1
|
Dominguez G, Wu Y, Zhou J. Epigenetic Regulation and Neurodevelopmental Disorders: From MeCP2 to the TCF20/PHF14 Complex. Genes (Basel) 2024; 15:1653. [PMID: 39766920 PMCID: PMC11728296 DOI: 10.3390/genes15121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies. Recently, the TCF20/PHF14 chromatin complex was identified in the mammalian brain, expanding the list of chromatin regulatory remodelers implicated in NDDs. This complex-which includes MeCP2, RAI1, TCF20, PHF14, and HMG20A-plays a vital role in epigenetic and transcriptional regulation. METHODS We review and summarize current research and clinical reports pertaining to the different components of the MeCP2-interacting TCF20/PHF14 complex. We examine the NDDs associated with the TCF20/PHF14 complex, explore the molecular and neuronal functions of its components, and discuss emerging therapeutic strategies targeting this complex to mitigate symptoms, with broader applicability to other NDDs. RESULTS Mutations in the genes encoding the components of the MeCP2-interacting TCF20/PHF14 complex have been linked to various NDDs, underscoring its critical contribution to brain development and NDD pathogenesis. CONCLUSIONS The MeCP2-interacting TCF20/PHF14 complex and its associated NDDs could serve as a model system to provide insight into the interplay between epigenetic regulation and NDD pathogenesis.
Collapse
Affiliation(s)
- Gaea Dominguez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Yongji Wu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Jian Zhou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Bajikar SS, Zhou J, O'Hara R, Tirumala HP, Durham MA, Trostle AJ, Dias M, Shao Y, Chen H, Wang W, Yalamanchili HK, Wan YW, Banaszynski LA, Liu Z, Zoghbi HY. Acute MeCP2 loss in adult mice reveals transcriptional and chromatin changes that precede neurological dysfunction and inform pathogenesis. Neuron 2024:S0896-6273(24)00806-7. [PMID: 39689710 DOI: 10.1016/j.neuron.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/25/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene cause Rett syndrome, a severe childhood neurological disorder. MeCP2 is a well-established transcriptional repressor, yet upon its loss, hundreds of genes are dysregulated in both directions. To understand what drives such dysregulation, we deleted Mecp2 in adult mice, circumventing developmental contributions and secondary pathogenesis. We performed time series transcriptional, chromatin, and phenotypic analyses of the hippocampus to determine the immediate consequences of MeCP2 loss and the cascade of pathogenesis. We find that loss of MeCP2 causes immediate and bidirectional progressive dysregulation of the transcriptome. To understand what drives gene downregulation, we profiled genome-wide histone modifications and found that a decrease in histone H3 acetylation (ac) at downregulated genes is among the earliest molecular changes occurring well before any measurable deficiencies in electrophysiology and neurological function. These data reveal a molecular cascade that drives disease independent of any developmental contributions or secondary pathogenesis.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Jian Zhou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Ryan O'Hara
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Children's Medical Center Research Institute, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harini P Tirumala
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle Dias
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yingyao Shao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hu Chen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Laura A Banaszynski
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Children's Medical Center Research Institute, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Singh J, Santosh P. The Newborn Screening Programme Revisited: An Expert Opinion on the Challenges of Rett Syndrome. Genes (Basel) 2024; 15:1570. [PMID: 39766837 PMCID: PMC11675257 DOI: 10.3390/genes15121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Genomic sequencing has the potential to revolutionise newborn screening (NBS) programmes. In 2024, Genomics England began to recruit for the Generation Study (GS), which uses whole genome sequencing (WGS) to detect genetic changes in 500 genes in more than 200 rare conditions. Ultimately, its purpose is to facilitate the earlier identification of rare conditions and thereby improve health-related outcomes for individuals. The adoption of rare conditions into the GS was guided by four criteria: (1) the gene causing the condition can be reliably detected; (2) if undiagnosed, the rare condition would have a serious impact; (3) early or presymptomatic testing would substantially improve outcomes; and (4) interventions for conditions screened are accessible to all. Rett syndrome (RTT, OMIM 312750), a paediatric neurodevelopment disorder, was not included in the list of rare conditions in the GS. In this opinion article, we revisit the GS and discuss RTT from the perspective of these four criteria. We begin with an introduction to the GS and then summarise key points about the four principles, presenting challenges and opportunities for individuals with RTT. We provide insight into how data could be collected during the presymptomatic phase, which could facilitate early diagnosis and improve our understanding of the prodromal stage of RTT. Although many features of RTT present a departure from criteria adopted by the GS, advances in RTT research, combined with advocacy from parent-based organisations, could facilitate its entry into future newborn screening programmes.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
4
|
Mu D, Liu J, Mi Y, Wang D, Xu L, Yang Y, Liu Y, Liang D, Hou Y. Gnetupendin A protects against ischemic stroke through activating the PI3K/AKT/mTOR-dependent autophagy pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156233. [PMID: 39550921 DOI: 10.1016/j.phymed.2024.156233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Autophagy has been recently emerged as a prominent factor in the pathogenesis of ischemic stroke (IS) and is increasingly being considered as a potential therapeutic target for IS. Gnetum parvifolium has been identified as a potential therapeutic agent for inflammatory diseases such as rheumatism and traumatic injuries. However, the pharmacological effects of Gnetupindin A (GA), a stilbene compound isolated from Gnetum parvifolium, have not been fully elucidated until now. OBJECTIVE Here we identified the therapeutic potential of GA for IS, deeply exploring the possible mechanisms related to its regulation of autophagy. METHODS The mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and the oxygen-glucose deprivation reperfusion (OGD/R)-exposed cells served as models to study the protection of GA against IS. The adeno-associated virus (AAV) encoding shAtg5, in conjunction with autophagy inhibitor 3-Methyladenine (3-MA) were utilized to explore the role of GA in regulating autophagy following IS. Molecular docking, CETSA, and DARTS were used to identify the specific therapeutic target of GA. PI3K inhibitor LY294002 was employed to test the participation of PI3K in GA-mediated autophagy and neuroprotective effects following IS. RESULTS Our findings revealed that treatment with GA significantly alleviated the brain infract volume, edema, improved neurological deficits and attenuated apoptosis. Mechanistically, we found that GA promoted autophagic flow both in vivo and in vitro after IS. Notably, neural-targeted knockdown of Atg5 abolished the neuroprotective effects mediated by GA. Inhibition of autophagy using 3-MA blocked the attenuation on apoptosis induced by GA. Moreover, molecular docking, CETSA, and DARTS analysis demonstrated that GA specifically targeted PI3K and further inhibited the activation of PI3K/AKT/mTOR signaling pathway. LY294002, which inhibits PI3K, reversed GA-induced autophagy and neuroprotective effects on OGD/R-treated cells. CONCLUSION We demonstrated, for the first time, that GA protects against IS through promoting the PI3K/AKT/mTOR-dependent autophagy pathway. Our findings provide a novel mechanistic insight into the anti-IS effect of GA in regulating autophagy.
Collapse
Affiliation(s)
- Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China.
| | - Dong Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
5
|
Wahl L, Karim A, Hassett AR, van der Doe M, Dijkhuizen S, Badura A. Multiparametric Assays Capture Sex- and Environment-Dependent Modifiers of Behavioral Phenotypes in Autism Mouse Models. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100366. [PMID: 39262819 PMCID: PMC11387692 DOI: 10.1016/j.bpsgos.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background Current phenotyping approaches for murine autism models often focus on one selected behavioral feature, making the translation onto a spectrum of autistic characteristics in humans challenging. Furthermore, sex and environmental factors are rarely considered. Here, we aimed to capture the full spectrum of behavioral manifestations in 3 autism mouse models to develop a "behavioral fingerprint" that takes environmental and sex influences under consideration. Methods To this end, we employed a wide range of classical standardized behavioral tests and 2 multiparametric behavioral assays-the Live Mouse Tracker and Motion Sequencing-on male and female Shank2, Tsc1, and Purkinje cell-specific Tsc1 mutant mice raised in standard or enriched environments. Our aim was to integrate our high dimensional data into one single platform to classify differences in all experimental groups along dimensions with maximum discriminative power. Results Multiparametric behavioral assays enabled a more accurate classification of experimental groups than classical tests, and dimensionality reduction analysis demonstrated significant additional gains in classification accuracy, highlighting the presence of sex, environmental, and genotype differences in our experimental groups. Conclusions Together, our results provide a complete phenotypic description of all tested groups, suggesting that multiparametric assays can capture the entire spectrum of the heterogeneous phenotype in autism mouse models.
