1
|
Baninameh Z, Watzlawik JO, Bustillos BA, Fiorino G, Yan T, Lewicki SL, Zhang H, Dickson DW, Siuda J, Wszolek ZK, Springer W, Fiesel FC. Development and validation of a sensitive sandwich ELISA against human PINK1. Autophagy 2025; 21:1144-1159. [PMID: 39912496 PMCID: PMC12013435 DOI: 10.1080/15548627.2025.2457915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
The ubiquitin kinase and ligase PINK1 and PRKN together label damaged mitochondria for their elimination in lysosomes by selective autophagy (mitophagy). This cytoprotective quality control pathway is genetically linked to familial Parkinson disease but is also altered during aging and in other neurodegenerative disorders. However, the molecular mechanisms of these mitophagy changes remain uncertain. In healthy mitochondria, PINK1 protein is continuously imported, cleaved, and degraded, but swiftly accumulates on damaged mitochondria, where it triggers the activation of the mitophagy pathway by phosphorylating its substrates ubiquitin and PRKN. Levels of PINK1 protein can therefore be used as a proxy for mitochondrial damage and mitophagy initiation. However, validated methodologies to sensitively detect and quantify PINK1 protein are currently not available. Here, we describe the development and thorough validation of a novel immunoassay to measure human PINK1 on the Meso Scale Discovery platform. The final assay showed excellent linearity, parallelism, and sensitivity. Even in the absence of mitochondrial stress (i.e. at basal conditions), when PINK1 protein is usually not detectable by immunoblotting, significant differences were obtained when comparing samples from patient fibroblasts or differentiated neurons with and without PINK1 expression. Of note, PINK1 protein levels were found increased in human postmortem brain with normal aging, but not in brains with Alzheimer disease, suggesting that indeed different molecular mechanisms are at play. In summary, we have developed a novel sensitive PINK1 immunoassay that will complement other efforts to decipher the roles and biomarker potential of the PINK1-PRKN mitophagy pathway in the physiological and pathological context. Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECL: electrochemiluminescence; ELISA: enzyme-linked immunosorbent assay; iPSC: induced pluripotent stem cell; KO: knockout; LLOQ: lower limit of quantification; MSD: Meso Scale Discovery; PD: Parkinson disease; p-S65-Ub: serine-65 phosphorylated ubiquitin; Ub: ubiquitin; ULOQ: upper limit of quantification; WT: wild-type.
Collapse
Affiliation(s)
- Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Haonan Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
2
|
Chen H, Lin Q, Zeng Y, Chen P, Guo P, Feng R, Guo Z, Kang J, Chen Q, Zhou X. Xinyin tablets affect mitophagy and cardiomyocyte apoptosis to alleviate chronic heart failure by regulating histone deacetylase 3(HDAC3)-mediated PTEN induced putative kinase 1(PINK1)/Parkin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119666. [PMID: 40122315 DOI: 10.1016/j.jep.2025.119666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinyin tablets, Chinese patent medicine, are composed of Panax ginseng C.A.Mey. (Araliaceae), Ilex pubescens Hook. & Arn. (Aquifoliaceae), Leonurus japonicus Houtt. (Lamiaceae), Plantago asiatica L. (Plantaginaceae), Ophiopogon japonicus (Thunb.) Ker Gawl. (Asparagaceae), Astragalus membranaceus (Fisch.) Bunge, and Draba nemorosa L. (Brassicaceae). It has been used for the prevention and treatment of chronic heart failure (CHF) clinically. However, its underlying mechanism of action is far from completely understood. AIM OF THE STUDY This study aimed to determine whether Xinyin tablets alleviate CHF in SPF C57 mice and to explore the potential mechanism of action in H9c2 cells. MATERIALS AND METHODS Liquid chromatography tandem mass spectroscopy (LC-MS/MS) was performed to identify the chemical compounds in Xinyin tablets. In vivo, 60 C57 mice were randomly divided into 6 groups: the sham group; model group; low-, medium-, and high-dose Xinyin tablets groups; and perindopril group. Animals in the sham group underwent thoracotomy only. The others were subjected to coronary artery ligation. After 4 weeks of drug intervention, the cardiac function of the mice in each group was detected via echocardiography, the myocardial cells were evaluated via HE staining, and the degree of myocardial fibrosis was detected via Masson's trichrome staining. The expression of PINK1/Parkin signaling pathway-related genes (HDAC3, PINK1, Parkin, P62, LC3II/I, caspase-3, caspase-9, and Bax) was analyzed via RT‒qPCR and Western blotting. The effects of Xinyin tablets on cardiomyocyte apoptosis and mitophagy mediated by the HDAC3 and PINK1/Parkin pathways in CHF model mice were evaluated. In vitro, H9c2 cardiomyocytes subjected to hypoxia were treated with different concentrations of Xinyin tablets. The mRNA transcription levels of HDAC3, PINK1, Parkin, P62, LC3II/I, caspase-3, caspase-9, and Bax were measured via fluorescence quantitative PCR. Western blotting was used to detect the protein expression levels of PINK1, Parkin, P62, LC3 II/I, caspase-3, caspase-9, and Bax. TUNEL staining was used to detect the number of apoptotic bodies in the myocardium to evaluate the level of apoptosis. Transmission electron microscopy was used to observe changes in the number of mitophagosomes. Rapamycin (mitophagy agonist), Mdivi-1 (mitophagy inhibitor), ITSA-1 (HDAC3 agonist) and RGFP966 (HDAC3 inhibitor) were used to create intervention conditions. The effects of rapamycin or Mdivi-1 on PINK1/Parkin-mediated mitophagy were observed. Then, the effects of HDAC3 on the PINK1/Parkin signaling pathway, mitophagy and apoptosis in hypoxic cardiomyocytes were observed. Hypoxic cardiomyocytes were treated with Xinyin tablets-containing serum or control serum to observe whether Xinyin tablets could still play a protective role in cardiomyocytes when HDAC3 is activated or mitophagy is inhibited. RESULTS 785 compounds were characterized from Xinyin tablets, among which carbohydrates and glycosides, phenylpropanoids, terpenes were abundant, and a small number of amino acids, peptides and derivatives also existed in Xinyin tablets. In vivo, Xinyin tablets improved cardiac function (LVEF, LVFS, LVEDD, LVESD, and LVESV) and downregulated the expression of caspase-3, caspase-9, and Bax. The expression levels of PINK1 and Parkin subsequently increased. In vitro, the above findings were reinforced in H9c2 cardiomyocytes. Rapamycin and RGFP966 reduced the apoptosis of hypoxic H9C2 cardiomyocytes and increased mitophagy mediated by the HDAC3-mediated PINK1/Parkin signaling pathway. CONCLUSIONS Xinyin tablets have potential as an intervention for CHF by improving mitophagy and inhibiting cardiomyocyte apoptosis through the HDAC3-mediated PINK1/Parkin signaling pathway.
Collapse
Affiliation(s)
- Hanyu Chen
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, China
| | - Qianbei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlin Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pinliang Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengpeng Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoshui Feng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenyu Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinhua Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiucen Chen
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, China
| | - Xiaoxiong Zhou
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Clinical Research Academy of Chinese Medicine, China.
| |
Collapse
|
3
|
Callegari S, Kirk NS, Gan ZY, Dite T, Cobbold SA, Leis A, Dagley LF, Glukhova A, Komander D. Structure of human PINK1 at a mitochondrial TOM-VDAC array. Science 2025; 388:303-310. [PMID: 40080546 DOI: 10.1126/science.adu6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Mutations in the ubiquitin kinase PINK1 cause early-onset Parkinson's disease, but how PINK1 is stabilized at depolarized mitochondrial translocase complexes has remained poorly understood. We determined a 3.1-angstrom resolution cryo-electron microscopy structure of dimeric human PINK1 stabilized at an endogenous array of mitochondrial translocase of the outer membrane (TOM) and voltage-dependent anion channel (VDAC) complexes. Symmetric arrangement of two TOM core complexes around a central VDAC2 dimer is facilitated by TOM5 and TOM20, both of which also bind PINK1 kinase C-lobes. PINK1 enters mitochondria through the proximal TOM40 barrel of the TOM core complex, guided by TOM7 and TOM22. Our structure explains how human PINK1 is stabilized at the TOM complex and regulated by oxidation, uncovers a previously unknown TOM-VDAC assembly, and reveals how a physiological substrate traverses TOM40 during translocation.
