1
|
Islam MK, Wagh H, Wei H. Dynamic Gene Attention Focus (DyGAF): Enhancing Biomarker Identification Through Dual-Model Attention Networks. Bioinform Biol Insights 2025; 19:11779322251325390. [PMID: 40160891 PMCID: PMC11951896 DOI: 10.1177/11779322251325390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
The DyGAF model, which stands for Dynamic Gene Attention Focus, is specifically designed and tailored to address the challenges in biomarker detection, progression reporting of pathogen infection, and disease diagnostics. The DyGAF model introduced a novel dual-model attention-based mechanism within neural networks, combined with machine learning algorithms to enhance the process of biomarker identification. The model transcended traditional diagnostic approaches by meticulously analyzing gene expression data. DyGAF not only identified but also ranked genes based on their significance, revealing a comprehensive list of the top genes essential for disease detection and prognosis. In addition, KEGG pathways, Wiki Pathways, and Gene Ontology-based analyses provided a multileveled evaluation of the genes' roles. In our analyses, we tailored COVID-19 gene expression profile from nasopharyngeal swabs that offer a more nuanced view of the intricate interplay between the host and the virus. The genes ranked by the DyGAF model were compared against those selected by differential expression analysis and random forest feature selection methods for further validation of our model. DyGAF demonstrated its prowess in identifying important biomarkers that could enrich gene ontologies and pathways crucial for elucidating the pathogenesis of COVID-19. Furthermore, DyGAF was also employed for diagnosing COVID-19 patients by classifying gene-expression profiles with an accuracy of 94.23%. Benchmarking against other conventional models revealed DyGAF's superior performance, highlighting its effectiveness in identifying and categorizing COVID-19 cases. In summary, DyGAF model represents a significant advancement in genomic research, providing a more comprehensive and precise tool for identifying key genetic markers and unraveling the complex biological insights of a disease. The DyGAF model is available as a software package at the following link: https://github.com/hiddenntreasure/DyGAF.
Collapse
Affiliation(s)
- Md Khairul Islam
- Computational Science and Engineering, Michigan Technological University, Houghton, MI, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Himanshu Wagh
- College of Computing, Michigan Technological University, Houghton, MI, USA
| | - Hairong Wei
- Computational Science and Engineering, Michigan Technological University, Houghton, MI, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
- College of Computing, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
2
|
Ma R, Zhang X, Li R, Dong X, Wang W, Jiang Q, Xiao X, Shi Y, Chen L, Zheng T, Xiang Z, Ren L, Zhou Z, Lei X, Wang J. PLSCR1 suppresses SARS-CoV-2 infection by downregulating cell surface ACE2. J Virol 2025; 99:e0208524. [PMID: 39945535 PMCID: PMC11915802 DOI: 10.1128/jvi.02085-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Type I interferons exert their antiviral effects against SARS-CoV-2 by inducing the expression of interferon-stimulated genes (ISGs), including but not limited to LY6E, CH25H, IFITM2/3, and IFIH1. However, the antiviral effect and underlying mechanisms of action of most ISGs in SARS-CoV-2 infection are not yet fully understood. By screening 109 ISG-knockout cell lines, we identify that phospholipid scramblase 1 (PLSCR1), an interferon-inducible protein, acts as a crucial restriction factor against SARS-CoV-2 infection. Cells lacking PLSCR1 are highly susceptible to SARS-CoV-2 infection. Conversely, overexpression of PLSCR1 inhibits SARS-CoV-2 infection. Depletion of PLSCR1 enhances cellular entry of both pseudotyped and authentic SARS-CoV-2. Mechanistically, PLSCR1 inhibits SARS-CoV-2 entry by specifically downregulating plasma membrane expression of ACE2, the virus's receptor, without affecting the overall levels of ACE2 within the cell. As such, we unraveled previously unappreciated mechanisms by which PLSCR1 exerts its restrictive effect on SARS-CoV-2. These data provide new insights into the interplay between host innate antiviral immunity and SARS-CoV-2 and shed light on novel antiviral therapeutics. IMPORTANCE Phospholipid scramblase 1 (PLSCR1) has been identified as a critical host restriction factor against SARS-CoV-2 infection. In this study, we demonstrated that PLSCR1 inhibited SARS-CoV-2 entry by downregulating the plasma membrane expression of ACE2, the primary receptor for viral entry. Our findings elucidate a novel host-pathogen interaction that not only deepens our understanding of the innate immune response to SARS-CoV-2 but offers potential strategies for therapeutic interventions against COVID-19.
Collapse
Affiliation(s)
- Ruiyi Ma
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xinyi Zhang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ruonan Li
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Qi Jiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Yujin Shi
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Lan Chen
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Tian Zheng
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Ying H, Wu X, Jia X, Yang Q, Liu H, Zhao H, Chen Z, Xu M, Wang T, Li M, Zhao Z, Zheng R, Wang S, Lin H, Xu Y, Lu J, Wang W, Ning G, Zheng J, Bi Y. Single-cell transcriptome-wide Mendelian randomization and colocalization reveals immune-mediated regulatory mechanisms and drug targets for COVID-19. EBioMedicine 2025; 113:105596. [PMID: 39933264 PMCID: PMC11867302 DOI: 10.1016/j.ebiom.2025.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND COVID-19 continues to show long-term impacts on our health. Limited effective immune-mediated antiviral drugs have been launched. METHODS We conducted a Mendelian randomization (MR) and colocalization analysis using 26,597 single-cell expression quantitative trait loci (sc-eQTL) to proxy effects of expressions of 16,597 genes in 14 peripheral blood immune cells and tested them against four COVID-19 outcomes from COVID-19 Genetic Housing Initiative GWAS meta-analysis Round 7. We also carried out additional validations including colocalization, linkage disequilibrium check and host-pathogen interactome predictions. We integrated MR findings with clinical trial evidence from several drug gene related databases to identify drugs with repurposing potential. Finally, we developed a tier system and identified immune-cell-based prioritized drug targets for COVID-19. FINDINGS We identified 132 putative causal genes in 14 immune cells (343 MR associations) for COVID-19, with 58 genes that were not reported previously. 145 (73%) gene-COVID-19 pairs showed effects on COVID-19 in only one immune cell type, which implied widespread immune-cell specific effects. For pathway analyses, we found the putative causal genes were enriched in natural killer (NK) recruiting cells but de-enriched in NK cells. Using a deep learning model, we found 107 (81%) of the putative causal genes (41 novel genes) were predicted to interact with SARS-COV-2 proteins. Integrating the above evidence with drug trial information, we developed a tier system and prioritized 37 drug targets for COVID-19. INTERPRETATION Our study showcased the central role of immune-mediated regulatory mechanisms for COVID-19 and prioritized drug targets that might inform interventions for viral infectious diseases. FUNDING This work was supported by grants from the National Key Research and Development Program of China (2022YFC2505203).
Collapse
Affiliation(s)
- Hui Ying
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiling Zhao
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Zhihe Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Spreckley M, Raza M, Islam K, Russell J, Hunt K, Durham C, Genes Health Research Team, van Heel D, Khan A, Finer S, Siddiqui MK. Advancing health and fostering community involvement in medical research through the Genes & Health study. Trends Endocrinol Metab 2025; 36:196-198. [PMID: 39609223 DOI: 10.1016/j.tem.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
The Genes & Health study, an initiative focused on British-Pakistani and British-Bangladeshi volunteers, is at the forefront of diversifying genetic research and driving scientific innovation. Here, we explore how this study has propelled scientific advancements and positively impacted communities, emphasizing its collaborative ethos, dedication to societal needs, and accomplishments.
Collapse
Affiliation(s)
- Marie Spreckley
- Blizard Institute, Queen Mary, University of London, London E1 2AT, UK
| | - Mehru Raza
- Wolfson Institute of Population Health, Queen Mary University of London, London E1 2AB, UK
| | - Kamrul Islam
- Blizard Institute, Queen Mary, University of London, London E1 2AT, UK
| | - Jessry Russell
- Wolfson Institute of Population Health, Queen Mary University of London, London E1 2AB, UK
| | - Karen Hunt
- Blizard Institute, Queen Mary, University of London, London E1 2AT, UK
| | | | - Genes Health Research Team
- Blizard Institute, Queen Mary, University of London, London E1 2AT, UK; Wolfson Institute of Population Health, Queen Mary University of London, London E1 2AB, UK
| | - David van Heel
- Blizard Institute, Queen Mary, University of London, London E1 2AT, UK; Barts Health NHS Trust, London E1 1BB, UK
| | - Ahsan Khan
- London Borough of Waltham Forest, London E17 4JF, UK
| | - Sarah Finer
- Wolfson Institute of Population Health, Queen Mary University of London, London E1 2AB, UK; Barts Health NHS Trust, London E1 1BB, UK
| | - Moneeza K Siddiqui
- Wolfson Institute of Population Health, Queen Mary University of London, London E1 2AB, UK.
| |
Collapse
|
5
|
Fricke-Galindo I, García-Carmona S, Bautista-Becerril B, Pérez-Rubio G, Buendia-Roldan I, Chávez-Galán L, Nava-Quiroz KJ, Alanis-Ponce J, Reséndiz-Hernández JM, Blanco-Aguilar E, Erives-Sedano JI, Méndez-Velasco Y, Osuna-Espinoza GE, Salvador-Hernández F, Segura-Castañeda R, Solano-Candia UN, Falfán-Valencia R. Genetic Variants in Genes Related to Lung Function and Interstitial Lung Diseases Are Associated with Worse Outcomes in Severe COVID-19 and Lung Performance in the Post-COVID-19 Condition. Int J Mol Sci 2025; 26:2046. [PMID: 40076669 PMCID: PMC11900979 DOI: 10.3390/ijms26052046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Genetic variants related to susceptibility to chronic respiratory conditions such as interstitial lung disease (ILD) could share critical pathways in the pathogenesis of COVID-19 and be implicated in COVID-19 outcomes and post-COVID-19. We aimed to identify the participation of genetic variants in lung function and ILD genes in severe COVID-19 outcomes and post-COVID-19 condition. We studied 936 hospitalized patients with COVID-19. The requirement of invasive mechanical ventilation (IMV) and the acute respiratory distress syndrome (ARDS) classification were considered. The mortality was assessed as the in-hospital death. The post-COVID-19 group included 102 patients evaluated for pulmonary function tests four times during the year after discharge. Five variants (FAM13A rs2609255, DSP rs2076295, TOLLIP rs111521887, TERT rs2736100, and THSD4 rs872471) were genotyped using TaqMan assays. A multifactor dimensionality reduction method (MDR) was performed for epistasis estimation. The TERT rs2736100 and THSD4 rs872471 variants were associated with differential risk for ARDS severity (moderate vs. severe, CC + CA, p = 0.044, OR = 0.66, 95% CI = 0.44-0.99; and GG p = 0.034, OR = 2.22, 95% CI = 1.04-4.72, respectively). These variants and FAM13A rs2609255 were also related to pulmonary function post-COVID-19. The MDR analysis showed differential epistasis and correlation of the genetic variants included in this study. The well-known variants in recognized genes related to pulmonary function worsening and interstitial disorders are related to the severity and mortality of COVID-19 and lung performance in the post-COVID-19 condition.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| | - Juan M. Reséndiz-Hernández
- Laboratorio Clínico, Centro Especializado de Atención a Personas con Discapacidad Visual, Instituto de Salud del Estado de México, Naucalpan 53000, Mexico State, Mexico;
| | - Esther Blanco-Aguilar
- Facultad de Medicina Benemérita, Universidad Autónoma de Puebla, Puebla de Zaragoza 72420, Puebla, Mexico;
| | - Jessica I. Erives-Sedano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Chihuahua, Mexico;
| | - Yashohara Méndez-Velasco
- Unidad Académica Profesional Chimalhuacán, Universidad Autónoma del Estado de México, Nezahualcóyotl 56353, Mexico State, Mexico;
| | - Grecia E. Osuna-Espinoza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico;
| | - Fidel Salvador-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Rubén Segura-Castañeda
- Facultad Interdisciplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Hermosillo Sonora 83000, Sonora, Mexico;
| | - Uriel N. Solano-Candia
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (S.G.-C.); (B.B.-B.); (G.P.-R.); (J.A.-P.)
| |
Collapse
|
6
|
Czech E, Millar TR, Tyler W, White T, Elsworth B, Guez J, Hancox J, Jeffery B, Karczewski KJ, Miles A, Tallman S, Unneberg P, Wojdyla R, Zabad S, Hammerbacher J, Kelleher J. Analysis-ready VCF at Biobank scale using Zarr. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.11.598241. [PMID: 38915693 PMCID: PMC11195102 DOI: 10.1101/2024.06.11.598241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background Variant Call Format (VCF) is the standard file format for interchanging genetic variation data and associated quality control metrics. The usual row-wise encoding of the VCF data model (either as text or packed binary) emphasises efficient retrieval of all data for a given variant, but accessing data on a field or sample basis is inefficient. Biobank scale datasets currently available consist of hundreds of thousands of whole genomes and hundreds of terabytes of compressed VCF. Row-wise data storage is fundamentally unsuitable and a more scalable approach is needed. Results Zarr is a format for storing multi-dimensional data that is widely used across the sciences, and is ideally suited to massively parallel processing. We present the VCF Zarr specification, an encoding of the VCF data model using Zarr, along with fundamental software infrastructure for efficient and reliable conversion at scale. We show how this format is far more efficient than standard VCF based approaches, and competitive with specialised methods for storing genotype data in terms of compression ratios and single-threaded calculation performance. We present case studies on subsets of three large human datasets (Genomics England: n=78,195; Our Future Health: n=651,050; All of Us: n=245,394) along with whole genome datasets for Norway Spruce (n=1,063) and SARS-CoV-2 (n=4,484,157). We demonstrate the potential for VCF Zarr to enable a new generation of high-performance and cost-effective applications via illustrative examples using cloud computing and GPUs. Conclusions Large row-encoded VCF files are a major bottleneck for current research, and storing and processing these files incurs a substantial cost. The VCF Zarr specification, building on widely-used, open-source technologies has the potential to greatly reduce these costs, and may enable a diverse ecosystem of next-generation tools for analysing genetic variation data directly from cloud-based object stores, while maintaining compatibility with existing file-oriented workflows.