Collapse
Affiliation(s)
- Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Arun Karim
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Amy R Hassett
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Max van der Doe
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | |
Collapse
|
6
|
MacDuffie KE, Cohn B, Appelbaum P, Brothers KB, Doherty D, Goldenberg AJ, Reynolds E, Smith HS, Wheeler A, Yu JH. Early Intervention services in the era of genomic medicine: setting a research agenda. Pediatr Res 2024:10.1038/s41390-024-03668-5. [PMID: 39438712 DOI: 10.1038/s41390-024-03668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Newborn genomic sequencing (NBSeq) has the potential to substantially improve early detection of rare genetic conditions, allowing for pre-symptomatic treatment to optimize outcomes. Expanding conceptions of the clinical utility of NBSeq include earlier access to behavioral early intervention to support the acquisition of core motor, cognitive, communication, and adaptive skills during critical windows in early development. However, important questions remain about equitable access to early intervention programs for the growing number of infants identified with a genetic condition via NBSeq. We review the current NBSeq public health, clinical, and research landscape, and highlight ongoing international research efforts to collect population-level data on the utility of NBSeq for healthy newborns. We then explore the challenges facing a specific Early Intervention (EI) system-the US federally supported "Part C" system-for meeting the developmental needs of young children with genetic diagnoses, including structural limitations related to funding, variable eligibility criteria, and lack of collaboration with newborn screening programs. We conclude with a set of questions to guide future research at the intersection of NBSeq, newborn screening, and EI, which once answered, can steer future policy to ensure that EI service systems can optimally support the developmental needs of infants impacted by broader implementation of NBSeq. IMPACT: Existing literature on the clinical benefits of genome sequencing in newborns tends to focus on earlier provision of medical interventions, with less attention to the ongoing developmental needs of very young children with genetic conditions. This review outlines the developmental needs of a growing number of children diagnosed with genetic conditions in infancy and describes the strengths and limitations of the United States Early Intervention system (IDEA Part C) for meeting those needs.
Collapse
Affiliation(s)
- Katherine E MacDuffie
- Treuman Katz Center for Pediatric Bioethics and Palliative Care, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Betty Cohn
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Paul Appelbaum
- Department of Psychiatry, Columbia University Irving Medical Center and NY State Psychiatric Institute, New York, NY, USA
| | - Kyle B Brothers
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Aaron J Goldenberg
- Department of Bioethics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Hadley Stevens Smith
- Precision Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC, USA
| | - Joon-Ho Yu
- Treuman Katz Center for Pediatric Bioethics and Palliative Care, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Allen SJ, Morishita H. Local and long-range input balance: A framework for investigating frontal cognitive circuit maturation in health and disease. SCIENCE ADVANCES 2024; 10:eadh3920. [PMID: 39292771 PMCID: PMC11409946 DOI: 10.1126/sciadv.adh3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Frontal cortical circuits undergo prolonged maturation across childhood and adolescence; however, it remains unknown what specific changes are occurring at the circuit level to establish adult cognitive function. With the recent advent of circuit dissection techniques, it is now feasible to examine circuit-specific changes in connectivity, activity, and function in animal models. Here, we propose that the balance of local and long-range inputs onto frontal cognitive circuits is an understudied metric of circuit maturation. This review highlights research on a frontal-sensory attention circuit that undergoes refinement of local/long-range connectivity, regulated by circuit activity and neuromodulatory signaling, and evaluates how this process may occur generally in the frontal cortex to support adult cognitive behavior. Notably, this balance can be bidirectionally disrupted through various mechanisms relevant to psychiatric disorders. Pharmacological or environmental interventions to normalize or reset the local and long-range balance could hold great therapeutic promise to prevent or rescue cognitive deficits.
Collapse
Affiliation(s)
- Samuel J. Allen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
8
|
Boyle N, Li Y, Sun X, Xu P, Lai CH, Betts S, Guo D, Simha R, Zeng C, Du J, Lu H. MeCP2 Deficiency Alters the Response Selectivity of Prefrontal Cortical Neurons to Different Social Stimuli. eNeuro 2024; 11:ENEURO.0003-24.2024. [PMID: 39266326 PMCID: PMC11424234 DOI: 10.1523/eneuro.0003-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Rett syndrome (RTT), a severe neurodevelopmental disorder caused by mutations in the MeCP2 gene, is characterized by cognitive and social deficits. Previous studies have noted hypoactivity in the medial prefrontal cortex (mPFC) pyramidal neurons of MeCP2-deficient mice (RTT mice) in response to both social and nonsocial stimuli. To further understand the neural mechanisms behind the social deficits of RTT mice, we monitored excitatory pyramidal neurons in the prelimbic region of the mPFC during social interactions in mice. These neurons' activity was closely linked to social preference, especially in wild-type mice. However, RTT mice showed reduced social interest and corresponding hypoactivity in these neurons, indicating that impaired mPFC activity contributes to their social deficits. We identified six mPFC neural ensembles selectively tuned to various stimuli, with RTT mice recruiting fewer neurons to ensembles responsive to social interactions and consistently showing lower stimulus-ON ensemble transient rates. Despite these lower rates, RTT mice exhibited an increase in the percentage of social-ON neurons in later sessions, suggesting a compensatory mechanism for the decreased firing rate. This highlights the limited plasticity in the mPFC caused by MeCP2 deficiency and offers insights into the neural dynamics of social encoding. The presence of multifunctional neurons and those specifically responsive to social or object stimuli in the mPFC emphasizes its crucial role in complex behaviors and cognitive functions, with selective neuron engagement suggesting efficiency in neural activation that optimizes responses to environmental stimuli.
Collapse
Affiliation(s)
- Natalie Boyle
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| | - Yipeng Li
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| | - Xiaoqian Sun
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20037
| | - Pan Xu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| | - Chien-Hsien Lai
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| | - Sarah Betts
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| | - Dian Guo
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| | - Rahul Simha
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20037
| | - Chen Zeng
- Department of Physics, Columbia College of Art and Sciences, The George Washington University, Washington, DC 20037
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| |
Collapse
|
9
|
Feng S, Gong Y, Xia L, Lang Y, Shen Y, Li H, Feng W, Chen F, Chen Y. Calcium Hexacyanoferrate (III) Nanocatalyst Enables Redox Homeostasis for Autism Spectrum Disorder Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405655. [PMID: 39096109 DOI: 10.1002/adma.202405655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder with considerable heterogeneity, in which over-generated reactive oxygen species (ROS) induce a cascade of pathological changes, including cellular apoptosis and inflammatory responses. Given the complex etiology of ASD, no effective treatment is available for ASD. In this work, a specific catalytic nanoenzyme, calcium hexacyanoferrate (III) nanocatalysts (CaH NCs), is designed and engineered for efficient ASD treatment. CaH NCs can mimic the activities of natural enzymes including superoxide dismutase, peroxidase, catalase, and glutathione peroxidase, which mitigates intracellular excessive ROS and regulates redox equilibrium. These CaH NCs modulate mitochondrial membrane potential, elevate B-cell lymphoma-2 levels, and suppress pro-apoptotic proteins, including Caspase-3 and B-cell lymphoma-2-associated X, thus effectively reducing cellular apoptosis. Importantly, CaH NCs alleviate inflammation by upregulating anti-inflammatory cytokine interleukin-10 and downregulating pro-inflammatory factors, resulting in attenuated activation of microglial and astrocytic and subsequent reduction in neuroinflammation. Subsequently, CaH NCs enhance social abilities, decrease anxiety levels, ameliorate repetitive behaviors, and improve learning and memory in ASD animal models through inflammation regulation and apoptosis inhibition. The CaH NCs in managing and preventing ASD represents a paradigm shift in autism treatment, paving the alternative but efficient way for clinical interventions in neurological conditions.
