1
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00823-y. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Ovejero D, Garcia-Giralt N, Patiño-Salazar JD, Rabionet R, Nogués X. Focal dermal hypoplasia: a probable underrecognized low bone mass disorder secondary to aberrant Wnt signaling. Osteoporos Int 2025:10.1007/s00198-024-07382-0. [PMID: 39847063 DOI: 10.1007/s00198-024-07382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
A 29-year-old Spanish Caucasian man, without relevant family history, was attended in our unit due to an undiagnosed skeletal dysplasia associated with low bone mass and several fragility fractures throughout his childhood and adolescence. DXA exams throughout his life showed very low BMD values; currently, his spinal and femoral neck T-scores were - 4.3 and - 3.5, respectively. Blood and urinary tests were normal. Other relevant features included right hand and foot syndactyly, aplasia cutis, right hemibody hypoplasia, vertebral malformations, abnormal-looking humerii, and Asperger's syndrome among others. Whole exome sequencing retrieved a highly probable pathogenic variant in the PORCN gene p.(Arg296Pro) in mosaicism. PORCN mutations cause focal dermal hypoplasia (FDH), an X-linked ultra-rare ecto-mesodermal disorder characterized by several of the findings the patient presented. However, low BMD has not been classically associated with the disease. Noteworthy, PORCN is key for canonical Wnt signaling. Literature scrutiny has yielded other cases of FDH with skeletal fragility during childhood. In addition, preclinical studies with PORCN inhibitors, currently under development as an antitumoral therapy, have shown rapid detrimental effects on bone mass. Collectively, these findings indicate that FDH is probably an underrecognized monogenic cause of low bone mass due to defective Wnt signaling.
Collapse
Affiliation(s)
- Diana Ovejero
- Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain.
| | - Natalia Garcia-Giralt
- Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - Juan David Patiño-Salazar
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Xavier Nogués
- Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
- Internal Medicine Service, Hospital del Mar de Barcelona, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Yan P, Guo Y, Muhammad S, Zhu J, Liu Y, Liu C. The effects of the Wnt/β-catenin signaling pathway on the in vitro differentiation of rat BMSCs into leydig cells. Sci Rep 2025; 15:1177. [PMID: 39775149 PMCID: PMC11707357 DOI: 10.1038/s41598-025-85674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Late-onset hypogonadism (LOH) refers to sexual and non-sexual symptoms in men caused by age-related decreases in circulating testosterone. Leydig cells (LCs) transplantation is considered to be one of a viable approach for LOH therapy, but the limited source of LCs limits the application of this approach. The aim of this study was to induce the directed differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into LCs in vitro, and explore the potential involvement of Wnt/β-catenin signaling pathway in the differentiation process. BMSCs were extracted from rats and characterized by flow cytometry for positive rates of mesenchymal stem cell markers CD29, CD44, CD90, and the hematopoietic marker CD45. BMSCs were divided into three groups: Control, Wnt agonist (CHIR-99021), and Wnt inhibitor (LGK-974), each incubated for 14 days. ELISA and RT-qPCR were used to verify the protein and mRNA expression of β-catenin, LRP5 and TCF, the key factors in Wnt/β-catenin signaling pathway. The average fluorescence intensity of 3β-hydroxysteroid dehydrogenase (3β-HSD) on the surface of LCs was detected by immunofluorescence (IF) assay. The content of testosterone secreted in cell culture medium was detected by ELISA. The results of flow cytometry indicated that we successfully extracted and cultured BMSCs. Moreover, post 14 days of incubation, the changes of β-catenin, LRP5 and TCF, at the protein and mRNA level demonstrate successful intervention in the activation and inhibition of the intracellular Wnt/β-catenin signaling pathway. Compared with the control group, the LCs surface marker 3β-HSD expression intensity in the CHIR-99,021 group was significantly increased by 69% (p < 0.01), while significantly decreased by 59% in LGK-974 group (p < 0.01). The ELISA results indicated a higher testosterone concentration in the CHIR-99,021 group (359.58 ± 17.46 pg/mL) than in the control (225.31 ± 15.42 pg/mL) and LGK-974 groups (183.67 ± 4.47 pg/mL), and the difference was statistically significant (p < 0.05). This study successfully demonstrates the directed differentiation of BMSCs into LCs under the action of inducers. We verified that the Wnt/β-catenin signaling pathway is involved in this differentiation process. The idea proposed in our study for efficiently inducing differentiation of BMSCs into LC in vitro, may provide a safe and sustainable LC source for developing clinically feasible cell transplantation-based LOH therapies.
Collapse
Affiliation(s)
- Pengyu Yan
- First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, China
| | - Yaxiong Guo
- First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, China
| | - Shoaib Muhammad
- First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Jinxiong Zhu
- Department of Urology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxiang Liu
- Department of Nephrology, Shanxi Provincial People 's Hospital, No. 29, Shuangta Street, Taiyuan, 030012, China.
| | - Chun Liu
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Liu YG, Zhong Z, Tang Y, Wang H, Vummaleti SVC, Peng X, Peng P, Zhang X, Chi YR. Carbene-catalyzed chirality-controlled site-selective acylation of saccharides. Nat Commun 2025; 16:54. [PMID: 39746955 PMCID: PMC11697312 DOI: 10.1038/s41467-024-55282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated. Our investigation reveals that this intriguing selectivity shift stems from a combination of factors, including chirality match/mismatch and inter- / intramolecular hydrogen bonding between the NHC catalyst and saccharide substrates. These findings provide valuable insights into catalyst design and reaction engineering, highlighting potential applications in glycoside analysis, such as fluorescent labelling, α/β identification, orthogonal reactions, and selective late-stage modifications.
