1
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2024. [PMID: 39719685 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M Kooistra
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Mohammed EMA. Understanding Multiple Sclerosis Pathophysiology and Current Disease-Modifying Therapies: A Review of Unaddressed Aspects. FRONT BIOSCI-LANDMRK 2024; 29:386. [PMID: 39614433 DOI: 10.31083/j.fbl2911386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) with an unknown etiology and pathophysiology that is not completely understood. Although great strides have been made in developing disease-modifying therapies (DMTs) that have significantly improved the quality of life for MS patients, these treatments do not entirely prevent disease progression or relapse. Identifying the unaddressed pathophysiological aspects of MS and developing targeted therapies to fill in these gaps are essential in providing long-term relief for patients. Recent research has uncovered some aspects of MS that remain outside the scope of available DMTs, and as such, yield only limited benefits. Despite most MS pathophysiology being targeted by DMTs, many patients still experience disease progression or relapse, indicating that a more detailed understanding is necessary. Thus, this literature review seeks to explore the known aspects of MS pathophysiology, identify the gaps in present DMTs, and explain why current treatments cannot entirely arrest MS progression.
Collapse
Affiliation(s)
- Eiman M A Mohammed
- Kuwait Cancer Control Centre, Department of Medical Laboratory, Molecular Genetics Laboratory, Ministry of Health, 13001 Shuwaikh, Kuwait
| |
Collapse
|
3
|
Kavaka V, Mutschler L, de la Rosa Del Val C, Eglseer K, Gómez Martínez AM, Flierl-Hecht A, Ertl-Wagner B, Keeser D, Mortazavi M, Seelos K, Zimmermann H, Haas J, Wildemann B, Kümpfel T, Dornmair K, Korn T, Hohlfeld R, Kerschensteiner M, Gerdes LA, Beltrán E. Twin study identifies early immunological and metabolic dysregulation of CD8 + T cells in multiple sclerosis. Sci Immunol 2024; 9:eadj8094. [PMID: 39331727 DOI: 10.1126/sciimmunol.adj8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory neurological disease of the central nervous system with a subclinical phase preceding frank neuroinflammation. CD8+ T cells are abundant within MS lesions, but their potential role in disease pathology remains unclear. Using high-throughput single-cell RNA sequencing and single-cell T cell receptor analysis, we compared CD8+ T cell clones from the blood and cerebrospinal fluid (CSF) of monozygotic twin pairs in which the cotwin had either no or subclinical neuroinflammation (SCNI). We identified peripheral MS-associated immunological and metabolic alterations indicative of an enhanced migratory, proinflammatory, and activated CD8+ T cell phenotype, which was also evident in cotwins with SCNI and in an independent validation cohort of people with MS. Together, our in-depth single-cell analysis indicates a disease-driving proinflammatory role of infiltrating CD8+ T cells and identifies potential immunological and metabolic therapeutic targets in both prodromal and definitive stages of the disease.
Collapse
Affiliation(s)
- Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Luisa Mutschler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Clara de la Rosa Del Val
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Ana M Gómez Martínez
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Mortazavi
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanna Zimmermann
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
4
|
Al Jaf AIA, Peria S, Fabiano T, Ragnini-Wilson A. Remyelinating Drugs at a Crossroad: How to Improve Clinical Efficacy and Drug Screenings. Cells 2024; 13:1326. [PMID: 39195216 DOI: 10.3390/cells13161326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Axons wrapped around the myelin sheath enable fast transmission of neuronal signals in the Central Nervous System (CNS). Unfortunately, myelin can be damaged by injury, viral infection, and inflammatory and neurodegenerative diseases. Remyelination is a spontaneous process that can restore nerve conductivity and thus movement and cognition after a demyelination event. Cumulative evidence indicates that remyelination can be pharmacologically stimulated, either by targeting natural inhibitors of Oligodendrocyte Precursor Cells (OPCs) differentiation or by reactivating quiescent Neural Stem Cells (qNSCs) proliferation and differentiation in myelinating Oligodendrocytes (OLs). Although promising results were obtained in animal models for demyelination diseases, none of the compounds identified have passed all the clinical stages. The significant number of patients who could benefit from remyelination therapies reinforces the urgent need to reassess drug selection approaches and develop strategies that effectively promote remyelination. Integrating Artificial Intelligence (AI)-driven technologies with patient-derived cell-based assays and organoid models is expected to lead to novel strategies and drug screening pipelines to achieve this goal. In this review, we explore the current literature on these technologies and their potential to enhance the identification of more effective drugs for clinical use in CNS remyelination therapies.
Collapse
Affiliation(s)
- Aland Ibrahim Ahmed Al Jaf
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Peria
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Tommaso Fabiano
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Antonella Ragnini-Wilson
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Alakhras NS, Zhang W, Barros N, Sharma A, Ropa J, Priya R, Yang XF, Kaplan MH. An IL-23-STAT4 pathway is required for the proinflammatory function of classical dendritic cells during CNS inflammation. Proc Natl Acad Sci U S A 2024; 121:e2400153121. [PMID: 39088391 PMCID: PMC11317592 DOI: 10.1073/pnas.2400153121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 08/03/2024] Open
Abstract
Although many cytokine pathways are important for dendritic cell (DC) development, it is less clear what cytokine signals promote the function of mature dendritic cells. The signal transducer and activator of transcription 4 (STAT4) promotes protective immunity and autoimmunity downstream of proinflammatory cytokines including IL-12 and IL-23. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), Stat4-/- mice are resistant to the development of inflammation and paralysis. To define whether STAT4 is required for intrinsic signaling in mature DC function, we used conditional mutant mice in the EAE model. Deficiency of STAT4 in CD11c-expressing cells resulted in decreased T cell priming and inflammation in the central nervous system. EAE susceptibility was recovered following adoptive transfer of wild-type bone marrow-derived DCs to mice with STAT4-deficient DCs, but not adoptive transfer of STAT4- or IL-23R-deficient DCs. Single-cell RNA-sequencing (RNA-seq) identified STAT4-dependent genes in DC subsets that paralleled a signature in MS patient DCs. Together, these data define an IL-23-STAT4 pathway in DCs that is key to DC function during inflammatory disease.
Collapse
Affiliation(s)
- Nada S. Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Wenwu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Nicolas Barros
- Department of Medicine, Division of Infectious Diseases Indiana University School of Medicine, Indianapolis, IN46202
| | - Anchal Sharma
- Advanced Analytics and Data Science, Eli Lilly and Company, New York, NY10016
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN46202
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN46202
| | - Mark H. Kaplan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN46202
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN46202
| |
Collapse
|
6
|
Peters A, Gerdes LA, Wekerle H. Multiple sclerosis and the intestine: Chasing the microbial offender. Immunol Rev 2024; 325:152-165. [PMID: 38809041 DOI: 10.1111/imr.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Multiple sclerosis (MS) affects more than 2.8 million people worldwide but the distribution is not even. Although over 200 gene variants have been associated with susceptibility, studies of genetically identical monozygotic twin pairs suggest that the genetic make-up is responsible for only about 20%-30% of the risk to develop disease, while the rest is contributed by milieu factors. Recently, a new, unexpected player has entered the ranks of MS-triggering or facilitating elements: the human gut microbiota. In this review, we summarize the present knowledge of microbial effects on formation of a pathogenic autoreactive immune response targeting the distant central nervous system and delineate the approaches, both in people with MS and in MS animal models, which have led to this concept. Finally, we propose that a tight combination of investigations of human patients with studies of suitable animal models is the best strategy to functionally characterize disease-associated microbiota and thereby contribute to deciphering pathogenesis of a complex human disease.