Collapse
Affiliation(s)
- Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yan Gong
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yue Lang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yizhe Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hui Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
10
|
Chung WK, Kanne SM, Hu Z. An Opportunity to Fill a Gap for Newborn Screening of Neurodevelopmental Disorders. Int J Neonatal Screen 2024; 10:33. [PMID: 38651398 PMCID: PMC11036277 DOI: 10.3390/ijns10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Screening newborns using genome sequencing is being explored due to its potential to expand the list of conditions that can be screened. Previously, we proposed the need for large-scale pilot studies to assess the feasibility of screening highly penetrant genetic neurodevelopmental disorders. Here, we discuss the initial experience from the GUARDIAN study and the systemic gaps in clinical services that were identified in the early stages of the pilot study.
Collapse
Affiliation(s)
- Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Stephen M. Kanne
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Zhanzhi Hu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| |
Collapse
|
11
|
Mykins M, Bridges B, Jo A, Krishnan K. Multidimensional Analysis of a Social Behavior Identifies Regression and Phenotypic Heterogeneity in a Female Mouse Model for Rett Syndrome. J Neurosci 2024; 44:e1078232023. [PMID: 38199865 PMCID: PMC10957218 DOI: 10.1523/jneurosci.1078-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024] Open
Abstract
Regression is a key feature of neurodevelopmental disorders such as autism spectrum disorder, Fragile X syndrome, and Rett syndrome (RTT). RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). It is characterized by an early period of typical development with subsequent regression of previously acquired motor and speech skills in girls. The syndromic phenotypes are individualistic and dynamic over time. Thus far, it has been difficult to capture these dynamics and syndromic heterogeneity in the preclinical Mecp2-heterozygous female mouse model (Het). The emergence of computational neuroethology tools allows for robust analysis of complex and dynamic behaviors to model endophenotypes in preclinical models. Toward this first step, we utilized DeepLabCut, a marker-less pose estimation software to quantify trajectory kinematics and multidimensional analysis to characterize behavioral heterogeneity in Het in the previously benchmarked, ethologically relevant social cognition task of pup retrieval. We report the identification of two distinct phenotypes of adult Het: Het that display a delay in efficiency in early days and then improve over days like wild-type mice and Het that regress and perform worse in later days. Furthermore, regression is dependent on age and behavioral context and can be detected in the initial days of retrieval. Together, the novel identification of two populations of Het suggests differential effects on neural circuitry, opens new avenues to investigate the underlying molecular and cellular mechanisms of heterogeneity, and designs better studies for stratifying therapeutics.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Benjamin Bridges
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Angela Jo
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
12
|
Wang H, Zhao Y, Zhang D, Li J, Yang K, Yang J, Li B. Neuroprotective effects of quinpirole on lithium chloride pilocarpine-induced epilepsy in rats and its underlying mechanisms. Eur J Med Res 2024; 29:121. [PMID: 38355613 PMCID: PMC10865707 DOI: 10.1186/s40001-024-01694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Epilepsy is a common neurological disorder that presents with challenging mechanisms and treatment strategies. This study investigated the neuroprotective effects of quinpirole on lithium chloride pilocarpine-induced epileptic rats and explored its potential mechanisms. METHODS Lithium chloride pilocarpine was used to induce an epileptic model in rats, and the effects of quinpirole on seizure symptoms and cognitive function were evaluated. The Racine scoring method, electroencephalography, and Morris water maze test were used to assess seizure severity and learning and memory functions in rats in the epileptic group. Additionally, immunohistochemistry and Western blot techniques were used to analyze the protein expression levels and morphological changes in glutamate receptor 2 (GluR2; GRIA2), BAX, and BCL2 in the hippocampi of rats in the epileptic group. RESULTS First, it was confirmed that the symptoms in rats in the epileptic group were consistent with features of epilepsy. Furthermore, these rats demonstrated decreased learning and memory function in the Morris water maze test. Additionally, gene and protein levels of GluR2 in the hippocampi of rats in the epileptic group were significantly reduced. Quinpirole treatment significantly delayed seizure onset and decreased the mortality rate after the induction of a seizure. Furthermore, electroencephalography showed a significant decrease in the frequency of the spike waves. In the Morris water maze test, rats from the quinpirole treatment group demonstrated a shorter latency period to reach the platform and an increased number of crossings through the target quadrant. Network pharmacology analysis revealed a close association between quinpirole and GluR2 as well as its involvement in the cAMP signaling pathway, cocaine addiction, and dopaminergic synapses. Furthermore, immunohistochemistry and Western blot analysis showed that quinpirole treatment resulted in a denser arrangement and a more regular morphology of the granule cells in the hippocampi of rats in the epileptic group. Additionally, quinpirole treatment decreased the protein expression of BAX and increased the protein expression of BCL2. CONCLUSION The current study demonstrated that quinpirole exerted neuroprotective effects in the epileptic rat model induced by lithium chloride pilocarpine. Additionally, it was found that the treatment not only alleviated the rats' seizure symptoms, but also improved their learning and memory abilities. This improvement was linked to the modulation of protein expression levels of GLUR2, BAX, and BCL2. These findings provided clues that would be important for further investigation of the therapeutic potential of quinpirole and its underlying mechanisms for epilepsy treatment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Pediatrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yongheng Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongqing Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kun Yang
- Department of Pediatrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Junli Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Zhi J, Yin L, Zhang Z, Lv Y, Wu F, Yang Y, Zhang E, Li H, Lu N, Zhou M, Hu Q. Network pharmacology-based analysis of Jin-Si-Wei on the treatment of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117291. [PMID: 37925002 DOI: 10.1016/j.jep.2023.117291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jin-Si-Wei (JSW), a traditional Chinese medicine (TCM) formula, have cognitive enhancing effect and delay the memory decline in an animal model of AD, which has been reported. However, the therapeutic mechanism of JSW in the treatment of AD remains unclear. AIM OF THE STUDY This study aimed to verify the pharmacodynamics of JSW in the treatment of AD, and to explore its potential mechanism based on network pharmacology, molecular docking and experimental validation both in vitro and in vivo. MATERIALS AND METHODS In this study, the underlying mechanism of JSW against AD was investigated by the integration of network pharmacology. Then, the core pathways and biological process of JSW were verified by experiment, including behavioral test and pathological and biochemical assays with 6-month-old APPswe/PS1ΔE9 transgenic (APP/PS1) mice in vivo and verified with Aβ1-42-stimulated SH-SY5Y cells in vitro. At last, molecular docking was used to show the binding activity of each active ingredient to the core genes of JSW treatment in AD. RESULTS A Drug-Ingredient-Target network was established, which included 363 ingredients and 116 targets related to the JSW treatment of AD. The main metabolic pathway of JSW treatment for AD is neuroactive ligand-receptor interaction pathway, and biological processes are mainly involved in Aβ metabolic process. In vivo experiments, compared with APP/PS1 mice, the cognitive and memory ability of mice was significantly improved after JSW administration. In brain tissue of APP/PS1 mice, JSW could increase the contents of low-density lipoprotein receptor-related protein 1 (LRP-1), enkephalinase (NEP) and Acetyl choline (ACh), and decrease the contents of Aβ1-42, amyloid precursor protein (APP) and receptor for advanced glycation end products (RAGE), decrease the vitality of cholinesterase (AChE) and choline acetyltransferase (ChAT). Besides, JSW could increase α-secretase expression and decrease β/γ-secretase expression, and improve the number and morphology of synapses in CA1 region of the hippocampus of APP/PS1 mice. In vitro experiments, Drug-Containing Serum (JSW-serum) has a neuroprotective effect by reducing the apoptosis on Aβ1-42-stimulated SH-SY5Y cells. Molecular docking results showed that 2-Isopropyl-8-methylphenanthrene-3,4-dione had strong binding activity with PTGS2, which maybe a potential ingredient for the treatment of AD. CONCLUSIONS JSW improves AD in APP/PS1 mice, and this therapeutic effect may be achieved in part by altering the neuroactive ligand-receptor interaction pathway.