Collapse
Affiliation(s)
- Eric Czech
- Open Athena AI Foundation, Lincoln, New Zealand
- Related Sciences, Lincoln, New Zealand
| | - Timothy R. Millar
- The New Zealand Institute for Plant & Food Research Ltd, Lincoln, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Tom White
- Tom White Consulting Ltd., Manchester, UK
| | | | - Jérémy Guez
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK
| | - Konrad J. Karczewski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Alistair Miles
- Wellcome Sanger Institute, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sam Tallman
- Genomics England, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Shadi Zabad
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - Jeff Hammerbacher
- Open Athena AI Foundation, Lincoln, New Zealand
- Related Sciences, Lincoln, New Zealand
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, UK
| |
Collapse
|
7
|
Tat VY, Drelich AK, Huang P, Khanipov K, Hsu JC, Widen SG, Tseng CTK, Golovko G. Characterizing temporal and global host innate immune responses against SARS-CoV-1 and -2 infection in pathologically relevant human lung epithelial cells. PLoS One 2025; 20:e0317921. [PMID: 39874350 PMCID: PMC11774383 DOI: 10.1371/journal.pone.0317921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells). Total RNA extracted at 12, 24, and 48 hours after β-CoVs or mock infection of Calu-3/2B4 cells were subjected to RNA sequencing and functional enrichment analysis to select genes whose expressions were significantly modulated post-infection. The results demonstrate that SARS-CoV-1 and -2 stimulate similar yet distinct innate antiviral signaling pathways in pathologically relevant human lung epithelial cells. Furthermore, we found that many genes related to the viral life cycle, interferons, and interferon-stimulated genes (ISGs) were upregulated at multiple time points. Based on their profound modulation upon infection by SARS-CoV-1, SARS-CoV-2, and Omicron BA.1, four ISGs, i.e., bone marrow stromal cell antigen 2 (BST2), Z-DNA Binding Protein 1 (ZBP1), C-X-C Motif Chemokine Ligand 11 (CXCL11), and Interferon Induced Transmembrane Protein 1 (IFITM1), were identified as potential drug targets against β-CoVs. Our findings suggest that these genes affect both pathogens directly and indirectly through the innate immune response, making them potential targets for host-directed antivirals. Altogether, our results demonstrate that SARS-CoV-1 and SARS-CoV-2 infection induce differential effects on host innate immune responses.
Collapse
Affiliation(s)
- Vivian Y Tat
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra K Drelich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pinghan Huang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason C Hsu
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Steven G Widen
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chien-Te Kent Tseng
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - George Golovko
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
8
|
Dalapati T, Wang L, Jones AG, Cardwell J, Konigsberg IR, Bossé Y, Sin DD, Timens W, Hao K, Yang I, Ko DC. Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of COVID-19 and idiopathic pulmonary fibrosis. HGG ADVANCES 2025; 6:100410. [PMID: 39876559 PMCID: PMC11872446 DOI: 10.1016/j.xhgg.2025.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Most genetic variants identified through genome-wide association studies (GWASs) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell type- and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of idiopathic pulmonary fibrosis (IPF) and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWASs, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Angela G Jones
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jonathan Cardwell
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Québec City, QC, Canada
| | - Don D Sin
- Center for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ivana Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
9
|
Kholaiq H, Abdelmoumen Y, Moundir A, El Kettani A, Ailal F, Benhsaien I, Adnane F, Drissi Bourhanbour A, Amenzoui N, El Bakkouri J, Bousfiha AA. Human genetic and immunological determinants of SARS-CoV-2 infection and multisystem inflammatory syndrome in children. Clin Exp Immunol 2025; 219:uxae062. [PMID: 39028583 PMCID: PMC11771195 DOI: 10.1093/cei/uxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces pneumonia and acute respiratory failure in coronavirus disease 2019 (COVID-19) patients with inborn errors of immunity to type I interferon (IFN-I). The impact of SARS-CoV-2 infection varies widely, ranging from mild respiratory symptoms to life-threatening illness and organ failure, with a higher incidence in men than in women. Approximately 3-5% of critical COVID-19 patients under 60 and a smaller percentage of elderly patients exhibit genetic defects in IFN-I production, including X-chromosome-linked TLR7 and autosomal TLR3 deficiencies. Around 15-20% of cases over 70 years old, and a smaller percentage of younger patients, present with preexisting autoantibodies neutralizing type I interferons. Additionally, innate errors affecting the control of the response to type I interferon have been associated with pediatric multisystem inflammatory syndrome (MIS-C). Several studies have described rare errors of immunity, such as XIAP deficiency, CYBB, SOCS1, OAS1/2, and RNASEL, as underlying factors in MIS-C susceptibility. However, further investigations in expanded patient cohorts are needed to validate these findings and pave the way for new genetic approaches to MIS-C. This review aims to present recent evidence from the scientific literature on genetic and immunological abnormalities predisposing individuals to critical SARS-CoV-2 infection through IFN-I. We will also discuss multisystem inflammatory syndrome in children (MIS-C). Understanding the immunological mechanisms and pathogenesis of severe COVID-19 may inform personalized patient care and population protection strategies against future serious viral infections.
Collapse
Affiliation(s)
- Halima Kholaiq
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yousra Abdelmoumen
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abderrahmane Moundir
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Assiya El Kettani
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Adnane
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Asmaa Drissi Bourhanbour
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Naima Amenzoui
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
10
|
Marchal A, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Response to Karp-Tatham et al. HGG ADVANCES 2025; 6:100407. [PMID: 39827368 PMCID: PMC11836477 DOI: 10.1016/j.xhgg.2025.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France
| | - Vanessa Sancho-Shimizu
- Department of Infectious Diseases, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
11
|
Malomane D, Williams MP, Huber C, Mangul S, Abedalthagafi M, Chiang CWK. Patterns of population structure and genetic variation within the Saudi Arabian population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632500. [PMID: 39868174 PMCID: PMC11761371 DOI: 10.1101/2025.01.10.632500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Arabian Peninsula is considered the initial site of historic human migration out of Africa. The modern-day indigenous Arabians are believed to be the descendants who remained from the ancient split of the migrants into Eurasia. Here, we investigated how the population history and cultural practices such as endogamy have shaped the genetic variation of the Saudi Arabians. We genotyped 3,352 individuals and identified twelve genetic sub-clusters that corresponded to the geographical distribution of different tribal regions, differentiated by distinct components of ancestry based on comparisons to modern and ancient DNA references. These sub-clusters also showed variation across ranges of the genome covered in runs of homozygosity, as well as differences in population size changes over time. Using 25,488,981 variants found in whole genome sequencing data (WGS) from 302 individuals, we found that the Saudi tend to show proportionally more deleterious alleles than neutral alleles when compared to Africans/African Americans from gnomAD (e.g. a 13% increase of deleterious alleles annotated by AlphaMissense between 0.5 - 5% frequency in Saudi, compared to 7% decrease of the benign alleles; P < 0.001). Saudi sub-clusters with greater inbreeding and lower effective population sizes showed greater enrichment of deleterious alleles as well. Additionally, we found that approximately 10% of the variants discovered in our WGS data are not observed in gnomAD; these variants are also enriched with deleterious annotations. To accelerate studying the population-enriched deleterious alleles and their health consequences in this population, we made available the allele frequency estimates of 25,488,981 variants discovered in our samples. Taken together, our results suggest that Saudi's population history impacts its pattern of genetic variation with potential consequences to the population health. It further highlights the need to sequence diverse and unique populations so to provide a foundation on which to interpret medical- and pharmaco- genomic findings from these populations.
Collapse
Affiliation(s)
- D.K. Malomane
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - M. P. Williams
- Department of Biology, Pennsylvania State University, University Park, PA
| | - C.D. Huber
- Department of Biology, Pennsylvania State University, University Park, PA
| | - S. Mangul
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA
| | - M. Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - C. W. K. Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| |
Collapse
|
12
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Mózner O, Szabó E, Kulin A, Várady G, Moldvay J, Vass V, Szentesi A, Jánosi Á, Hegyi P, Sarkadi B. Potential associations of selected polymorphic genetic variants with COVID-19 disease susceptibility and severity. PLoS One 2025; 20:e0316396. [PMID: 39752416 PMCID: PMC11698323 DOI: 10.1371/journal.pone.0316396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
In this study, we analyzed the potential associations of selected laboratory and anamnestic parameters, as well as 12 genetic polymorphisms (SNPs), with clinical COVID-19 occurrence and severity in 869 hospitalized patients. The SNPs analyzed by qPCR were selected based on population-wide genetic (GWAS) data previously indicating association with the severity of COVID-19, and additional SNPs that have been shown to be important in cellular processes were also examined. We confirmed the associations of COVID-19 with pre-existing diabetes and found an unexpected association between less severe disease and the loss of smell and taste. Regarding the genetic polymorphisms, a higher allele frequency of the LZTFL1 and IFNAR2 minor variants significantly correlated with greater COVID-19 disease susceptibility (hospitalization) and severity, and a similar tendency was observed for the RAVER1 and the MUC5B variants. Interestingly, the ATP2B4 minor haplotype, protecting against malaria, correlated with an increased disease susceptibility, while in diabetic patients disease susceptibility was lower in the presence of a reduced-function ABCG2 transporter variant. Our current results, which should be reinforced by larger studies, indicate that together with laboratory and anamnestic parameters, genetic polymorphisms may have predictive value for the clinical occurrence and severity of COVID-19.
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - Edit Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kulin
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Moldvay
- 1 Department of Pulmonology, National Korányi Institute of Pulmonology
- Department of Pulmonology, University of Szeged Albert Szent-Györgyi Medical School
| | - Vivien Vass
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Institute of Pancreatic Diseases and Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Ágoston Jánosi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Institute of Pancreatic Diseases and Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Spalinger MR, Sanati G, Chatterjee P, Hai R, Li J, Santos AN, Nordgren TM, Tremblay ML, Eckmann L, Hanson E, Scharl M, Wu X, Boland BS, McCole DF. Tofacitinib Mitigates the Increased SARS-CoV-2 Infection Susceptibility Caused by an IBD Risk Variant in the PTPN2 Gene. Cell Mol Gastroenterol Hepatol 2025; 19:101447. [PMID: 39756517 PMCID: PMC11953972 DOI: 10.1016/j.jcmgh.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND & AIMS Coronavirus disease (COVID-19), caused by severe acquired respiratory syndrome-Coronavirus-2 (SARS-CoV-2), triggered a global pandemic with severe medical and socioeconomic consequences. Although fatality rates are higher among the elderly and those with underlying comorbidities, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases. The aim of our study was to investigate whether the autoimmunity risk gene, PTPN2, which also confers elevated risk to develop inflammatory bowel disease, affects susceptibility to SARS-CoV-2 viral uptake. METHODS Using samples from PTPN2 genotyped patients with inflammatory bowel disease, PTPN2-deficient mice, and human intestinal and lung epithelial cell lines, we investigated how PTPN2 affects expression of the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2), and uptake of virus-like particles expressing the SARS-CoV2 spike protein and live SARS-CoV-2 virus. RESULTS We report that the autoimmune PTPN2 loss-of-function risk variant rs1893217 promotes expression of the SARS-CoV-2 receptor, ACE2, and increases cellular entry of SARS-CoV-2 spike protein and live virus. Elevated ACE2 expression and viral entry were mediated by increased Janus kinase-signal transducers and activators of transcription signaling and were reversed by the Janus kinase inhibitor, tofacitinib. CONCLUSION Collectively, our findings uncover a novel risk biomarker for increased expression of the SARS-CoV-2 receptor and viral entry, and identify a clinically approved therapeutic agent to mitigate this risk.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Golshid Sanati
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Pritha Chatterjee
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Alina N Santos
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Current position: College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Elaine Hanson
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California
| | - Brigid S Boland
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California.
| |
Collapse
|
15
|
Deng R, Huang G, Zhou J, Zeng K. PLASMA PROTEOME, METABOLOME MENDELIAN RANDOMIZATION IDENTIFIES SEPSIS THERAPEUTIC TARGETS. Shock 2025; 63:52-63. [PMID: 39194222 DOI: 10.1097/shk.0000000000002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Background : The interrelation between the plasma proteome and plasma metabolome with sepsis presents a multifaceted dynamic that necessitates further research to elucidate the underlying causal mechanisms. Methods : Our investigation used public genome-wide association study data to explore the relationships among the plasma proteome, metabolome, and sepsis, considering different sepsis subgroup. Initially, two-sample Mendelian randomization established causal connections between the plasma proteome and metabolome with sepsis. Subsequently, multivariate and iterative Mendelian randomization analyses were performed to understand the complex interactions in plasma during sepsis. The validity of these findings was supported by thorough sensitivity analyses. Result : The study identified 25 plasma proteins that enhance risk and 34 that act as protective agents in sepsis. After P value adjustment (0.05/1306), ICAM5 emerged with a positive correlation to sepsis susceptibility ( P value = 2.14E-05, OR = 1.10, 95% CI = 1.05-1.15), with this significance preserved across three sepsis subgroup examined. Additionally, 29 plasma metabolites were recognized as risk factors, and 15 as protective factors for sepsis outcomes. After P value adjustment (0.05/997), elevated levels of 1,2,3-benzenetriol sulfate (2) was significantly associated with increased sepsis risk ( P value = 3.37E-05, OR = 1.18, 95% CI = 1.09-1.28). Further scrutiny revealed that this plasma metabolite notably augments the abundance of ICAM5 protein ( P value = 3.52E-04, OR = 1.11, 95% CI = 1.04-1.17), devoid of any detected heterogeneity, pleiotropy, or reverse causality. Mediated Mendelian randomization revealed ICAM5 mediated 11.9% of 1,2,3-benzenetriol sulfate (2)'s total effect on sepsis progression. Conclusion : This study details the causal link between the plasma proteome and metabolome with sepsis, highlighting the roles of ICAM5 and 1,2,3-benzenetriol sulfate (2) in sepsis progression, both independently and through crosstalk.