Collapse
Affiliation(s)
- Anneli Peters
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital Ludwig-Maximilians-Universität München, Munich, Germany
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| |
Collapse
|
7
|
Kleftogiannis D, Gavasso S, Tislevoll BS, van der Meer N, Motzfeldt IK, Hellesøy M, Gullaksen SE, Griessinger E, Fagerholt O, Lenartova A, Fløisand Y, Schuringa JJ, Gjertsen BT, Jonassen I. Automated cell type annotation and exploration of single-cell signaling dynamics using mass cytometry. iScience 2024; 27:110261. [PMID: 39021803 PMCID: PMC11253510 DOI: 10.1016/j.isci.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Mass cytometry by time-of-flight (CyTOF) is an emerging technology allowing for in-depth characterization of cellular heterogeneity in cancer and other diseases. Unfortunately, high-dimensional analyses of CyTOF data remain quite demanding. Here, we deploy a bioinformatics framework that tackles two fundamental problems in CyTOF analyses namely (1) automated annotation of cell populations guided by a reference dataset and (2) systematic utilization of single-cell data for effective patient stratification. By applying this framework on several publicly available datasets, we demonstrate that the Scaffold approach achieves good trade-off between sensitivity and specificity for automated cell type annotation. Additionally, a case study focusing on a cohort of 43 leukemia patients reported salient interactions between signaling proteins that are sufficient to predict short-term survival at time of diagnosis using the XGBoost algorithm. Our work introduces an automated and versatile analysis framework for CyTOF data with many applications in future precision medicine projects.
Collapse
Affiliation(s)
- Dimitrios Kleftogiannis
- Department of Informatics, Computational Biology Unit, University of Bergen, 5020 Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Neuro-SysMed Centre of Clinical Treatment Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Sonia Gavasso
- Neuro-SysMed Centre of Clinical Treatment Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Benedicte Sjo Tislevoll
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Nisha van der Meer
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 Groningen, the Netherlands
| | - Inga K.F. Motzfeldt
- Department of Medicine, Hematology Section, Haukeland University Hospital, Helse Bergen HF, 5021 Bergen, Norway
| | - Monica Hellesøy
- Department of Medicine, Hematology Section, Haukeland University Hospital, Helse Bergen HF, 5021 Bergen, Norway
| | - Stein-Erik Gullaksen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Helse Bergen HF, 5021 Bergen, Norway
| | - Emmanuel Griessinger
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 Groningen, the Netherlands
| | - Oda Fagerholt
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Andrea Lenartova
- Department of Hematology, Oslo University Hospital, 4950 Oslo, Norway
| | - Yngvar Fløisand
- Department of Hematology, Oslo University Hospital, 4950 Oslo, Norway
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 Groningen, the Netherlands
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Helse Bergen HF, 5021 Bergen, Norway
| | - Inge Jonassen
- Department of Informatics, Computational Biology Unit, University of Bergen, 5020 Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
8
|
Lorenzini T, Faigle W, Ruder J, Docampo MJ, Opitz L, Martin R. Alterations of Thymus-Derived Tregs in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200251. [PMID: 38838284 PMCID: PMC11160584 DOI: 10.1212/nxi.0000000000200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is considered a prototypic autoimmune disease of the CNS. It is the leading cause of chronic neurologic disability in young adults. Proinflammatory B cells and autoreactive T cells both play important roles in its pathogenesis. We aimed to study alterations of regulatory T cells (Tregs), which likely also contribute to the disease, but their involvement is less clear. METHODS By combining multiple experimental approaches, we examined the Treg compartments in 41 patients with relapsing-remitting MS and 17 healthy donors. RESULTS Patients with MS showed a reduced frequency of CD4+ T cells and Foxp3+ Tregs and age-dependent alterations of Treg subsets. Treg suppressive function was compromised in patients, who were treated with natalizumab, while it was unaffected in untreated and anti-CD20-treated patients. The changes in natalizumab-treated patients included increased proinflammatory cytokines and an altered transcriptome in thymus-derived (t)-Tregs, but not in peripheral (p)-Tregs. DISCUSSION Treg dysfunction in patients with MS might be related to an altered transcriptome of t-Tregs and a proinflammatory environment. Our findings contribute to a better understanding of Tregs and their subtypes in MS.
Collapse
Affiliation(s)
- Tiziana Lorenzini
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Wolfgang Faigle
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Ruder
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - María José Docampo
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Opitz
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Roland Martin
- From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Helgudóttir SS, Mørkholt AS, Lichota J, Bruun-Nyzell P, Andersen MC, Kristensen NMJ, Johansen AK, Zinn MR, Jensdóttir HM, Nieland JDV. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regen Res 2024; 19:1437-1445. [PMID: 38051885 PMCID: PMC10883494 DOI: 10.4103/1673-5374.387965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
Collapse
Affiliation(s)
| | | | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Christian Andersen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nanna Marie Juhl Kristensen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Amanda Krøger Johansen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mikela Reinholdt Zinn
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hulda Maria Jensdóttir
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- 2N Pharma ApS, NOVI Science Park, Aalborg, Denmark
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Oyesola O, Downie AE, Howard N, Barre RS, Kiwanuka K, Zaldana K, Chen YH, Menezes A, Lee SC, Devlin J, Mondragón-Palomino O, Souza COS, Herrmann C, Koralov SB, Cadwell K, Graham AL, Loke P. Genetic and environmental interactions contribute to immune variation in rewilded mice. Nat Immunol 2024; 25:1270-1282. [PMID: 38877178 PMCID: PMC11224019 DOI: 10.1038/s41590-024-01862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.
Collapse
Affiliation(s)
- Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nina Howard
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ramya S Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Kasalina Kiwanuka
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly Zaldana
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, New York University, Grossman School of Medicine, New York, NY, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Arthur Menezes
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Soo Ching Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Devlin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camila Oliveira Silva Souza
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christin Herrmann
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, NY, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sergei B Koralov
- Department of Pathology, New York University, Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Rau CN, Severin ME, Lee PW, Deffenbaugh JL, Liu Y, Murphy SP, Petersen-Cherubini CL, Lovett-Racke AE. MicroRNAs targeting TGF-β signaling exacerbate central nervous system autoimmunity by disrupting regulatory T cell development and function. Eur J Immunol 2024; 54:e2350548. [PMID: 38634287 PMCID: PMC11156541 DOI: 10.1002/eji.202350548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Transforming growth factor beta (TGF-β) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-β signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-β signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-β-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-β-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-β signaling may restore immune homeostasis in MS patients.
Collapse
Affiliation(s)
- Christina N Rau
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Mary E Severin
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Joshua L Deffenbaugh
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Shawn P Murphy
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Münz C. Altered EBV specific immune control in multiple sclerosis. J Neuroimmunol 2024; 390:578343. [PMID: 38615370 DOI: 10.1016/j.jneuroim.2024.578343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
13
|
Ingelfinger F, Kuiper KL, Ulutekin C, Rindlisbacher L, Mundt S, Gerdes LA, Smolders J, van Luijn MM, Becher B. Twin study dissects CXCR3 + memory B cells as non-heritable feature in multiple sclerosis. MED 2024; 5:368-373.e3. [PMID: 38531361 PMCID: PMC11018360 DOI: 10.1016/j.medj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND In multiple sclerosis (MS), B cells are considered main triggers of the disease, likely as the result of complex interaction between genetic and environmental risk factors. Studies on monozygotic twins discordant for MS offer a unique way to reduce this complexity and reveal discrepant subsets. METHODS In this study, we analyzed B cell subsets in blood samples of monozygotic twins with and without MS using publicly available data. We verified functional characteristics by exploring the role of therapy and performed separate analyses in unrelated individuals. FINDINGS The frequencies of CXCR3+ memory B cells were reduced in the blood of genetically identical twins with MS compared to their unaffected twin siblings. Natalizumab (anti-VLA-4 antibody) was the only treatment regimen under which these frequencies were reversed. The CNS-homing features of CXCR3+ memory B cells were supported by elevated CXCL10 levels in MS cerebrospinal fluid and their in vitro propensity to develop into antibody-secreting cells. CONCLUSIONS Circulating CXCR3+ memory B cells are affected by non-heritable cues in people who develop MS. This underlines the requirement of environmental risk factors such as Epstein-Barr virus in triggering these B cells. We propose that after CXCL10-mediated entry into the CNS, CXCR3+ memory B cells mature into antibody-secreting cells to drive MS. FUNDING This work was supported by Nationaal MS Fonds (OZ2021-016), Stichting MS Research (19-1057 MS, 20-490f MS, and 21-1142 MS), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program grant agreement no. 882424, and the Swiss National Science Foundation (733 310030_170320, 310030_188450, and CRSII5_183478).