Collapse
Affiliation(s)
- Jiayi Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Li Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, PR China
| | - Yaozhong Lv
- Nanjing Central Hospital, Nanjing, 210018, PR China
| | - Fan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yang Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Enming Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, PR China.
| | - Ning Lu
- Nanjing Central Hospital, Nanjing, 210018, PR China.
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| |
Collapse
|
14
|
Davidson CJ, Mascarin AT, Yahya MA, Rubio FJ, Gheidi A. Approaches and considerations of studying neuronal ensembles: a brief review. Front Cell Neurosci 2023; 17:1310724. [PMID: 38155864 PMCID: PMC10752959 DOI: 10.3389/fncel.2023.1310724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
First theorized by Hebb, neuronal ensembles have provided a framework for understanding how the mammalian brain operates, especially regarding learning and memory. Neuronal ensembles are discrete, sparsely distributed groups of neurons that become activated in response to a specific stimulus and are thought to provide an internal representation of the world. Beyond the study of region-wide or projection-wide activation, the study of ensembles offers increased specificity and resolution to identify and target specific memories or associations. Neuroscientists interested in the neurobiology of learning, memory, and motivated behavior have used electrophysiological-, calcium-, and protein-based proxies of neuronal activity in preclinical models to better understand the neurobiology of learned and motivated behaviors. Although these three approaches may be used to pursue the same general goal of studying neuronal ensembles, technical differences lead to inconsistencies in the output and interpretation of data. This mini-review highlights some of the methodologies used in electrophysiological-, calcium-, and protein-based studies of neuronal ensembles and discusses their strengths and weaknesses.
Collapse
Affiliation(s)
- Cameron J. Davidson
- William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - Alixandria T. Mascarin
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Majd A. Yahya
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - F. Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Bethesda, MD, United States
| | - Ali Gheidi
- Department of Biomedical Sciences, Mercer University, Macon, GA, United States
| |
Collapse
|
15
|
Helbling JE, Spittler AP, Sadar MJ, Santangelo KS. Optimization of overhead enclosure monitoring in juvenile male Dunkin Hartley guinea pigs ( Cavia porcellus). Lab Anim 2023; 57:552-564. [PMID: 37070354 PMCID: PMC11141528 DOI: 10.1177/00236772231165810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Overhead enclosure monitoring provides objective quantitative mobility measurements for animals undergoing open-field testing. Notably, protocols for testing optimization have been minimally established for the guinea pig. It is unknown whether (a) repeated exposure, (b) time-of-day, or (c) length of testing duration influence outcome parameters. We hypothesized that guinea pigs would display decreased activity following repeated exposure to the open field; heightened activity during the earliest testing period; and that 10 min would be adequate for data collection. The study was conducted in two separate phases to distinguish between enclosure habituation and time-of-day effects, respectively. Two cohorts of male Dunkin Hartley guinea pigs were allowed voluntary movement in an open-field enclosure for 14 min to quantify mobility outcomes, including total distance traveled, total time mobile, average speed while mobile, and total time spent in the shelter. For both phases, testing occurred at four different times of day, and overhead monitoring software was programmed to divide the total testing duration into 2-min bins. Habituation phase results showed time mobile and distance traveled were influenced significantly by repeat exposure, as animals were most active during the first testing event. Time-of-day phase animals spent significantly more time mobile during the earliest testing period. Interestingly, significant differences were observed across 2-min bins for the time-of-day phase but not during the habituation phase. Specifically, progressively decreased ambulatory activity was observed as testing duration increased. Thus, habituation and time-of-day should be accounted for when possible. Finally, a trial period greater than 10 min may not yield additional data.
Collapse
Affiliation(s)
- Joel E Helbling
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA
| | - Alexa P Spittler
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA
| | - Miranda J Sadar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1619, USA
| |
Collapse
|
16
|
Mykins M, Layo-Carris D, Dunn LR, Skinner DW, McBryar AH, Perez S, Shultz TR, Willems A, Lau BYB, Hong T, Krishnan K. Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome. J Neurosci Res 2023; 101:1236-1258. [PMID: 37026482 PMCID: PMC10332853 DOI: 10.1002/jnr.25190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Rett syndrome is characterized by an early period of typical development and then, regression of learned motor and speech skills in girls. Loss of MECP2 protein is thought to cause Rett syndrome phenotypes. The specific underlying mechanisms from typical developmental trajectory to regression features throughout life are unclear. Lack of established timelines to study the molecular, cellular, and behavioral features of regression in female mouse models is a major contributing factor. Due to random X-chromosome inactivation, female patients with Rett syndrome and female mouse models for Rett syndrome (Mecp2Heterozygous , Het) express a functional copy of wild-type MECP2 protein in approximately half of all cells. As MECP2 expression is regulated during early postnatal development and experience, we characterized the expression of wild-type MECP2 in the primary somatosensory cortex of female Het mice. Here, we report increased MECP2 levels in non-parvalbumin-positive neurons of 6-week-old adolescent Het relative to age-matched wild-type controls, while also displaying typical levels of perineuronal net expression in the barrel field subregion of the primary somatosensory cortex, mild tactile sensory perception deficits, and efficient pup retrieval behavior. In contrast, 12-week-old adult Het express MECP2 at levels similar to age-matched wild-type mice, show increased perineuronal net expression in the cortex, and display significant tactile sensory perception deficits. Thus, we have identified a set of behavioral metrics and the cellular substrates to study regression during a specific time in the female Het mouse model, which coincides with changes in wild-type MECP2 expression. We speculate that the precocious increase in MECP2 expression within specific cell types of adolescent Het may provide compensatory benefits at the behavioral level, while the inability to further increase MECP2 levels leads to regressive behavioral phenotypes over time.
Collapse
Affiliation(s)
- Michael Mykins
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dana Layo-Carris
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Logan Reid Dunn
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - David Wilson Skinner
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Alexandra Hart McBryar
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah Perez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Trinity Rose Shultz
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew Willems
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Billy You Bun Lau
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Keerthi Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
17
|
Singh J, Goodman-Vincent E, Santosh P. Evidence Synthesis of Gene Therapy and Gene Editing from Different Disorders-Implications for Individuals with Rett Syndrome: A Systematic Review. Int J Mol Sci 2023; 24:ijms24109023. [PMID: 37240368 DOI: 10.3390/ijms24109023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This systematic review and thematic analysis critically evaluated gene therapy trials in amyotrophic lateral sclerosis, haemoglobinopathies, immunodeficiencies, leukodystrophies, lysosomal storage disorders and retinal dystrophies and extrapolated the key clinical findings to individuals with Rett syndrome (RTT). The PRISMA guidelines were used to search six databases during the last decade, followed by a thematic analysis to identify the emerging themes. Thematic analysis across the different disorders revealed four themes: (I) Therapeutic time window of gene therapy; (II) Administration and dosing strategies for gene therapy; (III) Methods of gene therapeutics and (IV) Future areas of clinical interest. Our synthesis of information has further enriched the current clinical evidence base and can assist in optimising gene therapy and gene editing studies in individuals with RTT, but it would also benefit when applied to other disorders. The findings suggest that gene therapies have better outcomes when the brain is not the primary target. Across different disorders, early intervention appears to be more critical, and targeting the pre-symptomatic stage might prevent symptom pathology. Intervention at later stages of disease progression may benefit by helping to clinically stabilise patients and preventing disease-related symptoms from worsening. If gene therapy or editing has the desired outcome, older patients would need concerted rehabilitation efforts to reverse their impairments. The timing of intervention and the administration route would be critical parameters for successful outcomes of gene therapy/editing trials in individuals with RTT. Current approaches also need to overcome the challenges of MeCP2 dosing, genotoxicity, transduction efficiencies and biodistribution.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| |
Collapse
|
18
|
Davis P, Takach K, Maski K, Levin A. A circuit-level biomarker of Rett syndrome based on ectopic phase-amplitude coupling during slow-wave-sleep. Cereb Cortex 2023; 33:2559-2572. [PMID: 35640651 DOI: 10.1093/cercor/bhac226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder characterized by loss of purposeful hand use and spoken language following an initial period of normal development. Although much is known about the genetic and molecular underpinnings of RTT, less is known about the circuit-level etiopathology. Coupling of oscillations during slow-wave-sleep (SWS) underlies important neurocognitive processes in adulthood, yet its emergence has yet to be described in early typical development (TD) or in RTT. We therefore addressed these unknowns by describing SWS cross-frequency coupling in both RTT and early TD using a retrospective study design. We found that in TD, phase-amplitude coupling (PAC) during SWS was dominated by coupling of slow-wave (0.5-2 Hz) phase to theta amplitude (5-8 Hz, "SW:T") as well as slow-wave to spindle-range (12-15 Hz, "SW:S"). Coupling exhibited characteristic vertex-prominent spatial topography, which emerged during an early developmental window. This topography failed to develop in patients with RTT due to persistent ectopic coupling. Furthermore, we found that subtypes of RTT exhibit distinct PAC topographic profiles, and that ectopic PAC correlates with clinical severity. These findings suggest that altered PAC dynamics and spatial organization during SWS may underlie the circuit-level pathophysiology of RTT and suggest that ectopic coupling may contribute to RTT pathogenesis.