Collapse
Affiliation(s)
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou City, Jiangxi Provence, China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, Ganzhou City, Jiangxi Provence, China
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
El Houdi M, Skhoun H, El Fessikh M, Benmansour R, El Yousfi FZ, Nebhani C, Tagajdid MR, Lahlou Amine I, El Annaz H, Ameziane El Hassani R, Ouzzif Z, Abouqal R, Ennibi K, Bouhouche A, El Baghdadi J. Association study of the JAK/STAT signaling pathway with susceptibility to COVID-19 in moroccan patient and in-silico analysis of rare variants. Virus Res 2025; 351:199509. [PMID: 39647533 PMCID: PMC11699608 DOI: 10.1016/j.virusres.2024.199509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The goal of our study was to explore the association of the polymorphisms in the JAK/STAT pathway among Moroccan COVID-19 patients, using a case-control approach. Next-generation sequencing was employed to investigate the IFNAR1, IFNAR2, JAK1, TYK2, STAT2, and IRF9 genes within the JAK/STAT pathway. We also performed an in silico study to examine the rare variants in this pathway. Statistical analyses were conducted using MedCalc software. Protein 3D structures were determined via the I-TASSER server, with variant structures generated using PyMOL. YASARA View allowed local 3D analysis comparing native and variant structures for pathogenic rare variants. The study encompassed 206 COVID-19 patients, averaging 45.70 ± 12.73 years and a control group (N=118). Among the examined genes, 15 common polymorphisms and 7 rare variants were identified. Adjustment for age and gender revealed a significant association between TYK2 p.Gly363Ser (p=0.036) and COVID-19 infection, where the GA variant exhibited protective effects (0.6361 [0.3405-1.1884], p=0.035). Additionally, STAT2 p.Met594Ile showed an association to COVID-19 risk (p=0.042), with heterozygous GC being linked to infection (p=0.037, OR=2.7135 [0.5684 -12.9532]). Notably, IFNAR1 p.Val168Leu mutated C allele was significantly associated with reduced susceptibility to COVID-19 severity (p=0.028, OR=0.5936 [0.3725 - 0.9461]), under the additive model (p=0.045, OR=0.626 [0.3958 - 0.9899]). Rare variants IFNAR1 p.Trp318Cys, p.Ser476Phe, and IFNAR2 p.Cys271Tyr were predicted deleterious, impacting protein structure via hydrogen bond and hydrophobic interaction alterations. Burden analysis of rare variants revealed a protective cumulative effect against COVID-19 severity for TYK2 (p=0.0013, OR=0.1438 [0.04237 - 0.4803]) under the dominant model. This study underscores the role of genetic factors in COVID-19 susceptibility and advocates further explorations regarding functional impacts of JAK/STAT pathway rare variants.
Collapse
Affiliation(s)
- Meriem El Houdi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco; Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Hanaa Skhoun
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco; Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Meriem El Fessikh
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco; Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Reda Benmansour
- Virology Laboratory, Center of Virology, Infectious and Tropical Diseases, Military Hospital Mohammed V, School of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| | - Fatima-Zahra El Yousfi
- Laboratory of Human Genetics, Medical School and Pharmacy, University Mohammed V in Rabat, Morocco.
| | - Chaimae Nebhani
- Laboratory of Human Genetics, Medical School and Pharmacy, University Mohammed V in Rabat, Morocco.
| | - Mohamed Rida Tagajdid
- Virology Laboratory, Center of Virology, Infectious and Tropical Diseases, Military Hospital Mohammed V, School of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| | - Idriss Lahlou Amine
- Virology Laboratory, Center of Virology, Infectious and Tropical Diseases, Military Hospital Mohammed V, School of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| | - Hicham El Annaz
- Virology Laboratory, Center of Virology, Infectious and Tropical Diseases, Military Hospital Mohammed V, School of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| | - Rabii Ameziane El Hassani
- Laboratory of Human Pathologies Biology and Genomic Center of Human Pathologies, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Zohra Ouzzif
- Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| | - Redouane Abouqal
- Laboratory of Biostatistics, Clinical and Epidemiological Research, Department of Public Health, Medical School and Pharmacy, University Mohammed V in Rabat, Morocco.
| | - Khalid Ennibi
- Center of Virology, Infectious and Tropical Diseases, Military Hospital Mohammed V, Rabat, Morocco.
| | - Ahmed Bouhouche
- Laboratory of Human Genetics, Medical School and Pharmacy, University Mohammed V in Rabat, Morocco; Genomic Center of the Cheikh Zaid Foundation, Abulcasis International University of Health Sciences, Rabat, Morocco.
| | - Jamila El Baghdadi
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco; Laboratories Pole, Military Hospital Mohammed V, Rabat, Morocco.
| |
Collapse
|
17
|
Pan J, Li J. Gastroesophageal reflux disease increases predisposition to severe COVID-19: Insights from integrated Mendelian randomization and genetic analysis. Ann Hum Genet 2025; 89:54-65. [PMID: 39530352 DOI: 10.1111/ahg.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This study aims to investigate the potential causal relationship, shared genomic loci, as well as potential molecular pathways and tissue-specific expression patterns between gastroesophageal reflux disease (GERD) and the risk of hospitalized/severe 2019 coronavirus disease (COVID-19). METHODS We employed linkage disequilibrium score regression and bidirectional Mendelian randomization (MR) analysis to explore potential genetic associations between GERD (N = 602,604) and hospitalized COVID-19 (N = 2095,324) as well as severe COVID-19 (N = 1086,211). Additionally, shared genomic loci were extracted from common pivotal regions, further confirmed through corresponding colocalization analyses. GERD-driven molecular pathway network was constructed using extensive literature data mining to understand the molecular-level impacts of GERD on COVID-19. RESULTS Our results revealed a significant positive genetic correlation between GERD and both hospitalized (rg = 0.418) and severe COVID-19 (rg = 0.314). Furthermore, the MR analysis demonstrated a unidirectional causal effect of genetic predisposition to GERD on COVID-19 outcomes, including hospitalized COVID-19 (odds ratio [OR]: 1.33, 95% confidence interval [CI]: 1.27-1.44, p = 9.17e - 12) and severe COVID-19 (OR: 1.27, 95% CI: 1.18-1.37, p = 1.20e - 05). Additionally, GERD and both COVID-19 conditions shared one genomic locus with lead-SNPs rs1011407 and rs1123573, corresponding to the transcription factor BCL11A. Colocalization analysis further demonstrated a significant positive correlation between genome-wide association study and expression quantitative trait locus (eQTL) abnormalities, including rs1011407 (eQTL_p = 2.35e - 07) and rs1123573 (eQTL_p = 2.74e - 05). Molecular pathway analysis indicated that GERD might promote the progression of COVID-19 by inducting immune-activated and inflammation-related pathways. CONCLUSION These findings confirm that genetically determined GERD may increase the susceptibility to hospitalized/severe COVID-19. The shared genetic loci and the potential molecular pathways offer valuable insights into causal connections between GERD and COVID-19.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Microbiology, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Hangzhou, China
| | - Jianhua Li
- Department of Microbiology, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Hangzhou, China
| |
Collapse
|
18
|
Liu N, Guan M, Ma B, Chu H, Tian G, Zhang Y, Li C, Zheng W, Wang X. Unraveling genetic mysteries: A comprehensive review of GWAS and DNA insights in animal and plant pathosystems. Int J Biol Macromol 2025; 285:138216. [PMID: 39631605 DOI: 10.1016/j.ijbiomac.2024.138216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
DNA serves as the carrier of genetic information, with sequence variations playing a pivotal role in defining hereditary traits. Genome-Wide Association Studies (GWAS) facilitate the investigation of the links between genetic variations and phenotypes, significantly influencing biological research, particularly in animal and plant pathology. By identifying genetic markers associated with specific traits or diseases, GWAS enhances our understanding of host-pathogen interactions and improves disease-resistant breeding strategies. It has been vital in revealing the genetic basis of disease resistance, pinpointing key genes and DNA loci, which enrich genetic resources for breeding programs and deepen our knowledge of disease resistance mechanisms at the DNA level. Additionally, GWAS contributes to pathogen population genetics, facilitating a thorough exploration of pathogen virulence. Integrating GWAS with marker-assisted selection enhances breeding efficiency and precision in selecting for disease-resistant traits. While previous research has largely focused on host genetics, the genetic variation of pathogens is equally significant. Notably, reports integrating animal and plant pathosystems are still lacking. Given the importance of these systems, this review summarizes key advancements in this field, addresses current challenges, and proposes future directions, thereby offering a vital reference for ongoing research.
Collapse
Affiliation(s)
- Na Liu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Mengxin Guan
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Baozhan Ma
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Hao Chu
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Guangxiang Tian
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Yanyan Zhang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Chuang Li
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China; Center of Crop Genome Engineering, College of Agronomy, Henan Agricultural University, 450046 Zhengzhou, China.
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| | - Xu Wang
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| |
Collapse
|
19
|
Safo SE, Lu H. Scalable randomized kernel methods for multiview data integration and prediction with application to Coronavirus disease. Biostatistics 2024; 26:kxaf001. [PMID: 39973130 PMCID: PMC11839864 DOI: 10.1093/biostatistics/kxaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/21/2025] Open
Abstract
There is still more to learn about the pathobiology of coronavirus disease (COVID-19) despite 4 years of the pandemic. A multiomics approach offers a comprehensive view of the disease and has the potential to yield deeper insight into the pathogenesis of the disease. Previous multiomics integrative analysis and prediction studies for COVID-19 severity and status have assumed simple relationships (ie linear relationships) between omics data and between omics and COVID-19 outcomes. However, these linear methods do not account for the inherent underlying nonlinear structure associated with these different types of data. The motivation behind this work is to model nonlinear relationships in multiomics and COVID-19 outcomes, and to determine key multidimensional molecules associated with the disease. Toward this goal, we develop scalable randomized kernel methods for jointly associating data from multiple sources or views and simultaneously predicting an outcome or classifying a unit into one of 2 or more classes. We also determine variables or groups of variables that best contribute to the relationships among the views. We use the idea that random Fourier bases can approximate shift-invariant kernel functions to construct nonlinear mappings of each view and we use these mappings and the outcome variable to learn view-independent low-dimensional representations. We demonstrate the effectiveness of the proposed methods through extensive simulations. When the proposed methods were applied to gene expression, metabolomics, proteomics, and lipidomics data pertaining to COVID-19, we identified several molecular signatures for COVID-19 status and severity. Our results agree with previous findings and suggest potential avenues for future research. Our algorithms are implemented in Pytorch and interfaced in R and available at: https://github.com/lasandrall/RandMVLearn.
Collapse
Affiliation(s)
- Sandra E Safo
- Division of Biostatistics and Health Data Science, University of Minnesota, 2221 University Ave SE, Minneapolis, MN 55414, United States
| | - Han Lu
- Division of Biostatistics and Health Data Science, University of Minnesota, 2221 University Ave SE, Minneapolis, MN 55414, United States
| |
Collapse
|
20
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
21
|
Tiniakou E, Casciola‐Rosen L, Thomas MA, Manabe Y, Antar AAR, Damarla M, Hassoun PM, Gao L, Wang Z, Zeger S, Rosen A. Autoantibodies in hospitalised patients with COVID-19. Clin Transl Immunology 2024; 13:e70019. [PMID: 39734590 PMCID: PMC11671454 DOI: 10.1002/cti2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/31/2024] Open
Abstract
Objectives CD209L and its homologous protein CD209 act as alternative entry receptors for the SARS-CoV-2 virus and are highly expressed in the virally targeted tissues. We tested for the presence and clinical features of autoantibodies targeting these receptors and compared these with autoantibodies known to be associated with COVID-19. Methods Using banked samples (n = 118) from Johns Hopkins patients hospitalised with COVID-19, we defined autoantibodies against CD209 and CD209L by enzyme-linked immunosorbent assay (ELISA). Clinical associations of these antibodies were compared with those of patients with anti-interferon (IFN) and anti-angiotensin-converting enzyme-2 (ACE2) autoantibodies. Results Amongst patients hospitalised with COVID-19, 19.5% (23/118) had IgM autoantibodies against CD209L and were more likely to have coronary artery disease (44% vs 19%, P = 0.03). Antibodies against CD209 were present in 5.9% (7/118); interestingly, all 7 were male (P = 0.02). In our study, the presence of either antibody was positively associated with disease severity [OR 95% confidence interval (95% CI): 1.80 (0.69-5.03)], but the association did not reach statistical significance. In contrast, 10/118 (8.5%) had IgG autoantibodies against IFNα, and 21 (17.8%) had IgM antibodies against ACE2. These patients had significantly worse prognosis (intubation or death) and prolonged hospital stays. However, when adjusting for patient characteristics on admission, only the presence of anti-ACE2 IgM remained significant [pooled common OR (95% CI), 4.14 (1.37, 12.54)]. Conclusion We describe IgM autoantibodies against CD209 and CD209L amongst patients hospitalised with COVID-19. These were not associated with disease severity. Conversely, patients with either anti-ACE2 IgM or anti-IFNα IgG antibodies had worse outcomes. Due to the small size of the study cohort, conclusions drawn should be considered cautiously.