Collapse
Affiliation(s)
- Sylvie Callegari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas S Kirk
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhong Yan Gan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Toby Dite
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon A Cobbold
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Leis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alisa Glukhova
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David Komander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Cagalinec M, Mohd A, Borecka S, Bultynck G, Choubey V, Yanovsky-Dagan S, Ezer S, Gasperikova D, Harel T, Jurkovicova D, Kaasik A, Liévens JC, Maurice T, Peviani M, Richard EM, Skoda J, Skopkova M, Tarot P, Van Gorp R, Zvejniece L, Delprat B. Improving mitochondria-associated endoplasmic reticulum membranes integrity as converging therapeutic strategy for rare neurodegenerative diseases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119954. [PMID: 40216201 DOI: 10.1016/j.bbamcr.2025.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
Membrane contact sites harbor a distinct set of proteins with varying biological functions, thereby emerging as hubs for localized signaling nanodomains underlying adequate cell function. Here, we will focus on mitochondria-associated endoplasmic reticulum membranes (MAMs), which serve as hotspots for Ca2+ signaling, redox regulation, lipid exchange, mitochondrial quality and unfolded protein response pathway. A network of MAM-resident proteins contributes to the structural integrity and adequate function of MAMs. Beyond endoplasmic reticulum (ER)-mitochondrial tethering proteins, MAMs contain several multi-protein complexes that mediate the transfer of or are influenced by Ca2+, reactive oxygen species and lipids. Particularly, IP3 receptors, intracellular Ca2+-release channels, and Sigma-1 receptors (S1Rs), ligand-operated chaperones, serve as important platforms that recruit different accessory proteins and intersect with these local signaling processes. Furthermore, many of these proteins are directly implicated in pathophysiological conditions, where their dysregulation or mutation is not only causing diseases such as cancer and neurodegeneration, but also rare genetic diseases, for example familial Parkinson's disease (PINK1, Parkin, DJ-1), familial Amyotrophic lateral sclerosis (TDP43), Wolfram syndrome1/2 (WFS1 and CISD2), Harel-Yoon syndrome (ATAD3A). In this review, we will discuss the current state-of-the-art regarding the molecular components, protein platforms and signaling networks underlying MAM integrity and function in cell function and how their dysregulation impacts MAMs, thereby driving pathogenesis and/or impacting disease burden. We will highlight how these insights can generate novel, potentially therapeutically relevant, strategies to tackle disease outcomes by improving the integrity of MAMs and the signaling processes occurring at these membrane contact sites.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Adnan Mohd
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Silvia Borecka
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Geert Bultynck
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | - Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Shlomit Ezer
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Daniela Gasperikova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Marco Peviani
- Cellular and Molecular Neuropharmacology Lab., Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Skopkova
- Department of Metabolic Diseases, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pauline Tarot
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Robbe Van Gorp
- KU Leuven, Cellular and Molecular Medicine, Laboratory of Molecular & Cellular Signaling, Campus Gasthuisberg ON-1, Leuven, Belgium
| | | | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
5
|
Kong X, Liu T, Wei J. Parkinson's Disease: The Neurodegenerative Enigma Under the "Undercurrent" of Endoplasmic Reticulum Stress. Int J Mol Sci 2025; 26:3367. [PMID: 40244210 PMCID: PMC11989508 DOI: 10.3390/ijms26073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder, demonstrates the critical involvement of endoplasmic reticulum stress (ERS) in its pathogenesis. This review comprehensively examines the role and molecular mechanisms of ERS in PD. ERS represents a cellular stress response triggered by imbalances in endoplasmic reticulum (ER) homeostasis, induced by factors such as hypoxia and misfolded protein aggregation, which activate the unfolded protein response (UPR) through the inositol-requiring enzyme 1 (IRE1), protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) pathways. Clinical, animal model, and cellular studies have consistently demonstrated a strong association between PD and ERS. Abnormal expression of ERS-related molecules in PD patients' brains and cerebrospinal fluid (CSF) correlates with disease progression. In animal models (e.g., Drosophila and mice), ERS inhibition alleviates dopaminergic neuronal damage. Cellular experiments reveal that PD-mimicking pathological conditions induce ERS, while interactions between ERS and mitochondrial dysfunction promote neuronal apoptosis. Mechanistically, (1) pathological aggregation of α-synuclein (α-syn) and ERS mutually reinforce dopaminergic neuron damage; (2) leucine-rich repeat kinase 2 (LRRK2) gene mutations induce ERS through thrombospondin-1 (THBS1)/transforming growth factor beta 1 (TGF-β1) interactions; (3) molecules such as Parkin and PTEN-induced kinase 1 (PINK1) regulate ERS in PD. Furthermore, ERS interacts with mitochondrial dysfunction, oxidative stress, and neuroinflammation to exacerbate neuronal injury. Emerging therapeutic strategies show significant potential, including artificial intelligence (AI)-assisted drug design targeting ERS pathways and precision medicine approaches exploring non-pharmacological interventions such as personalized electroacupuncture. Future research should focus on elucidating ERS-related mechanisms and identifying novel therapeutic targets to develop more effective treatments for PD patients, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Xiangrui Kong
- Wushu College, Henan University, Kaifeng 475004, China;
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Jianshe Wei
- Wushu College, Henan University, Kaifeng 475004, China;
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| |
Collapse
|
6
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
7
|
Feng C, Hu Z, Zhao M, Leng C, Li G, Yang F, Fan X. Region-specific mitophagy in nucleus pulposus, annulus fibrosus, and cartilage endplate of intervertebral disc degeneration: mechanisms and therapeutic strategies. Front Pharmacol 2025; 16:1579507. [PMID: 40248091 PMCID: PMC12003974 DOI: 10.3389/fphar.2025.1579507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent condition contributing to various spinal disorders, posing a significant global health burden. Mitophagy plays a crucial role in maintaining mitochondrial quantity and quality and is closely associated with the onset and progression of IVDD. Well-documented region-specific mitophagy mechanisms in IVDD are guiding the development of therapeutic strategies. In the nucleus pulposus (NP), impaired mitochondria lead to apoptosis, oxidative stress, senescence, extracellular matrix degradation and synthesis, excessive autophagy, inflammation, mitochondrial instability, and pyroptosis, with key regulatory targets including AMPK, PGC-1α, SIRT1, SIRT3, Progerin, p65, Mfn2, FOXO3, NDUFA4L2, SLC39A7, ITGα5/β1, Nrf2, and NLRP3 inflammasome. In the annulus fibrosus (AF), mitochondrial damage induces apoptosis and oxidative stress mediated by PGC-1α, while in the cartilage endplate (CEP), mitochondrial dysfunction similarly triggers apoptosis and oxidative stress. These mechanistic insights highlight therapeutic strategies such as activating Parkin-dependent and Ub-independent mitophagy pathways for NP, enhancing Parkin-dependent mitophagy for AF, and targeting Parkin-mediated mitophagy for CEP. These strategies include the use of natural ingredients, hormonal modulation, gene editing technologies, targeted compounds, and manipulation of related proteins. This review summarizes the mechanisms of mitophagy in different regions of the intervertebral disc and highlights therapeutic approaches using mitophagy modulators to ameliorate IVDD. It discusses the complex mechanisms of mitophagy and underscores its potential as a therapeutic target. The objective is to provide valuable insights and a scientific basis for the development of mitochondrial-targeted drugs for anti-IVDD.
Collapse
Affiliation(s)
- Chaoqun Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziang Hu
- Department of Orthopedics, The TCM Hospital of Longquanyi District, Chengdu, China
| | - Min Zhao
- International Ward (Gynecology), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Leng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangye Li
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Fan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Rose K, Herrmann E, Kakudji E, Lizarrondo J, Celebi AY, Wilfling F, Lewis SC, Hurley JH. In situ cryo-ET visualization of mitochondrial depolarization and mitophagic engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645001. [PMID: 40196634 PMCID: PMC11974748 DOI: 10.1101/2025.03.24.645001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Defective mitochondrial quality control in response to loss of mitochondrial membrane polarization is implicated in Parkinson's disease by mutations in PINK1 and PRKN. Application of in situ cryo-electron tomography (cryo-ET) made it possible to visualize the consequences of mitochondrial depolarization at higher resolution than heretofore attainable. Parkin-expressing U2OS cells were treated with the depolarizing agents oligomycin and antimycin A (OA), subjected to cryo-FIB milling, and mitochondrial structure was characterized by in situ cryo-ET. Phagophores were visualized in association with mitochondrial fragments. Bridge-like lipid transporter (BLTP) densities potentially corresponding to ATG2A were seen connected to mitophagic phagophores. Mitochondria in OA-treated cells were fragmented and devoid of matrix calcium phosphate crystals. The intermembrane gap of cristae was narrowed and the intermembrane volume reduced, and some fragments were devoid of cristae. A subpopulation of ATP synthases re-localized from cristae to the inner boundary membrane (IBM) apposed to the outer membrane (OMM). The structure of the dome-shaped prohibitin complex, a dodecamer of PHB1-PHB2 dimers, was determined in situ by sub-tomogram averaging in untreated and treated cells and found to exist in open and closed conformations, with the closed conformation is enriched by OA treatment. These findings provide a set of native snapshots of the manifold nano-structural consequences of mitochondrial depolarization and provide a baseline for future in situ dissection of Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Kevin Rose
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eric Herrmann
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eve Kakudji
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Javier Lizarrondo
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - A Yasemin Celebi
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Florian Wilfling
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Samantha C Lewis
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - James H Hurley
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Rubiera-Valdés M, Corte-Torres MD, Navarro-López A, Blanco-Agudín N, Fernández-Menéndez S, Piña-Batista KM, Santos-Juanes J, Merayo-Lloves J, Quirós LM, Fernández-Velasco AA, Fernández-Vega I. PI3K and PINK1 Immunoexpression as Predictors of Survival in Patients Undergoing Resection of Brain Metastases from Lung Adenocarcinoma. Int J Mol Sci 2025; 26:2945. [PMID: 40243539 PMCID: PMC11988690 DOI: 10.3390/ijms26072945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Phosphoinositide 3-kinase (PI3K) and PTEN-induced kinase 1 (PINK1) are key regulators of metabolism and mitochondrial quality control. This study assessed their immunoexpression in 22 patients with lung adenocarcinoma and resected brain metastases who underwent curative treatment between 2007 and 2017 and evaluated their prognostic significance. Tissue microarrays of primary tumors and matched metastases were analyzed using the H-score method. PI3K expression was significantly higher in primary tumors (96.8 ± 57.9 vs. 43.5 ± 62.3; p = 0.003) and in stage IV adenocarcinomas (113.3 ± 56.3 vs. 61.4 ± 47.1; p = 0.043). PINK1 expression showed no significant variation across disease stages. Univariate analysis identified older age (>55 years), PI3K overexpression (HR = 7.791, 95% CI 1.718-36.432; >50 points), and PINK1 overexpression (>100 points) in primary tumors as predictors of poor overall survival (HR = 2.236, 95% CI 1.109-4.508; p = 0.025). Multivariate analysis confirmed PINK1 overexpression in primary tumors as an independent prognostic factor (HR = 4.328, 95% CI 1.264-14.814; p = 0.020). These findings suggest that PI3K and PINK1 may serve as prognostic biomarkers in lung adenocarcinoma with resected brain metastases, emphasizing the need for research on their role in tumor progression and therapeutic response.