Collapse
Affiliation(s)
- Patrick Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Kyle Takach
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Kiran Maski
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - April Levin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
19
|
Hara T, Owada Y, Takata A. Genetics of bipolar disorder: insights into its complex architecture and biology from common and rare variants. J Hum Genet 2023; 68:183-191. [PMID: 35614313 DOI: 10.1038/s10038-022-01046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Bipolar disorder (BD) is a common mental disorder characterized by recurrent mood episodes, which causes major socioeconomic burdens globally. Though its disease pathogenesis is largely unknown, the high heritability of BD indicates strong contributions from genetic factors. In this review, we summarize the recent achievements in the genetics of BD, particularly those from genome-wide association study (GWAS) of common variants and next-generation sequencing analysis of rare variants. These include the identification of dozens of robust disease-associated loci, deepening of our understanding of the biology of BD, objective description of correlations with other psychiatric disorders and behavioral traits, formulation of methods for predicting disease risk and drug response, and the discovery of a single gene associated with bipolar disorder and schizophrenia spectrum with a large effect size. On the other hand, the findings to date have not yet made a clear contribution to the improvement of clinical psychiatry of BD. We overview the remaining challenges as well as possible paths to resolve them, referring to studies of other major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tomonori Hara
- Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Atsushi Takata
- Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
20
|
Raus AM, Fuller TD, Nelson NE, Valientes DA, Bayat A, Ivy AS. Early-life exercise primes the murine neural epigenome to facilitate gene expression and hippocampal memory consolidation. Commun Biol 2023; 6:18. [PMID: 36611093 PMCID: PMC9825372 DOI: 10.1038/s42003-022-04393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory.
Collapse
Affiliation(s)
- Anthony M Raus
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Tyson D Fuller
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Nellie E Nelson
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - David A Valientes
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Anita Bayat
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Autumn S Ivy
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Neurobiology/Behavior, University of California- Irvine School of Biological Sciences, Irvine, CA, USA.
- Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Division of Neurology, Children's Hospital Orange County, Orange, CA, USA.
| |
Collapse
|
21
|
Badesso S, Cartas-Cejudo P, Espelosin M, Santamaria E, Cuadrado-Tejedor M, Garcia-Osta A. Docosahexaenoic Acid Ameliorates Contextual Fear Memory Deficits in the Tg2576 Alzheimer's Disease Mouse Model: Cellular and Molecular Correlates. Pharmaceutics 2022; 15:pharmaceutics15010082. [PMID: 36678710 PMCID: PMC9866126 DOI: 10.3390/pharmaceutics15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the brain, is essential for successful aging. In fact, epidemiological studies have demonstrated that increased intake of DHA might lower the risk for developing Alzheimer's disease (AD). These observations are supported by studies in animal models showing that DHA reduces synaptic pathology and memory deficits. Different mechanisms to explain these beneficial effects have been proposed; however, the molecular pathways involved are still unknown. In this study, to unravel the main underlying molecular mechanisms activated upon DHA treatment, the effect of a high dose of DHA on cognitive function and AD pathology was analyzed in aged Tg2576 mice and their wild-type littermates. Transcriptomic analysis of mice hippocampi using RNA sequencing was subsequently performed. Our results revealed that, through an amyloid-independent mechanism, DHA enhanced memory function and increased synapse formation only in the Tg2576 mice. Likewise, the IPA analysis demonstrated that essential neuronal functions related to synaptogenesis, neuritogenesis, the branching of neurites, the density of dendritic spines and the outgrowth of axons were upregulated upon-DHA treatment in Tg2576 mice. Our results suggest that memory function in APP mice is influenced by DHA intake; therefore, a high dose of daily DHA should be tested as a dietary supplement for AD dementia prevention.
Collapse
Affiliation(s)
- Sara Badesso
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Maria Espelosin
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Correspondence: (M.C.-T.); (A.G.-O.)
| | - Ana Garcia-Osta
- Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, 31008 Pamplona, Spain
- Correspondence: (M.C.-T.); (A.G.-O.)
| |
Collapse
|
22
|
Abstract
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Collapse
Affiliation(s)
- David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
- Current affiliation: Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom;
| |
Collapse
|
23
|
Chen PC, Han X, Shaw TI, Fu Y, Sun H, Niu M, Wang Z, Jiao Y, Teubner BJW, Eddins D, Beloate LN, Bai B, Mertz J, Li Y, Cho JH, Wang X, Wu Z, Liu D, Poudel S, Yuan ZF, Mancieri A, Low J, Lee HM, Patton MH, Earls LR, Stewart E, Vogel P, Hui Y, Wan S, Bennett DA, Serrano GE, Beach TG, Dyer MA, Smeyne RJ, Moldoveanu T, Chen T, Wu G, Zakharenko SS, Yu G, Peng J. Alzheimer's disease-associated U1 snRNP splicing dysfunction causes neuronal hyperexcitability and cognitive impairment. NATURE AGING 2022; 2:923-940. [PMID: 36636325 PMCID: PMC9833817 DOI: 10.1038/s43587-022-00290-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Recent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.
Collapse
Affiliation(s)
- Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Timothy I. Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Yingxue Fu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J. W. Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Donnie Eddins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lauren N. Beloate
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Biomedical Engineering and Electrical Engineering, Penn State University, State College, PA 16801, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Laboratory Medicine, Center for Precision Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Joseph Mertz
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: GlaxoSmithKline, Rockville, MD 20850, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Present address: Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suresh Poudel
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ariana Mancieri
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyeong-Min Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary H. Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Laurie R. Earls
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Biological Sciences, Loyola University of New Orleans, LA 70118, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yawei Hui
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David A. Bennett
- Department of Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AK 72205, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gang Yu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Present address: Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
24
|
Gene-based therapeutics for rare genetic neurodevelopmental psychiatric disorders. Mol Ther 2022; 30:2416-2428. [PMID: 35585789 PMCID: PMC9263284 DOI: 10.1016/j.ymthe.2022.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
We are in an emerging era of gene-based therapeutics with significant promise for rare genetic disorders. The potential is particularly significant for genetic central nervous system disorders that have begun to achieve Food and Drug Administration approval for select patient populations. This review summarizes the discussions and presentations of the National Institute of Mental Health-sponsored workshop "Gene-Based Therapeutics for Rare Genetic Neurodevelopmental Psychiatric Disorders," which was held in January 2021. Here, we distill the points raised regarding various precision medicine approaches related to neurodevelopmental and psychiatric disorders that may be amenable to gene-based therapies.