Collapse
Affiliation(s)
- Ying-Guo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
- Pingyuan laboratory, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zetao Zhong
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuyang Tang
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongling Wang
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Sai Vikrama Chaitanya Vummaleti
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Xi Peng
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Peng Peng
- National Glycoengineering Research Centre, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Jinan, 250100, PR China
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- Institute of High-Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore.
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
5
|
Peña-Oyarzún D, Quest AFG, Lobos-González L, Maturana-Ramírez A, Reyes M. Porcupine expression promotes the progression of oral carcinogenesis. Neoplasia 2025; 59:101097. [PMID: 39616893 DOI: 10.1016/j.neo.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, which is usually preceded by a potentially malignant disorder histologically diagnosed as dysplasia. We and others have provided evidence for the pro-carcinogenic role of the Wnt/β-catenin pathway in this context, in which Wnt ligands stabilize and allow relocalization of β-catenin to the nucleus for transcription of pro-survival and pro-proliferation genes. However, the contribution of Porcupine (PORCN), an O-acyltransferase that catalyzes the palmitoylation of Wnt ligands, to OSCC carcinogenesis is not known. Moreover, the effectiveness of LGK974, a novel PORCN inhibitor remains to be elucidated. By using different ex vivo, in vivo and in vitro OSCC carcinogenesis models, we show that PORCN expression is significantly increased in high-grade dysplasia as well as moderately/poorly- differentiated OSCC. Consistent with these observations, expression of key proteins involved in the Wnt/β-catenin pathway are elevated as well. Importantly, the treatment with LGK974, a chemical PORCN inhibitor, reduced the number and size of oral lesions in mice treated with 4-Nitroquinoline 1-oxide (4NQO), a tobacco smoke surrogate. These results highlight the role of PORCN during OSCC carcinogenesis.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzún
- School of Odontology, Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastián, Santiago, Chile.
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile; Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Maturana-Ramírez
- Pathology and Oral Medicine Department, Faculty of Odontology, Universidad de Chile, Santiago, Chile
| | - Montserrat Reyes
- Pathology and Oral Medicine Department, Faculty of Odontology, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Schmiege P, Li X. Clues into Wnt cell surface signalosomes and its biogenesis. Trends Biochem Sci 2024; 49:1042-1045. [PMID: 39443209 PMCID: PMC11624986 DOI: 10.1016/j.tibs.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Wnt morphogens induce signaling via binding their extracellular receptors. Here, we discuss several recent structural studies showing how Wnts engage their receptors frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), how Cachd1 has been shown as an alternative initiator of Wnt signaling, and how lipidated Wnt may be produced and secreted from the cell.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Stougiannou TM, Christodoulou KC, Karangelis D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024; 12:2714. [PMID: 39767621 PMCID: PMC11726960 DOI: 10.3390/biomedicines12122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB). Not only can they recapitulate 3D form and function, but the developmental programs governing the self-organization of cell populations into more complex tissues as well. Many different organoids and SCME constructs have been generated in recent years to recreate cardiac tissue and the complex developmental programs that give rise to its cellular composition and unique tissue morphology. It is thus the purpose of this narrative literature review to describe and summarize many of the recently derived cardiac organoid models as well as their use for the recapitulation of genetic and acquired disease. Owing to the cellular composition of the models examined, this review will focus on disease and tissue injury associated with embryonic/fetal tissues.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
8
|
Qian Y, Zhang H, Li J, Huang L, Qin Y, Zhang J, Wang W. Wnt signaling aberrant activation drives ameloblastoma invasion and recurrence: bioinformatics and in vitro insights. BMC Oral Health 2024; 24:1421. [PMID: 39574093 PMCID: PMC11583395 DOI: 10.1186/s12903-024-05003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/03/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE This study aims to explore the regulatory mechanisms of Wnt signaling in the invasion and recurrence of ameloblastoma (AM) to provide a new theoretical basis for its treatment. METHODS Bulk RNA sequencing was employed to analyze samples from AM patients, and identify differentially expressed genes. Subsequently, bioinformatics methods such as Weighted Gene Co-Expression Network Analysis (WGCNA), DESeq2, and KEGG enrichment analysis were utilized to construct gene co-expression networks and identify pathways associated with invasion and recurrence. Furthermore, in vitro experiments, including Cell Counting Kit-8 (CCK-8), Wound healing assays, Western blotting, and qPCR were conducted to validate the effects of Wnt signaling on AM biological functions and the expression of related genes and proteins. RESULTS Bioinformatics analysis revealed significant activation of the Wnt signaling pathway during AM invasion and recurrence, and differential gene analysis identified specific gene expression patterns associated with the Wnt signaling pathway. In vitro experiments further demonstrated that the standard Wnt/β-catenin pathway activator, Laduviglusib significantly activated Wnt signaling, leading to a marked increase in the mRNA and protein expression levels of TCF7, β-catenin, WNT2B, and LEF1, thereby enhancing the proliferation and migration capabilities of AM cells. CONCLUSION This study reveals the critical role of aberrant Wnt signaling activation in AM proliferation and migration, identifying it as a key driver of AM invasion and recurrence. The findings provide new insights into the mechanisms underlying AM invasion and recurrence, laying the foundation for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road. Gaoxin District, Kunming, Yunnan, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, Yunnan, China
| | - Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road. Gaoxin District, Kunming, Yunnan, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, Yunnan, China
| | - Jingyi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road. Gaoxin District, Kunming, Yunnan, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, Yunnan, China
| | - Liangchong Huang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road. Gaoxin District, Kunming, Yunnan, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, Yunnan, China
| | - Yunfa Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road. Gaoxin District, Kunming, Yunnan, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, Yunnan, China
| | - Jian Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road. Gaoxin District, Kunming, Yunnan, 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming, Yunnan, China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, No. 1088 Mid Hai Yuan Road. Gaoxin District, Kunming, Yunnan, 650106, China.