Collapse
Affiliation(s)
- Miriam Rubiera-Valdés
- Department of Pathology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
| | - Mª Daniela Corte-Torres
- Biobank of Principality of Asturias (BioPA), 33011 Oviedo, Spain; (M.D.C.-T.); (A.N.-L.); (S.F.-M.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
| | - Andrea Navarro-López
- Biobank of Principality of Asturias (BioPA), 33011 Oviedo, Spain; (M.D.C.-T.); (A.N.-L.); (S.F.-M.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
| | - Noelia Blanco-Agudín
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, 33012 Oviedo, Spain
| | - Santiago Fernández-Menéndez
- Biobank of Principality of Asturias (BioPA), 33011 Oviedo, Spain; (M.D.C.-T.); (A.N.-L.); (S.F.-M.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
- Department of Neurology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Kelvin M. Piña-Batista
- Department of Neurosurgery, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
| | - Jorge Santos-Juanes
- Department of Dermatology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
| | - Jesús Merayo-Lloves
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, 33012 Oviedo, Spain
- Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain
| | - Luis M. Quirós
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, 33012 Oviedo, Spain
| | - Adela A. Fernández-Velasco
- Department of Pathology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
- Biobank of Principality of Asturias (BioPA), 33011 Oviedo, Spain; (M.D.C.-T.); (A.N.-L.); (S.F.-M.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
- Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
- Biobank of Principality of Asturias (BioPA), 33011 Oviedo, Spain; (M.D.C.-T.); (A.N.-L.); (S.F.-M.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain; (N.B.-A.); (J.M.-L.); (L.M.Q.)
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, 33012 Oviedo, Spain
- Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Ma Y, Wang X, Li Y, Zhao J, Zhou X, Wang X. Mechanisms Associated with Mitophagy and Ferroptosis in Cerebral Ischemia-reperfusion Injury. J Integr Neurosci 2025; 24:26458. [PMID: 40152564 DOI: 10.31083/jin26458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke (IS) constitutes a major threat to human health. Vascular recanalization by intravenous thrombolysis and mechanical thrombolysis remain the most significant and effective methods for relief of ischemia. Key elements of these treatments include achieving blood-vessel recanalization, restoring brain-tissue reperfusion, and preserving the ischemic penumbra. However, in achieving the therapeutic goals of vascular recanalization, secondary damage to brain tissue from cerebral ischemia-reperfusion injury (CIRI) must also be addressed. Despite advancements in understanding the pathological processes associated with CIRI, effective interventions to prevent its onset and progression are still lacking. Recent research has indicated that mitophagy and ferroptosis are critical mechanisms in the development of CIRI, and significantly contribute to the onset and progression of IS and CIRI because of common targets and co-occurrence mechanisms. Therefore, exploring and summarizing the potential connections between mitophagy and ferroptosis during CIRI is crucial. In the present review, we mainly focused on the mechanisms of mitochondrial autophagy and ferroptosis, and their interaction, in the development of CIRI. We believe that the data show a strong relationship between mitochondrial autophagy and ferroptosis with interactive regulation. This information may underpin new potential approaches for the prevention and treatment of IS and subsequent CIRI.
Collapse
Affiliation(s)
- Yugang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xuebin Wang
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Yahui Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Gerontology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, 250399 Jinan, Shandong, China
| | - Xue Zhou
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| |
Collapse
|
11
|
Tang M, Rong D, Gao X, Lu G, Tang H, Wang P, Shao NY, Xia D, Feng XH, He WF, Chen W, Lu JH, Liu W, Shen HM. A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy. Cell Discov 2025; 11:22. [PMID: 40064862 PMCID: PMC11894195 DOI: 10.1038/s41421-025-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
PTEN-induced kinase-1 (PINK1) is a crucial player in selective clearance of damaged mitochondria via the autophagy-lysosome pathway, a process termed mitophagy. Previous studies on PINK1 mainly focused on its post-translational modifications, while the transcriptional regulation of PINK1 is much less understood. Herein, we reported a novel mechanism in control of PINK1 transcription by SMAD Family Member 3 (SMAD3), an essential component of the transforming growth factor beta (TGFβ)-SMAD signaling pathway. First, we observed that mitochondrial depolarization promotes PINK1 transcription, and SMAD3 is likely to be the nuclear transcription factor mediating PINK1 transcription. Intriguingly, SMAD3 positively transactivates PINK1 transcription independent of the canonical TGFβ signaling components, such as TGFβ-R1, SMAD2 or SMAD4. Second, we found that mitochondrial depolarization activates SMAD3 via PINK1-mediated phosphorylation of SMAD3 at serine 423/425. Therefore, PINK1 and SMAD3 constitute a positive feedforward loop in control of mitophagy. Finally, activation of PINK1 transcription by SMAD3 provides an important pro-survival signal, as depletion of SMAD3 sensitizes cells to cell death caused by mitochondrial stress. In summary, our findings identify a non-canonical function of SMAD3 as a nuclear transcriptional factor in regulation of PINK1 transcription and mitophagy and a positive feedback loop via PINK1-mediated SMAD3 phosphorylation and activation. Understanding this novel regulatory mechanism provides a deeper insight into the pathological function of PINK1 in the pathogenesis of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Mingzhu Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dade Rong
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Xiangzheng Gao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haimei Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Peng Wang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Ning-Yi Shao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Feng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
12
|
Hu X, Lv J, Zhao Y, Li X, Qi W, Wang X. Important regulatory role of mitophagy in diabetic microvascular complications. J Transl Med 2025; 23:269. [PMID: 40038741 DOI: 10.1186/s12967-025-06307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Microvascular complications of diabetes pose a significant threat to global health, mainly including diabetic kidney disease (DKD), diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN), and diabetic cardiomyopathy (DCM), which can ultimately lead to kidney failure, blindness, disability, and heart failure. With the increasing prevalence of diabetes, the search for new therapeutic targets for diabetic microvascular complications is imminent. Mitophagy is a widespread and strictly maintained process of self-renewal and energy metabolism that plays an important role in reducing inflammatory responses, inhibiting reactive oxygen species accumulation, and maintaining cellular energy metabolism. Hyperglycemia results in impaired mitophagy, which leads to mitochondrial dysfunction and ultimately exacerbates disease progression. This article summarizes the relevant molecular mechanisms of mitophagy and reviews the current status of research on regulating mitophagy as a potential treatment for diabetic microvascular complications, attempting to give new angles on the treatment of diabetic microvascular complications.
Collapse
Affiliation(s)
- Xiangjie Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiao Lv
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunyun Zhao
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China.
| | - Xiuge Wang
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
13
|
Liu H, Song Y, Wang H, Zhou Y, Xu M, Xian J. Deciphering the Power of Resveratrol in Mitophagy: From Molecular Mechanisms to Therapeutic Applications. Phytother Res 2025; 39:1319-1343. [PMID: 39754508 DOI: 10.1002/ptr.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity. Additionally, RES regulates mitophagy through the activation of key molecular targets such as AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), deacetylases (SIRT1 and SIRT3), and mitochondrial quality control (MQC) pathways, demonstrating substantial therapeutic effects in multiple disease models. We provide a detailed account of the biosynthetic pathways, pharmacokinetics, and metabolic characteristics of RES, focusing on its role in mitophagy modulation and implications for medical applications. Potential adverse effects associated with its clinical use are also discussed. Despite its promising therapeutic properties, the clinical application of RES is limited by issues of bioavailability and pharmacokinetic profiles. Future research should concentrate on enhancing RES bioavailability and developing derivatives that precisely modulate mitophagy, thereby unlocking new avenues for disease therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jiaxun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| |
Collapse
|
14
|
Pollock L, Georgiou IC, Rusilowicz-Jones EV, Clague MJ, Urbé S. A long-lived pool of PINK1 imparts a molecular memory of depolarization-induced activity. SCIENCE ADVANCES 2025; 11:eadr1938. [PMID: 40020067 PMCID: PMC11870087 DOI: 10.1126/sciadv.adr1938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/24/2025] [Indexed: 03/03/2025]
Abstract
The Parkinson's disease-linked kinase, PINK1, is a short-lived protein that undergoes cleavage upon mitochondrial import leading to its proteasomal degradation. Under depolarizing conditions, it accumulates on mitochondria where it becomes activated, phosphorylating both ubiquitin and the ubiquitin E3 ligase Parkin, at Ser65. Our experiments reveal that in retinal pigment epithelial cells, only a fraction of PINK1 becomes stabilized after depolarization by electron transport chain inhibitors. Furthermore, the observed accrual of PINK1 cannot be completely accounted for without an accompanying increase in biosynthesis. We have used a ubiquitylation inhibitor TAK-243 to accumulate cleaved PINK1. Under these conditions, generation of unconjugated "free" phospho-ubiquitin serves as a proxy readout for PINK1 activity. This has enabled us to find a preconditioning phenomenon, whereby an initial depolarizing treatment leaves a residual pool of active PINK1 that remains competent to seed the activation of nascent cleaved PINK1 following a 16-hour recovery period.