Collapse
|
25
|
Polley DB, Schiller D. The promise of low-tech intervention in a high-tech era: Remodeling pathological brain circuits using behavioral reverse engineering. Neurosci Biobehav Rev 2022; 137:104652. [PMID: 35385759 DOI: 10.1016/j.neubiorev.2022.104652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
As an academic pursuit, neuroscience is enjoying a golden age. From a clinical perspective, our field is failing. Conventional 20th century drugs and devices are not well-matched to the heterogeneity, scale, and connectivity of neural circuits that produce aberrant mental states and behavior. Laboratory-based methods for editing neural genomes and sculpting activity patterns are exciting, but their applications for hundreds of millions of people with mental health disorders is uncertain. We argue that mechanisms for regulating adult brain plasticity and remodeling pathological activity are substantially pre-wired, and we suggest new minimally invasive strategies to harness and direct these endogenous systems. Drawing from studies across the neuroscience literature, we describe approaches that identify neural biomarkers more closely linked to upstream causes-rather than downstream consequences-of disordered behavioral states. We highlight the potential for innovation and discovery in reverse engineering approaches that refine bespoke behavioral "agonists" to drive upstream neural biomarkers in normative directions and reduce clinical symptoms for select classes of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| | - Daniela Schiller
- Department of Psychiatry, Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Chung WK, Berg JS, Botkin JR, Brenner SE, Brosco JP, Brothers KB, Currier RJ, Gaviglio A, Kowtoniuk WE, Olson C, Lloyd-Puryear M, Saarinen A, Sahin M, Shen Y, Sherr EH, Watson MS, Hu Z. Newborn screening for neurodevelopmental diseases: Are we there yet? AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:222-230. [PMID: 35838066 PMCID: PMC9796120 DOI: 10.1002/ajmg.c.31988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
In the US, newborn screening (NBS) is a unique health program that supports health equity and screens virtually every baby after birth, and has brought timely treatments to babies since the 1960's. With the decreasing cost of sequencing and the improving methods to interpret genetic data, there is an opportunity to add DNA sequencing as a screening method to facilitate the identification of babies with treatable conditions that cannot be identified in any other scalable way, including highly penetrant genetic neurodevelopmental disorders (NDD). However, the lack of effective dietary or drug-based treatments has made it nearly impossible to consider NDDs in the current NBS framework, yet it is anticipated that any treatment will be maximally effective if started early. Hence there is a critical need for large scale pilot studies to assess if and how NDDs can be effectively screened at birth, if parents desire that information, and what impact early diagnosis may have. Here we attempt to provide an overview of the recent advances in NDD treatments, explore the possible framework of setting up a pilot study to genetically screen for NDDs, highlight key technical, practical, and ethical considerations and challenges, and examine the policy and health system implications.
Collapse
Affiliation(s)
- Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, New York, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey R Botkin
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Jeffrey P Brosco
- Institute for Bioethics and Health Policy, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kyle B Brothers
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Robert J Currier
- School of Medicine, University of California, San Francisco, California, USA
| | - Amy Gaviglio
- Connetics Consulting, Minneapolis, Minnesota, USA
| | | | - Colleen Olson
- Steinhardt Graduate School of Education, New York University, New York, New York, USA
| | | | | | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Elliott H Sherr
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, California, USA
| | - Michael S Watson
- Department of Pediatrics, School of Medicine, Washington University (Adjunct), St. Louis, Missouri, USA
| | - Zhanzhi Hu
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| |
Collapse
|
27
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
28
|
Liu C, Zhang S, Shi H, Zhou H, Zhuang J, Cao Y, Ward N, Wang J. Atp11b Deletion Affects the Gut Microbiota and Accelerates Brain Aging in Mice. Brain Sci 2022; 12:709. [PMID: 35741595 PMCID: PMC9221138 DOI: 10.3390/brainsci12060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
The microbiota-gut-brain axis has attracted significant attention with respect to studying the mechanisms of brain aging; however, the specific connection between gut microbiota and aging remains unclear. The abnormal expression and mutation of proteins belonging to the P4-ATPase family, including Atp11b, results in a variety of neurological diseases. The results of our analysis demonstrate that there was a shift in the abundance of certain gut microbiota in Atp11b-knockout (KO) mice. Specifically, there was an increase in pro-inflammatory bacteria that accelerate aging and a decrease in probiotics that delay aging. Consequently, an enhanced oxidative stress response was observed, which was characterized by a reduction in the superoxide dismutase (SOD) activity and an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) levels. In addition, our data demonstrate that there was a decrease in the number of cells in the dentate gyrus (DG) region of the hippocampus, and aggravation of aging-related pathological features such as senescence β-galactosidase (SA-β-Gal), p-HistoneH2AX (Ser139), and p16INK4. Moreover, KO mice show typical aging-associated behavior, such as memory impairment and slow pain perception. Taken together, we demonstrate a possible mechanism of aging induced by gut microbiota in Atp11b-KO mice, which provides a novel perspective for the treatment of aging through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Hongwei Shi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Yiyang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Natalie Ward
- Banner Ocotillo Medical Center, 1405 S Alma School Rd, Chandler, AZ 85286, USA;
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| |
Collapse
|
29
|
Zhang WJ, Shi LL, Zhang L. Dysregulated cortical synaptic plasticity under methyl-CpG binding protein 2 deficiency and its implication in motor impairments. World J Psychiatry 2022; 12:673-682. [PMID: 35663301 PMCID: PMC9150038 DOI: 10.5498/wjp.v12.i5.673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Caused by the mutation of methyl-CpG binding protein 2 (MeCP2), Rett syndrome leads to a battery of severe neural dysfunctions including the regression of motor coordination and motor learning. Current understanding has revealed the motor cortex as the critical region mediating voluntary movement. In this review article, we will summarize major findings from human patients and animal models regarding the cortical synaptic plasticity under the regulation of MeCP2. We will also discuss how mutation of MeCP2 leads to the disruption of cortical circuitry homeostasis to cause motor deficits. Lastly, potential values of physical exercise and neuromodulation approaches to recover neural plasticity and motor function will be evaluated. All of this evidence may help to accelerate timely diagnosis and effective interventions for Rett syndrome patients.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ling-Ling Shi
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
30
|
Nothof SA, Magdinier F, Van-Gils J. Chromatin Structure and Dynamics: Focus on Neuronal Differentiation and Pathological Implication. Genes (Basel) 2022; 13:genes13040639. [PMID: 35456445 PMCID: PMC9029427 DOI: 10.3390/genes13040639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Chromatin structure is an essential regulator of gene expression. Its state of compaction contributes to the regulation of genetic programs, in particular during differentiation. Epigenetic processes, which include post-translational modifications of histones, DNA methylation and implication of non-coding RNA, are powerful regulators of gene expression. Neurogenesis and neuronal differentiation are spatio-temporally regulated events that allow the formation of the central nervous system components. Here, we review the chromatin structure and post-translational histone modifications associated with neuronal differentiation. Studying the impact of histone modifications on neuronal differentiation improves our understanding of the pathophysiological mechanisms of chromatinopathies and opens up new therapeutic avenues. In addition, we will discuss techniques for the analysis of histone modifications on a genome-wide scale and the pathologies associated with the dysregulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Sophie A. Nothof
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Frédérique Magdinier
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
| | - Julien Van-Gils
- Marseille Medical Genetics, Aix Marseille University, Inserm, CEDEX 05, 13385 Marseille, France; (S.A.N.); (F.M.)
- Reference Center AD SOOR, AnDDI-RARE, Inserm U 1211, Medical Genetics Department, Bordeaux University, Center Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
31
|
Fu Y, Zhou Y, Zhang YL, Zhao B, Zhang XL, Zhang WT, Lu YJ, Lu A, Zhang J, Zhang J. Loss of neurodevelopmental-associated miR-592 impairs neurogenesis and causes social interaction deficits. Cell Death Dis 2022; 13:292. [PMID: 35365601 PMCID: PMC8976077 DOI: 10.1038/s41419-022-04721-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022]
Abstract
microRNA-592 (miR-592) has been linked to neurogenesis, but the influence of miR-592 knockout in vivo remains unknown. Here, we report that miR-592 knockout represses IPC-to-mature neuron transition, impairs motor coordination and reduces social interaction. Combining the RNA-seq and tandem mass tagging-based quantitative proteomics analysis (TMT protein quantification) and luciferase reporter assays, we identified MeCP2 as the direct targetgene of miR-592 in the mouse cortex. In Tg(MECP2) mice, lipofection of miR-592 efficiently reduced MECP2 expression in the brains of Tg(MECP2) mice at E14.5. Furthermore, treatment with miR-592 partially ameliorated the autism-like phenotypes observed in adult Tg(MECP2) mice. The findings demonstrate that miR-592 might play a novel role in treating the neurodevelopmental-associated disorder.