- Yunnan Key Laboratory of Stomatology, Kunming, Yunnan, China.
| |
Collapse
|
9
|
Hei Y, Hu Q, Manisa B, Li X, Wang B. Synthesis and Frizzled-receptor binding of a WNT5A hairpin-3 peptide. Chem Commun (Camb) 2024; 60:13534-13537. [PMID: 39470064 DOI: 10.1039/d4cc04393f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We synthesized a WNT5A β-hairpin peptide responsible for the protein's binding to its receptor, Frizzled. Full affinity to Frizzled requires all three disulfides but not an invariant tryptophan that significantly contributes to the buried surface area. Our work opens the avenue to target the Wnt-Fzd interface using synthetic peptides.
Collapse
Affiliation(s)
- Yuanyuan Hei
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berti Manisa
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Boyuan Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Chen Y, Xiao M, Mo Y, Ma J, Han Y, Li Q, Zeng Q, Boohaker RJ, Fried J, Li Y, Wang H, Xu B. Nuclear porcupine mediates XRCC6/Ku70 S-palmitoylation in the DNA damage response. Exp Hematol Oncol 2024; 13:109. [PMID: 39497152 PMCID: PMC11536954 DOI: 10.1186/s40164-024-00572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The activation of the DNA damage response (DDR) heavily relies on post-translational modifications (PTMs) of proteins, which play a crucial role in the prevention of genetic instability and tumorigenesis. Among these PTMs, palmitoylation is a highly conserved process that is dysregulated in numerous cancer types. However, its direct involvement in the DDR and the underlying mechanisms remain unclear. METHODS CRISPR-Cas9 technology was used to generate the PORCN KO and PORCN NLS KO cell lines. The effects of PORCN NLS in the DDR were verified by colony formation assays, MTT assays, the DR/EJ5 homologous recombination/non-homologous end-joining reporter system, xenograft tumor growth and immunofluorescence. Mechanisms were explored by mass spectrometry, acyl-biotin exchange (ABE) palmitoylation assay, Click-iT assay, cell subcellular fractionation assay, Western blot analysis, and in vivo and in vitro co-immunoprecipitation. RESULTS In this study, we introduce evidence that Porcupine (PORCN) is an integral component of and plays a critical role in the DDR. PORCN deficiency hampers nonhomologous end joining (NHEJ) and highly sensitizes cells to ionizing radiation (IR) both in vitro and in vivo. We also provide evidence that PORCN possesses a nuclear fraction (nPORCN) with S-acyltransferase activity, unlike its membrane-bound O-acyltransferase in the endoplasmic reticulum. Furthermore, we show that nPORCN is necessary for the successful activation of NHEJ. Using mass spectrometry, we reveal the existence of an nPORCN complex and show that nPORCN mediates the S-palmitoylation of XRCC6/Ku70 at five specific cysteine sites in response to IR. Mutation of these sites causes a substantial increase in radiosensitivity and delays NHEJ. Additionally, we present evidence that nPORCN-dependent Ku70 palmitoylation is required for DNA-PKcs/Ku70/Ku80 complex formation. CONCLUSION Our findings underscore the crucial role of nPORCN-dependent Ku70 S-palmitoylation in the DDR.