Collapse
Affiliation(s)
- Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Kirsten L Kuiper
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Bister J, Filipovic I, Sun D, Crona-Guterstam Y, Cornillet M, Ponzetta A, Michaëlsson J, Gidlöf S, Ivarsson MA, Strunz B, Björkström NK. Tissue-specific nonheritable influences drive endometrial immune system variation. Sci Immunol 2024; 9:eadj7168. [PMID: 38579017 DOI: 10.1126/sciimmunol.adj7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Although human twin studies have revealed the combined contribution of heritable and environmental factors in shaping immune system variability in blood, the contribution of these factors to immune system variability in tissues remains unexplored. The human uterus undergoes constant regeneration and is exposed to distinct environmental factors. To assess uterine immune system variation, we performed a system-level analysis of endometrial and peripheral blood immune cells in monozygotic twins. Although most immune cell phenotypes in peripheral blood showed high genetic heritability, more variation was found in endometrial immune cells, indicating a stronger influence by environmental factors. Cytomegalovirus infection was identified to influence peripheral blood immune cell variability but had limited effect on endometrial immune cells. Instead, hormonal contraception shaped the local endometrial milieu and immune cell composition with minor influence on the systemic immune system. These results highlight that the magnitude of human immune system variation and factors influencing it can be tissue specific.
Collapse
Affiliation(s)
- Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ylva Crona-Guterstam
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin A Ivarsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Marrocco R, Bernard I, Joulia E, Barascud R, Dejean AS, Lesourne R, Saoudi A. Positive regulation of Vav1 by Themis controls CD4 T cell pathogenicity in a mouse model of central nervous system inflammation. Cell Mol Life Sci 2024; 81:161. [PMID: 38565808 PMCID: PMC10987373 DOI: 10.1007/s00018-024-05203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility to autoimmune diseases is conditioned by the association of modest genetic alterations which altogether weaken self-tolerance. The mechanism whereby these genetic interactions modulate T-cell pathogenicity remains largely uncovered. Here, we investigated the epistatic interaction of two interacting proteins involved in T Cell Receptor signaling and which were previously associated with the development of Multiple Sclerosis. To this aim, we used mice expressing an hypomorphic variant of Vav1 (Vav1R63W), combined with a T cell-conditional deletion of Themis. We show that the combined mutations in Vav1 and Themis induce a strong attenuation of the severity of Experimental Autoimmune Encephalomyelitis (EAE), contrasting with the moderate effect of the single mutation in each of those two proteins. This genotype-dependent gradual decrease of EAE severity correlates with decreased quantity of phosphorylated Vav1 in CD4 T cells, establishing that Themis promotes the development of encephalitogenic Tconv response by enhancing Vav1 activity. We also show that the cooperative effect of Themis and Vav1 on EAE severity is independent of regulatory T cells and unrelated to the impact of Themis on thymic selection. Rather, it results from decreased production of pro-inflammatory cytokines (IFN-γ, IL-17, TNF and GM-CSF) and reduced T cell infiltration in the CNS. Together, our results provide a rationale to study combination of related genes, in addition to single gene association, to better understand the genetic bases of human diseases.
Collapse
Affiliation(s)
- Remi Marrocco
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Isabelle Bernard
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Emeline Joulia
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Rebecca Barascud
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Anne S Dejean
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Renaud Lesourne
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France
| | - Abdelhadi Saoudi
- Institut Toulousain des Maladies Infectieuses Et Inflammatoires (Infinity), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), INSERM U1291, Université Paul Sabatier (UPS), CHU Purpan, BP 3028, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
16
|
Mortazavi M, Ann Gerdes L, Hizarci Ö, Kümpfel T, Anslinger K, Padberg F, Stöcklein S, Keeser D, Ertl-Wagner B. Impact of adult-onset multiple sclerosis on MRI-based intracranial volume: A study in clinically discordant monozygotic twins. Neuroimage Clin 2024; 42:103597. [PMID: 38522363 PMCID: PMC10981084 DOI: 10.1016/j.nicl.2024.103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Intracranial volume (ICV) represents the maximal brain volume for an individual, attained prior to late adolescence and remaining constant throughout life after. Thus, ICV serves as a surrogate marker for brain growth integrity. To assess the potential impact of adult-onset multiple sclerosis (MS) and its preceding prodromal subclinical changes on ICV in a large cohort of monozygotic twins clinically discordant for MS. METHODS FSL software was used to derive ICV estimates from 3D-T1-weighted-3 T-MRI images by using an atlas scaling factor method. ICV were compared between clinically affected and healthy co-twins. All twins were compared to a large healthy reference cohort using standardized ICV z-scores. Mixed models assessed the impact of age at MS diagnosis on ICV. RESULTS 54 twin-pairs (108 individuals/80female/42.45 ± 11.98 years), 731 individuals (375 non-twins, 109/69 monozygotic/dizygotic twin-pairs; 398female/29.18 ± 0.13 years) and 35 healthy local individuals (20male/31.34 ± 1.53 years). In 45/54 (83 %) twin-pairs, both clinically affected and healthy co-twins showed negative ICV z-scores, i.e., ICVs lower than the average of the healthy reference cohort (M = -1.53 ± 0.11, P<10-5). Younger age at MS diagnosis was strongly associated with lower ICVs (t = 3.76, P = 0.0003). Stratification of twin-pairs by age at MS diagnosis of the affected co-twin (≤30 versus > 30 years) yielded lower ICVs in those twin pairs with younger age at diagnosis (P = 0.01). Comparison within individual twin-pairs identified lower ICVs in the MS-affected co-twins with younger age at diagnosis compared to their corresponding healthy co-twins (P = 0.003). CONCLUSION We offer for the first-time evidence for strong associations between adult-onset MS and lower ICV, which is more pronounced with younger age at diagnosis. This suggests pre-clinical alterations in early neurodevelopment associated with susceptibility to MS both in individuals with and without clinical manifestation of the disease.
Collapse
Affiliation(s)
- Matin Mortazavi
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Bezirkskrankenhaus Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany.
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital LMU, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Öznur Hizarci
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital LMU, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Katja Anslinger
- Department of Forensic Genetics, Institute of Legal Medicine, University Hospital LMU, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany; Department of Radiology, University Hospital LMU, Munich, Germany; NeuroImaging Core Unit Munich (NICUM) - University Hospital LMU, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Division of Neuroradiology, The Hospital for Sick Children, Toronto
| |
Collapse
|
17
|
Kennedy KE, Kerlero de Rosbo N, Uccelli A, Cellerino M, Ivaldi F, Contini P, De Palma R, Harbo HF, Berge T, Bos SD, Høgestøl EA, Brune-Ingebretsen S, de Rodez Benavent SA, Paul F, Brandt AU, Bäcker-Koduah P, Behrens J, Kuchling J, Asseyer S, Scheel M, Chien C, Zimmermann H, Motamedi S, Kauer-Bonin J, Saez-Rodriguez J, Rinas M, Alexopoulos LG, Andorra M, Llufriu S, Saiz A, Blanco Y, Martinez-Heras E, Solana E, Pulido-Valdeolivas I, Martinez-Lapiscina EH, Garcia-Ojalvo J, Villoslada P. Multiscale networks in multiple sclerosis. PLoS Comput Biol 2024; 20:e1010980. [PMID: 38329927 PMCID: PMC10852301 DOI: 10.1371/journal.pcbi.1010980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
Complex diseases such as Multiple Sclerosis (MS) cover a wide range of biological scales, from genes and proteins to cells and tissues, up to the full organism. In fact, any phenotype for an organism is dictated by the interplay among these scales. We conducted a multilayer network analysis and deep phenotyping with multi-omics data (genomics, phosphoproteomics and cytomics), brain and retinal imaging, and clinical data, obtained from a multicenter prospective cohort of 328 patients and 90 healthy controls. Multilayer networks were constructed using mutual information for topological analysis, and Boolean simulations were constructed using Pearson correlation to identified paths within and among all layers. The path more commonly found from the Boolean simulations connects protein MK03, with total T cells, the thickness of the retinal nerve fiber layer (RNFL), and the walking speed. This path contains nodes involved in protein phosphorylation, glial cell differentiation, and regulation of stress-activated MAPK cascade, among others. Specific paths identified were subsequently analyzed by flow cytometry at the single-cell level. Combinations of several proteins (GSK3AB, HSBP1 or RS6) and immune cells (Th17, Th1 non-classic, CD8, CD8 Treg, CD56 neg, and B memory) were part of the paths explaining the clinical phenotype. The advantage of the path identified from the Boolean simulations is that it connects information about these known biological pathways with the layers at higher scales (retina damage and disability). Overall, the identified paths provide a means to connect the molecular aspects of MS with the overall phenotype.