Collapse
Affiliation(s)
- Eleni Tiniakou
- Division of Rheumatology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Livia Casciola‐Rosen
- Division of Rheumatology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mekha A Thomas
- Division of Rheumatology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Yuka Manabe
- Division of Infectious Diseases, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Annukka AR Antar
- Division of Infectious Diseases, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Li Gao
- Division of Allergy and Immunology, Department of MedicineJohns Hopkins University, School of MedicineBaltimoreMDUSA
| | - Zitong Wang
- Department of BiostatisticsBloomberg School of Public HealthBaltimoreMDUSA
| | - Scott Zeger
- Department of BiostatisticsBloomberg School of Public HealthBaltimoreMDUSA
| | - Antony Rosen
- Division of Rheumatology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
22
|
Kidd KO, Williams AH, Taylor A, Martin L, Robins V, Sayer JA, Olinger E, Mabillard HR, Papagregoriou G, Deltas C, Stavrou C, Conlon PJ, Hogan RE, Elhassan EAE, Springer D, Zima T, Izzi C, Vrbacká A, Piherová L, Pohludka M, Radina M, Vylet'al P, Hodanova K, Zivna M, Kmoch S, Bleyer AJ. Eight-fold increased COVID-19 mortality in autosomal dominant tubulointerstitial kidney disease due to MUC1 mutations: an observational study. BMC Nephrol 2024; 25:449. [PMID: 39696072 PMCID: PMC11654191 DOI: 10.1186/s12882-024-03896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND MUC1 and UMOD pathogenic variants cause autosomal dominant tubulointerstitial kidney disease (ADTKD). MUC1 is expressed in kidney, nasal mucosa and respiratory tract, while UMOD is expressed only in kidney. Due to haplo-insufficiency ADTKD-MUC1 patients produce approximately 50% of normal mucin-1. METHODS To determine whether decreased mucin-1 production was associated with an increased COVID-19 risk, we sent a survey to members of an ADTKD registry in September 2021, after the initial, severe wave of COVID-19. We linked results to previously obtained ADTKD genotype and plasma CA15-3 (mucin-1) levels and created a longitudinal registry of COVID-19 related deaths. RESULTS Surveys were emailed to 637 individuals, with responses from 89 ADTKD-MUC1 and 132 ADTKD-UMOD individuals. 19/83 (23%) ADTKD-MUC1 survey respondents reported a prior COVID-19 infection vs. 14/125 (11%) ADTKD-UMOD respondents (odds ratio (OR) 2.35 (95%CI 1.60-3.11, P = 0.0260). Including additional familial cases reported from survey respondents, 10/41 (24%) ADTKD-MUC1 individuals died of COVID-19 vs. 1/30 (3%) with ADTKD-UMOD, with OR 9.21 (95%CI 1.22-69.32), P = 0.03. The mean plasma mucin-1 level prior to infection in 14 infected and 27 uninfected ADTKD-MUC1 individuals was 7.06 ± 4.12 vs. 10.21 ± 4.02 U/mL (P = 0.035). Over three years duration, our longitudinal registry identified 19 COVID-19 deaths in 360 ADTKD-MUC1 individuals (5%) vs. 3 deaths in 478 ADTKD-UMOD individuals (0.6%) (P = 0.0007). Multivariate logistic regression revealed the following odds ratios (95% confidence interval) for COVID-19 deaths: ADTKD-MUC1 8.4 (2.9-29.5), kidney transplant 5.5 (1.6-9.1), body mass index (kg/m2) 1.1 (1.0-1.2), age (y) 1.04 (1.0-1.1). CONCLUSIONS Individuals with ADTKD-MUC1 are at an eight-fold increased risk of COVID-19 mortality vs. ADTKD-UMOD individuals. Haplo-insufficient production of mucin-1 may be responsible.
Collapse
Affiliation(s)
- Kendrah O Kidd
- Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Abbigail Taylor
- Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA
| | - Lauren Martin
- Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA
| | - Victoria Robins
- Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Newcastle Biomedical Research Centre, NIHR, Newcastle upon Tyne, UK
| | - Eric Olinger
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Holly R Mabillard
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gregory Papagregoriou
- Department of Biological Sciences, Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Deltas
- Department of Biological Sciences, Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus
| | | | - Peter J Conlon
- Department of Nephrology and Transplantation Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Richard Edmund Hogan
- Department of Nephrology and Transplantation Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elhussein A E Elhassan
- Department of Nephrology and Transplantation Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Drahomíra Springer
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and the First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and the First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Claudia Izzi
- Clinical Genetics Unit, University of Brescia and Spedali Civili, Brescia, Italy
| | - Alena Vrbacká
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Piherová
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Martin Radina
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Vylet'al
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hodanova
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Zivna
- Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Medirex Group Academy, Trnava, Slovakia
| | - Anthony J Bleyer
- Wake Forest School of Medicine, Section on Nephrology, Winston-Salem, NC, 27157, USA.
- Department of Paediatrics and Inherited Metabolic Disorders, Research Unit of Rare Diseases, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
23
|
Tymoniuk B, Borowiec M, Makowska J, Holwek E, Sarnik J, Styrzyński F, Dróżdż I, Lewiński A, Stasiak M. Associations Between Clinical Manifestations of SARS-CoV-2 Infection and HLA Alleles in a Caucasian Population: A Molecular HLA Typing Study. J Clin Med 2024; 13:7695. [PMID: 39768617 PMCID: PMC11676434 DOI: 10.3390/jcm13247695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Background and Objectives: Severe COVID-19 still constitutes an important health problem. Taking into account the crucial role of HLA in immune reactions, evaluation of the impact of HLA on COVID-19 risk and clinical course seemed necessary, as the already available data are inconsistent. The aim of the present study was to compare the HLA profiles of patients with symptomatic SARS-CoV-2 infection and a healthy control group, as well as to compare HLA allele frequencies in patients with severe and non-severe courses of COVID-19. Materials and Methods: HLA classes were genotyped using a next-generation sequencing method in 2322 persons, including 2217 healthy hematopoietic stem cell potential donors and 105 patients with symptomatic COVID-19. Results: Symptomatic course of SARS-CoV-2 infection appeared to be associated with the presence of HLA-A*30:01, B*44:02, B*52:01, C*05:01, C*17:01, and DRB1*11:02, while HLA-C*07:04 and DQB1*03:03 seem to play a protective role. Moreover, we demonstrated that the severe symptomatic course of COVID-19 can be associated with the presence of HLA-B*08:01, C*04:01, DRB1*03:01, and DQB1*03:01, while HLA-DRB1*08:01 appeared to be protective against severe COVID-19 disease. Conclusions: Identification of alleles that are potentially associated with symptomatic SARS-CoV-2 infection as well as the severe course of COVID-19 broadens the knowledge on the genetic background of COVID-19 course and can constitute an important step in the development of personalized medicine.
Collapse
Affiliation(s)
- Bogusław Tymoniuk
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Emilia Holwek
- Central Clinical Hospital, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Filip Styrzyński
- Department of Rheumatology, Medical University of Lodz, 113 Zeromskiego Str., 90-549 Lodz, Poland; (J.M.); (J.S.); (F.S.)
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland; (M.B.); (I.D.)
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland;
| | - Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
24
|
Barreto TMM, Souza RS, São Pedro RB, Paiva IM, Silva AS, Nogueira AL, Bellinat APN, Dias NLS, Nunes S, Britto GSG, Amaral EHB, Rocha GD, Silva-Carvalho C, Lyra R, Kehdy FSG, Campos TL, Moura PMMF, Tarazona-Santos E, Cunha TM, Tavares NM, Oliveira-Sá MVB, Ramos RCF, Carmo RF, Vasconcelos LRS, Oliveira PRS. Rare Genetic Variants of NLRP12 in Admixed Latino-American Children With SARS-CoV-2-Related Multisystem Inflammatory Syndrome. J Infect Dis 2024; 230:1400-1409. [PMID: 39328079 DOI: 10.1093/infdis/jiae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare, potentially fatal complication of SARS-CoV-2 infection. Genetic defects in inflammation-related pathways have been linked to MIS-C, but additional research is needed, especially in diverse ethnic groups. The present study aimed to identify genetic variants underlying MIS-C in Brazilian patients. Whole exome sequencing was performed, focusing on genes involved in the host immune response to SARS-CoV-2. Functional assays assessed the impact of selected variants on nuclear factor-κB signaling. Nine rare, potentially deleterious variants were found in 8 of 21 patients, located in the IL17RC, IFNA10, or NLRP12 gene. Unlike the wild type NLRP12 protein, which inhibits nuclear factor-κB activation in HEK 293T cells, the mutant NLRP12 proteins have significantly reduced inhibitory properties. In conclusion, our results indicate that rare autosomal variants in immune-related genes may underlie MIS-C, highlighting the potential role of NLRP12 in its predisposition. These findings provide new insights for the appropriate management of MIS-C.
Collapse
Affiliation(s)
- Thaís M M Barreto
- Instituto de Biologia, Universidade Federal da Bahia, Salvador
- Emergência Pediátrica, Instituto Couto Maia, Salvador
| | | | | | - Isadora M Paiva
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
| | - Andréia S Silva
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | - Ana L Nogueira
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | | | | | - Sara Nunes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador
| | | | | | - Gabriela D Rocha
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
| | - Carolina Silva-Carvalho
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Ricardo Lyra
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | | | - Túlio L Campos
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife
| | - Patrícia M M F Moura
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
- Faculdade de Ciências Médicas, Universidade de Pernambuco, Recife
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte
| | - Thiago M Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
| | | | | | - Regina C F Ramos
- Departamento de Infectologia Pediátrica, Hospital Universitário Oswaldo Cruz, Recife
| | - Rodrigo F Carmo
- Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife
- Colegiado de Medicina, Universidade Federal do Vale do São Francisco, Petrolina
| | | | | |
Collapse
|
25
|
Millar JE, Reddy K, Bos LDJ. Future Directions in Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:943-951. [PMID: 39443010 DOI: 10.1016/j.ccm.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is caused by a complex interplay among hyperinflammation, endothelial dysfunction, and alveolar epithelial injury. Targeted treatments toward the underlying pathways have been unsuccessful in unselected patient populations. The first reliable biological subphenotypes reflective of these biological disease states have been identified in the past decade. Subphenotype targeted intervention studies are needed to advance the pharmacologic treatment of ARDS.
Collapse
Affiliation(s)
- Jonathan E Millar
- Baillie-Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, The Roslin Institute, Easter Bush Campus, Midlothian, Edinburgh EH25 9RG, UK; Department of Critical Care, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kiran Reddy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
| | - Lieuwe D J Bos
- Intensive Care Department, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
26
|
Schmidt A, Casadei N, Brand F, Demidov G, Vojgani E, Abolhassani A, Aldisi R, Butler-Laporte G, Alawathurage TM, Augustin M, Bals R, Bellinghausen C, Berger MM, Bitzer M, Bode C, Boos J, Brenner T, Cornely OA, Eggermann T, Erber J, Feldt T, Fuchsberger C, Gagneur J, Göpel S, Haack T, Häberle H, Hanses F, Heggemann J, Hehr U, Hellmuth JC, Herr C, Hinney A, Hoffmann P, Illig T, Jensen BEO, Keitel V, Kim-Hellmuth S, Koehler P, Kurth I, Lanz AL, Latz E, Lehmann C, Luedde T, Maj C, Mian M, Miller A, Muenchhoff M, Pink I, Protzer U, Rohn H, Rybniker J, Scaggiante F, Schaffeldt A, Scherer C, Schieck M, Schmidt SV, Schommers P, Spinner CD, Vehreschild MJGT, Velavan TP, Volland S, Wilfling S, Winter C, Richards JB, Heimbach A, Becker K, Ossowski S, Schultze JL, Nürnberg P, Nöthen MM, Motameny S, Nothnagel M, Riess O, Schulte EC, Ludwig KU. Systematic assessment of COVID-19 host genetics using whole genome sequencing data. PLoS Pathog 2024; 20:e1012786. [PMID: 39715278 PMCID: PMC11706450 DOI: 10.1371/journal.ppat.1012786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 01/07/2025] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Courses of SARS-CoV-2 infections are highly variable, ranging from asymptomatic to lethal COVID-19. Though research has shown that host genetic factors contribute to this variability, cohort-based joint analyses of variants from the entire allelic spectrum in individuals with confirmed SARS-CoV-2 infections are still lacking. Here, we present the results of whole genome sequencing in 1,220 mainly vaccine-naïve individuals with confirmed SARS-CoV-2 infection, including 827 hospitalized COVID-19 cases. We observed the presence of autosomal-recessive or likely compound heterozygous monogenic disorders in six individuals, all of which were hospitalized and significantly younger than the rest of the cohort. We did not observe any suggestive causal variants in or around the established risk gene TLR7. Burden testing in the largest population subgroup (i.e., Europeans) suggested nominal enrichments of rare variants in coding and non-coding regions of interferon immune response genes in the overall analysis and male subgroup. Case-control analyses of more common variants confirmed associations with previously reported risk loci, with the key locus at 3p21 reaching genome-wide significance. Polygenic scores accurately captured risk in an age-dependent manner. By enabling joint analyses of different types of variation across the entire frequency spectrum, this data will continue to contribute to the elucidation of COVID-19 etiology.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Department of Pediatric Neurology, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Nicolas Casadei
- DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fabian Brand
- Institute of Genomic Statistics and Bioinformatics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Elaheh Vojgani
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Ayda Abolhassani
- Department of Psychiatry and Psychotherapy, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute of Genomic Statistics and Bioinformatics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Guillaume Butler-Laporte
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Max Augustin
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Robert Bals
- Department of Internal Medicine V, Saarland University, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Carla Bellinghausen
- Department of Internal Medicine, Pneumology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Bitzer
- Center for Personalized Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jannik Boos
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver A. Cornely
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Center Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | | | - Julien Gagneur
- Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Siri Göpel
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Helene Häberle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Frank Hanses
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
- Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | - Julia Heggemann
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Johannes C. Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christian Herr
- Department of Internal Medicine V, Saarland University, Homburg, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Björn-Erik Ole Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sarah Kim-Hellmuth
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Philipp Koehler
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna-Lisa Lanz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Clara Lehmann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Carlo Maj
- Center for Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Michael Mian
- Service for Innovation, Research and Teaching, (SABES-ASDAA), Bolzano-Bozen, Italy; Teaching Hospital of Paracelsus Medical University
| | - Abigail Miller
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Munich, Germany
| | - Isabell Pink
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Ulrike Protzer
- German Center for Infection research (DZIF), Partner Site Munich, Munich, Germany
- Institute of Virology, Technical University Munich/Helmholtz Munich, Munich, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Rybniker
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Federica Scaggiante
- Laboratorio di Patologia Clinica di Bressanone, Hospital of Bressanone (SABES-ASDAA), Bressanone-Brixen, Italy; Teaching Hospital of Paracelsus Medical University
| | - Anna Schaffeldt
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Philipp Schommers
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Christoph D. Spinner
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection research (DZIF), Partner Site Munich, Munich, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Sonja Volland
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Sibylle Wilfling
- Center for Human Genetics Regensburg, Regensburg, Germany
- Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg, Regensburg, Germany
| | - Christof Winter
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - J. Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- 5 Prime Sciences Inc, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Twin Research, King’s College London, London, United Kingdom
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | | | - André Heimbach
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- NGS Core Facility Bonn, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- West German Genome Center ‐ Cologne, University of Cologne, Cologne, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- West German Genome Center ‐ Cologne, University of Cologne, Cologne, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Olaf Riess
- DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Eva C. Schulte
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Institute of Virology, Technical University Munich/Helmholtz Munich, Munich, Germany
- Department of Psychiatry & Psychotherapy, University of Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, University of Munich, Munich, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| |
Collapse
|
27
|
Saba AA, Nur J, Alam MS, Howlader ZH, Islam LN, Nabi AN. Missense variant rs75603675 within TMPRSS2 gene is associated with the increased risk of severe form of COVID-19. GENE REPORTS 2024; 37:102039. [DOI: 10.1016/j.genrep.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
28
|
Shilts J. How to build a human: Piecing together the body's cellular puzzle. Science 2024; 386:739. [PMID: 39541445 DOI: 10.1126/science.adt9012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Piecing together the body's cellular puzzle.