Collapse
Affiliation(s)
- Yang Chen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Mingming Xiao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yaqi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yamei Han
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qing Li
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Qinghua Zeng
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Rebecca J Boohaker
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Joshua Fried
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Yonghe Li
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA
- Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Han Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
11
|
Gao Y, Feng J, Zhang Y, Yi M, Zhang L, Yan Y, Zhu AJ, Liu M. Ehbp1 orchestrates orderly sorting of Wnt/Wingless to the basolateral and apical cell membranes. EMBO Rep 2024; 25:5053-5079. [PMID: 39402333 PMCID: PMC11549480 DOI: 10.1038/s44319-024-00289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Wingless (Wg)/Wnt signaling plays a critical role in both development and adult tissue homeostasis. In the Drosophila larval wing disc epithelium, the orderly delivery of Wg/Wnt to the apical and basal cell surfaces is essential for wing development. Here, we identified Ehbp1 as the switch that dictates the direction of Wg/Wnt polarized intracellular transport: the Adaptor Protein complex 1 (AP-1) delivers Wg/Wnt to the basolateral cell surface, and its sequestration by Ehbp1 redirects Wg/Wnt for apical delivery. Genetic analyses showed that Ehbp1 specifically regulates the polarized distribution of Wg/Wnt, a process that depends on the dedicated Wg/Wnt cargo receptor Wntless. Mechanistically, Ehbp1 competes with Wntless for AP-1 binding, thereby preventing the unregulated basolateral Wg/Wnt transport. Reducing Ehbp1 expression, or removing the coiled-coil motifs within its bMERB domain, leads to basolateral Wg/Wnt accumulation. Importantly, the regulation of polarized Wnt delivery by EHBP1 is conserved in vertebrates. The generality of this switch mechanism for regulating intracellular transport remains to be determined in future studies.
Collapse
Affiliation(s)
- Yuan Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China
| | - Mengyuan Yi
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lebing Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Long T, Li D, Vale G, Jiang Y, Schmiege P, Yang ZJ, McDonald JG, Li X. Molecular insights into human phosphatidylserine synthase 1 reveal its inhibition promotes LDL uptake. Cell 2024; 187:5665-5678.e18. [PMID: 39208797 PMCID: PMC11455612 DOI: 10.1016/j.cell.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
In mammalian cells, two phosphatidylserine (PS) synthases drive PS synthesis. Gain-of-function mutations in the Ptdss1 gene lead to heightened PS production, causing Lenz-Majewski syndrome (LMS). Recently, pharmacological inhibition of PSS1 has been shown to suppress tumorigenesis. Here, we report the cryo-EM structures of wild-type human PSS1 (PSS1WT), the LMS-causing Pro269Ser mutant (PSS1P269S), and PSS1WT in complex with its inhibitor DS55980254. PSS1 contains 10 transmembrane helices (TMs), with TMs 4-8 forming a catalytic core in the luminal leaflet. These structures revealed a working mechanism of PSS1 akin to the postulated mechanisms of the membrane-bound O-acyltransferase family. Additionally, we showed that both PS and DS55980254 can allosterically inhibit PSS1 and that inhibition by DS55980254 activates the SREBP pathways, thus enhancing the expression of LDL receptors and increasing cellular LDL uptake. This work uncovers a mechanism of mammalian PS synthesis and suggests that selective PSS1 inhibitors have the potential to lower blood cholesterol levels.
Collapse
Affiliation(s)
- Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dongyu Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yaoyukun Jiang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhongyue J Yang
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Xu R, Ning Y, Ren F, Gu C, Zhu Z, Pan X, Pshezhetsky AV, Ge J, Yu J. Structure and mechanism of lysosome transmembrane acetylation by HGSNAT. Nat Struct Mol Biol 2024; 31:1502-1508. [PMID: 38769387 DOI: 10.1038/s41594-024-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Lysosomal transmembrane acetylation of heparan sulfates (HS) is catalyzed by HS acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), whose dysfunction leads to lysosomal storage diseases. The mechanism by which HGSNAT, the sole non-hydrolase enzyme in HS degradation, brings cytosolic acetyl-coenzyme A (Ac-CoA) and lysosomal HS together for N-acyltransferase reactions remains unclear. Here, we present cryogenic-electron microscopy structures of HGSNAT alone, complexed with Ac-CoA and with acetylated products. These structures explain that Ac-CoA binding from the cytosolic side causes dimeric HGSNAT to form a transmembrane tunnel. Within this tunnel, catalytic histidine and asparagine approach the lumen and instigate the transfer of the acetyl group from Ac-CoA to the glucosamine group of HS. Our study unveils a transmembrane acetylation mechanism that may help advance therapeutic strategies targeting lysosomal storage diseases.
Collapse
Affiliation(s)
- Ruisheng Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chenxia Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | - Jingpeng Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jie Yu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
14
|
Jiang H, Meng T, Li Z. Role of circular RNAs in preeclampsia (Review). Exp Ther Med 2024; 28:372. [PMID: 39091629 PMCID: PMC11292168 DOI: 10.3892/etm.2024.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy characterized by new-onset hypertension and proteinuria after 20 weeks of gestation, which affects 3-8% of pregnant individuals worldwide each year. Prevention, diagnosis and treatment of PE are some of the most important problems faced by obstetrics. There is growing evidence that circular RNAs (circRNAs) are involved in the pathogenesis of PE. The present review summarizes the research progress of circRNAs and then describes the expression patterns of circRNAs in PE and their functional mechanisms affecting PE development. The role of circRNAs as biomarkers for the diagnosis of PE, and the research status of circRNAs in PE are summarized in the hope of finding novel strategies for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Hengxue Jiang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Obstetrics and Gynecology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ziwei Li
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
16
|
Yu J, Liao PJ, Keller TH, Cherian J, Virshup DM, Xu W. Ultra-large scale virtual screening identifies a small molecule inhibitor of the Wnt transporter Wntless. iScience 2024; 27:110454. [PMID: 39104418 PMCID: PMC11298631 DOI: 10.1016/j.isci.2024.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Wnts are lipid-modified glycoproteins that play key roles in both embryonic development and adult homeostasis. Wnt signaling is dysregulated in many cancers and preclinical data shows that targeting Wnt biosynthesis and secretion can be effective in Wnt-addicted cancers. An integral membrane protein known as Wntless (WLS/Evi) is essential for Wnt secretion. However, WLS remains undrugged thus far. The cryo-EM structure of WLS in complex with WNT8A shows that WLS has a druggable G-protein coupled receptor (GPCR) domain. Using Active Learning/Glide, we performed an ultra-large scale virtual screening from Enamine's REAL 350/3 Lead-Like library containing nearly 500 million compounds. 68 hits were examined after on-demand synthesis in cell-based Wnt reporter and other functional assays. ETC-451 emerged as a potential first-in-class WLS inhibitor. ETC-451 blocked WLS-WNT3A interaction and decreased Wnt-addicted pancreatic cancer cell line proliferation. The current hit provides a starting chemical scaffold for further structure or ligand-based drug discovery targeting WLS.