Collapse
Affiliation(s)
- Keith E. Kennedy
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicole Kerlero de Rosbo
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
- TomaLab, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Antonio Uccelli
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Maria Cellerino
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Federico Ivaldi
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Paola Contini
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Raffaele De Palma
- Department of Neurology, Ospedale Policlinico San Martino-IRCCS and Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa Italy
| | - Hanne F. Harbo
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Tone Berge
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Steffan D. Bos
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Einar A. Høgestøl
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Synne Brune-Ingebretsen
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sigrid A. de Rodez Benavent
- Department of Neurology, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Friedemann Paul
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Alexander U. Brandt
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- Department of Neurology, University of California, Irvine, California, United States of America
| | - Priscilla Bäcker-Koduah
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Janina Behrens
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Joseph Kuchling
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Susanna Asseyer
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Michael Scheel
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Claudia Chien
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanna Zimmermann
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Seyedamirhosein Motamedi
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Josef Kauer-Bonin
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
| | - Melanie Rinas
- Institute for Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
| | - Leonidas G. Alexopoulos
- ProtATonce Ltd, Athens, Greece
- School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Magi Andorra
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Elena H. Martinez-Lapiscina
- Center of Neuroimmunology, Hospital Clinic Barcelona, and Institut d’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pablo Villoslada
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Neurology, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
18
|
Ulutekin C, Galli E, Schreiner B, Khademi M, Callegari I, Piehl F, Sanderson N, Kirschenbaum D, Mundt S, Filippi M, Furlan R, Olsson T, Derfuss T, Ingelfinger F, Becher B. B cell depletion attenuates CD27 signaling of T helper cells in multiple sclerosis. Cell Rep Med 2024; 5:101351. [PMID: 38134930 PMCID: PMC10829729 DOI: 10.1016/j.xcrm.2023.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Whereas T cells are likely the main drivers of disease development, the striking efficacy of B cell-depleting therapies (BCDTs) underscore B cells' involvement in disease progression. How B cells contribute to multiple sclerosis (MS) pathogenesis-and consequently the precise mechanism of action of BCDTs-remains elusive. Here, we analyze the impact of BCDTs on the immune landscape in patients with MS using high-dimensional single-cell immunophenotyping. Algorithm-guided analysis reveals a decrease in circulating T follicular helper-like (Tfh-like) cells alongside increases in CD27 expression in memory T helper cells and Tfh-like cells. Elevated CD27 indicates disrupted CD27/CD70 signaling, as sustained CD27 activation in T cells leads to its cleavage. Immunohistological analysis shows CD70-expressing B cells at MS lesion sites. These results suggest that the efficacy of BCDTs may partly hinge upon the disruption of Th cell and B cell interactions.
Collapse
Affiliation(s)
- Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Ilaria Callegari
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Nicholas Sanderson
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina n. 60 - 20132, Italy; Vita-Salute San Raffaele University, Milan, Via Olgettina n. 60 - 20132, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina n. 60 - 20132, Milan, Italy
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Tobias Derfuss
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
19
|
Jakimovski D, Bittner S, Zivadinov R, Morrow SA, Benedict RH, Zipp F, Weinstock-Guttman B. Multiple sclerosis. Lancet 2024; 403:183-202. [PMID: 37949093 DOI: 10.1016/s0140-6736(23)01473-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis remains one of the most common causes of neurological disability in the young adult population (aged 18-40 years). Novel pathophysiological findings underline the importance of the interaction between genetics and environment. Improvements in diagnostic criteria, harmonised guidelines for MRI, and globalised treatment recommendations have led to more accurate diagnosis and an earlier start of effective immunomodulatory treatment than previously. Understanding and capturing the long prodromal multiple sclerosis period would further improve diagnostic abilities and thus treatment initiation, eventually improving long-term disease outcomes. The large portfolio of currently available medications paved the way for personalised therapeutic strategies that will balance safety and effectiveness. Incorporation of cognitive interventions, lifestyle recommendations, and management of non-neurological comorbidities could further improve quality of life and outcomes. Future challenges include the development of medications that successfully target the neurodegenerative aspect of the disease and creation of sensitive imaging and fluid biomarkers that can effectively predict and monitor disease changes.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Hb Benedict
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
20
|
DePaula-Silva AB. The Contribution of Microglia and Brain-Infiltrating Macrophages to the Pathogenesis of Neuroinflammatory and Neurodegenerative Diseases during TMEV Infection of the Central Nervous System. Viruses 2024; 16:119. [PMID: 38257819 PMCID: PMC10819099 DOI: 10.3390/v16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis and epilepsy. The activation of the innate and adaptive immune response, including microglial, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under healthy conditions, resident microglia play a pivotal role in maintaining CNS homeostasis. However, during pathological events, such as CNS viral infection, microglia become reactive, and immune cells from the periphery infiltrate into the brain, disrupting CNS homeostasis and contributing to disease development. Theiler's murine encephalomyelitis virus (TMEV), a neurotropic picornavirus, is used in two distinct mouse models: TMEV-induced demyelination disease (TMEV-IDD) and TMEV-induced seizures, representing mouse models of multiple sclerosis and epilepsy, respectively. These murine models have contributed substantially to our understanding of the pathophysiology of MS and seizures/epilepsy following viral infection, serving as critical tools for identifying pharmacological targetable pathways to modulate disease development. This review aims to discuss the host-pathogen interaction during a neurotropic picornavirus infection and to shed light on our current understanding of the multifaceted roles played by microglia and macrophages in the context of these two complexes viral-induced disease.
Collapse
Affiliation(s)
- Ana Beatriz DePaula-Silva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Gericke C, Kirabali T, Flury R, Mallone A, Rickenbach C, Kulic L, Tosevski V, Hock C, Nitsch RM, Treyer V, Ferretti MT, Gietl A. Early β-amyloid accumulation in the brain is associated with peripheral T cell alterations. Alzheimers Dement 2023; 19:5642-5662. [PMID: 37314431 DOI: 10.1002/alz.13136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Fast and minimally invasive approaches for early diagnosis of Alzheimer's disease (AD) are highly anticipated. Evidence of adaptive immune cells responding to cerebral β-amyloidosis has raised the question of whether immune markers could be used as proxies for β-amyloid accumulation in the brain. METHODS Here, we apply multidimensional mass-cytometry combined with unbiased machine-learning techniques to immunophenotype peripheral blood mononuclear cells from a total of 251 participants in cross-sectional and longitudinal studies. RESULTS We show that increases in antigen-experienced adaptive immune cells in the blood, particularly CD45RA-reactivated T effector memory (TEMRA) cells, are associated with early accumulation of brain β-amyloid and with changes in plasma AD biomarkers in still cognitively healthy subjects. DISCUSSION Our results suggest that preclinical AD pathology is linked to systemic alterations of the adaptive immune system. These immunophenotype changes may help identify and develop novel diagnostic tools for early AD assessment and better understand clinical outcomes.