Collapse
|
29
|
Smith CIE, Burger JA, Zain R. Estimating the Number of Polygenic Diseases Among Six Mutually Exclusive Entities of Non-Tumors and Cancer. Int J Mol Sci 2024; 25:11968. [PMID: 39596040 PMCID: PMC11593959 DOI: 10.3390/ijms252211968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In the era of precision medicine with increasing amounts of sequenced cancer and non-cancer genomes of different ancestries, we here enumerate the resulting polygenic disease entities. Based on the cell number status, we first identified six fundamental types of polygenic illnesses, five of which are non-cancerous. Like complex, non-tumor disorders, neoplasms normally carry alterations in multiple genes, including in 'Drivers' and 'Passengers'. However, tumors also lack certain genetic alterations/epigenetic changes, recently named 'Goners', which are toxic for the neoplasm and potentially constitute therapeutic targets. Drivers are considered essential for malignant transformation, whereas environmental influences vary considerably among both types of polygenic diseases. For each form, hyper-rare disorders, defined as affecting <1/108 individuals, likely represent the largest number of disease entities. Loss of redundant tumor-suppressor genes exemplifies such a profoundly rare mutational event. For non-tumor, polygenic diseases, pathway-centered taxonomies seem preferable. This classification is not readily feasible in cancer, but the inclusion of Drivers and possibly also of epigenetic changes to the existing nomenclature might serve as initial steps in this direction. Based on the detailed genetic alterations, the number of polygenic diseases is essentially countless, but different forms of nosologies may be used to restrict the number.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
30
|
Sun J, Yang X, Zhao G, He Z, Xing W, Chen Y, Tan X, Wang M, Li W, An B, Pan Z, Zhou Z, Wen J, Liu R. Protein phosphatase 1 catalytic subunit gamma is a causative gene for meat lightness and redness. PLoS Genet 2024; 20:e1011467. [PMID: 39565795 PMCID: PMC11616877 DOI: 10.1371/journal.pgen.1011467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/04/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
The quality of meat is important to the consumer. Color is a primary indicator of meat quality and is characterized mainly into lightness, redness, and yellowness. Here, we used the genome-wide association study (GWAS) and gene-based association analysis with whole-genome resequencing of 230 fast-growing white-feathered chickens to map genes related to meat lightness and redness to a 6.24 kb QTL region (GGA15: 6298.34-6304.58 kb). This analysis revealed that only the protein phosphatase 1 catalytic subunit gamma (PPP1CC) was associated with meat color (P = 8.65E-08). The causal relationships between PPP1CC expression and meat lightness/redness were further validated through Mendelian randomization analyses (P < 2.9E-12). Inducible skeletal muscle-specific PPP1CC knockout (PPP1CC-SSKO) mice were generated and these mice showed increased lightness and decreased myoglobin content in the limb muscles. In addition, the predominant myofiber shifted from slow-twitch to fast-twitch myofibers. Through transcriptome and targeted metabolome evidence, we found that inhibition of PPP1CC decreased the expression of typical slow-twitch myofiber and myofiber-type specification genes and enhanced the glycolysis pathway. Functional validation through a plasmid reporter assay revealed that a SNP (rs315520807, C > T) located in the intron of PPP1CC could regulate the gene transcription activity. The differences in meat color phenotypes, myoglobin content, frequency of rs315520807 variant, expression of PPP1CC and fast-twitch fiber marker genes were detected between fast-growing white-feathered chickens and local chickens. In this study, PPP1CC was identified as the causative gene for meat color, and the novel target gene and variant that can aid in the innovation of meat improvement technology were detected.
Collapse
Affiliation(s)
- Jiahong Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinting Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhengxiao He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenhao Xing
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yanru Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengjie Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bingxing An
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhangyuan Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ranran Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
31
|
Hubacek JA, Capkova N, Bobak M, Pikhart H. Association between FTO polymorphism and COVID-19 mortality among older adults: A population-based cohort study. Int J Infect Dis 2024; 148:107232. [PMID: 39244150 PMCID: PMC11512194 DOI: 10.1016/j.ijid.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES COVID-19 caused a global pandemic with millions of deaths. Fat mass and obesity-associated gene (FTO) (alias m6A RNA demethylase) and its functional rs17817449 polymorphism are candidates to influence COVID-19-associated mortality since methylation status of viral nucleic acids is an important factor influencing viral viability. METHODS We tested a population-based cohort of 5233 subjects (aged 63-87 years in 2020) where 70 persons died from COVID-19 and 394 from other causes during the pandemic period. RESULTS The frequency of GG homozygotes was higher among those who died from COVID-19 (34%) than among survivors (19%) or deaths from other causes (20%), P <0.005. After multiple adjustments, GG homozygotes had a higher risk of death from COVID-19 with odds ratio = 2.01 (95% confidence interval; 1.19-3.41, P <0.01) compared with carriers of at least one T allele. The FTO polymorphism was not associated with mortality from other causes. CONCLUSIONS Our results suggest that FTO variability is a significant predictor of COVID-19-associated mortality in Caucasians.
Collapse
Affiliation(s)
- Jaroslav A Hubacek
- Institute of Clinical and Experimental Medicine, Experimental Medicine Centre, Prague, Czech Republic; Charles University, Third Department of Internal Medicine, First Faculty of Medicine, Prague, Czech Republic.
| | | | - Martin Bobak
- University College London, Institute of Epidemiology and Health Care, London, United Kingdom; Masaryk University, RECETOX, Faculty of Science, Brno, Czech Republic
| | - Hynek Pikhart
- University College London, Institute of Epidemiology and Health Care, London, United Kingdom; Masaryk University, RECETOX, Faculty of Science, Brno, Czech Republic
| |
Collapse
|
32
|
Yang H, Yang L, Chen W, Zeng Y, Zhang Y, Tang Y, Zeng H, Yang D, Qu Y, Hu Y, Liu D, Song J, Fang F, Valdimarsdóttir UA, Li Q, Song H. Association of pre-existing depression and anxiety with Omicron variant infection. Mol Psychiatry 2024; 29:3422-3430. [PMID: 38755244 DOI: 10.1038/s41380-024-02594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Pre-existing psychiatric disorders were linked to an increased susceptibility to COVID-19 during the initial outbreak of the pandemic, while evidence during Omicron prevalence is lacking. Leveraging data from two prospective cohorts in China, we identified incident Omicron infections between January 2023 and April 2023. Participants with a self-reported history or self-rated symptoms of depression or anxiety before the Omicron pandemic were considered the exposed group, whereas the others were considered unexposed. We employed multivariate logistic regression models to examine the association of pre-existing depression or anxiety with the risk of any or severe Omicron infection indexed by medical interventions or severe symptoms. Further, we stratified the analyses by polygenic risk scores (PRSs) for COVID-19 and repeated the analyses using the UK Biobank data. We included 10,802 individuals from the Chinese cohorts (mean age = 51.1 years, 45.6% male), among whom 7841 (72.6%) were identified as cases of Omicron infection. No association was found between any pre-existing depression or anxiety and the overall risk of Omicron infection (odds ratio [OR] =1.04, 95% confidence interval [CI] 0.95-1.14). However, positive associations were noted for severe Omicron infection, either as infections requiring medical interventions (1.26, 1.02-1.54) or with severe symptoms (≥3: 1.73, 1.51-1.97). We obtained comparable estimates when stratified by COVID-19 PRS level. Additionally, using clustering method, we identified eight distinct symptom patterns and found associations between pre-existing depression or anxiety and the patterns characterized by multiple or complex severe symptoms including cough and taste and smell decline (ORs = 1.42-2.35). The results of the UK Biobank analyses corroborated findings of the Chinese cohorts. In conclusion, pre-existing depression and anxiety was not associated with the risk of Omicron infection overall but an elevated risk of severe Omicron infection, supporting the continued efforts on monitoring and possible early intervention in this high-risk population during Omicron prevalence.
Collapse
Affiliation(s)
- Huazhen Yang
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lei Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenwen Chen
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yu Zeng
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yanan Zhang
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yuling Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Huolin Zeng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Di Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yuanyuan Qu
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yao Hu
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Di Liu
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Sichuan University - Pittsburgh Institute, Sichuan University, Chengdu, China
| | - Jie Song
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Unnur A Valdimarsdóttir
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Qian Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Huan Song
- Department of Anesthesiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
33
|
Altmann DM, Boyton RJ. Protective immunity to repeated COVID-19 breakthrough infections. Clin Immunol 2024; 268:110374. [PMID: 39357633 DOI: 10.1016/j.clim.2024.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Daniel M Altmann
- Departments of Immunology and Inflammation, Faculty of Medicine, Imperial College London, UK.
| | - Rosemary J Boyton
- Departments of Infectious Disease, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
34
|
Gyorffy VJ, Dwivedi DJ, Liaw PC, Fox-Robichaud AE, Tsang JLY, Binnie A. Impact of sample processing delays on plasma markers of inflammation, chemotaxis, cell death, and blood coagulation. PLoS One 2024; 19:e0311921. [PMID: 39480839 PMCID: PMC11527306 DOI: 10.1371/journal.pone.0311921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Biosampling studies in critically ill patients traditionally involve bedside collection of samples followed by local processing (ie. centrifugation, aliquotting, and freezing) and storage. However, community hospitals, which care for the majority of Canadian patients, often lack the infrastructure for local processing and storage of specimens. A potential solution is a "simplified" biosampling protocol whereby blood samples are collected at the bedside and then shipped to a central site for processing and storage. One potential limitation of this approach is that delayed processing may alter sample characteristics. OBJECTIVE To determine whether delays in blood sample processing affect the stability of cytokines (IL-6, TNF, IL-10, IFN-γ), chemokines (IL-8, IP-10, MCP-1, MCP-4, MIP-1α, MIP-1β), cell-free DNA (cfDNA) (released by dying cells), and blood clotting potential in human blood samples. METHODS Venous blood was collected into EDTA and citrate sample tubes and stored at room temperature (RT) or 4°C for progressive intervals up to 72 hours, prior to processing. Plasma cytokines and chemokines were quantified using single or multiplex immunoassays. cfDNA was measured using Picogreen DNA Quantification. Blood clotting potential was measured using a thrombin generation assay. RESULTS Blood samples were collected from 9 intensive care unit (ICU) patients and 7 healthy volunteers. Admission diagnoses for the ICU patients included sepsis, trauma, ruptured abdominal aortic aneurysm, intracranial hemorrhage, gastrointestinal bleed, and hyperkalemia. After pre-processing delays of up to 72 hours at RT or 4°C, no significant changes were observed in plasma cytokines, chemokines, cfDNA, or thrombin formation. CONCLUSIONS Delayed sample processing for up to 72 hours at either RT or 4°C did not significantly affect cytokines, chemokines, cfDNA, or blood clotting potential in plasma samples from healthy volunteers and ICU patients. A "simplified" biosampling protocol is a feasible solution for conducting biosampling research at hospitals without local processing capacity.