Collapse
Affiliation(s)
- Liam Pollock
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, 69120 Heidelberg, Germany
| | - Ioanna Ch. Georgiou
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Emma V. Rusilowicz-Jones
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Michael J. Clague
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Sylvie Urbé
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| |
Collapse
|
15
|
Zhou R, Zhang Z, Li X, Duan Q, Miao Y, Zhang T, Wang M, Li J, Zhang W, Wang L, Jones OD, Xu M, Liu Y, Xu X. Autophagy in High-Fat Diet and Streptozotocin-Induced Metabolic Cardiomyopathy: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:1668. [PMID: 40004130 PMCID: PMC11855906 DOI: 10.3390/ijms26041668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic cardiomyopathy, encompassing diabetic and obese cardiomyopathy, is an escalating global health concern, driven by the rising prevalence of metabolic disorders such as insulin resistance, type 1 and type 2 diabetes, and obesity. These conditions induce structural and functional alterations in the heart, including left ventricular dysfunction, fibrosis, and ultimately heart failure, particularly in the presence of coronary artery disease or hypertension. Autophagy, a critical cellular process for maintaining cardiac homeostasis, is frequently disrupted in metabolic cardiomyopathy. This review explores the role of autophagy in the pathogenesis of high-fat diet (HFD) and streptozotocin (STZ)-induced metabolic cardiomyopathy, focusing on non-selective and selective autophagy pathways, including mitophagy, ER-phagy, and ferritinophagy. Key proteins and genes such as PINK1, Parkin, ULK1, AMPK, mTOR, ATG7, ATG5, Beclin-1, and miR-34a are central to the regulation of autophagy in metabolic cardiomyopathy. Dysregulated autophagic flux impairs mitochondrial function, promotes oxidative stress, and drives fibrosis in the heart. Additionally, selective autophagy processes such as lipophagy, regulated by PNPLA8, and ferritinophagy, modulated by NCOA4, play pivotal roles in lipid metabolism and iron homeostasis. Emerging therapeutic strategies targeting autophagy, including plant extracts (e.g., curcumin, dihydromyricetin), endogenous compounds (e.g., sirtuin 3, LC3), and lipid/glucose-lowering drugs, offer promising avenues for mitigating the effects of metabolic cardiomyopathy. Despite recent advances, the precise mechanisms underlying autophagy in this context remain poorly understood. A deeper understanding of autophagy's regulatory networks, particularly involving these critical genes and proteins, may lead to novel therapeutic approaches for treating metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Rong Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Zutong Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xinjie Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Yuanlin Miao
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Tingting Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Mofei Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Jiali Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Wei Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Liyang Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Odell D. Jones
- University Laboratory Animal Resources (ULAR), University of Pennsylvania School of Medicine, Philadelphia, PA 19144, USA;
| | - Mengmeng Xu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Yingli Liu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| |
Collapse
|
16
|
Clague MJ, Urbé S. Diverse routes to mitophagy governed by ubiquitylation and mitochondrial import. Trends Cell Biol 2025:S0962-8924(25)00003-0. [PMID: 39922712 DOI: 10.1016/j.tcb.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/10/2025]
Abstract
The selective removal of mitochondria by mitophagy proceeds via multiple mechanisms and is essential for human well-being. The PINK1/Parkin and NIX/BNIP3 pathways are strongly linked to mitochondrial dysfunction and hypoxia, respectively. Both are regulated by ubiquitylation and mitochondrial import. Recent studies have elucidated how the ubiquitin kinase PINK1 acts as a sensor of mitochondrial import stress through stable interaction with a mitochondrial import supercomplex. The stability of BNIP3 and NIX is regulated by the SCFFBXL4 ubiquitin ligase complex. Substrate recognition requires an adaptor molecule, PPTC7, whose availability is limited by mitochondrial import. Unravelling the functional implications of each mode of mitophagy remains a critical challenge. We propose that mitochondrial import stress prompts a switch between these two pathways.
Collapse
Affiliation(s)
- Michael J Clague
- Department of Biochemistry, Cell, and Systems Biology, Institute of Systems, Molecular, and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3BX, UK.
| | - Sylvie Urbé
- Department of Biochemistry, Cell, and Systems Biology, Institute of Systems, Molecular, and Integrative Biology (ISMIB), University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
17
|
Qi Y, Zhang J, Zhang Y, Zhu H, Wang J, Xu X, Jin S, Wang C, Zhang F, Zhao M, Wu Z, Zhu H, Yan P. Curcuma wenyujin extract alleviates cognitive deficits and restrains pyroptosis through PINK1/Parkin mediated autophagy in Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156482. [PMID: 39954619 DOI: 10.1016/j.phymed.2025.156482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Pyroptosis and mitophagy have gained significant attention in Alzheimer's disease (AD) treatment. Curcumae Radix (CR), the dried radix of Curcuma wenyujin Y. H. Chen et C. Ling, is a traditional Chinese medicine (TCM) extensively utilized for neurological disorders. Yet, its impact and mechanistic role in AD remain unclear. PURPOSE This study aims to explore the active fraction of CR in AD treatment and its potential mechanisms. METHODS CR extracts were qualitatively analyzed using UHPLC-Triple-TOF/MS. Aβ1-42-induced mice received daily intragastric drug treatments for three weeks. Cognitive abilities of AD model mice were assessed through Y maze, novel object recognition, and eight-arm maze tests. Therapeutic targets of CR extracts were identified using quantitative proteomics. In both in vivo and in vitro settings, effects on pyroptosis and mitophagy were examined by Western blot (WB), immunofluorescence (IF) staining, and ELISA assays. RESULTS The ethyl acetate (EAC) fraction of CR extract exhibited optimal anti-AD effects. CR extracts enhanced memory and cognition in Aβ1-42-induced mice, improved neuronal morphology, and reduced Aβ accumulation in the brain. Proteomics analysis suggested the anti-AD properties of CR might involve inflammation reduction, cell survival enhancement, and mitophagy modulation. CR treatments in both AD mice and Aβ-induced SH-SY5Y cells resulted in reduced pyroptosis, increased LC3 and Beclin1 levels, and activation of the PINK1/Parkin pathway. CONCLUSION The EAC fraction of CR is effective in AD treatment by mitigating pyroptosis, reducing neuroinflammation, and promoting mitophagy, actions facilitated through the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingwen Zhang
- Department of Pharmacy, Taizhou Second People's Hospital, Taizhou, Zhejiang 317200, China
| | - Yuanlong Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoyun Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiabao Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiao Xu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shengjie Jin
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunlai Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fang Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhigang Wu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haoru Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
18
|
Bagnoli E, Lin YE, Burel S, Jaimon E, Antico O, Themistokleous C, Nikoloff JM, Squires S, Morella I, Watzlawik JO, Fiesel FC, Springer W, Tonelli F, Lis P, Brooks SP, Dunnett SB, Brambilla R, Alessi DR, Pfeffer SR, Muqit MMK. Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain. Proc Natl Acad Sci U S A 2025; 122:e2412029122. [PMID: 39874296 PMCID: PMC11804522 DOI: 10.1073/pnas.2412029122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation. In addition, we observe that a pool of the Rab-specific, protein phosphatase family member 1H phosphatase, is transcriptionally up-regulated and recruited to damaged mitochondria, independent of PINK1 or LRRK2 activity. Parallel signaling of LRRK2 and PINK1 pathways is supported by assessment of motor behavioral studies that show no evidence of genetic interaction in crossed mouse lines. Previously we showed loss of cilia in LRRK2 R1441C mice and herein we show that PINK1 KO mice exhibit a ciliogenesis defect in striatal cholinergic interneurons and astrocytes that interferes with Hedgehog induction of glial derived-neurotrophic factor transcription. This is not exacerbated in double-mutant LRRK2 and PINK1 mice. Overall, our analysis indicates that LRRK2 activation and/or loss of PINK1 function along parallel pathways to impair ciliogenesis, suggesting a convergent mechanism toward PD. Our data suggest that reversal of defects downstream of ciliogenesis offers a common therapeutic strategy for LRRK2 or PINK1 PD patients, whereas LRRK2 inhibitors that are currently in clinical trials are unlikely to benefit PINK1 PD patients.
Collapse
Affiliation(s)
- Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Yu-En Lin
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Sophie Burel
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ebsy Jaimon
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Odetta Antico
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Christos Themistokleous
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jonas M. Nikoloff
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Samuel Squires
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ilaria Morella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | | | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Simon P. Brooks
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Stephen B. Dunnett
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Riccardo Brambilla
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Suzanne R. Pfeffer
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
19
|
Wang X, Ma C, Mi K, Cao X, Tan Y, Yuan H, Ren J, Liang X. Urolithin A attenuates Doxorubicin-induced cardiotoxicity by enhancing PINK1-regulated mitophagy via Ambra1. Chem Biol Interact 2025; 406:111363. [PMID: 39725191 DOI: 10.1016/j.cbi.2024.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Doxorubicin (Dox) is a widely used antineoplastics although its clinical usage is greatly limited by its cardiotoxicity. Several studies have depicted an essential role for dampened mitophagy and mitochondrial injury in Dox cardiotoxicity. However, preventative measure to alleviate Dox-evoked cardiotoxicity via targeting mitophagy and mitochondrial integrity remains elusive. Urolithin A (UA) is a newly identified mitophagy inducer with antioxidant and anti-apoptotic properties although its effect on Dox-induced cardiotoxicity is unknown. This study was designed to explore the effect of UA on Dox cardiotoxicity and mechanisms involved. Our results indicated that UA alleviated Dox-induced cardiac dysfunction exhibited by echocardiographic parameters and histological analyses, and partially relieved Dox-induced apoptosis in vitro and in vivo, and mitochondrial dysfunction including ΔΨm dissipation and ROS production in vitro. The ability of UA to facilitate restoration of mitophagy in mice and H9C2s underscored its advantageous effects, manifested as upregulation of mitophagy-related proteins, including p62, LC3, PINK1 and Parkin, as well as the co-location between LC3 and mitochondria. Incubation with 3 -MA nearly reversed the UA-evoked rise of mitophagy-related proteins, and inhibition of apoptosis. Given that knockdown of Ambra1 almost abolished UA-induced protective effect, the enhanced expression of Ambra1 owing to UA increased PINK1 levels by inhibiting its degradation via LONP1. Collectively, our results suggest that the cardioprotective properties of UA depend on the stimulation of PINK1-dependent mitophagy through promoting Ambra1 expression to inhibit PINK1 degradation by LONP1. This highlights UA's potential as a valuable treatment option and its importance in cardioprotective strategies against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Xinyue Liang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
20
|
Agrata R, Komander D. Ubiquitin-A structural perspective. Mol Cell 2025; 85:323-346. [PMID: 39824171 DOI: 10.1016/j.molcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.