Collapse
Affiliation(s)
- Christoph Gericke
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Tunahan Kirabali
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Roman Flury
- Institute of Mathematics, University of Zurich, Zurich, Switzerland
| | - Anna Mallone
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Institute of Microbiology, ETHZ, Zurich, Switzerland
| | - Chiara Rickenbach
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
| | - Luka Kulic
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Roche Pharma Research and Early Development, Roche, Basel, Switzerland
| | - Vinko Tosevski
- Mass Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Center for Prevention and Dementia Therapy, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Neurimmune AG, Schlieren, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Center for Prevention and Dementia Therapy, University of Zurich, Schlieren, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Maria Teresa Ferretti
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Women's Brain Project, Guntershausen, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland
- Center for Prevention and Dementia Therapy, University of Zurich, Schlieren, Switzerland
- Psychiatric University Hospital Zurich (PUK), Zurich, Switzerland
| |
Collapse
|
22
|
Sun X, Qian M, Li H, Wang L, Zhao Y, Yin M, Dai L, Bao H. FKBP5 activates mitophagy by ablating PPAR-γ to shape a benign remyelination environment. Cell Death Dis 2023; 14:736. [PMID: 37952053 PMCID: PMC10640650 DOI: 10.1038/s41419-023-06260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system (CNS) that is characterized by myelin damage, followed by axonal and ultimately neuronal loss, which has been found to be associated with mitophagy. The etiology and pathology of MS remain elusive. However, the role of FK506 binding protein 5 (FKBP5, also called FKBP51), a newly identified gene associated with MS, in the progression of the disease has not been well defined. Here, we observed that the progress of myelin loss and regeneration in Fkbp5ko mice treated with demyelination for the same amount of time was significantly slower than that in wild-type mice, and that mitophagy plays an important regulatory role in this process. To investigate the mechanism, we discovered that the levels of FKBP5 protein were greatly enhanced in the CNS of cuprizone (CPZ) mice and the myelin-denuded environment stimulates significant activation of the PINK1/Parkin-mediated mitophagy, in which the important regulator, PPAR-γ, is critically regulated by FKBP5. This study reveals the role of FKBP5 in regulating a dynamic pathway of natural restorative regulation of mitophagy through PPAR-γ in pathological demyelinating settings, which may provide potential targets for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Xingzong Sun
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Menghan Qian
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hongliang Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yunjie Zhao
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, China.
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
23
|
Diebold M, Fehrenbacher L, Frosch M, Prinz M. How myeloid cells shape experimental autoimmune encephalomyelitis: At the crossroads of outside-in immunity. Eur J Immunol 2023; 53:e2250234. [PMID: 37505465 DOI: 10.1002/eji.202250234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/21/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of central nervous system (CNS) autoimmunity. It is most commonly used to mimic aspects of multiple sclerosis (MS), a demyelinating disorder of the human brain and spinal cord. The innate immune response displays one of the core pathophysiological features linked to both the acute and chronic stages of MS. Hence, understanding and targeting the innate immune response is essential. Microglia and other CNS resident MUs, as well as infiltrating myeloid cells, diverge substantially in terms of both their biology and their roles in EAE. Recent advances in the field show that antigen presentation, as well as disease-propagating and regulatory interactions with lymphocytes, can be attributed to specific myeloid cell types and cell states in EAE lesions, following a distinct temporal pattern during disease initiation, propagation and recovery. Furthermore, single-cell techniques enable the assessment of characteristic proinflammatory as well as beneficial cell states, and identification of potential treatment targets. Here, we discuss the principles of EAE induction and protocols for varying experimental paradigms, the composition of the myeloid compartment of the CNS during health and disease, and systematically review effects on myeloid cells for therapeutic approaches in EAE.
Collapse
Affiliation(s)
- Martin Diebold
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Luca Fehrenbacher
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Kendirli A, de la Rosa C, Lämmle KF, Eglseer K, Bauer IJ, Kavaka V, Winklmeier S, Zhuo L, Wichmann C, Gerdes LA, Kümpfel T, Dornmair K, Beltrán E, Kerschensteiner M, Kawakami N. A genome-wide in vivo CRISPR screen identifies essential regulators of T cell migration to the CNS in a multiple sclerosis model. Nat Neurosci 2023; 26:1713-1725. [PMID: 37709997 PMCID: PMC10545543 DOI: 10.1038/s41593-023-01432-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule α4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4+ T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4+ T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.
Collapse
Affiliation(s)
- Arek Kendirli
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Clara de la Rosa
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin F Lämmle
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Isabel J Bauer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - La Zhuo
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| |
Collapse
|
25
|
Koladiya A, Davis KL. Advances in Clinical Mass Cytometry. Clin Lab Med 2023; 43:507-519. [PMID: 37481326 DOI: 10.1016/j.cll.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The advent of high-dimensional single-cell technologies has enabled detection of cellular heterogeneity and functional diversity of immune cells during health and disease conditions. Because of its multiplexing capabilities and limited compensation requirements, mass cytometry or cytometry by time of flight (CyTOF) has played a superior role in immune monitoring compared with flow cytometry. Further, it has higher throughput and lower cost compared with other single-cell techniques. Several published articles have utilized CyTOF to identify cellular phenotypes and features associated with disease outcomes. This article introduces CyTOF-based assays to profile immune cell-types, cell-states, and their applications in clinical research.
Collapse
Affiliation(s)
- Abhishek Koladiya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Center for Cancer Cell Therapy, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Alam MZ. A review on plant-based remedies for the treatment of multiple sclerosis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:775-789. [PMID: 36963654 DOI: 10.1016/j.pharma.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system, which is degenerative in nature usually appears between 20-40years of age. The exact cause of MS is still not clearly known. Loss of myelin sheath and axonal damage are the main features of MS that causes induction of inflammatory process and blocks free conduction of impulses. Till date FDA has approved 18 drugs to treat or modify MS symptoms. These medicines are disease-modifying in nature directed to prevent relapses or slow down the progression of disease. The use of the synthetic drug over an extended period causes undesirable effects that prompt us to look at Mother Nature. Complementary and alternative medicine involves the use of medicinal plants as an alternative to the existing modern medical treatment. However, modern drugs cannot be replaced completely with medicinal plants, but the two types of drugs can be used harmoniously with later one can be added as an adjuvant to the existing treatment. These medicinal plants have the potential to prevent progression and improve the symptoms of MS. Various plants such like Nigella sativa, ginger, saffron, pomegranate, curcumin, resveratrol, ginsenoside have been tested as therapeutics for many neurodegenerative diseases. The purpose of this write-up is to make information available about medicinal plants in their potential to treat or modify the symptoms of MS. Chronically ill patients tend to seek medicinal plants as they are easily available and there is a general perception about these medicines of having fewer undesirable effects.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
27
|
Si W, Ni Y, Jiang Q, Tan L, Sparagano O, Li R, Yang G. Nanopore sequencing identifies differentially methylated genes in the central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 2023; 381:578134. [PMID: 37364516 DOI: 10.1016/j.jneuroim.2023.578134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune-mediated demyelinating disease of the central nervous system (CNS) that might be triggered by aberrant epigenetic changes in the genome. DNA methylation is the most studied epigenetic mechanism that participates in MS pathogenesis. However, the overall methylation level in the CNS of MS patients remains elusive. We used direct long-read nanopore DNA sequencing and characterized the differentially methylated genes in the brain from mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We identified 163 hypomethylated promoters and 327 hypermethylated promoters. These genomic alterations were linked to various biological processes including metabolism, immune responses, neural activities, and mitochondrial dynamics, all of which are vital for EAE development. Our results indicate a great potential of nanopore sequencing in identifying genomic DNA methylation in EAE and provide important guidance for future studies investigating the MS/EAE pathology.
Collapse
Affiliation(s)
- Wen Si
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Ying Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| |
Collapse
|
28
|
Mannion JM, Segal BM, McLoughlin RM, Lalor SJ. Respiratory tract Moraxella catarrhalis and Klebsiella pneumoniae can promote pathogenicity of myelin-reactive Th17 cells. Mucosal Immunol 2023; 16:399-407. [PMID: 37088262 DOI: 10.1016/j.mucimm.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. The airways have been linked with the trafficking of myelin-specific T-cells in the preclinical stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Th17 cells are important pathogenic effectors in MS and EAE but are innocuous immediately following differentiation. Upregulation of the cytokine GM-CSF appears to be a critical step in their acquisition of pathogenic potential, but little is known about the mechanisms that mediate this process. Here, primed myelin-specific Th17 cells were transferred to congenic recipient mice prior to exposure to various human respiratory tract-associated bacteria and T-cell trafficking, phenotype and the severity of resulting EAE were monitored. Disease was exacerbated in mice exposed to the Proteobacteria Moraxella catarrhalis and Klebsiella pneumoniae, but not the Firmicute Veillonella parvula, and this was associated with significantly increased GM-CSF+ and GM-CSF+IFNγ+ ex-Th17-like donor CD4 T cells in the lungs and central nervous system (CNS) of these mice. These findings support the concept that respiratory bacteria may contribute to the pathophysiology of CNS autoimmunity by modulating pathogenicity in crucial T-cell subsets that orchestrate neuroinflammation.
