings have been available for decades, progress in high-resolution manipulation techniques has lagged behind. Optogenetics has enabled the manipulation of genetically defined cell types in behaving animals, and recent developments, including multipoint nanofabricated light sources, provide spatiotemporal resolution on a par with that of physiological recordings. Here we review current advances in optogenetic methods for cellular-resolution stimulation and intervention, as well as their integration with real-time neural recordings for closed-loop experimentation. We discuss how these approaches open the door to new kinds of experiments aimed at dissecting the role of specific neural patterns and discrete cellular populations in orchestrating the activity of brain circuits that support behavior and cognition.
Collapse
Affiliation(s)
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Hongyu Chang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
45
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
46
|
Sung Y, Kaang BK. The Three Musketeers in the Medial Prefrontal Cortex: Subregion-specific Structural and Functional Plasticity Underlying Fear Memory Stages. Exp Neurobiol 2022; 31:221-231. [PMID: 36050222 PMCID: PMC9471411 DOI: 10.5607/en22012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Fear memory recruits various brain regions with long-lasting brain-wide subcellular events. The medial prefrontal cortex processes the emotional and cognitive functions required for adequately handling fear memory. Several studies have indicated that subdivisions within the medial prefrontal cortex, namely the prelimbic, infralimbic, and anterior cingulate cortices, may play different roles across fear memory states. Through a dedicated cytoarchitecture and connectivity, the three different regions of the medial prefrontal cortex play a specific role in maintaining and extinguishing fear memory. Furthermore, synaptic plasticity and maturation of neural circuits within the medial prefrontal cortex suggest that remote memories undergo structural and functional reorganization. Finally, recent technical advances have enabled genetic access to transiently activated neuronal ensembles within these regions, suggesting that memory trace cells in these regions may preferentially contribute to processing specific fear memory. We reviewed recently published reports and summarize the molecular, synaptic and cellular events occurring within the medial prefrontal cortex during various memory stages.
Collapse
Affiliation(s)
- Yongmin Sung
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
47
|
Zhao F, Cheng Z, Piao J, Cui R, Li B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front Pharmacol 2022; 13:947785. [PMID: 36059987 PMCID: PMC9428607 DOI: 10.3389/fphar.2022.947785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Bingjin Li,
| |
Collapse
|
48
|
Herry C, Jercog D. Decoding defensive systems. Curr Opin Neurobiol 2022; 76:102600. [PMID: 35809501 DOI: 10.1016/j.conb.2022.102600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Our understanding of the neuronal circuits and mechanisms of defensive systems has been primarily dominated by studies focusing on the contribution of individual cells in the processing of threat-predictive cues, defensive responses, the extinction of such responses and the contextual modulation of threat-related behavior. These studies have been key in establishing threat-related circuits and mechanisms. Yet, they fall short in answering long-standing questions related to the integrative processing of distinct threatening cues, behavioral states induced by threat-related events, or the bridging from sensory processing of threat-related cues to specific defensive responses. Recent conceptual and technical developments has allowed the monitoring of large populations of neurons, which in addition to advanced analytic tools, have improved our understanding of how collective neuronal activity supports threat-related behaviors. In this review, we discuss the current knowledge of neuronal population codes within threat-related networks, in the context of aversive motivated behavior and the study of defensive systems.
Collapse
Affiliation(s)
- Cyril Herry
- INSERM, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France.
| | - Daniel Jercog
- INSERM, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France.
| |
Collapse
|
49
|
Benoit LJ, Holt ES, Posani L, Fusi S, Harris AZ, Canetta S, Kellendonk C. Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function. Nat Neurosci 2022; 25:714-725. [PMID: 35590075 PMCID: PMC9202412 DOI: 10.1038/s41593-022-01072-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Impaired cortical maturation is a postulated mechanism in the etiology of neurodevelopmental disorders, including schizophrenia. In the sensory cortex, activity relayed by the thalamus during a postnatal sensitive period is essential for proper cortical maturation. Whether thalamic activity also shapes prefrontal cortical maturation is unknown. We show that inhibiting the mediodorsal and midline thalamus in mice during adolescence leads to a long-lasting decrease in thalamo-prefrontal projection density and reduced excitatory drive to prefrontal neurons. It also caused prefrontal-dependent cognitive deficits during adulthood associated with disrupted prefrontal cross-correlations and task outcome encoding. Thalamic inhibition during adulthood had no long-lasting consequences. Exciting the thalamus in adulthood during a cognitive task rescued prefrontal cross-correlations, task outcome encoding and cognitive deficits. These data point to adolescence as a sensitive window of thalamocortical circuit maturation. Furthermore, by supporting prefrontal network activity, boosting thalamic activity provides a potential therapeutic strategy for rescuing cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Laura J Benoit
- Graduate Program in Neurobiology and Behavior, Columbia University Irving Medical Center, New York, NY, USA
| | - Emma S Holt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Lorenzo Posani
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Sarah Canetta
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
50
|
Spatiotemporal dynamics of noradrenaline during learned behaviour. Nature 2022; 606:732-738. [PMID: 35650441 PMCID: PMC9837982 DOI: 10.1038/s41586-022-04782-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/20/2022] [Indexed: 01/17/2023]
Abstract
Noradrenaline released from the locus coeruleus (LC) is a ubiquitous neuromodulator1-4 that has been linked to multiple functions including arousal5-8, action and sensory gain9-11, and learning12-16. Whether and how activation of noradrenaline-expressing neurons in the LC (LC-NA) facilitates different components of specific behaviours is unknown. Here we show that LC-NA activity displays distinct spatiotemporal dynamics to enable two functions during learned behaviour: facilitating task execution and encoding reinforcement to improve performance accuracy. To examine these functions, we used a behavioural task in mice with graded auditory stimulus detection and task performance. Optogenetic inactivation of the LC demonstrated that LC-NA activity was causal for both task execution and optimization. Targeted recordings of LC-NA neurons using photo-tagging, two-photon micro-endoscopy and two-photon output monitoring showed that transient LC-NA activation preceded behavioural execution and followed reinforcement. These two components of phasic activity were heterogeneously represented in LC-NA cortical outputs, such that the behavioural response signal was higher in the motor cortex and facilitated task execution, whereas the negative reinforcement signal was widely distributed among cortical regions and improved response sensitivity on the subsequent trial. Modular targeting of LC outputs thus enables diverse functions, whereby some noradrenaline signals are segregated among targets, whereas others are broadly distributed.
Collapse
|