Collapse
Affiliation(s)
- Jia Yu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pei-Ju Liao
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Thomas H. Keller
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - Joseph Cherian
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| | - David M. Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Weijun Xu
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, Singapore 138670, Singapore
| |
Collapse
|
17
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
18
|
Song Y, Shao L, Yu X. Transcriptome Analysis of Transiently Reversible Cell Vacuolization Caused by Excessive Serum Concentration in Scophthalmus maximus. BIOLOGY 2024; 13:545. [PMID: 39056737 PMCID: PMC11274238 DOI: 10.3390/biology13070545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
As an important research tool, cell lines play a vital role in life science research, medical research, and drug development. During the culture of the Scophthalmus maximus head kidney (TK) cell line, we found a phenomenon of cell vacuolization caused by excessive serum concentration. Moreover, the vacuolization of the cells gradually disappeared after passage by trypsin digestion. In clarifying the formation mechanism of this reversible cellular vacuolation, transcriptomics was utilized to explore the mechanism of cell vacuolization caused by excessive serum concentration. Transcriptome analysis indicated that excessive serum concentration could cause the up-regulated expression of PORCN and other genes to promote cell proliferation. Compared with cells whose vacuolization disappeared after trypsin digestion and passage, the expression of mitosis-related genes (BUB1, ttk, Mad2, Cdc20, CDK1, CCNB1), nuclear stability-related genes LMNB1 and tissue stress and repair-related genes HMMR in vacuolated cells caused by excessive serum concentration was significantly up-regulated. There is a regulatory system related to adaptation and stress repair in the cells, which can maintain cell stability to a certain extent. This study provides a theoretical basis for the stable culture of fish cell lines and the solution to the problem of cell vacuolation.
Collapse
Affiliation(s)
- Yuting Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lijun Shao
- School of Public Health, Shandong Second Medical University, Weifang 261053, China;
| | - Xiaoli Yu
- School of Public Health, Shandong Second Medical University, Weifang 261053, China;
| |
Collapse
|
19
|
Ansell TB, Healy M, Coupland CE, Sansom MSP, Siebold C. Mapping structural and dynamic divergence across the MBOAT family. Structure 2024; 32:1011-1022.e3. [PMID: 38636523 DOI: 10.1016/j.str.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain. Here, we combine comparative molecular dynamics (MD) simulations with bioinformatics to assess molecular and interactional divergence across the family. In simulations, MBOATs differentially distort the bilayer depending on their substrate type. Additionally, we identify lipid binding sites surrounding reactant gates in the surrounding membrane. Complementary bioinformatic analyses reveal a conserved role for re-entrant loop-2 in MBOAT fold stabilization and a key hydrogen bond bridging DGAT1 dimerization. Finally, we predict differences in MBOAT solvation and water gating properties. These data are pertinent to the design of MBOAT-specific inhibitors that encompass dynamic information within cellular mimetic environments.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK; Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Megan Healy
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK; Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto M5G 0A4, Canada
| | - Mark S P Sansom
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
20
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
21
|
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, Bodenstein SW, Evans DA, Hung CC, O'Neill M, Reiman D, Tunyasuvunakool K, Wu Z, Žemgulytė A, Arvaniti E, Beattie C, Bertolli O, Bridgland A, Cherepanov A, Congreve M, Cowen-Rivers AI, Cowie A, Figurnov M, Fuchs FB, Gladman H, Jain R, Khan YA, Low CMR, Perlin K, Potapenko A, Savy P, Singh S, Stecula A, Thillaisundaram A, Tong C, Yakneen S, Zhong ED, Zielinski M, Žídek A, Bapst V, Kohli P, Jaderberg M, Hassabis D, Jumper JM. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024; 630:493-500. [PMID: 38718835 PMCID: PMC11168924 DOI: 10.1038/s41586-024-07487-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.
Collapse
Affiliation(s)
| | - Jonas Adler
- Core Contributor, Google DeepMind, London, UK
| | - Jack Dunger
- Core Contributor, Google DeepMind, London, UK
| | | | - Tim Green
- Core Contributor, Google DeepMind, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | - Zachary Wu
- Core Contributor, Google DeepMind, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yousuf A Khan
- Google DeepMind, London, UK
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | - Ellen D Zhong
- Google DeepMind, London, UK
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | - Demis Hassabis
- Core Contributor, Google DeepMind, London, UK.