Collapse
Affiliation(s)
- Jenny M Mannion
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Benjamin M Segal
- Department of Neurology and the Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, USA; Department of Neurology, University of Michigan, Ann Arbor, USA
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen J Lalor
- University College Dublin School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023; 22:496-520. [PMID: 37117846 PMCID: PMC10141847 DOI: 10.1038/s41573-023-00688-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/30/2023]
Abstract
Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Bart Naughton
- Computational Neurobiology, Eisai, Cambridge, MA, USA
| | - Wendi Bacon
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- The Open University, Milton Keynes, UK
| | | | - Yong Wang
- Precision Bioinformatics, Prometheus Biosciences, San Diego, CA, USA
| | | | - Melissa Mendez
- Genomic Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon Hill
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Namit Kumar
- Informatics & Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Xiao Chen
- Magnet Biomedicine, Cambridge, MA, USA
| | - Mugdha Khaladkar
- Human Genetics and Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Ji Wen
- Oncology Research and Development Unit, Pfizer, La Jolla, CA, USA
| | | | | |
Collapse
|
30
|
Alakhras NS, Kaplan MH. Dendritic Cells as a Nexus for the Development of Multiple Sclerosis and Models of Disease. Adv Biol (Weinh) 2023:e2300073. [PMID: 37133870 DOI: 10.1002/adbi.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Multiple sclerosis (MS) results from an autoimmune attack on the central nervous system (CNS). Dysregulated immune cells invade the CNS, causing demyelination, neuronal and axonal damage, and subsequent neurological disorders. Although antigen-specific T cells mediate the immunopathology of MS, innate myeloid cells have essential contributions to CNS tissue damage. Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that promote inflammation and modulate adaptive immune responses. This review focuses on DCs as critical components of CNS inflammation. Here, evidence from studies is summarized with animal models of MS and MS patients that support the critical role of DCs in orchestrating CNS inflammation.
Collapse
Affiliation(s)
- Nada S Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Dr, MS420, Indianapolis, IN, 46202, USA
| |
Collapse
|
31
|
Oyesola O, Downie AE, Howard N, Barre RS, Kiwanuka K, Zaldana K, Chen YH, Menezes A, Lee SC, Devlin J, Mondragón-Palomino O, Souza COS, Herrmann C, Koralov S, Cadwell K, Graham AL, Loke P. Genetic and Environmental interactions contribute to immune variation in rewilded mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533121. [PMID: 36993484 PMCID: PMC10055251 DOI: 10.1101/2023.03.17.533121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The relative and synergistic contributions of genetics and environment to inter-individual immune response variation remain unclear, despite its implications for understanding both evolutionary biology and medicine. Here, we quantify interactive effects of genotype and environment on immune traits by investigating three inbred mouse strains rewilded in an outdoor enclosure and infected with the parasite, Trichuris muris. Whereas cytokine response heterogeneity was primarily driven by genotype, cellular composition heterogeneity was shaped by interactions between genotype and environment. Notably, genetic differences under laboratory conditions can be decreased following rewilding, and variation in T cell markers are more driven by genetics, whereas B cell markers are driven more by environment. Importantly, variation in worm burden is associated with measures of immune variation, as well as genetics and environment. These results indicate that nonheritable influences interact with genetic factors to shape immune variation, with synergistic impacts on the deployment and evolution of defense mechanisms.
Collapse
Affiliation(s)
- Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Alexander E. Downie
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ, USA
| | - Nina Howard
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ, USA
| | - Kasalina Kiwanuka
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Kimberly Zaldana
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine; New York, NY, USA
| | - Arthur Menezes
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ, USA
| | - Soo Ching Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Joseph Devlin
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine; New York, NY, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Camila Oliveira Silva Souza
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| | - Christin Herrmann
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine; New York, NY, USA
| | - Sergei Koralov
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine; New York, NY, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine; New York, NY, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health; Bethesda, MD, USA
| |
Collapse
|
32
|
Kwiatkowski AJ, Helm EY, Stewart J, Leon J, Drashansky T, Avram D, Keselowsky B. Design principles of microparticle size and immunomodulatory factor formulation dictate antigen-specific amelioration of multiple sclerosis in a mouse model. Biomaterials 2023; 294:122001. [PMID: 36716589 DOI: 10.1016/j.biomaterials.2023.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Antigen-specific therapies allow for modulation of the immune system in a disease relevant context without systemic immune suppression. These therapies are especially valuable in autoimmune diseases such as multiple sclerosis (MS), where autoreactive T cells destroy myelin sheath. This work shows that an antigen-specific dual-sized microparticle (dMP) system can effectively halt and reverse disease progression in a mouse model of MS. Current MS treatments leave patients immunocompromised, but the dMP formulation spares the immune system as mice can successfully clear a Listeria Monocytogenes infection. Furthermore, we highlight design principles for particle based immunotherapies including the importance of delivering factors specific for immune cell recruitment (GM-CSF or SDF-1), differentiation (GM-CSF or FLT3L) and suppression (TGF-β or VD3) in conjunction with disease relevant antigen, as the entire formulation is required for maximum efficacy. Lastly, the dMP scheme relies on formulating phagocytosable and non-phagocytosable MP sizes to direct payload to target either cell surface receptors or intracellular targets, as the reverse sized dMP formulation failed to reverse paralysis. We also challenge the design principles of the dMP system showing that the size of the MPs impact efficacy and that GM-CSF plays two distinct roles and that both of these must be replaced to match the primary effect of the dMP system. Overall, this work shows the versatile nature of the dMP system and expands the knowledge in particle science by emphasizing design tenets to guide the next generation of particle based immunotherapies.
Collapse
Affiliation(s)
- Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joshua Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Juan Leon
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Theodore Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Benjamin Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA; Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville FL, 32610, USA.
| |
Collapse
|
33
|
de Sèze J, Maillart E, Gueguen A, Laplaud DA, Michel L, Thouvenot E, Zephir H, Zimmer L, Biotti D, Liblau R. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front Immunol 2023; 14:1004795. [PMID: 37033984 PMCID: PMC10076836 DOI: 10.3389/fimmu.2023.1004795] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system plays a significant role in multiple sclerosis. While MS was historically thought to be T cell-mediated, multiple pieces of evidence now support the view that B cells are essential players in multiple sclerosis pathogenic processes. High-efficacy disease-modifying therapies that target the immune system have emerged over the past two decades. Anti-CD20 monoclonal antibodies selectively deplete CD20+ B and CD20+ T cells and efficiently suppress inflammatory disease activity. These monotherapies prevent relapses, reduce new or active magnetic resonance imaging brain lesions, and lessen disability progression in patients with relapsing multiple sclerosis. Rituximab, ocrelizumab, and ofatumumab are currently used in clinical practice, while phase III clinical trials for ublituximab have been recently completed. In this review, we compare the four anti-CD20 antibodies in terms of their mechanisms of action, routes of administration, immunological targets, and pharmacokinetic properties. A deeper understanding of the individual properties of these molecules in relation to their efficacy and safety profiles is critical for their use in clinical practice.