Collapse
Affiliation(s)
- Rashmi Agrata
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - David Komander
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Xu W, Dong L, Dai J, Zhong L, Ouyang X, Li J, Feng G, Wang H, Liu X, Zhou L, Xia Q. The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria. Cell Mol Life Sci 2025; 82:42. [PMID: 39800773 PMCID: PMC11725563 DOI: 10.1007/s00018-024-05556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
Collapse
Affiliation(s)
- Wanting Xu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Dai
- Institute of International Technology and Economy, Development Research Center of the State Council, Beijing, 102208, China
| | - Lu Zhong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Ouyang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiaqian Li
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Gaoqing Feng
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huahua Wang
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuan Liu
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liying Zhou
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
22
|
Fan S, Li J, Zheng G, Ma Z, Peng X, Xie Z, Liu W, Yu W, Lin J, Su Z, Xu P, Wang P, Wu Y, Shen H, Ye G. WAC Facilitates Mitophagy-mediated MSC Osteogenesis and New Bone Formation via Protecting PINK1 from Ubiquitination-Dependent Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404107. [PMID: 39555688 PMCID: PMC11727373 DOI: 10.1002/advs.202404107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/20/2024] [Indexed: 11/19/2024]
Abstract
Osteogenic differentiation of mesenchymal stem cells (MSCs) plays a pivotal role in the pathogenesis and treatment of bone-related conditions such as osteoporosis and bone regeneration. While the WW domain-containing coiled-coil adaptor (WAC) protein is primarily associated with transcriptional regulation and autophagy, its involvement in MSC osteogenesis remains unclear. Here, the data reveal that the levels of WAC are diminished in both osteoporosis patients and osteoporosis mouse models. It plays a pivotal function in facilitating MSC osteogenesis and enhancing new bone formation both in vitro and in vivo. Mechanistically, WAC promotes MSC osteogenesis by protecting PINK1, a crucial initiator of mitophagy, from ubiquitination-dependent degradation thereby activating mitophagy. Interestingly, WAC interacts with the TM domains of PINK1 and prevents the K137 site from ubiquitination modification. The study elucidates the mechanism by which WAC modulates MSC osteogenesis, binds to PINK1 to protect it from ubiquitination, and identifies potential therapeutic targets for osteoporosis and bone defect repair.
Collapse
Affiliation(s)
- Shuai Fan
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Ziyue Ma
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xiaoshuai Peng
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Wenjie Liu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Wenhui Yu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Jiajie Lin
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zepeng Su
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peitao Xu
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Yanfeng Wu
- Center for BiotherapyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Guiwen Ye
- Department of OrthopedicsThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| |
Collapse
|
23
|
Zheng Y, Zhang T, Chang M, Xia L, Chen L, Ding L, Chen Y, Wu R. Sonoactivated Z-Scheme Heterojunction for Enhanced Sonodynamic Mitophagy Inhibition and Triple Negative Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413601. [PMID: 39617984 DOI: 10.1002/adma.202413601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Indexed: 01/30/2025]
Abstract
Sonodynamic therapy (SDT) has emerged as a potent therapeutic modality to generate intratumoral toxic reactive oxygen species (ROS) in combating refractory triple-negative breast cancer (TNBC). However, its therapeutic efficacy is compromised due to pro-survival cancer-cell mitophagy to mitigate mitochondrial oxidative damage. Here, an "all-in-one" tumor-therapeutic strategy that integrates nanosonosensitizer-augmented noninvasive SDT with mitophagy inhibition is reported. This is achieved using a rationally constructed sonoactivated liquid Z-scheme heterojunction that connects sonosensitizer PtCu3 nanocages and mitophagy-blocking sonosensitizer BP nanosheets via an amphipathic organic linker (PEI-PEG5000-C18). The conjugated electron mediator (M, Cp*Rh(phen)Cl) is strategically positioned between the 2 sonosensitizers to facilitate electron transfer. This M-based Z-scheme configuration prolongs the separation of sonoactivated electron-hole pairs, leading to efficient ROS generation upon ultrasound stimulation. Importantly, Cu2+ released from PtCu3 expedites BP degradation by reducing phosphorus vacancy formation energy, improving the overall biodegradability of BP-M-PtCu3 and favoring phosphate ions production. These ions elevate lysosomal pH, inhibiting the hydrolysis of damaged mitochondria within autophagic lysosomes, thus preventing cancer cell self-preservation under oxidative stress and effectively eliminating TNBC. It is believe that the M-based sonoactivated Z-scheme heterojunction will be a promising sonosensitizer structure, and the sonodynamic mitophagy inhibition strategy offers valuable prospects for cancer treatment.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Tianhu Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| |
Collapse
|
24
|
Lucet IS, Daly RJ. View from the PEAKs: Insights from structural studies on the PEAK family of pseudokinases. Curr Opin Struct Biol 2024; 89:102932. [PMID: 39321525 DOI: 10.1016/j.sbi.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The PEAK family of pseudokinase scaffolds, comprising PEAK1 (originally termed SgK269), PEAK2 (SgK223, the human orthologue of rat Pragmin) and PEAK3 (C19orf35), have emerged as important regulators and integrators of cellular signaling and also play oncogenic roles in a variety of human cancers. These proteins undergo both homo- and heterotypic association that act to diversify signal output. Recently, structural and functional characterization of PEAK3 and its protein-protein interactions have shed light on PEAK signaling dynamics and the interdependency of PEAK family members, how PEAK dimerization regulates the binding of downstream effectors, and how 14-3-3 binding acts to regulate PEAK3 signal output. These important advances form the basis of this review.
Collapse
Affiliation(s)
- Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Roger J Daly
- Cancer Program, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
25
|
Wragg KM, Worley MJ, Deng JC, Salmon M, Goldstein DR. Deficiency in the mitophagy mediator Parkin accelerates murine skin allograft rejection. Am J Transplant 2024; 24:2174-2186. [PMID: 39142471 PMCID: PMC11588513 DOI: 10.1016/j.ajt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Alterations in mitochondrial function and associated quality control programs, including mitochondrial-specific autophagy, termed mitophagy, are gaining increasing recognition in the context of disease. However, the role of mitophagy in organ transplant rejection remains poorly understood. Using mice deficient in Parkin, a ubiquitin ligase that tags damaged or dysfunctional mitochondria for autophagic clearance, we assessed the impact of Parkin-dependent mitophagy on skin-graft rejection. We observed accelerated graft loss in Parkin-deficient mice across multiple skin graft models. Immune cell distributions posttransplant were largely unperturbed compared to wild-type; however, the CD8+ T cells of Parkin-deficient mice expressed more T-bet, IFNγ, and Ki67, indicating greater priming toward effector function. This was accompanied by increased circulating levels of IL-12p70 in Parkin-deficient mice. Using a mixed leukocyte reaction, we demonstrated that naïve Parkin-deficient CD4+ and CD8+ T cells exhibit enhanced activation marker expression and proliferative responses to alloantigen, which were attenuated with administration of a pharmacological mitophagy inducer (p62-mediated mitophagy inducer), known to increase mitophagy in the absence of a functional PINK1-Parkin pathway. These findings indicate a role for Parkin-dependent mitophagy in curtailing skin-graft rejection.
Collapse
Affiliation(s)
- Kathleen M Wragg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J Worley
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Jane C Deng
- Pulmonary Division, University of Michigan, Ann Arbor, Michigan, USA; Veterans Affairs Ann Arbor, Ann Arbor, Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, USA; Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| | - Daniel R Goldstein
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA; Department of Medicine, Cardiology Division, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Sharma A, Srivastava R, Gnyawali SC, Bhasme P, Anthony AJ, Xuan Y, Trinidad JC, Sen CK, Clemmer DE, Roy S, Ghatak S. Mitochondrial Bioenergetics of Functional Wound Closure is Dependent on Macrophage-Keratinocyte Exosomal Crosstalk. ACS NANO 2024; 18:30405-30420. [PMID: 39453865 PMCID: PMC11544725 DOI: 10.1021/acsnano.4c07610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024]
Abstract
Tissue nanotransfection (TNT)-based fluorescent labeling of cell-specific exosomes has shown that exosomes play a central role in physiological keratinocyte-macrophage (mϕ) crosstalk at the wound-site. Here, we report that during the early phase of wound reepithelialization, macrophage-derived exosomes (Exomϕ), enriched with the outer mitochondrial membrane protein TOMM70, are localized in leading-edge keratinocytes. TOMM70 is a 70 kDa adaptor protein anchored in the mitochondrial outer membrane and plays a critical role in maintaining mitochondrial function and quality. TOMM70 selectively recognizes cytosolic chaperones by its tetratricopeptide repeat (TPR) domain and facilitates the import of preproteins lacking a positively charged mitochondrial targeted sequence. Exosomal packaging of TOMM70 in mϕ was independent of mitochondrial fission. TOMM70-enriched Exomϕ compensated for the hypoxia-induced depletion of epidermal TOMM70, thereby rescuing mitochondrial metabolism in leading-edge keratinocytes. Thus, macrophage-derived TOMM70 is responsible for the glycolytic ATP supply to power keratinocyte migration. Blockade of exosomal uptake from keratinocytes impaired wound closure with the persistence of proinflammatory mϕ in the wound microenvironment, pointing toward a bidirectional crosstalk between these two cell types. The significance of such bidirectional crosstalk was established by the observation that in patients with nonhealing diabetic foot ulcers, TOMM70 is deficient in keratinocytes of wound-edge tissues.
Collapse
Affiliation(s)
- Anu Sharma
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Rajneesh Srivastava
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Surya C. Gnyawali
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Pramod Bhasme
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Adam J. Anthony
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yi Xuan
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Jonathan C. Trinidad
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Chandan K. Sen
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sashwati Roy
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | | |
Collapse
|
27
|
Dhar KS, Townsend B, Montgomery AP, Danon JJ, Pagan JK, Kassiou M. Enhancing CNS mitophagy: drug development and disease-relevant models. Trends Pharmacol Sci 2024; 45:982-996. [PMID: 39419743 DOI: 10.1016/j.tips.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Mitophagy, the selective degradation of mitochondria, is impaired in many neurodegenerative diseases (NDs), resulting in an accumulation of dysfunctional mitochondria and neuronal damage. Although enhancing mitophagy shows promise as a therapeutic strategy, the clinical significance of mitophagy activators remains uncertain due to limited understanding and poor representation of mitophagy in the central nervous system (CNS). This review explores recent insights into which mitophagy pathways to target and the extent of modulation necessary to be therapeutic towards NDs. We also highlight the complexities of mitophagy in the CNS, highlighting the need for disease-relevant models. Last, we outline crucial aspects of in vitro models to consider during drug discovery, aiming to bridge the gap between preclinical research and clinical applications in treating NDs through mitophagy modulation.