- Core Contributor, Isomorphic Labs, London, UK.
| | | |
Collapse
|
22
|
Androniciuc AM, Tate EW, Vincent JP. Engineering of TurboID-Wingless for the identification of Wingless interactors through in vivo proximity labelling. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001210. [PMID: 38872844 PMCID: PMC11170289 DOI: 10.17912/micropub.biology.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Wnt signalling coordinates growth and cell fate decisions during development and mis-regulation of Wnt signalling in adults is associated with a range of conditions, including cancer and neurodegenerative diseases. Therefore, means of modulating Wnt proteins and/or cofactors could have significant therapeutic potential. As a first step towards enumerating the Wnt interactome, we devised an in vivo proximity labelling strategy to identify proteins that interact with Wingless (Wg), the main Drosophila Wnt. We engineered the wingless locus to express a functional TurboID-Wg fusion at endogenous levels and identified in vivo interactors by streptavidin pull-down from embryos, followed by mass spectrometry. Further analysis may in future extend the screen coverage and deliver functional validation of the newly identified interactors.
Collapse
Affiliation(s)
- Ana-Miruna Androniciuc
- The Francis Crick Institute, London, England, United Kingdom
- Department of Chemistry, Imperial College London, London, England, United Kingdom
| | - Edward W. Tate
- The Francis Crick Institute, London, England, United Kingdom
- Department of Chemistry, Imperial College London, London, England, United Kingdom
| | | |
Collapse
|
23
|
Schmiege P, Donnelly L, Elghobashi-Meinhardt N, Lee CH, Li X. Structure and inhibition of the human lysosomal transporter Sialin. Nat Commun 2024; 15:4386. [PMID: 38782953 PMCID: PMC11116495 DOI: 10.1038/s41467-024-48535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
25
|
Lung H, Wentworth KL, Moody T, Zamarioli A, Ram A, Ganesh G, Kang M, Ho S, Hsiao EC. Wnt pathway inhibition with the porcupine inhibitor LGK974 decreases trabecular bone but not fibrosis in a murine model with fibrotic bone. JBMR Plus 2024; 8:ziae011. [PMID: 38577521 PMCID: PMC10994528 DOI: 10.1093/jbmrpl/ziae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/06/2024] Open
Abstract
G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.
Collapse
Affiliation(s)
- Hsuan Lung
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Dentistry, Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Zuckerberg San Francisco General Hospital, San Francisco, CA 94143, United States
| | - Tania Moody
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Ariane Zamarioli
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Orthopaedics and Anesthesiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo (SP) 14049-900, Brazil
| | - Apsara Ram
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Gauri Ganesh
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Misun Kang
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Sunita Ho
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Edward C Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
26
|
Zhang P, Liu Z. Structural insights into the transporting and catalyzing mechanism of DltB in LTA D-alanylation. Nat Commun 2024; 15:3404. [PMID: 38649359 PMCID: PMC11035591 DOI: 10.1038/s41467-024-47783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
DltB, a model member of the Membrane-Bound O-AcylTransferase (MBOAT) superfamily, plays a crucial role in D-alanylation of the lipoteichoic acid (LTA), a significant component of the cell wall of gram-positive bacteria. This process stabilizes the cell wall structure, influences bacterial virulence, and modulates the host immune response. Despite its significance, the role of DltB is not well understood. Through biochemical analysis and cryo-EM imaging, we discover that Streptococcus thermophilus DltB forms a homo-tetramer on the cell membrane. We further visualize DltB in an apo form, in complex with DltC, and in complex with its inhibitor amsacrine (m-AMSA). Each tetramer features a central hole. The C-tunnel of each protomer faces the intratetramer interface and provides access to the periphery membrane. Each protomer binds a DltC without changing the tetrameric organization. A phosphatidylglycerol (PG) molecule in the substrate-binding site may serve as an LTA carrier. The inhibitor m-AMSA bound to the L-tunnel of each protomer blocks the active site. The tetrameric organization of DltB provides a scaffold for catalyzing D-alanyl transfer and regulating the channel opening and closing. Our findings unveil DltB's dual function in the D-alanylation pathway, and provide insight for targeting DltB as a anti-virulence antibiotic.
Collapse
Affiliation(s)
- Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
27
|
Tate EW, Soday L, de la Lastra AL, Wang M, Lin H. Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets. Nat Rev Cancer 2024; 24:240-260. [PMID: 38424304 DOI: 10.1038/s41568-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
- Francis Crick Institute, London, UK.