Collapse
Affiliation(s)
- Jérôme de Sèze
- Department of Neurology, Hôpital de Hautepierre, Clinical Investigation Center, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France
- Fédération de Médecine Translationelle, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France
- *Correspondence: Jérôme de Sèze,
| | - Elisabeth Maillart
- Department of Neurology, Pitié Salpêtrière Hospital, Paris, France
- Centre de Ressources et de Compétences Sclérose en Plaques, Paris, France
| | - Antoine Gueguen
- Department of Neurology, Rothschild Ophthalmologic Foundation, Paris, France
| | - David A. Laplaud
- Department of Neurology, Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Investigation Clinique (CIC), Center for Research in Transplantation and Translational Immunology, UMR, UMR1064, Nantes, France
| | - Laure Michel
- Clinical Neuroscience Centre, CIC_P1414 Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes University Hospital, Rennes University, Rennes, France
- Microenvironment, Cell Differentiation, Immunology and Cancer Unit, Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes I University, French Blood Agency, Rennes, France
- Neurology Department, Rennes University Hospital, Rennes, France
| | - Eric Thouvenot
- Department of Neurology, Centre Hospitalier Universitaire (CHU) Nîmes, University of Montpellier, Nîmes, France
- Institut de Génomique Fonctionnelle, UMR, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, Montpellier, France
| | - Hélène Zephir
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM) U1172, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, Lyon Neuroscience Research Center, Lyon, France
| | - Damien Biotti
- Centre Ressources et Compétences Sclérose En Plaques (CRC-SEP) and Department of Neurology, Centre Hospitalier Universitaire (CHU) Toulouse Purpan – Hôpital Pierre-Paul Riquet, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), UPS, Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
34
|
Verdier J, Fayet OM, Hemery E, Truffault F, Pinzón N, Demeret S, Behin A, Fadel E, Guihaire J, Corneau A, Blanc C, Berrih-Aknin S, Le Panse R. Single-cell mass cytometry on peripheral cells in Myasthenia Gravis identifies dysregulation of innate immune cells. Front Immunol 2023; 14:1083218. [PMID: 36793723 PMCID: PMC9922723 DOI: 10.3389/fimmu.2023.1083218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Myasthenia Gravis (MG) is a neurological autoimmune disease characterized by disabling muscle weaknesses due to anti-acetylcholine receptor (AChR) autoantibodies. To gain insight into immune dysregulation underlying early-onset AChR+ MG, we performed an in-depth analysis of peripheral mononuclear blood cells (PBMCs) using mass cytometry. PBMCs from 24 AChR+ MG patients without thymoma and 16 controls were stained with a panel of 37 antibodies. Using both unsupervised and supervised approaches, we observed a decrease in monocytes, for all subpopulations: classical, intermediate, and non-classical monocytes. In contrast, an increase in innate lymphoid cells 2 (ILC2s) and CD27- γδ T cells was observed. We further investigated the dysregulations affecting monocytes and γδ T cells in MG. We analyzed CD27- γδ T cells in PBMCs and thymic cells from AChR+ MG patients. We detected the increase in CD27- γδ T cells in thymic cells of MG patients suggesting that the inflammatory thymic environment might affect γδ T cell differentiation. To better understand changes that might affect monocytes, we analyzed RNA sequencing data from CD14+ PBMCs and showed a global decrease activity of monocytes in MG patients. Next, by flow cytometry, we especially confirmed the decrease affecting non-classical monocytes. In MG, as for other B-cell mediated autoimmune diseases, dysregulations are well known for adaptive immune cells, such as B and T cells. Here, using single-cell mass cytometry, we unraveled unexpected dysregulations for innate immune cells. If these cells are known to be crucial for host defense, our results demonstrated that they could also be involved in autoimmunity.
Collapse
Affiliation(s)
- Julien Verdier
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Edouard Hemery
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Frédérique Truffault
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Natalia Pinzón
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Sophie Demeret
- APHP, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Anthony Behin
- AP-HP, Referral Center for Neuromuscular Disorders, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Aurélien Corneau
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, Paris, France
| | - Catherine Blanc
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Sorbonne Université-Faculté de Médecine, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
35
|
Vakrakou AG, Paschalidis N, Pavlos E, Giannouli C, Karathanasis D, Tsipota X, Velonakis G, Stadelmann-Nessler C, Evangelopoulos ME, Stefanis L, Kilidireas C. Specific myeloid signatures in peripheral blood differentiate active and rare clinical phenotypes of multiple sclerosis. Front Immunol 2023; 14:1071623. [PMID: 36761741 PMCID: PMC9905713 DOI: 10.3389/fimmu.2023.1071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Current understanding of Multiple Sclerosis (MS) pathophysiology implicates perturbations in adaptive cellular immune responses, predominantly T cells, in Relapsing-Remitting forms (RRMS). Nevertheless, from a clinical perspective MS is a heterogeneous disease reflecting the heterogeneity of involved biological systems. This complexity requires advanced analysis tools at the single-cell level to discover biomarkers for better patient-group stratification. We designed a novel 44-parameter mass cytometry panel to interrogate predominantly the role of effector and regulatory subpopulations of peripheral blood myeloid subsets along with B and T-cells (excluding granulocytes) in MS, assessing three different patient cohorts: RRMS, PPMS (Primary Progressive) and Tumefactive MS patients (TMS) (n=10, 8, 14 respectively). We further subgrouped our cohort into inactive or active disease stages to capture the early underlying events in disease pathophysiology. Peripheral blood analysis showed that TMS cases belonged to the spectrum of RRMS, whereas PPMS cases displayed different features. In particular, TMS patients during a relapse stage were characterized by a specific subset of CD11c+CD14+ CD33+, CD192+, CD172+-myeloid cells with an alternative phenotype of monocyte-derived macrophages (high arginase-1, CD38, HLA-DR-low and endogenous TNF-a production). Moreover, TMS patients in relapse displayed a selective CD4 T-cell lymphopenia of cells with a Th2-like polarised phenotype. PPMS patients did not display substantial differences from healthy controls, apart from a trend toward higher expansion of NK cell subsets. Importantly, we found that myeloid cell populations are reshaped under effective disease-modifying therapy predominantly with glatiramer acetate and to a lesser extent with anti-CD20, suggesting that the identified cell signature represents a specific therapeutic target in TMS. The expanded myeloid signature in TMS patients was also confirmed by flow cytometry. Serum neurofilament light-chain levels confirmed the correlation of this myeloid cell signature with indices of axonal injury. More in-depth analysis of myeloid subsets revealed an increase of a subset of highly cytolytic and terminally differentiated NK cells in PPMS patients with leptomeningeal enhancement (active-PPMS), compared to those without (inactive-PPMS). We have identified previously uncharacterized subsets of circulating myeloid cells and shown them to correlate with distinct disease forms of MS as well as with specific disease states (relapse/remission).
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pavlos
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece
| | - Christina Giannouli
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Karathanasis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Xristina Tsipota
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
36
|
New Insights into Risk Genes and Their Candidates in Multiple Sclerosis. Neurol Int 2022; 15:24-39. [PMID: 36648967 PMCID: PMC9844300 DOI: 10.3390/neurolint15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes are central nervous system glial cells that wrap neuronal axons with their differentiated myelin membranes as biological insulators. There has recently been an emerging concept that multiple sclerosis could be triggered and promoted by various risk genes that appear likely to contribute to the degeneration of oligodendrocytes. Despite the known involvement of vitamin D, immunity, and inflammatory cytokines in disease progression, the common causes and key genetic mechanisms remain unknown. Herein, we focus on recently identified risk factors and risk genes in the background of multiple sclerosis and discuss their relationships.
Collapse
|
37
|
Schneider-Hohendorf T, Gerdes LA, Pignolet B, Gittelman R, Ostkamp P, Rubelt F, Raposo C, Tackenberg B, Riepenhausen M, Janoschka C, Wünsch C, Bucciarelli F, Flierl-Hecht A, Beltrán E, Kümpfel T, Anslinger K, Gross CC, Chapman H, Kaplan I, Brassat D, Wekerle H, Kerschensteiner M, Klotz L, Lünemann JD, Hohlfeld R, Liblau R, Wiendl H, Schwab N. Broader Epstein-Barr virus-specific T cell receptor repertoire in patients with multiple sclerosis. J Exp Med 2022; 219:e20220650. [PMID: 36048016 PMCID: PMC9437111 DOI: 10.1084/jem.20220650] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) infection precedes multiple sclerosis (MS) pathology and cross-reactive antibodies might link EBV infection to CNS autoimmunity. As an altered anti-EBV T cell reaction was suggested in MS, we queried peripheral blood T cell receptor β chain (TCRβ) repertoires of 1,395 MS patients, 887 controls, and 35 monozygotic, MS-discordant twin pairs for multimer-confirmed, viral antigen-specific TCRβ sequences. We detected more MHC-I-restricted EBV-specific TCRβ sequences in MS patients. Differences in genetics or upbringing could be excluded by validation in monozygotic twin pairs discordant for MS. Anti-VLA-4 treatment amplified this observation, while interferon β- or anti-CD20 treatment did not modulate EBV-specific T cell occurrence. In healthy individuals, EBV-specific CD8+ T cells were of an effector-memory phenotype in peripheral blood and cerebrospinal fluid. In MS patients, cerebrospinal fluid also contained EBV-specific central-memory CD8+ T cells, suggesting recent priming. Therefore, MS is not only preceded by EBV infection, but also associated with broader EBV-specific TCR repertoires, consistent with an ongoing anti-EBV immune reaction in MS.