Collapse
Affiliation(s)
- Krishayant S Dhar
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Brendan Townsend
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Andrew P Montgomery
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Julia K Pagan
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
28
|
Mashita T, Kowada T, Yamamoto H, Hamaguchi S, Sato T, Matsui T, Mizukami S. Quantitative control of subcellular protein localization with a photochromic dimerizer. Nat Chem Biol 2024; 20:1461-1470. [PMID: 38890432 DOI: 10.1038/s41589-024-01654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Artificial control of intracellular protein dynamics with high precision provides deep insight into complicated biomolecular networks. Optogenetics and caged compound-based chemically induced dimerization (CID) systems are emerging as tools for spatiotemporally regulating intracellular protein dynamics. However, both technologies face several challenges for accurate control such as the duration of activation, deactivation rate and repetition cycles. Herein, we report a photochromic CID system that uses the photoisomerization of a ligand so that both association and dissociation are controlled by light, enabling quick, repetitive and quantitative regulation of the target protein localization upon illumination with violet and green light. We also demonstrate the usability of the photochromic CID system as a potential tool to finely manipulate intracellular protein dynamics during multicolor fluorescence imaging to study diverse cellular processes. We use this system to manipulate PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, showing that PINK1 recruitment to the mitochondria can promote Parkin recruitment to proceed with mitophagy.
Collapse
Affiliation(s)
- Takato Mashita
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Toshiyuki Kowada
- Graduate School of Science, Tohoku University, Sendai, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hayashi Yamamoto
- Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | - Toshizo Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Toshitaka Matsui
- Graduate School of Science, Tohoku University, Sendai, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Mizukami
- Graduate School of Science, Tohoku University, Sendai, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
29
|
Jiao W, Cheng Y, Liu C, Feng J, Lin J, Shen Y. SGLT1 inhibition alleviates radiation-induced intestinal damage through promoting mitochondrial homeostasis. Free Radic Biol Med 2024; 224:831-845. [PMID: 39393555 DOI: 10.1016/j.freeradbiomed.2024.10.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Radiation-induced intestinal injury (RIII) constitutes a challenge in radiotherapy. Ionizing radiation (IR) induces DNA and mitochondrial damage by increasing reactive oxygen species (ROS). Sodium-glucose cotransporter 1 (SGLT1) is abundant in the gastrointestinal tract and the protective effects of inhibited SGLT1 in kidney and cardiovascular disease have been widely reported. However, the function of SGLT1 in RIII remains unclear. Herein, we reported that IR induced intestinal epithelial cell damage along with upregulation of SGLT1 in vivo and in vitro, which was alleviated by inhibition of SGLT1. Specifically, maintaining intestinal cell homeostasis was detected through cellular proliferation, apoptosis, and DNA damage assays, promoting epithelial regeneration and lifespan extension. Considering the importance of mitochondrial function in cell fate, we next confirmed that SGLT inhibition maintains mitochondrial homeostasis through enhanced mitophagy in intestinal epithelial cells. Finally, based on the bioinformatics analysis and cell validation, we demonstrated that inhibition of SGLT1 suppresses the PI3K/AKT/mTOR pathway to enhance mitophagy activation post-irradiation. In addition, we preliminarily demonstrate that SGLT inhibitors do not affect the radiosensitivity of tumors. Hence, our findings suggest that inhibition of SGLT is a promising therapeutic strategy to protect against RIII. To the best of our knowledge, this is the first report on the potential effect of SGLT1 inhibition in RIII.
Collapse
Affiliation(s)
- Wenlin Jiao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chang Liu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Jie Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
30
|
Wu W, Guo X, Li J, Yang M, Xiong Y. Comparison of different processed products of Allium tuberosum Rottler for the treatment of mice asthenozoospermia. Transl Androl Urol 2024; 13:2209-2228. [PMID: 39507862 PMCID: PMC11535743 DOI: 10.21037/tau-24-274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Background Allium tuberosum Rottler improves sexual function and is used in the treatment of impotence and spermatorrhea. However, its chemical composition and mechanism of action remain unclear. This study investigates the chemical composition and mechanism of action of Allium tuberosum Rottler co-processed with salt and wine (GZP) in modulating testicular mitochondrial autophagy for the treatment of asthenozoospermia in mice. Methods Adenine gavage + cyclophosphamide intraperitoneal injection was used to establish the model of asthenozoospermia, and six Allium tuberosum Rottler processed products were compared in the pharmacological efficacy for the treatment of asthenozoospermia in mice. The liquid chromatograph mass spectrometer (LC-MS) assay was performed to analyse the compositional changes in the GZP. The mechanism of GZP in the treatment of asthenozoospermia in mice was further investigated. The mitophagy was detected by transmission electron microscope (TEM) and immunofluorescence, respectively. Reactive oxygen species (ROS) were detected by probe. Protein expression was determined by Western blotting. Results GZP exhibited optimal therapeutic effects on asthenozoospermia in mice. It showed the best therapeutic effect in improving the total number of spermatozoa, sperm survival rate, improving sperm viability and reducing sperm deformity rate, alleviating the abnormal pathological morphology of mice testis, and increasing the serum testosterone (T), follicle-stimulating hormone (FSH) and prolactin (PRL) levels in mice. The LC-MS detection found that Allicin showed the most significant increase in GZP. Besides, GZP reduced ROS level and inhibited mitophagy in mice testicular tissues. Meanwhile, it restrained the expression of PINK1, Parkin, Light chain 3II (LC3-II)/Light chain 3I (LC3-I) and Caspase-3 proteins. Conclusions GZP improves asthenozoospermia via inhibiting excessive mitophagy and protects the integrity of mitochondria by blocking the PINK1/Parkin signaling pathway. During which, the Allicin may play an important role.
Collapse
Affiliation(s)
- Wenhui Wu
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaohong Guo
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jie Li
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Min Yang
- Institute of Chinese Pharmaceutical Preparations, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
31
|
Chen L, Mao LS, Xue JY, Jian YH, Deng ZW, Mazhar M, Zou Y, Liu P, Chen MT, Luo G, Liu MN. Myocardial ischemia-reperfusion injury: The balance mechanism between mitophagy and NLRP3 inflammasome. Life Sci 2024; 355:122998. [PMID: 39173998 DOI: 10.1016/j.lfs.2024.122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is an injury to cardiomyocytes due to restoration of blood flow after myocardial infarction (MI). It has recently gained much attention in clinical research with special emphasis on the roles of mitochondrial autophagy and inflammation. A mild inflammatory response promotes recovery of post-ischemic cardiomyocyte function and vascular regeneration, but a severe inflammatory response can cause irreversible and substantial cellular damage. Similarly, moderate mitochondrial autophagy can help inhibit excessive inflammation and protect cardiomyocytes. However, MIRI is aggravated when mitochondrial function is disrupted, such as inadequate clearance of damaged mitochondria or excessive activation of mitophagy. How to moderately control mitochondrial autophagy while promoting its balance with nucleotide-binding oligomerization structural domain receptor protein 3 (NLRP3) inflammasome activation is critical. In this paper, we reviewed the molecular mechanisms of mitochondrial autophagy and NLRP3 inflammasome, described the interaction between NLRP3 inflammasome and mitochondrial autophagy, and the effects of different signaling pathways and molecular proteins on MIRI, to provide a reference for future research.
Collapse
Affiliation(s)
- Li Chen
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Lin-Shen Mao
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yu-Hong Jian
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Zi-Wen Deng
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yuan Zou
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Ping Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Ming-Tai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, PR China.
| | - Gang Luo
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
32
|
Yang S, Humphries F. Emerging roles of ECSIT in immunity and tumorigenesis. Trends Cell Biol 2024:S0962-8924(24)00189-2. [PMID: 39384444 DOI: 10.1016/j.tcb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Mitochondria are signaling hubs that produce immunomodulatory metabolites during the immune response. In addition, mitochondria also facilitate the recruitment and anchoring of immune signaling complexes during infection. Evolutionary conserved signaling intermediate in toll (ECSIT) was initially described as a positive regulator of the transcription factor Nuclear factor kappa-light chain enhancer of activated B cells (NF-κB). More recently, ECSIT has emerged as a regulator of bacterial clearance, mitochondrial reactive oxygen species (mROS), and mitophagy. In addition, ECSIT has been identified as a control point in responding to viral infection and tumorigenesis. Notably, ECSIT loss in different models and cell types has been found to lead to enhanced tumorigenesis. Thus, ECSIT functions as a metabolic tumor suppressor and limits cancer pathogenesis. In this review, we highlight the key functions and crosstalk mechanisms that ECSIT bridges between cell metabolism and immunity and focus then on the antitumor role of ECSIT independent of immunity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Zhu P, Wang X, Wu Q, Zhu J, Que Y, Wang Y, Ding Y, Yang Y, Jin J, Zhang X, Xu Q, Yong Q, Chang C, Xu G, Du Y. BCAP31 Alleviates Lipopolysaccharide-Mediated Acute Lung Injury via Induction of PINK1/Parkin in Alveolar Epithelial Type II Cell. RESEARCH (WASHINGTON, D.C.) 2024; 7:0498. [PMID: 39381793 PMCID: PMC11458857 DOI: 10.34133/research.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/02/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Background: B-cell receptor-associated protein 31 (BCAP31) has protective effects against alveolar epithelial type II cells (AECII) damage by inhibiting mitochondrial injury in acute lung injury (ALI) induced by lipopolysaccharide (LPS), whereas the precise mechanism is still unclear. It is known that PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy can remove damaged mitochondria selectively, which may be involved in BCAP31 protection against mitochondrial injury. Methods: In the current study, ALI mice models were established by using surfactant protein C (Sftpc)-BCAP31 transgenic mice (BCAP31TG mice) and AECII-specific BCAP31 knockout mice (BCAP31CKO mice) treated with LPS. Results: BCAP31 expression in lung tissue and AECII were inhibited in ALI mice. Under LPS challenge, lower level of BCAP31 was found to correlate positively with pathological injury of the lung, respiratory dysfunction, mortality rates, inflammation response, and AECII damage. Further study showed that down-regulation of BCAP31 induced decreased phosphorylation of PINK1 via reduced binding to PINK1, thereby restraining PINK1/Parkin-mediated mitophagy. Down-regulation of mitophagy promoted mitochondrial injury, as shown by the increase in mitochondrial permeability transition pore opening rate, together with enhanced mitochondrial reactive oxygen species (mROS), which were accompanied by increased cellular apoptosis and reactive oxygen species (ROS). The increased cellular ROS contributed to the inflammatory response via activation of nuclear factor κB (NF-κB). In contrast, BCAP31 overexpression promoted phosphorylation of PINK1 and PINK1/Parkin-mediated mitophagy, thus blocking the mROS/ROS/NF-κB pathway, favoring a protective condition that ultimately led to the inhibition of AECII apoptosis and inflammatory response in LPS-induced ALI. Conclusion: Ultimately, BCAP31 alleviated ALI by activating PINK1/Parkin-mediated mitophagy and blocking the mROS/ROS/NF-κB pathway in AECII.