Collapse
Affiliation(s)
- Vanessa J. Gyorffy
- Faculty of Arts and Science, McMaster University, Hamilton, ON, Canada
- Niagara Health Knowledge Institute, St. Catharines, ON, Canada
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada
| | - Dhruva J. Dwivedi
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Patricia C. Liaw
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison E. Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennifer L. Y. Tsang
- Niagara Health Knowledge Institute, St. Catharines, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexandra Binnie
- Critical Care Department, William Osler Health System, Etobicoke, ON, Canada
| |
Collapse
|
35
|
Alcalá-Santiago Á, Rodriguez-Barranco M, Sánchez MJ, Gil Á, García-Villanova B, Molina-Montes E. Micronutrients, Vitamin D, and Inflammatory Biomarkers in COVID-19: A Systematic Review and Meta-analysis of Causal Inference Studies. Nutr Rev 2024:nuae152. [PMID: 39449666 DOI: 10.1093/nutrit/nuae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
CONTEXT Experimental and observational studies suggest that circulating micronutrients, including vitamin D (VD), may increase COVID-19 risk and its associated outcomes. Mendelian randomization (MR) studies provide valuable insight into the causal relationship between an exposure and disease outcomes. OBJECTIVES The aim was to conduct a systematic review and meta-analysis of causal inference studies that apply MR approaches to assess the role of these micronutrients, particularly VD, in COVID-19 risk, infection severity, and related inflammatory markers. DATA SOURCES Searches (up to July 2023) were conducted in 4 databases. DATA EXTRACTION AND ANALYSIS The quality of the studies was evaluated based on the MR-STROBE guidelines. Random-effects meta-analyses were conducted where possible. RESULTS There were 28 studies (2 overlapped) including 12 on micronutrients (8 on VD) and COVID-19, 4 on micronutrients (all on VD) and inflammation, and 12 on inflammatory markers and COVID-19. Some of these studies reported significant causal associations between VD or other micronutrients (vitamin C, vitamin B6, iron, zinc, copper, selenium, and magnesium) and COVID-19 outcomes. Associations in terms of causality were also nonsignificant with regard to inflammation-related markers, except for VD levels below 25 nmol/L and C-reactive protein (CRP). Some studies reported causal associations between cytokines, angiotensin-converting enzyme 2 (ACE2), and other inflammatory markers and COVID-19. Pooled MR estimates showed that VD was not significantly associated with COVID-19 outcomes, whereas ACE2 increased COVID-19 risk (MR odds ratio = 1.10; 95% CI: 1.01-1.19) but did not affect hospitalization or severity of the disease. The methodological quality of the studies was high in 13 studies, despite the majority (n = 24) utilizing 2-sample MR and evaluated pleiotropy. CONCLUSION MR studies exhibited diversity in their approaches but do not support a causal link between VD/micronutrients and COVID-19 outcomes. Whether inflammation mediates the VD-COVID-19 relationship remains uncertain, and highlights the need to address this aspect in future MR studies exploring micronutrient associations with COVID-19 outcomes. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022328224.
Collapse
Affiliation(s)
- Ángela Alcalá-Santiago
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) "José Mataix", Biomedical Research Centre, University of Granada, 18071 Granada, Spain
| | - Miguel Rodriguez-Barranco
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health, 18012 Granada, Spain
| | - María-José Sánchez
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Andalusian School of Public Health, 18012 Granada, Spain
| | - Ángel Gil
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) "José Mataix", Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- CIBER de Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Esther Molina-Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) "José Mataix", Biomedical Research Centre, University of Granada, 18071 Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
36
|
Boos J, van der Made CI, Ramakrishnan G, Coughlan E, Asselta R, Löscher BS, Valenti LVC, de Cid R, Bujanda L, Julià A, Pairo-Castineira E, Baillie JK, May S, Zametica B, Heggemann J, Albillos A, Banales JM, Barretina J, Blay N, Bonfanti P, Buti M, Fernandez J, Marsal S, Prati D, Ronzoni L, Sacchi N, Schultze JL, Riess O, Franke A, Rawlik K, Ellinghaus D, Hoischen A, Schmidt A, Ludwig KU. Stratified analyses refine association between TLR7 rare variants and severe COVID-19. HGG ADVANCES 2024; 5:100323. [PMID: 38944683 PMCID: PMC11320601 DOI: 10.1016/j.xhgg.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024] Open
Abstract
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10-10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10-15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway.
Collapse
Affiliation(s)
- Jannik Boos
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Caspar I van der Made
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gayatri Ramakrishnan
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eamon Coughlan
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital - via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Luca V C Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Julià
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Erola Pairo-Castineira
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sandra May
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Berina Zametica
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Julia Heggemann
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Agustín Albillos
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jordi Barretina
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Paolo Bonfanti
- Division of Infectious Diseases, Università degli Studi di Milano Bicocca, Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Maria Buti
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernandez
- Hospital Clinic, University of Barcelona, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF CLif), Barcelona, Spain
| | - Sara Marsal
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Daniele Prati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Konrad Rawlik
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
37
|
Alcalde-Herraiz M, Català M, Prats-Uribe A, Paredes R, Xie J, Prieto-Alhambra D. Genome-wide association studies of COVID-19 vaccine seroconversion and breakthrough outcomes in UK Biobank. Nat Commun 2024; 15:8739. [PMID: 39384777 PMCID: PMC11464770 DOI: 10.1038/s41467-024-52890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the genetic basis of COVID-19 vaccine seroconversion is crucial to study the role of genetics on vaccine effectiveness. In our study, we used UK Biobank data to find the genetic determinants of COVID-19 vaccine-induced seropositivity and breakthrough infections. We conducted four genome-wide association studies among vaccinated participants for COVID-19 vaccine seroconversion and breakthrough susceptibility and severity. Our findings confirmed a link between the HLA region and seroconversion after the first and second doses. Additionally, we identified 10 genomic regions associated with breakthrough infection (SLC6A20, ST6GAL1, MUC16, FUT6, MXI1, MUC4, HMGN2P18-KRTCAP2, NFKBIZ and APOC1), and one with breakthrough severity (APOE). No significant evidence of genetic colocalisation was found between those traits. Our study highlights the roles of individual genetic make-up in the varied antibody responses to COVID-19 vaccines and provides insights into the potential mechanisms behind breakthrough infections occurred even after the vaccination.
Collapse
Affiliation(s)
- Marta Alcalde-Herraiz
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Martí Català
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Albert Prats-Uribe
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Roger Paredes
- Department of Infectious Diseases and Institut de Recerca de la Sida IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Centre for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - JunQing Xie
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK
| | - Daniel Prieto-Alhambra
- Centre for Statistics in Medicine and NIHR Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford, UK.
- Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
38
|
Diz-de Almeida S, Cruz R, Luchessi AD, Lorenzo-Salazar JM, de Heredia ML, Quintela I, González-Montelongo R, Nogueira Silbiger V, Porras MS, Tenorio Castaño JA, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga MJ, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, Del Campo-Pérez V, de Bustamante AD, Domínguez-Garrido E, Eirós R, Fariñas MC, Fernandez-Nestosa MJ, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gago-Dominguez M, Gil-Fournier B, Gómez-Arrue J, Álvarez BG, Bernaldo de Quirós FG, González-Neira A, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Borja AL, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez A, Mazzeu JF, Macías EM, Minguez P, Cuerda VM, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin M, Pita G, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, León SR, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz-Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, Tamayo E, Tamayo-Velasco A, Taracido-Fernandez JC, Teper A, Torres-Tobar L, Urioste M, Valencia-Ramos J, Yáñez Z, Zarate R, de Rojas I, Ruiz A, Sánchez P, Real LM, Guillen-Navarro E, Ayuso C, Parra E, Riancho JA, Rojas-Martinez A, Flores C, Lapunzina P, Carracedo Á. Novel risk loci for COVID-19 hospitalization among admixed American populations. eLife 2024; 13:RP93666. [PMID: 39361370 PMCID: PMC11449485 DOI: 10.7554/elife.93666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.
Collapse
Affiliation(s)
- Silvia Diz-de Almeida
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andre D Luchessi
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | | | - Inés Quintela
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | | | - Vivian Nogueira Silbiger
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - Marta Sevilla Porras
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jair Antonio Tenorio Castaño
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Julian Nevado
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jose María Aguado
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | | | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- Navarra Health Service, NavarraBioMed Research Group, Pamplona, Spain
| | | | - Berta Almoguera
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nuria Alvarez
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Eunate Arana-Arri
- Biocruces Bizkai HRI, Bizkaia, Spain
- Cruces University Hospital, Osakidetza, Bizkaia, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Arranz
- Fundació Docència I Recerca Mutua Terrassa, Barcelona, Spain
| | | | - Raúl C Baptista-Rosas
- Hospital General de Occidente, Zapopan Jalisco, Mexico
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
- Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - María Barreda-Sánchez
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Moncef Belhassen-Garcia
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna-Unidad de Enfermedades Infecciosas, Salamanca, Spain
| | - Joao F Bezerra
- Escola Tecnica de Saúde, Laboratorio de Vigilancia Molecular Aplicada, Brasilia, Brazil
| | - Marcos A C Bezerra
- Federal University of Pernambuco, Genetics Postgraduate Program, Recife, Brazil
| | | | - María Brion
- Instituto de Investigación Sanitaria de Santiago (IDIS), Xenética Cardiovascular, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ramón Brugada
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Hospital Josep Trueta, Cardiology Service, Girona, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
| | - Enrique J Calderón
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Cristina Carbonell
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna, Salamanca, Spain
- Universidad de Salamanca, Salamanca, Spain
| | - Luis Castano
- CIBERER, ISCIII, Madrid, Spain
- Biocruces Bizkai HRI, Bizkaia, Spain
- Osakidetza, Cruces University Hospital, Bizkaia, Spain
- Centre for Biomedical Network Research on Diabetes and Metabolic Associated Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- University of Pais Vasco, UPV/EHU, Bizkaia, Spain
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | - M Lourdes Cordero-Lorenzana
- Servicio de Medicina intensiva, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Jose L Cortes-Sanchez
- Tecnológico de Monterrey, Monterrey, Mexico
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Marta Corton
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | | | - Alba De Martino-Rodríguez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Victor Del Campo-Pérez
- Preventive Medicine Department, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | | | - Rocío Eirós
- Hospital Universitario de Salamanca-IBSAL, Servicio de Cardiología, Salamanca, Spain
| | - María Carmen Fariñas
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Uxía Fernández-Robelo
- Urgencias Hospitalarias, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Amanda Fernández-Rodríguez
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tania Fernández-Villa
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| | | | - Javier Gómez-Arrue
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Beatriz González Álvarez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | | | - Anna González-Neira
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Gutiérrez-Bautista
- Hospital Universitario Virgen de las Nieves, Servicio de Análisis Clínicos e Inmunología, Granada, Spain
| | - María José Herrero
- IIS La Fe, Plataforma de Farmacogenética, Valencia, Spain
- Universidad de Valencia, Departamento de Farmacología, Valencia, Spain
| | - Antonio Herrero-Gonzalez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María A Jimenez-Sousa
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Claudia Lattig
- Universidad de los Andes, Facultad de Ciencias, Bogotá, Colombia
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Rosario Lopez-Rodriguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Esther Mancebo
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
| | | | - Vicente Martín
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Oscar Martinez-Nieto
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Fundación Santa Fe de Bogota, Departamento Patologia y Laboratorios, Bogotá, Colombia
| | - Iciar Martinez-Lopez
- Unidad de Genética y Genómica Islas Baleares, Islas Baleares, Spain
- Hospital Universitario Son Espases, Unidad de Diagnóstico Molecular y Genética Clínica, Islas Baleares, Spain
| | | | - Angel Martinez-Perez
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juliana F Mazzeu
- Universidade de Brasília, Faculdade de Medicina, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Médicas (UnB), Brasília, Brazil
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
| | | | - Pablo Minguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Victor Moreno Cuerda
- Hospital Universitario Mostoles, Medicina Interna, Madrid, Spai, Spain
- Universidad Francisco de Vitoria, Madrid, Spain
| | - Silviene F Oliveira
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Biologia Animal (UnB), Brasília, Brazil
- Programa de Pós-Graduação Profissional em Ensino de Biologia (UnB), Brasília, Brazil
| | - Eva Ortega-Paino
- Spanish National Cancer Research Centre, CNIO Biobank, Madrid, Spain
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Paz-Artal
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
- Universidad Complutense de Madrid, Department of Immunology, Ophthalmology and ENT, Madrid, Spain
| | - Ney P C Santos
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | - M Elena Pérez-Tomás
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | | | - Mellina Pinsach-Abuin
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
| | - Guillermo Pita
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Ericka N Pompa-Mera
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Mexico City, Mexico
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional La Raza, Hospital de Infectología, Mexico City, Mexico
| | | | - Aurora Pujol
- CIBERER, ISCIII, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Neurometabolic Diseases Laboratory, L'Hospitalet de Llobregat, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Salvador Resino
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marianne R Fernandes
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
- Hospital Ophir Loyola, Departamento de Ensino e Pesquisa, Belém, Brazil
| | - Emilio Rodríguez-Ruiz
- IDIS, Seongnam, Republic of Korea
- Unidad de Cuidados Intensivos, Hospital Clínico Universitario de Santiago (CHUS), Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Fernando Rodriguez-Artalejo
- CIBERESP, ISCIII, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | | | - Francisco Ruiz-Cabello
- IDIS, Seongnam, Republic of Korea
- Instituto de Investigación Biosanitaria de Granada (ibs GRANADA), Granada, Spain
- Universidad de Granada, Departamento Bioquímica, Biología Molecular e Inmunología III, Granada, Spain
| | - Javier Ruiz-Hornillos
- Hospital Infanta Elena, Allergy Unit, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pablo Ryan
- CIBERINFEC, ISCIII, Madrid, Spain
- Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - José Manuel Soria
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juan Carlos Souto
- Haemostasis and Thrombosis Unit, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Eduardo Tamayo
- Hospital Clinico Universitario de Valladolid, Servicio de Anestesiologia y Reanimación, Valladolid, Spain
- Universidad de Valladolid, Departamento de Cirugía, Valladolid, Spain
| | - Alvaro Tamayo-Velasco
- Hospital Clinico Universitario de Valladolid, Servicio de Hematologia y Hemoterapia, Valladolid, Spain
| | - Juan Carlos Taracido-Fernandez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Alejandro Teper
- Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | - Miguel Urioste
- Spanish National Cancer Research Centre, Familial Cancer Clinical Unit, Madrid, Spain
| | | | - Zuleima Yáñez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Ruth Zarate
- Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay
| | - Itziar de Rojas
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Agustín Ruiz
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pascual Sánchez
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Luis Miguel Real
- Hospital Universitario de Valme, Unidad Clínica de Enfermedades Infecciosas y Microbiología, Sevilla, Spain
| | - Encarna Guillen-Navarro
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Sección Genética Médica - Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Servicio Murciano de Salud, Murcia, Spain
- Departamento Cirugía, Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Murcia (UMU), Murcia, Spain
- Grupo Clínico Vinculado, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada
| | - José A Riancho
- CIBERER, ISCIII, Madrid, Spain
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Lapunzina
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Ángel Carracedo
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| |
Collapse
|
39
|
Yang Y, Azzuolo A, Fodil N, Gros P. Gene: environment interactions in immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Immunol 2024; 90:102459. [PMID: 39243725 DOI: 10.1016/j.coi.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Despite its devastating human cost, the rapid spread and global establishment of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic had the benefit of providing unique insights into the intricate interplay between genetic, environmental, and socioeconomic factors, which collectively impact susceptibility to infection with SARS-CoV-2. Preceding the implementation of broad vaccination programs and assuming the absence of significant acquired immunity, examining the innate vulnerability to the virus becomes essential. There is indeed considerable heterogeneity observed at both the population and individual levels for various SARS-CoV-2 infection phenotypes, including emergence, progression, and survival from the coronavirus disease 2019 (COVID-19) syndrome. Particularly intriguing is the seemingly milder course of COVID-19 disease reported for the African continent early during the pandemic. This was characterized by significantly lower mortality rates in SARS-CoV-2 patients compared with the European and American continents and globally. We will discuss some of the demographic and socioeconomic factors that may have contributed to these observations. We review the mapped COVID-19 genetic architecture, including the remarkable association of type I interferon as a single protective mechanism and a major determinant of susceptibility. Furthermore, we speculate on potential 'environmental' modulators of penetrance and expressivity of intrinsic vulnerability factors, with a focus on the microbiome and associated metabolomes. Additionally, this review explores the potential immunomodulatory contribution of helminth parasites to the human host immune and inflammatory responses to respiratory viral infections.