Collapse
Affiliation(s)
- Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians Universität München, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Béatrice Pignolet
- Toulouse Institute for infectious and inflammatory diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paul Sabatier, Toulouse, France
| | | | - Patrick Ostkamp
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | | | - Björn Tackenberg
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Philipps-University, Department of Neurology, Marburg, Germany
| | - Marianne Riepenhausen
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christian Wünsch
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Florence Bucciarelli
- Toulouse Institute for infectious and inflammatory diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paul Sabatier, Toulouse, France
| | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians Universität München, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians Universität München, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians Universität München, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Katja Anslinger
- Institute of Legal Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Catharina C. Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | | | | | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Biological Intelligence, Martinsried, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians Universität München, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians Universität München, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Roland Liblau
- Toulouse Institute for infectious and inflammatory diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Paul Sabatier, Toulouse, France
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
38
|
Mundt S, Greter M, Becher B. The CNS mononuclear phagocyte system in health and disease. Neuron 2022; 110:3497-3512. [PMID: 36327896 DOI: 10.1016/j.neuron.2022.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
CNS-resident macrophages-including parenchymal microglia and border-associated macrophages (BAMs)-contribute to neuronal development and health, vascularization, and tissue integrity at steady state. Border-patrolling mononuclear phagocytes such as dendritic cells and monocytes confer important immune functions to the CNS, protecting it from pathogenic threats including aberrant cell growth and brain malignancies. Even though we have learned much about the contribution of lymphocytes to CNS pathologies, a better understanding of differential roles of tissue-resident and -invading phagocytes is slowly emerging. In this perspective, we propose that in CNS neuroinflammatory diseases, tissue-resident macrophages (TRMs) contribute to the clearing of debris and resolution of inflammation, whereas blood-borne phagocytes are drivers of immunopathology. We discuss the remaining challenges to resolve which specialized mononuclear phagocyte populations are driving or suppressing immune effector function, thereby potentially dictating the outcome of autoimmunity or brain cancer.
Collapse
Affiliation(s)
- Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Franklin RJM, Simons M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron 2022; 110:3549-3565. [PMID: 36228613 DOI: 10.1016/j.neuron.2022.09.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Remyelination, the myelin regenerative response that follows demyelination, restores saltatory conduction and function and sustains axon health. Its declining efficiency with disease progression in the chronic autoimmune disease multiple sclerosis (MS) contributes to the currently untreatable progressive phase of the disease. Although some of the bona fide myelin regenerative medicine clinical trials have succeeded in demonstrating proof-of-principle, none of these compounds have yet proceeded toward approval. There therefore remains a need to increase our understanding of the fundamental biology of remyelination so that existing targets can be refined and new ones discovered. Here, we review the role of inflammation, in particular innate immunity, in remyelination, describing its many and complex facets and discussing how our evolving understanding can be harnessed to translational goals.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Munich, Germany.
| |
Collapse
|
40
|
Shalita R, Amit I. The industrial genomic revolution: A new era in neuroimmunology. Neuron 2022; 110:3429-3443. [PMID: 36257321 DOI: 10.1016/j.neuron.2022.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Recent discoveries have highlighted the importance of understanding the complex interactions between the brain and immune systems in health and neurodegenerative disease. In this Primer, we outline single-cell multiomics approaches. Applied to patient samples with rich metadata, functional organoids, and animal models, single-cell studies will facilitate the next big leap in translational neuro-immune research. We believe this will pave the way for reshaping our understanding of the neuro-immune interplay: from descriptive to functional, from broad cell types to effective pathways, spatial organization, biomarkers, and targets, toward a comprehensive mechanistic understanding that will be the impetus for drug discovery and therapeutic breakthroughs. We envision that in the near future, single-cell multiomics technologies, along with the advances in immunotherapy development, will become a major driving force and fully integrated resource in the toolset for the development of therapeutic agents in neuroimmunology, which will revolutionize drug development for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rotem Shalita
- Department of Systems Immunology, Weizmann Institute, Rehovot, 7610001, Israel.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute, Rehovot, 7610001, Israel.
| |
Collapse
|
41
|
Treatment with an antigen-specific dual microparticle system reverses advanced multiple sclerosis in mice. Proc Natl Acad Sci U S A 2022; 119:e2205417119. [PMID: 36256820 PMCID: PMC9618088 DOI: 10.1073/pnas.2205417119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antigen-specific therapies hold promise for treating autoimmune diseases such as multiple sclerosis while avoiding the deleterious side effects of systemic immune suppression due to delivering the disease-specific antigen as part of the treatment. In this study, an antigen-specific dual-sized microparticle (dMP) treatment reversed hind limb paralysis when administered in mice with advanced experimental autoimmune encephalomyelitis (EAE). Treatment reduced central nervous system (CNS) immune cell infiltration, demyelination, and inflammatory cytokine levels. Mechanistic insights using single-cell RNA sequencing showed that treatment impacted the MHC II antigen presentation pathway in dendritic cells, macrophages, B cells, and microglia, not only in the draining lymph nodes but also strikingly in the spinal cord. CD74 and cathepsin S were among the common genes down-regulated in most antigen presenting cell (APC) clusters, with B cells also having numerous MHC II genes reduced. Efficacy of the treatment diminished when B cells were absent, suggesting their impact in this therapy, in concert with other immune populations. Activation and inflammation were reduced in both APCs and T cells. This promising antigen-specific therapeutic approach advantageously engaged essential components of both innate and adaptive autoimmune responses and capably reversed paralysis in advanced EAE without the use of a broad immunosuppressant.
Collapse
|
42
|
Single-Cell Analysis to Better Understand the Mechanisms Involved in MS. Int J Mol Sci 2022; 23:ijms232012142. [PMID: 36292995 PMCID: PMC9602568 DOI: 10.3390/ijms232012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis is a chronic and inflammatory disease of the central nervous system. Although this disease is widely studied, many of the precise mechanisms involved are still not well known. Numerous studies currently focusing on multiple sclerosis highlight the involvement of many major immune cell subsets, such as CD4+ T cells, CD8+ T cells and more recently B cells. However, our vision of its pathology has remained too broad to allow the proper use of targeted therapeutics. This past decade, new technologies have emerged, enabling deeper research into the different cell subsets at the single-cell level both in the periphery and in the central nervous system. These technologies could allow us to identify new cell populations involved in the disease process and new therapeutic targets. In this review, we briefly introduce the major single-cell technologies currently used in studies before diving into the major findings from the multiple sclerosis research from the past 5 years. We focus on results that were obtained using single-cell technologies to study immune cells and cells from the central nervous system.
Collapse
|
43
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
44
|
Smith CIE, Bergman P, Hagey DW. Estimating the number of diseases - the concept of rare, ultra-rare, and hyper-rare. iScience 2022; 25:104698. [PMID: 35856030 PMCID: PMC9287598 DOI: 10.1016/j.isci.2022.104698] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
At the dawn of the personalized medicine era, the number of rare diseases has been estimated at 10,000. By considering the influence of environmental factors together with genetic variations and our improved diagnostic capabilities, an assessment suggests a considerably larger number. The majority would be extremely rare, and hence, we introduce the term "hyper-rare," defined as affecting <1/108 individuals. Such disorders would potentially outnumber all currently known rare diseases. Because autosomal recessive disorders are likely concentrated in consanguineous populations, and rare toxicities in rural areas, establishing their existence necessitates a greater reach than is currently viable. Moreover, the randomness of X-linked and gain-of-function mutations greatly compound this challenge. However, whether concurrent diseases actually cause a distinct illness will depend on if their pathological mechanisms interact (phenotype conversion) or not (phenotype maintenance). The hyper-rare disease concept will be important in precision medicine with improved diagnosis and treatment of rare disease patients.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Single-cell multiomics in neuroinflammation. Curr Opin Immunol 2022; 76:102180. [DOI: 10.1016/j.coi.2022.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
|
46
|
Twin study probes non-heritable immune aspects of multiple sclerosis. Nat Rev Neurol 2022; 18:188. [PMID: 35241814 DOI: 10.1038/s41582-022-00641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|