Collapse
Affiliation(s)
- Pingjun Zhu
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
- Xianning Medical College,
Hubei University of Science and Technology, Xianning, China
| | - Xi Wang
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Qingfeng Wu
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Jianbo Zhu
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
| | - Yifan Que
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Wang
- Department of Emergency, Beijing Tsinghua Changgung Hospital,
Tsinghua University, Beijing 102218, China
| | - Yongkai Ding
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Yang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Jie Jin
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Zhang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Xu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Qinge Yong
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Christopher Chang
- Division of Immunology, Allergy and Rheumatology,
Joe DiMaggio Children’s Hospital, Memorial Healthcare System, Hollywood, FL 33021, USA
| | - Guogang Xu
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| | - Yingzhen Du
- Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases,
Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
34
|
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control. Nat Cell Biol 2024; 26:1639-1651. [PMID: 39358449 DOI: 10.1038/s41556-024-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.
Collapse
Affiliation(s)
- Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
36
|
Otegui MS, Steelheart C, Ma W, Ma J, Kang BH, De Medina Hernandez VS, Dagdas Y, Gao C, Goto-Yamada S, Oikawa K, Nishimura M. Vacuolar degradation of plant organelles. THE PLANT CELL 2024; 36:3036-3056. [PMID: 38657116 PMCID: PMC11371181 DOI: 10.1093/plcell/koae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Plants continuously remodel and degrade their organelles due to damage from their metabolic activities and environmental stressors, as well as an integral part of their cell differentiation programs. Whereas certain organelles use local hydrolytic enzymes for limited remodeling, most of the pathways that control the partial or complete dismantling of organelles rely on vacuolar degradation. Specifically, selective autophagic pathways play a crucial role in recognizing and sorting plant organelle cargo for vacuolar clearance, especially under cellular stress conditions induced by factors like heat, drought, and damaging light. In these short reviews, we discuss the mechanisms that control the vacuolar degradation of chloroplasts, mitochondria, endoplasmic reticulum, Golgi, and peroxisomes, with an emphasis on autophagy, recently discovered selective autophagy receptors for plant organelles, and crosstalk with other catabolic pathways.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Charlotte Steelheart
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenlong Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juncai Ma
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow 30-348, Poland
| | - Kazusato Oikawa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mikio Nishimura
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
37
|
Zhuang C, Liu Y, Barkema HW, Deng Z, Gao J, Kastelic JP, Han B, Zhang J. Escherichia coli infection induces ferroptosis in bovine mammary epithelial cells by activating the Wnt/β-catenin pathway-mediated mitophagy. Mitochondrion 2024; 78:101921. [PMID: 38885732 DOI: 10.1016/j.mito.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Iron overload causes mitochondrial damage, and then activates mitophagy, which may directly trigger and amplify ferroptosis. Our objective was to investigate whether Escherichia coli (E. coli) isolated from clinical bovine mastitis induces ferroptosis in bovine mammary epithelial cells (bMECs) and if so, the underlying regulatory mechanism. E. coli infection caused mitochondrial damage, mitophagy, and ferroptosis. Rapamycin and chloroquine increased and suppressed ferroptosis, respectively, in E. coli-treated bMECs. Moreover, E. coli infection activated the Wnt/β-catenin pathway, but foscenvivint alleviated it. In conclusion, E. coli infection induced ferroptosis through activation of the Wnt/β-catenin pathway-promoted mitophagy, and it also suppressed GPX4 expression.
Collapse
Affiliation(s)
- Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Yang Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
38
|
Zhong Y, Xia S, Wang G, Liu Q, Ma F, Yu Y, Zhang Y, Qian L, Hu L, Xie J. The interplay between mitophagy and mitochondrial ROS in acute lung injury. Mitochondrion 2024; 78:101920. [PMID: 38876297 DOI: 10.1016/j.mito.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.
Collapse
Affiliation(s)
- Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Siwei Xia
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yijin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Lu Qian
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Li Hu
- Department of Anesthesiology, Second Affiliated Hospital of Jiaxing University, No.1518 North Huancheng Road, Nanhu District, Jiaxing 314000, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China.
| |
Collapse
|
39
|
Xu Y, Yang Z, Wang T, Hu L, Jiao S, Zhou J, Dai T, Feng Z, Li S, Meng Q. From molecular subgroups to molecular targeted therapy in rheumatoid arthritis: A bioinformatics approach. Heliyon 2024; 10:e35774. [PMID: 39220908 PMCID: PMC11365346 DOI: 10.1016/j.heliyon.2024.e35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
1Background Rheumatoid Arthritis (RA) is a heterogeneous autoimmune disease with multiple unidentified pathogenic factors. The inconsistency between molecular subgroups poses challenges for early diagnosis and personalized treatment strategies. In this study, we aimed to accurately distinguish RA patients at the transcriptome level using bioinformatics methods. 2Methods We collected a total of 362 transcriptome datasets from RA patients in three independent samples from the GEO database. Consensus clustering was performed to identify molecular subgroups, and clinical features were assessed. Differential analysis was employed to annotate the biological functions of specifically upregulated genes between subgroups. 3Results Based on consensus clustering of RA samples, we identified three robust molecular subgroups, with Subgroup III representing the high-risk subgroup and Subgroup II exhibiting a milder phenotype, possibly associated with relatively higher levels of autophagic ability. Subgroup I showed biological functions mainly related to viral infections, cellular metabolism, protein synthesis, and inflammatory responses. Subgroup II involved autophagy of mitochondria and organelles, protein localization, and organelle disassembly pathways, suggesting heterogeneity in the autophagy process of mitochondria that may play a protective role in inflammatory diseases. Subgroup III represented a high-risk subgroup with pathological processes including abnormal amyloid precursor protein activation, promotion of inflammatory response, and cell proliferation. 4Conclusion The classification of the RA dataset revealed pathological heterogeneity among different subgroups, providing new insights and a basis for understanding the molecular mechanisms of RA, identifying potential therapeutic targets, and developing personalized treatment approaches.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tengyan Wang
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang City, Guizhou Province, China
| | - Liqiong Hu
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Songsong Jiao
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jiangfei Zhou
- Jinan University, Guangzhou, Guangdong Province, China
| | - Tianming Dai
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhencheng Feng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Qinqqi Meng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
40
|
Dupont N, Terzi F. Lipophagy and Mitophagy in Renal Pathophysiology. Nephron Clin Pract 2024; 149:36-47. [PMID: 39182483 DOI: 10.1159/000540688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The lysosomal autophagic pathway plays a fundamental role in cellular and tissue homeostasis, and its deregulation is linked to human pathologies including kidney diseases. Autophagy can randomly degrade cytoplasmic components in a nonselective manner commonly referred to as bulk autophagy. In contrast, selective forms of autophagy specifically target cytoplasmic structures such as organelles and protein aggregates, thereby being important for cellular quality control and organelle homeostasis. SUMMARY Research during the past decades has begun to elucidate the role of selective autophagy in kidney physiology and kidney diseases. KEY MESSAGES In this review, we will summarize the knowledge on lipophagy and mitophagy, two forms of selective autophagy important in renal epithelium homeostasis, and discuss how their deregulations contribute to renal disease progression.
Collapse
Affiliation(s)
- Nicolas Dupont
- NSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- NSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| |
Collapse
|
41
|
Li N, Li X, Zhang X, Zhang L, Wu H, Yu Y, Jia G, Yu S. Low-dose hexavalent chromium induces mitophagy in rat liver via the AMPK-related PINK1/Parkin signaling pathway. PeerJ 2024; 12:e17837. [PMID: 39099653 PMCID: PMC11296300 DOI: 10.7717/peerj.17837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Hexavalent chromium (Cr(VI)) is a hazardous metallic compound commonly used in industrial processes. The liver, responsible for metabolism and detoxification, is the main target organ of Cr(VI). Toxicity experiments were performed to investigate the impacts of low-dose exposure to Cr(VI) on rat livers. It was revealed that exposure of 0.05 mg/kg potassium dichromate (K2Cr2O7) and 0.25 mg/kg K2Cr2O7 notably increased malondialdehyde (MDA) levels and the expressions of P-AMPK, P-ULK, PINK1, P-Parkin, and LC3II/LC3I, and significantly reduced SOD activity and P-mTOR and P62 expression levels in liver. Electron microscopy showed that CR(VI) exposure significantly increased mitophagy and the destruction of mitochondrial structure. This study simulates the respiratory exposure mode of CR(VI) workers through intratracheal instillation of CR(VI) in rats. It confirms that autophagy in hepatocytes is induced by low concentrations of CR(VI) and suggest that the liver damage caused by CR(VI) may be associated with the AMPK-related PINK/Parkin signaling pathway.