Collapse
Affiliation(s)
- Yunxiang Yang
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Alessia Azzuolo
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
40
|
Gupta MK, Gouda G, Vadde R. Deciphering the role of FOXP4 in long COVID: exploring genetic associations, evolutionary conservation, and drug identification through bioinformatics analysis. Funct Integr Genomics 2024; 24:167. [PMID: 39298002 DOI: 10.1007/s10142-024-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Long COVID (LC) refers to a condition characterized by a variety of lingering symptoms that persist for more than 4 to 12 weeks following the initial acute SARS-CoV-2 infection. Recent research has suggested that the FOXP4 gene could potentially be a significant factor contributing to LC. Owing to that, this study investigates FOXP4's role in LC by analyzing public datasets to understand its evolution and expression in diverse human populations and searching for drugs to reduce LC symptoms. Population genetic analysis of FOXP4 across human populations unmasks distinct genetic diversity patterns and positive selection signatures, suggesting potential population-specific susceptibilities to conditions like LC. Further, we also observed that FOXP4 experiences high expression during LC. To identify potential inhibitors, drug screening analysis identifies synthetic drugs like Glisoxepide, and natural compounds Kapurimycin A3 produced from Streptomyces sp, and Cucurbitacin B from Begonia nantoensis as promising candidates. Overall, our research contributes to understanding how FOXP4 may serve as a therapeutic target for mitigating the impact of LC.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| |
Collapse
|
41
|
Delgado-Wicke P, Fernández de Córdoba-Oñate S, Roy-Vallejo E, Alegría-Carrasco E, Rodríguez-Serrano DA, Lamana A, Montes N, Nicolao-Gómez A, Carracedo-Rodríguez R, Marcos-Jiménez A, Díaz-Fernández P, Galván-Román JM, Rabes-Rodríguez L, Sanz-Alba M, Álvarez-Rodríguez J, Villa-Martí A, Rodríguez-Franco C, Villapalos-García G, Zubiaur P, Abad-Santos F, de Los Santos I, Gomariz RP, García-Vicuña R, Muñoz-Calleja C, González-Álvaro I, Fernández-Ruiz E. Genetic variants regulating the immune response improve the prediction of COVID-19 severity provided by clinical variables. Sci Rep 2024; 14:20728. [PMID: 39237611 PMCID: PMC11377536 DOI: 10.1038/s41598-024-71476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The characteristics of the host are crucial in the final outcome of COVID-19. Herein, the influence of genetic and clinical variants in COVID-19 severity was investigated in a total of 1350 patients. Twenty-one single nucleotide polymorphisms of genes involved in SARS-CoV-2 sensing as Toll-like-Receptor 7, antiviral immunity as the type I interferon signalling pathway (TYK2, STAT1, STAT4, OAS1, SOCS) and the vasoactive intestinal peptide and its receptors (VIP/VIPR1,2) were studied. To analyse the association between polymorphisms and severity, a model adjusted by age, sex and different comorbidities was generated by ordinal logistic regression. The genotypes rs8108236-AA (OR 0.12 [95% CI 0.02-0.53]; p = 0.007) and rs280519-AG (OR 0.74 [95% CI 0.56-0.99]; p = 0.03) in TYK2, and rs688136-CC (OR 0.7 [95% CI 0.5-0.99]; p = 0.046) in VIP, were associated with lower severity; in contrast, rs3853839-GG in TLR7 (OR 1.44 [95% CI 1.07-1.94]; p = 0.016), rs280500-AG (OR 1.33 [95% CI 0.97-1.82]; p = 0.078) in TYK2 and rs1131454-AA in OAS1 (OR 1.29 [95% CI 0.95-1.75]; p = 0.110) were associated with higher severity. Therefore, these variants could influence the risk of severe COVID-19.
Collapse
Affiliation(s)
- Pablo Delgado-Wicke
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Sara Fernández de Córdoba-Oñate
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Hematology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Emilia Roy-Vallejo
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Estíbaliz Alegría-Carrasco
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | | | - Amalia Lamana
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria Montes
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU, Boadilla del Monte, Spain
- Methodology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Ana Nicolao-Gómez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Rosa Carracedo-Rodríguez
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain
| | - Ana Marcos-Jiménez
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Paula Díaz-Fernández
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - José M Galván-Román
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Laura Rabes-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Sanz-Alba
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Jesús Álvarez-Rodríguez
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Almudena Villa-Martí
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Rodríguez-Franco
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio de Los Santos
- Internal Medicine Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa P Gomariz
- Cell Biology Department, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosario García-Vicuña
- Rheumathology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Elena Fernández-Ruiz
- Molecular Biology Unit, Hospital Universitario La Princesa and Health Research Institute (IIS-Princesa), Madrid, Spain.
- Medicine Department, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
42
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
43
|
Pearson NM, Novembre J. No evidence that ACE2 or TMPRSS2 drive population disparity in COVID risks. BMC Med 2024; 22:337. [PMID: 39183295 PMCID: PMC11346279 DOI: 10.1186/s12916-024-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Early in the SARS-CoV2 pandemic, in this journal, Hou et al. (BMC Med 18:216, 2020) interpreted public genotype data, run through functional prediction tools, as suggesting that members of particular human populations carry potentially COVID-risk-increasing variants in genes ACE2 and TMPRSS2 far more often than do members of other populations. Beyond resting on predictions rather than clinical outcomes, and focusing on variants too rare to typify population members even jointly, their claim mistook a well known artifact (that large samples reveal more of a population's variants than do small samples) as if showing real and congruent population differences for the two genes, rather than lopsided population sampling in their shared source data. We explain that artifact, and contrast it with empirical findings, now ample, that other loci shape personal COVID risks far more significantly than do ACE2 and TMPRSS2-and that variation in ACE2 and TMPRSS2 per se unlikely exacerbates any net population disparity in the effects of such more risk-informative loci.
Collapse
Affiliation(s)
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
44
|
Frasson I, Diamante L, Zangrossi M, Carbognin E, Pietà AD, Penna A, Rosato A, Verin R, Torrigiani F, Salata C, Dizanzo MP, Vaccaro L, Cacchiarelli D, Richter SN, Montagner M, Martello G. Identification of druggable host dependency factors shared by multiple SARS-CoV-2 variants of concern. J Mol Cell Biol 2024; 16:mjae004. [PMID: 38305139 PMCID: PMC11411213 DOI: 10.1093/jmcb/mjae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/23/2023] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent the development of resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Clustered regularly interspaced short palindromic repeats screening identified host genes required for each variant during infection. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed the US Food and Drug Administration-approved drugs. All the drugs were highly active against all the tested variants, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early viral replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanized mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Linda Diamante
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Manuela Zangrossi
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Elena Carbognin
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| | - Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Alessandro Penna
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua 35128, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua 35128, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua 35020, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | | | - Lorenzo Vaccaro
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli 80078, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples 80138, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples Federico II, Naples 80138, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
- Microbiology and Virology Unit, Padua University Hospital, Padua 35128, Italy
| | - Marco Montagner
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Graziano Martello
- Department of Biology, Armenise/Harvard Pluripotent Stem Cell Biology Laboratory, University of Padua, Padua 35131, Italy
| |
Collapse
|
45
|
Loktionov AV, Kobzeva KA, Karpenko AR, Sergeeva VA, Orlov YL, Bushueva OY. GWAS-significant loci and severe COVID-19: analysis of associations, link with thromboinflammation syndrome, gene-gene, and gene-environmental interactions. Front Genet 2024; 15:1434681. [PMID: 39175753 PMCID: PMC11338913 DOI: 10.3389/fgene.2024.1434681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Objective The aim of this study was to replicate associations of GWAS-significant loci with severe COVID-19 in the population of Central Russia, to investigate associations of the SNPs with thromboinflammation parameters, to analyze gene-gene and gene-environmental interactions. Materials and Methods DNA samples from 798 unrelated Caucasian subjects from Central Russia (199 hospitalized COVID-19 patients and 599 controls with a mild or asymptomatic course of COVID-19) were genotyped using probe-based polymerase chain reaction for 10 GWAS-significant SNPs: rs143334143 CCHCR1, rs111837807 CCHCR1, rs17078346 SLC6A20-LLZTFL1, rs17713054 SLC6A20-LLZTFL1, rs7949972 ELF5, rs61882275 ELF5, rs12585036 ATP11A, rs67579710 THBS3, THBS3-AS1, rs12610495 DPP9, rs9636867 IFNAR2. Results SNP rs17713054 SLC6A20-LZTFL1 was associated with increased risk of severe COVID-19 in the entire group (risk allele A, OR = 1.78, 95% CI = 1.22-2.6, p = 0.003), obese individuals (OR = 2.31, 95% CI = 1.52-3.5, p = 0.0002, (p bonf = 0.0004)), patients with low fruit and vegetable intake (OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)), low physical activity (OR = 1.93, 95% CI = 1.26-2.94, p = 0.0035, (p bonf = 0.007)), and nonsmokers (OR = 1.65, 95% CI = 1.11-2.46, p = 0.02). This SNP correlated with increased BMI (p = 0.006) and worsened thrombodynamic parameters (maximum optical density of the formed clot, D (p = 0.02), delayed appearance of spontaneous clots, Tsp (p = 0.02), clot size 30 min after coagulation activation, CS (p = 0.036)). SNP rs17078346 SLC6A20-LZTFL1 was linked with increased BMI (p = 0.01) and severe COVID-19 in obese individuals (risk allele C, OR = 1.72, 95% CI = 1.15-2.58, p = 0.01, (p bonf = 0.02)). SNP rs12610495 DPP9 was associated with increased BMI (p = 0.01), severe COVID-19 in obese patients (risk allele G, OR = 1.48, 95% CI = 1.09-2.01, p = 0.01, (p bonf = 0.02)), and worsened thrombodynamic parameters (time to the start of clot growth, Tlag (p = 0.01)). For rs7949972 ELF5, a protective effect against severe COVID-19 was observed in non-obese patients (effect allele T, OR = 0.67, 95% CI = 0.47-0.95, p = 0.02, (p bonf = 0.04)), improving thrombodynamic parameters (CS (p = 0.02), stationary spatial clot growth rates, Vst (p = 0.02)). Finally, rs12585036 ATP11A exhibited a protective effect against severe COVID-19 in males (protective allele A, OR = 0.51, 95% CI = 0.32-0.83, p = 0.004). SNPs rs67579710 THBS3, THBS3-AS1, rs17713054 SLC6A20-LZTFL1, rs7949972 ELF5, rs9636867 IFNAR2-were involved in two or more of the most significant G×G interactions (p perm ≤ 0.01). The pairwise combination rs67579710 THBS3, THBS3-AS1 × rs17713054 SLC6A20-LZTFL1 was a priority in determining susceptibility to severe COVID-19 (it was included in four of the top five most significant SNP-SNP interaction models). Conclusion Overall, this study represents a comprehensive molecular-genetic and bioinformatics analysis of the involvement of GWAS-significant loci in the molecular mechanisms of severe COVID-19, gene-gene and gene-environmental interactions, and provides evidence of their relationship with thromboinflammation parameters in patients hospitalized in intensive care units.