| | - Lior Soday
- Department of Chemistry, Imperial College London, London, UK
| | | | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hening Lin
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Zhang C, Liang S, Zhang H, Wang R, Qiao H. Epigenetic regulation of mRNA mediates the phenotypic plasticity of cancer cells during metastasis and therapeutic resistance (Review). Oncol Rep 2024; 51:28. [PMID: 38131215 PMCID: PMC10777459 DOI: 10.3892/or.2023.8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Plasticity, the ability of cancer cells to transition between differentiation states without genomic alterations, has been recognized as a major source of intratumoral heterogeneity. It has a crucial role in cancer metastasis and treatment resistance. Thus, targeting plasticity holds tremendous promise. However, the molecular mechanisms of plasticity in cancer cells remain poorly understood. Several studies found that mRNA, which acts as a bridge linking the genetic information of DNA and protein, has an important role in translating genotypes into phenotypes. The present review provided an overview of the regulation of cancer cell plasticity occurring via changes in the transcription and editing of mRNAs. The role of the transcriptional regulation of mRNA in cancer cell plasticity was discussed, including DNA‑binding transcriptional factors, DNA methylation, histone modifications and enhancers. Furthermore, the role of mRNA editing in cancer cell plasticity was debated, including mRNA splicing and mRNA modification. In addition, the role of non‑coding (nc)RNAs in cancer plasticity was expounded, including microRNAs, long intergenic ncRNAs and circular RNAs. Finally, different strategies for targeting cancer cell plasticity to overcome metastasis and therapeutic resistance in cancer were discussed.
Collapse
Affiliation(s)
- Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China
| | - Siyuan Liang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| | - Hanning Zhang
- Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China
| | - Ruoxi Wang
- Sophomore, Farragut School #3 of Yangtai Road, Tianjin 300042, P.R. China
| | - Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300211, P.R. China
| |
Collapse
|
29
|
Li Z, Shan X, Yang G, Dong L. LGK974 suppresses the formation of deep vein thrombosis in mice with sepsis. Int Immunopharmacol 2024; 127:111458. [PMID: 38160565 DOI: 10.1016/j.intimp.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Sepsis is a disorder characterized by host inflammation and is caused by systemic infection. The inflammatory cytokine storm results in platelet overactivation, leading to coagulation dysfunction and thrombosis, but the underlying mechanism remains poorly understood. Recent evidence has shown that the Wnt/β-catenin signaling pathway is related to sepsis, but its role and mechanism in sepsis complicated with deep vein thrombosis (DVT) are unclear. METHODS In this study, a cecal ligation and puncture (CLP)-induced sepsis model and DVT mouse model were constructed by inferior vena cava ligation. The levels of serum inflammatory factors and adhesion molecules were measured in each group, and the thrombus weight and size, hematoxylin-eosin staining, collagen fiber tissue, and transcriptome of the venous wall were analyzed. The activation of the Wnt/β-catenin signal was evaluated by quantitative real-time polymerase chain reaction, Western blotting, ELISA, and immunohistochemical and immunofluorescence methods. RESULTS Sepsis significantly promoted the formation of venous wall collagen fibers and DVT. In addition, Porcn significantly upregulated and activated the Wnt/β-catenin signaling pathway in sepsis mouse models with DVT. In contrast, the Wnt signaling inhibitor LGK974 was found to improve the survival rate, decrease thrombosis, and inhibit the expression of inflammation and adhesion molecules in sepsis mice with DVT. Therefore, activation of the Wnt/β-catenin signal may promote the formation of DVT in sepsis mice. CONCLUSIONS LGK974 protects against DVT formation in sepsis mice by inhibiting the activation of the Wnt/β-catenin signal and down-regulating the production of proinflammatory cytokines, PAI-1, and adhesion molecules. LGK974 may be a new candidate for the treatment of sepsis complicated with DVT.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China; Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan 628000, China
| | - Xiaoxi Shan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Guolin Yang
- Laboratory Animal Centre, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China.
| |
Collapse
|
30
|
Taghiyar L, Bijarchan F, Doraj M, Baghban Eslaminejad M. Regeneration of amputated mice digit tips by including Wnt signaling pathway with CHIR99021 and IWP-2 chemicals in limb organ culture system. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1251-1259. [PMID: 39229572 PMCID: PMC11366941 DOI: 10.22038/ijbms.2024.76957.16643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/14/2024] [Indexed: 09/05/2024]
Abstract
Objectives Mammals have limited limb regeneration compared to amphibians. The role of Wnt signaling pathways in limb regeneration has rarely been studied. So, this study aimed to investigate the effect of Wnt-signaling using chemicals CHIR99021 and IWP-2 on amputated mice digit tips regeneration in an in vitro organ culture system. Materials and Methods The distal phalanx of paws from C57BL/6J mouse fetuses at E14.5, E16.5, and E18.5 was amputated. Then, the hands were cultured for 7 days. Subsequently, paws were treated with 1-50 µg/ml concentration of CHIR99021 and 5-10 µg/ml concentration of IWP-2. Finally, the new tissue regrowth was assessed by histological analysis, immunohistochemistry for BC, TCF1, CAN, K14, and P63 genes, and beta-catenin and Tcf1 genes were evaluated with RT-qPCR. Results The paws of E14.5 and E16.5 days were shrinkaged and compressed after 7 days, so the paws of 18.5E that were alive were selected. As a result, newly-grown masses at digit tips were observed in 25 and 30 µl/ml concentrations of the CHR99021 group but not in the IWP2 treatment (*P<0.05; **P<0.01). qRT-PCR analysis confirmed the significant up-regulation of beta-catenin and Tcf1 genes in CHIR99021 group in comparison to the IWP-2 group (P<0.05). Moreover, Alcian-blue staining demonstrated the presence of cartilage-like tissue at regenerated mass in the CHIR group. In immunohistochemistry analysis beta-catenin, ACN, Keratin-14, and P63 protein expression were observed in digit tips in the CHIR-treated group. Conclusion By activating the Wnt signaling pathway, cartilage-like tissue formed in the blastema-like mass in the mouse's amputated digit tips.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Fatemeh Bijarchan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mahshad Doraj