Collapse
Affiliation(s)
- Yu Fu
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Yang Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yuan-Lin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Bo Zhao
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Xing-Liao Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Wan-Ting Zhang
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Yi-Jun Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Aiping Lu
- Research Centre for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, 200010, Shanghai, China
| | - Jun Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
- Research Centre for Translational Medicine at East Hospital, School of Medicine, Tongji University, 200010, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200092, Shanghai, China.
| | - Jing Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200092, Shanghai, China.
| |
Collapse
|
32
|
Nie R, Lu J, Xu R, Yang J, Shen X, Ouyang X, Zhu D, Huang Y, Zhao T, Zhao X, Lu Y, Qian M, Wang J, Shen X. Ipriflavone as a non-steroidal glucocorticoid receptor antagonist ameliorates diabetic cognitive impairment in mice. Aging Cell 2022; 21:e13572. [PMID: 35172041 PMCID: PMC8920458 DOI: 10.1111/acel.13572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Diabetic cognitive impairment (DCI) is a common diabetic complication with hallmarks of loss of learning ability and disorders of memory and behavior. Glucocorticoid receptor (GR) dysfunction is a main reason for neuronal impairment in brain of diabetic patients. Here, we determined that ipriflavone (IP) a clinical anti-osteoporosis drug functioned as a non-steroidal GR antagonist and efficiently ameliorated learning and memory dysfunction in both type 1 and 2 diabetic mice. The underlying mechanism has been intensively investigated by assay against the diabetic mice with GR-specific knockdown in the brain by injection of adeno-associated virus (AAV)-ePHP-si-GR. IP suppressed tau hyperphosphorylation through GR/PI3K/AKT/GSK3β pathway, alleviated neuronal inflammation through GR/NF-κB/NLRP3/ASC/Caspase-1 pathway, and protected against synaptic impairment through GR/CREB/BDNF pathway. To our knowledge, our work might be the first to expound the detailed mechanism underlying the amelioration of non-steroidal GR antagonist on DCI-like pathology in mice and report the potential of IP in treatment of DCI.
Collapse
Affiliation(s)
- Ruifang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Rui Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Juanzhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xingyi Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xingnan Ouyang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Danyang Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Yujie Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Tong Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xuejian Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Minyi Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
33
|
Gutiérrez JF, Natali G, Giorgi J, De Leonibus E, Tongiorgi E. Mirtazapine treatment in a young female mouse model of Rett syndrome identifies time windows for the rescue of early phenotypes. Exp Neurol 2022; 353:114056. [DOI: 10.1016/j.expneurol.2022.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
|
34
|
Disruption of MeCP2-TCF20 complex underlies distinct neurodevelopmental disorders. Proc Natl Acad Sci U S A 2022; 119:2119078119. [PMID: 35074918 PMCID: PMC8794850 DOI: 10.1073/pnas.2119078119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
MeCP2 is associated with Rett syndrome (RTT), MECP2 duplication syndrome, and a number of conditions with isolated features of these diseases, including autism, intellectual disability, and motor dysfunction. MeCP2 is known to broadly bind methylated DNA, but the precise molecular mechanism driving disease pathogenesis remains to be determined. Using proximity-dependent biotinylation (BioID), we identified a transcription factor 20 (TCF20) complex that interacts with MeCP2 at the chromatin interface. Importantly, RTT-causing mutations in MECP2 disrupt this interaction. TCF20 and MeCP2 are highly coexpressed in neurons and coregulate the expression of key neuronal genes. Reducing Tcf20 partially rescued the behavioral deficits caused by MECP2 overexpression, demonstrating a functional relationship between MeCP2 and TCF20 in MECP2 duplication syndrome pathogenesis. We identified a patient exhibiting RTT-like neurological features with a missense mutation in the PHF14 subunit of the TCF20 complex that abolishes the MeCP2-PHF14-TCF20 interaction. Our data demonstrate the critical role of the MeCP2-TCF20 complex for brain function.
Collapse
|
35
|
Introducing the brain erythropoietin circle to explain adaptive brain hardware upgrade and improved performance. Mol Psychiatry 2022; 27:2372-2379. [PMID: 35414656 PMCID: PMC9004453 DOI: 10.1038/s41380-022-01551-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Executive functions, learning, attention, and processing speed are imperative facets of cognitive performance, affected in neuropsychiatric disorders. In clinical studies on different patient groups, recombinant human (rh) erythropoietin (EPO) lastingly improved higher cognition and reduced brain matter loss. Correspondingly, rhEPO treatment of young rodents or EPO receptor (EPOR) overexpression in pyramidal neurons caused remarkable and enduring cognitive improvement, together with enhanced hippocampal long-term potentiation. The 'brain hardware upgrade', underlying these observations, includes an EPO induced ~20% increase in pyramidal neurons and oligodendrocytes in cornu ammonis hippocampi in the absence of elevated DNA synthesis. In parallel, EPO reduces microglia numbers and dampens their activity and metabolism as prerequisites for undisturbed EPO-driven differentiation of pre-existing local neuronal precursors. These processes depend on neuronal and microglial EPOR. This novel mechanism of powerful postnatal neurogenesis, outside the classical neurogenic niches, and on-demand delivery of new cells, paralleled by dendritic spine increase, let us hypothesize a physiological procognitive role of hypoxia-induced endogenous EPO in brain, which we imitate by rhEPO treatment. Here we delineate the brain EPO circle as working model explaining adaptive 'brain hardware upgrade' and improved performance. In this fundamental regulatory circle, neuronal networks, challenged by motor-cognitive tasks, drift into transient 'functional hypoxia', thereby triggering neuronal EPO/EPOR expression.
Collapse
|
36
|
Collins BE, Neul JL. Rett Syndrome and MECP2 Duplication Syndrome: Disorders of MeCP2 Dosage. Neuropsychiatr Dis Treat 2022; 18:2813-2835. [PMID: 36471747 PMCID: PMC9719276 DOI: 10.2147/ndt.s371483] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused predominantly by loss-of-function mutations in the gene Methyl-CpG-binding protein 2 (MECP2), which encodes the MeCP2 protein. RTT is a MECP2-related disorder, along with MECP2 duplication syndrome (MDS), caused by gain-of-function duplications of MECP2. Nearly two decades of research have advanced our knowledge of MeCP2 function in health and disease. The following review will discuss MeCP2 protein function and its dysregulation in the MECP2-related disorders RTT and MDS. This will include a discussion of the genetic underpinnings of these disorders, specifically how sporadic X-chromosome mutations arise and manifest in specific populations. We will then review current diagnostic guidelines and clinical manifestations of RTT and MDS. Next, we will delve into MeCP2 biology, describing the dual landscapes of methylated DNA and its reader MeCP2 across the neuronal genome as well as the function of MeCP2 as a transcriptional modulator. Following this, we will outline common MECP2 mutations and genotype-phenotype correlations in both diseases, with particular focus on mutations associated with relatively mild disease in RTT. We will also summarize decades of disease modeling and resulting molecular, synaptic, and behavioral phenotypes associated with RTT and MDS. Finally, we list several therapeutics in the development pipeline for RTT and MDS and available evidence of their safety and efficacy.