Collapse
Affiliation(s)
- Alexey Valerevich Loktionov
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Ksenia Andreevna Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Andrey Romanovich Karpenko
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Vera Alexeevna Sergeeva
- Department of Anesthesia and Critical Care, Institute of Continuing Education, Kursk State Medical University, Kursk, Russia
| | - Yuriy Lvovich Orlov
- Institute of Biodesign and Complex Systems Modeling, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Yurievna Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| |
Collapse
|
46
|
Tisch C, Xourgia E, Exadaktylos A, Ziaka M. Potential use of sodium glucose co-transporter 2 inhibitors during acute illness: a systematic review based on COVID-19. Endocrine 2024; 85:660-675. [PMID: 38448675 PMCID: PMC11291544 DOI: 10.1007/s12020-024-03758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE SGLT-2i are increasingly recognized for their benefits in patients with cardiometabolic risk factors. Additionally, emerging evidence suggests potential applications in acute illnesses, including COVID-19. This systematic review aims to evaluate the effects of SGLT-2i in patients facing acute illness, particularly focusing on SARS-CoV-2 infection. METHODS Following PRISMA guidelines, a systematic search of PubMed, Scopus, medRxiv, Research Square, and Google Scholar identified 22 studies meeting inclusion criteria, including randomized controlled trials and observational studies. Data extraction and quality assessment were conducted independently. RESULTS Out of the 22 studies included in the review, six reported reduced mortality in DM-2 patients taking SGLT-2i, while two found a decreased risk of hospitalization. Moreover, one study demonstrated a lower in-hospital mortality rate in DM-2 patients under combined therapy of metformin plus SGLT-2i. However, three studies showed a neutral effect on the risk of hospitalization. No increased risk of developing COVID-19 was associated with SGLT-2i use in DM-2 patients. Prior use of SGLT-2i was not associated with ICU admission and need for MV. The risk of acute kidney injury showed variability, with inconsistent evidence regarding diabetic ketoacidosis. CONCLUSION Our systematic review reveals mixed findings on the efficacy of SGLT-2i use in COVID-19 patients with cardiometabolic risk factors. While some studies suggest potential benefits in reducing mortality and hospitalizations, others report inconclusive results. Further research is needed to clarify optimal usage and mitigate associated risks, emphasizing caution in clinical interpretation.
Collapse
Affiliation(s)
- Carmen Tisch
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Eleni Xourgia
- Department of Cardiology, Inselspital, University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Mairi Ziaka
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
47
|
Wang MX, Lou EG, Sapoval N, Kim E, Kalvapalle P, Kille B, Elworth RAL, Liu Y, Fu Y, Stadler LB, Treangen TJ. Olivar: towards automated variant aware primer design for multiplex tiled amplicon sequencing of pathogens. Nat Commun 2024; 15:6306. [PMID: 39060254 PMCID: PMC11282221 DOI: 10.1038/s41467-024-49957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Tiled amplicon sequencing has served as an essential tool for tracking the spread and evolution of pathogens. Over 15 million complete SARS-CoV-2 genomes are now publicly available, most sequenced and assembled via tiled amplicon sequencing. While computational tools for tiled amplicon design exist, they require downstream manual optimization both computationally and experimentally, which is slow and costly. Here we present Olivar, a first step towards a fully automated, variant-aware design of tiled amplicons for pathogen genomes. Olivar converts each nucleotide of the target genome into a numeric risk score, capturing undesired sequence features that should be avoided. In a direct comparison with PrimalScheme, we show that Olivar has fewer mismatches overlapping with primers and predicted PCR byproducts. We also compare Olivar head-to-head with ARTIC v4.1, the most widely used primer set for SARS-CoV-2 sequencing, and show Olivar yields similar read mapping rates (~90%) and better coverage to the manually designed ARTIC v4.1 amplicons. We also evaluate Olivar on real wastewater samples and found that Olivar has up to 3-fold higher mapping rates while retaining similar coverage. In summary, Olivar automates and accelerates the generation of tiled amplicons, even in situations of high mutation frequency and/or density. Olivar is available online as a web application at https://olivar.rice.edu and can be installed locally as a command line tool with Bioconda. Source code, installation guide, and usage are available at https://github.com/treangenlab/Olivar .
Collapse
Affiliation(s)
- Michael X Wang
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Eddie Kim
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Prashant Kalvapalle
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - R A Leo Elworth
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
| | - Todd J Treangen
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
48
|
Verma A, Huffman JE, Rodriguez A, Conery M, Liu M, Ho YL, Kim Y, Heise DA, Guare L, Panickan VA, Garcon H, Linares F, Costa L, Goethert I, Tipton R, Honerlaw J, Davies L, Whitbourne S, Cohen J, Posner DC, Sangar R, Murray M, Wang X, Dochtermann DR, Devineni P, Shi Y, Nandi TN, Assimes TL, Brunette CA, Carroll RJ, Clifford R, Duvall S, Gelernter J, Hung A, Iyengar SK, Joseph J, Kember R, Kranzler H, Kripke CM, Levey D, Luoh SW, Merritt VC, Overstreet C, Deak JD, Grant SFA, Polimanti R, Roussos P, Shakt G, Sun YV, Tsao N, Venkatesh S, Voloudakis G, Justice A, Begoli E, Ramoni R, Tourassi G, Pyarajan S, Tsao P, O'Donnell CJ, Muralidhar S, Moser J, Casas JP, Bick AG, Zhou W, Cai T, Voight BF, Cho K, Gaziano JM, Madduri RK, Damrauer S, Liao KP. Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program. Science 2024; 385:eadj1182. [PMID: 39024449 DOI: 10.1126/science.adj1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/10/2024] [Indexed: 07/20/2024]
Abstract
One of the justifiable criticisms of human genetic studies is the underrepresentation of participants from diverse populations. Lack of inclusion must be addressed at-scale to identify causal disease factors and understand the genetic causes of health disparities. We present genome-wide associations for 2068 traits from 635,969 participants in the Department of Veterans Affairs Million Veteran Program, a longitudinal study of diverse United States Veterans. Systematic analysis revealed 13,672 genomic risk loci; 1608 were only significant after including non-European populations. Fine-mapping identified causal variants at 6318 signals across 613 traits. One-third (n = 2069) were identified in participants from non-European populations. This reveals a broadly similar genetic architecture across populations, highlights genetic insights gained from underrepresented groups, and presents an extensive atlas of genetic associations.
Collapse
Affiliation(s)
- Anurag Verma
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
- Palo Alto Veterans Institute for Research (PAVIR), Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Rodriguez
- Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mitchell Conery
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Molei Liu
- Department of Biostatistics, Columbia University's Mailman School of Public Health, New York, NY 10032, USA
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Youngdae Kim
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - David A Heise
- National Security Sciences Directorate, Cyber Resilience and Intelligence Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Lindsay Guare
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Helene Garcon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Franciel Linares
- R&D Systems Engineering, Information Technology Services Directorate, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Lauren Costa
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
| | - Ian Goethert
- Data Management and Engineering, Information Technology Services Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Ryan Tipton
- Knowledge Discovery Infrastructure, Information Technology Services Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Laura Davies
- Computing and Computational Sciences Dir PMO, PMO, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Stacey Whitbourne
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
- Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jeremy Cohen
- National Security Sciences Directorate, Cyber Resilience and Intelligence Division, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN 37831, USA
| | - Daniel C Posner
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Rahul Sangar
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
| | - Michael Murray
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
| | - Xuan Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel R Dochtermann
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Poornima Devineni
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Yunling Shi
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Tarak Nath Nandi
- Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA
| | | | - Charles A Brunette
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37211, USA
| | - Royce Clifford
- Research Department, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Otolaryngology, UCSD San Diego, La Jolla, CA 92093, USA
| | - Scott Duvall
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
- Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Joel Gelernter
- Psychiatry, Human Genetics, Yale University, New Haven, CT, 06520, USA
- VA Connecticut Healthcare System West Haven, West Haven, CT, 06516, USA
| | - Adriana Hung
- Medicine, Nephrology & Hypertension, VA Tennessee Valley Healthcare System & Vanderbilt University, Nashville, TN 37232, USA
| | - Sudha K Iyengar
- Departments of Population and Quantitative Health Sciences, Genetics and Genome Sciences, and Ophthalmology and Visual Sciences and the Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jacob Joseph
- Medicine, Cardiology Section, VA Providence Healthcare System, Providence, RI 02908, USA
- Department of Medicine, Brown University, Providence, RI, 02908, USA
| | - Rachel Kember
- Mental Illness Research, Education and Clinical Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Henry Kranzler
- Mental Illness Research, Education and Clinical Center, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Colleen M Kripke
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel Levey
- Psychiatry, Human Genetics, Yale University, New Haven, CT, 06520, USA
- Medicine, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA
| | - Shiuh-Wen Luoh
- VA Portland Health Care System, Portland, OR 97239, USA
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Victoria C Merritt
- Research Department, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Cassie Overstreet
- Psychiatry, Human Genetics, Yale University, New Haven, CT, 06520, USA
| | - Joseph D Deak
- Psychiatry, Yale University, New Haven, CT 06520, USA
- Psychiatry, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Panos Roussos
- Psychiatry, Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center; Icahn School of Medicine at Mount Sinai, Bronx, NY 10468, USA
| | - Gabrielle Shakt
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yan V Sun
- Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Noah Tsao
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sanan Venkatesh
- Psychiatry, Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center; Icahn School of Medicine at Mount Sinai, Bronx, NY 10468, USA
| | - Georgios Voloudakis
- Psychiatry, Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center; Icahn School of Medicine at Mount Sinai, Bronx, NY 10468, USA
| | - Amy Justice
- Medicine, VA Connecticut Healthcare System West Haven, West Haven, CT 06516, USA
- Internal Medicine, General Medicine, Yale University, New Haven, CT 06520, USA
- Health Policy, Yale School of Public Health, New Haven, CT 06520, USA
| | - Edmon Begoli
- Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN, 37831, USA
| | - Rachel Ramoni
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
| | - Georgia Tourassi
- National Center for Computational Sciences, Oak Ridge National Laboratory, Dept of Energy, Oak Ridge, TN, 37831, USA
| | - Saiju Pyarajan
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Philip Tsao
- Medicine, Cardiology, VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | | | - Sumitra Muralidhar
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
| | - Jennifer Moser
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, 20420, USA
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Alexander G Bick
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, 37325, USA
| | - Wei Zhou
- Department of Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Cambridge, MA 02142, USA
| | - Tianxi Cai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin F Voight
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly Cho
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
- Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - J Michael Gaziano
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- MVP Boston Coordinating Center, VA Boston Healthcare System, Boston, MA 02111, USA
- Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ravi K Madduri
- Data Science and Learning, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Scott Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
- Cardiovascular Institute, University of Pennsylvania - Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine P Liao
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Medicine, Rheumatology, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
49
|
Marchal A, Cirulli ET, Neveux I, Bellos E, Thwaites RS, Schiabor Barrett KM, Zhang Y, Nemes-Bokun I, Kalinova M, Catchpole A, Tangye SG, Spaan AN, Lack JB, Ghosn J, Burdet C, Gorochov G, Tubach F, Hausfater P, Dalgard CL, Zhang SY, Zhang Q, Chiu C, Fellay J, Grzymski JJ, Sancho-Shimizu V, Abel L, Casanova JL, Cobat A, Bolze A. Lack of association between classical HLA genes and asymptomatic SARS-CoV-2 infection. HGG ADVANCES 2024; 5:100300. [PMID: 38678364 PMCID: PMC11215417 DOI: 10.1016/j.xhgg.2024.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B∗15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B∗15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the United States (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B∗15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified.
Collapse
Affiliation(s)
- Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France
| | | | - Iva Neveux
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA
| | - Evangelos Bellos
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, Bethesda, MD, USA
| | - Ivana Nemes-Bokun
- Department of Infectious Disease, Imperial College London, London, UK
| | | | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, New South Wales, Australia
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, USA
| | - Jade Ghosn
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Bichat-Claude Bernard Hospital, Infectious and Tropical Diseases Department, Paris, France
| | - Charles Burdet
- Infection, Antimicrobials, Modelling, Evolution (IAME), INSERM, UMR1137, University Paris Cité, Paris, France; AP-HP, Hôpital Bichat, Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France; Département Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Département d'immunologie Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unitéde Recherche Clinique PSL-CFX, CIC-1901, Paris, France
| | - Pierre Hausfater
- Emergency Department, Hôpital Pitié-Salpêtrière, APHP-Sorbonne Université, Paris, France; GRC-14 BIOSFAST Sorbonne Université, UMR INSERM 1135, CIMI, Sorbonne Université, Paris, France
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joseph J Grzymski
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV, USA; Renown Health, Reno, NV, USA
| | - Vanessa Sancho-Shimizu
- Department of Infectious Disease, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Cité, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
50
|
Dalapati T, Wang L, Jones AG, Cardwell J, Konigsberg IR, Bossé Y, Sin DD, Timens W, Hao K, Yang I, Ko DC. Context-specific eQTLs reveal causal genes underlying shared genetic architecture of critically ill COVID-19 and idiopathic pulmonary fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.13.24310305. [PMID: 39040187 PMCID: PMC11261970 DOI: 10.1101/2024.07.13.24310305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Angela G. Jones
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jonathan Cardwell
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R. Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec – Université Laval, Department of Molecular Medicine, Québec City, Canada
| | - Don D. Sin
- Center for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ivana Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Lead contact
| |
Collapse
|