Collapse
Affiliation(s)
- Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Lixia Zhang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wu
- The Third People’s Hospital of Henan Province, Zhengzhou, Henan, China
| | - Yue Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Liang Y, Wang Z, Huo D, Hu JN, Song L, Ma X, Jiang S, Li W. Nanoplastic-Induced Liver Damage Was Alleviated by Maltol via Enhancing Autophagic Flow: An In Vivo and In Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16250-16262. [PMID: 38915203 DOI: 10.1021/acs.jafc.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In recent years, there has been a growing concern regarding health issues arising from exposure to nanoplastics (Nps) in the natural environment. The Nps bioaccumulate within the body via the circulatory system and accumulate in the liver, resulting in damage. Previous studies have demonstrated that maltol, derived from red ginseng (Panax ginseng C.A. Meyer) as a Maillard product, exhibits hepatoprotective effects by alleviating liver damage caused by carbon tetrachloride or cisplatin. In order to explore the specific mechanism of maltol in improving hepatotoxicity induced by Nps, mice exposed to 100 mg/kg Nps were given maltol at doses of 50 and 100 mg/kg, respectively. The results showed that Nps induced an increase in the levels of liver apoptotic factors BAX and cytochrome c, a decrease in the levels of the autophagy key gene LC3 II/I, and an increase in P62. It also caused oxidative stress by affecting the Nrf2/HO-1 pathway, and a decrease in GPX4 protein expression suggested the occurrence of ferroptosis. However, treatment with maltol significantly improved these changes. In addition, maltol (2, 4, and 8 μM) also protected human normal liver L02 cells from Np (400 μg/mL)-induced damage. Our data suggest that maltol could ameliorate Np-induced L02 cytotoxicity by reducing autophagy-dependent oxidative stress, exhibiting similar protective effects in vitro as in vivo. This study helps shed light on the specific molecular mechanism of Np-induced hepatotoxicity. For the first time, we studied the protective effect of maltol on Np-induced liver injury from multiple perspectives, expanding the possibility of treatment for diseases caused by environmental pollutants.
Collapse
Affiliation(s)
- Ying Liang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Deyang Huo
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lingjie Song
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
43
|
Sharma K, Kishore A, Lechado-Terradas A, Passannanti R, Raimondi F, Sturm M, Sreelatha AAK, Puthenveedu DK, Sarma G, Casadei N, Krüger R, Gasser T, Kahle P, Riess O, Fitzgerald JC, Sharma M. A Novel PINK1 p.F385S Loss-of-Function Mutation in an Indian Family with Parkinson's Disease. Mov Disord 2024; 39:1217-1225. [PMID: 38586902 DOI: 10.1002/mds.29792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Most Parkinson's disease (PD) loci have shown low prevalence in the Indian population, highlighting the need for further research. OBJECTIVE The aim of this study was to characterize a novel phosphatase tensin homolog-induced serine/threonine kinase 1 (PINK1) mutation causing PD in an Indian family. METHODS Exome sequencing of a well-characterized Indian family with PD. A novel PINK1 mutation was studied by in silico modeling using AlphaFold2, expression of mutant PINK1 in human cells depleted of functional endogenous PINK1, followed by quantitative image analysis and biochemical assessment. RESULTS We identified a homozygous chr1:20648535-20648535 T>C on GRCh38 (p.F385S) mutation in exon 6 of PINK1, which was absent in 1029 genomes from India and in other known databases. PINK1 F385S lies within the highly conserved DFG motif, destabilizes its active state, and impairs phosphorylation of ubiquitin at serine 65 and proper engagement of parkin upon mitochondrial depolarization. CONCLUSIONS We characterized a novel nonconservative mutation in the DFG motif of PINK1, which causes loss of its ubiquitin kinase activity and inhibition of mitophagy. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Karan Sharma
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Asha Kishore
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
- Parkinson and Movement Disorder Centre, Aster Medicity, Kochi, India
| | - Anna Lechado-Terradas
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Divya Kalikavila Puthenveedu
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Gangadhara Sarma
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics & Core Facility for Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Luxembourg, Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg & Centre Hospitalier de Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Gasser
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
| | - Philipp Kahle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Department of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics & Core Facility for Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Hoff SE, Thomasen FE, Lindorff-Larsen K, Bonomi M. Accurate model and ensemble refinement using cryo-electron microscopy maps and Bayesian inference. PLoS Comput Biol 2024; 20:e1012180. [PMID: 39008528 PMCID: PMC11271924 DOI: 10.1371/journal.pcbi.1012180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/25/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024] Open
Abstract
Converting cryo-electron microscopy (cryo-EM) data into high-quality structural models is a challenging problem of outstanding importance. Current refinement methods often generate unbalanced models in which physico-chemical quality is sacrificed for excellent fit to the data. Furthermore, these techniques struggle to represent the conformational heterogeneity averaged out in low-resolution regions of density maps. Here we introduce EMMIVox, a Bayesian inference approach to determine single-structure models as well as structural ensembles from cryo-EM maps. EMMIVox automatically balances experimental information with accurate physico-chemical models of the system and the surrounding environment, including waters, lipids, and ions. Explicit treatment of data correlation and noise as well as inference of accurate B-factors enable determination of structural models and ensembles with both excellent fit to the data and high stereochemical quality, thus outperforming state-of-the-art refinement techniques. EMMIVox represents a flexible approach to determine high-quality structural models that will contribute to advancing our understanding of the molecular mechanisms underlying biological functions.
Collapse
Affiliation(s)
- Samuel E. Hoff
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
| | - F. Emil Thomasen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
| |
Collapse
|
45
|
Song C, Wang G, Liu M, Han S, Dong M, Peng M, Wang W, Wang Y, Xu Y, Liu L. Deciphering the SOX4/MAPK1 regulatory axis: a phosphoproteomic insight into IQGAP1 phosphorylation and pancreatic Cancer progression. J Transl Med 2024; 22:602. [PMID: 38943117 PMCID: PMC11212360 DOI: 10.1186/s12967-024-05377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Song
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Mengmeng Liu
- Department of Gastroenterology, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Siyang Han
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, PR China
| | - Maozhen Peng
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Yicun Wang
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China.
| | - Yaolin Xu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
| | - Liang Liu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China.
| |
Collapse
|
46
|
Gao DL, Lin MR, Ge N, Guo JT, Yang F, Sun SY. From macroautophagy to mitophagy: Unveiling the hidden role of mitophagy in gastrointestinal disorders. World J Gastroenterol 2024; 30:2934-2946. [PMID: 38946875 PMCID: PMC11212700 DOI: 10.3748/wjg.v30.i23.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
In this editorial, we comment on an article titled “Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases”, which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that “autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells”. With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.
Collapse
Affiliation(s)
- Duo-Lun Gao
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Meng-Ran Lin
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Nan Ge
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jin-Tao Guo
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Fan Yang
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
47
|
Raimi OG, Ojha H, Ehses K, Dederer V, Lange SM, Rivera CP, Deegan TD, Chen Y, Wightman M, Toth R, Labib KPM, Mathea S, Ranson N, Fernández-Busnadiego R, Muqit MMK. Mechanism of human PINK1 activation at the TOM complex in a reconstituted system. SCIENCE ADVANCES 2024; 10:eadn7191. [PMID: 38848361 PMCID: PMC11160474 DOI: 10.1126/sciadv.adn7191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024]
Abstract
Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) are a frequent cause of early-onset Parkinson's disease (PD). Stabilization of PINK1 at the translocase of outer membrane (TOM) complex of damaged mitochondria is critical for its activation. The mechanism of how PINK1 is activated in the TOM complex is unclear. Here, we report that co-expression of human PINK1 and all seven TOM subunits in Saccharomyces cerevisiae is sufficient for PINK1 activation. We use this reconstitution system to systematically assess the role of each TOM subunit toward PINK1 activation. We unambiguously demonstrate that the TOM20 and TOM70 receptor subunits are required for optimal PINK1 activation and map their sites of interaction with PINK1 using AlphaFold structural modeling and mutagenesis. We also demonstrate an essential role of the pore-containing subunit TOM40 and its structurally associated subunits TOM7 and TOM22 for PINK1 activation. These findings will aid in the development of small-molecule activators of PINK1 as a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Olawale G. Raimi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Hina Ojha
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kenneth Ehses
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Verena Dederer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, 60438 Frankfurt, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, 60438 Frankfurt, Germany
| | - Sven M. Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cristian Polo Rivera
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tom D. Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Yinchen Chen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Karim P. M. Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sebastian Mathea
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, 60438 Frankfurt, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, 60438 Frankfurt, Germany
| | - Neil Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
48
|
Li W, Huang C, Qiu L, Tang Y, Zhang X, Zhang L, Zhao H, Miyagishi M, Kasim V, Wu S. p52-ZER6/IGF1R axis maintains cancer stem cell population to promote cancer progression by enhancing pro-survival mitophagy. Oncogene 2024; 43:2115-2131. [PMID: 38773262 DOI: 10.1038/s41388-024-03058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.
Collapse
Affiliation(s)
- Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Can Huang
- Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Li Qiu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yu Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xia Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
49
|
Clausen L, Okarmus J, Voutsinos V, Meyer M, Lindorff-Larsen K, Hartmann-Petersen R. PRKN-linked familial Parkinson's disease: cellular and molecular mechanisms of disease-linked variants. Cell Mol Life Sci 2024; 81:223. [PMID: 38767677 PMCID: PMC11106057 DOI: 10.1007/s00018-024-05262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.
Collapse
Affiliation(s)
- Lene Clausen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Vasileios Voutsinos
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE, Brain Research Inter Disciplinary Guided Excellence, University of Southern Denmark, 5230, Odense, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
50
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|