Collapse
Affiliation(s)
- Bridget E Collins
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
37
|
Singh J, Lanzarini E, Nardocci N, Santosh P. Movement disorders in patients with Rett syndrome: A systematic review of evidence and associated clinical considerations. Psychiatry Clin Neurosci 2021; 75:369-393. [PMID: 34472659 PMCID: PMC9298304 DOI: 10.1111/pcn.13299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
AIM This systematic review identified and thematically appraised clinical evidence of movement disorders in patients with Rett syndrome (RTT). METHOD Using PRISMA criteria, six electronic databases were searched from inception to April 2021. A thematic analysis was then undertaken on the extracted data to identify potential themes. RESULTS Following the thematic analysis, six themes emerged: (i) clinical features of abnormal movement behaviors; (ii) mutational profile and its impact on movement disorders; (iii) symptoms and stressors that impact on movement disorders; (iv) possible underlying neurobiological mechanisms; (v) quality of life and movement disorders; and (vi) treatment of movement disorders. Current guidelines for managing movement disorders in general were then reviewed to provide possible treatment recommendations for RTT. CONCLUSION Our study offers an enriched data set for clinical investigations and treatment of fine and gross motor issues in RTT. A detailed understanding of genotype-phenotype relationships of movement disorders allows for more robust genetic counseling for families but can also assist healthcare professionals in terms of monitoring disease progression in RTT. The synthesis also showed that environmental enrichment would be beneficial for improving some aspects of movement disorders. The cerebellum, basal ganglia, alongside dysregulation of the cortico-basal ganglia-thalamo-cortical loop, are likely anatomical targets. A review of treatments for movement disorders also helped to provide recommendations for treating and managing movement disorders in patients with RTT.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evamaria Lanzarini
- Child and Adolescent Neuropsychiatry Unit, Infermi Hospital, Rimini, Italy
| | - Nardo Nardocci
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
38
|
HDAC inhibitor ameliorates behavioral deficits in Mecp2 308/y mouse model of Rett syndrome. Brain Res 2021; 1772:147670. [PMID: 34582789 DOI: 10.1016/j.brainres.2021.147670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023]
Abstract
Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder. More than 95% of classic RETT syndrome cases result from pathogenic variants in the methyl-CpG binding protein 2 (MECP2) gene. Nevertheless, it has been established that a spectrum of neuropsychiatric phenotypes is associated with MECP2 variants in both females and males. We previously reported that microtubule growth velocity and vesicle transport directionality are altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared to that of their wild-type littermates suggesting deficit in microtubule dynamics. In this study, we report that administration of tubastatin A, a selective HDAC6 inhibitor, restored microtubule dynamics in Mecp2-deficient astrocytes. We furthermore report that daily doses of tubastatin A reversed early impaired exploratory behavior in male Mecp2308/y mice. These findings are a first step toward the validation of a novel treatment for RTT.
Collapse
|
39
|
Yue Y, Xu P, Liu Z, Sun X, Su J, Du H, Chen L, Ash RT, Smirnakis S, Simha R, Kusner L, Zeng C, Lu H. Motor training improves coordination and anxiety in symptomatic Mecp2-null mice despite impaired functional connectivity within the motor circuit. SCIENCE ADVANCES 2021; 7:eabf7467. [PMID: 34678068 PMCID: PMC8535852 DOI: 10.1126/sciadv.abf7467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/01/2021] [Indexed: 05/03/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by loss of function of the X-linked methyl-CpG–binding protein 2 (MECP2). Several case studies report that gross motor function can be improved in children with RTT through treadmill walking, but whether the MeCP2-deficient motor circuit can support actual motor learning remains unclear. We used two-photon calcium imaging to simultaneously observe layer (L) 2/3 and L5a excitatory neuronal activity in the motor cortex (M1) while mice adapted to changing speeds on a computerized running wheel. Despite circuit hypoactivity and weakened functional connectivity across L2/3 and L5a, the Mecp2-null circuit’s firing pattern evolved with improved performance over 2 weeks. Moreover, trained mice became less anxious and lived 20% longer than untrained mice. Because motor deficits and anxiety are core symptoms of RTT, which is not diagnosed until well after symptom onset, these results underscore the benefit of motor learning.
Collapse
Affiliation(s)
- Yuanlei Yue
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Pan Xu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Zhichao Liu
- Department of Physics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiaoqian Sun
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20037, USA
| | - Juntao Su
- Department of Statistics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Hongfei Du
- Department of Statistics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Lingling Chen
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Ryan T. Ash
- Department of Psychiatry, Stanford University, Palo Alto, CA 94305, USA
| | - Stelios Smirnakis
- Department of Neurology, Brigham and Women’s Hospital, Jamaica Plain VA Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rahul Simha
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20037, USA
| | - Linda Kusner
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Chen Zeng
- Department of Physics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
40
|
Grzadzinski R, Amso D, Landa R, Watson L, Guralnick M, Zwaigenbaum L, Deák G, Estes A, Brian J, Bath K, Elison J, Abbeduto L, Wolff J, Piven J. Pre-symptomatic intervention for autism spectrum disorder (ASD): defining a research agenda. J Neurodev Disord 2021; 13:49. [PMID: 34654371 PMCID: PMC8520312 DOI: 10.1186/s11689-021-09393-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) impacts an individual's ability to socialize, communicate, and interact with, and adapt to, the environment. Over the last two decades, research has focused on early identification of ASD with significant progress being made in understanding the early behavioral and biological markers that precede a diagnosis, providing a catalyst for pre-symptomatic identification and intervention. Evidence from preclinical trials suggest that intervention prior to the onset of ASD symptoms may yield more improved developmental outcomes, and clinical studies suggest that the earlier intervention is administered, the better the outcomes. This article brings together a multidisciplinary group of experts to develop a conceptual framework for behavioral intervention, during the pre-symptomatic period prior to the consolidation of symptoms into diagnosis, in infants at very-high-likelihood for developing ASD (VHL-ASD). The overarching goals of this paper are to promote the development of new intervention approaches, empirical research, and policy efforts aimed at VHL-ASD infants during the pre-symptomatic period (i.e., prior to the consolidation of the defining features of ASD).
Collapse
Affiliation(s)
- Rebecca Grzadzinski
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
- Program for Early Autism Research Leadership and Service (PEARLS), University of North Carolina, Chapel Hill, NC, USA.
| | - Dima Amso
- Department of Psychology, Columbia University, New York, NY, USA
| | - Rebecca Landa
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Watson
- Program for Early Autism Research Leadership and Service (PEARLS), University of North Carolina, Chapel Hill, NC, USA
- Division of Speech and Hearing Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Guralnick
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | | | - Gedeon Deák
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, USA
| | - Annette Estes
- Department of Speech and Hearing Sciences, University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Jessica Brian
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Kevin Bath
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Leonard Abbeduto
- University of California, Davis, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Jason Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Ash RT, Buffington SA, Park J, Suter B, Costa-Mattioli M, Zoghbi HY, Smirnakis SM. Inhibition of Elevated Ras-MAPK Signaling Normalizes Enhanced Motor Learning and Excessive Clustered Dendritic Spine Stabilization in the MECP2-Duplication Syndrome Mouse Model of Autism. eNeuro 2021; 8:ENEURO.0056-21.2021. [PMID: 34021030 PMCID: PMC8260274 DOI: 10.1523/eneuro.0056-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
The inflexible repetitive behaviors and "insistence on sameness" seen in autism imply a defect in neural processes controlling the balance between stability and plasticity of synaptic connections in the brain. It has been proposed that abnormalities in the Ras-ERK/MAPK pathway, a key plasticity-related cell signaling pathway known to drive consolidation of clustered synaptic connections, underlie altered learning phenotypes in autism. However, a link between altered Ras-ERK signaling and clustered dendritic spine plasticity has yet to be explored in an autism animal model in vivo The formation and stabilization of dendritic spine clusters is abnormally increased in the MECP2-duplication syndrome mouse model of syndromic autism, suggesting that ERK signaling may be increased. Here, we show that the Ras-ERK pathway is indeed hyperactive following motor training in MECP2-duplication mouse motor cortex. Pharmacological inhibition of ERK signaling normalizes the excessive clustered spine stabilization and enhanced motor learning behavior in MECP2-duplication mice. We conclude that hyperactive ERK signaling may contribute to abnormal clustered dendritic spine consolidation and motor learning in this model of syndromic autism.
Collapse
Affiliation(s)
- Ryan Thomas Ash
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA 94305
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA 02115
| | - Shelly Alexandra Buffington
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555
| | - Jiyoung Park
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA 02115
| | - Bernhard Suter
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Huda Yaya Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | - Stelios Manolis Smirnakis
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
42
|
Lewis S. Brain training. Nat Rev Neurosci 2021; 22:261. [PMID: 33828304 DOI: 10.1038/s41583-021-00462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|