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| |
Collapse
|
31
|
Jain R, Krishnan S, Lee S, Amoozgar Z, Subudhi S, Kumar A, Posada J, Lindeman N, Lei P, Duquette M, Roberge S, Huang P, Andersson P, Datta M, Munn L, Fukumura D. Wnt inhibition alleviates resistance to immune checkpoint blockade in glioblastoma. RESEARCH SQUARE 2023:rs.3.rs-3707472. [PMID: 38234841 PMCID: PMC10793505 DOI: 10.21203/rs.3.rs-3707472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Wnt signaling plays a critical role in the progression and treatment outcome of glioblastoma (GBM). Here, we identified WNT7b as a heretofore unknown mechanism of resistance to immune checkpoint inhibition (αPD1) in GBM patients and murine models. Acquired resistance to αPD1 was found to be associated with the upregulation of Wnt7b and β-catenin protein levels in GBM in patients and in a clinically relevant, stem-rich GBM model. Combining the porcupine inhibitor WNT974 with αPD1 prolonged the survival of GBM-bearing mice. However, this combination had a dichotomous response, with a subset of tumors showing refractoriness. WNT974 and αPD1 expanded a subset of DC3-like dendritic cells (DCs) and decreased the granulocytic myeloid-derived suppressor cells (gMDSCs) in the tumor microenvironment (TME). By contrast, monocytic MDSCs (mMDSCs) increased, while T-cell infiltration remained unchanged, suggesting potential TME-mediated resistance. Our preclinical findings warrant the testing of Wnt7b/β-catenin combined with αPD1 in GBM patients with elevated Wnt7b/β-catenin signaling.
Collapse
|
32
|
Pierce M, Ji J, Novak SX, Sieburg MA, Nangia S, Nangia S, Hougland JL. Combined Computational-Biochemical Approach Offers an Accelerated Path to Membrane Protein Solubilization. J Chem Inf Model 2023; 63:7159-7170. [PMID: 37939203 PMCID: PMC10685452 DOI: 10.1021/acs.jcim.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Membrane proteins are difficult to isolate and purify due to their dependence on the surrounding lipid membrane for structural stability. Detergents are often used to solubilize these proteins, with this approach requiring a careful balance between protein solubilization and denaturation. Determining which detergent is most appropriate for a given protein has largely been done empirically through screening, which requires large amounts of membrane protein and associated resources. Here, we describe an alternative to conventional detergent screening using a computational modeling approach to identify the most likely candidate detergents for solubilizing a protein of interest. We demonstrate our approach using ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase family of integral membrane enzymes that has not been solubilized or purified in active form. A computationally derived GOAT structural model provides the only structural information required for this approach. Using computational analysis of detergent ability to penetrate phospholipid bilayers and stabilize the GOAT structure, a panel of common detergents were rank-ordered for their proposed ability to solubilize GOAT. The simulations were performed at all-atom resolution for a combined simulation time of 24 μs. Independently, we biologically screened these detergents for their solubilization of fluorescently tagged GOAT constructs. We found computational prediction of protein structural stabilization was the better predictor of detergent solubilization ability, but neither approach was effective for predicting detergents that would support GOAT enzymatic function. The current rapid expansion of membrane protein computational models lacking experimental structural information and our computational detergent screening approach can greatly improve the efficiency of membrane protein detergent solubilization, supporting downstream functional and structural studies.
Collapse
Affiliation(s)
- Mariah
R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
33
|
Qi X, Hu Q, Elghobashi-Meinhardt N, Long T, Chen H, Li X. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling. Cell 2023; 186:5028-5040.e14. [PMID: 37852257 PMCID: PMC10841698 DOI: 10.1016/j.cell.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Long T, Zhang Y, Donnelly L, Li H, Pien YC, Liu N, Olson EN, Li X. Cryo-EM structures of Myomaker reveal a molecular basis for myoblast fusion. Nat Struct Mol Biol 2023; 30:1746-1754. [PMID: 37770716 DOI: 10.1038/s41594-023-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
The fusion of mononucleated myoblasts produces multinucleated muscle fibers leading to the formation of skeletal muscle. Myomaker, a skeletal muscle-specific membrane protein, is essential for myoblast fusion. Here we report the cryo-EM structures of mouse Myomaker (mMymk) and Ciona robusta Myomaker (cMymk). Myomaker contains seven transmembrane helices (TMs) that adopt a G-protein-coupled receptor-like fold. TMs 2-4 form a dimeric interface, while TMs 3 and 5-7 create a lipid-binding site that holds the polar head of a phospholipid and allows the alkyl tails to insert into Myomaker. The similarity of cMymk and mMymk suggests a conserved Myomaker-mediated cell fusion mechanism across evolutionarily distant species. Functional analyses demonstrate the essentiality of the dimeric interface and the lipid-binding site for fusogenic activity, and heterologous cell-cell fusion assays show the importance of transcellular interactions of Myomaker protomers for myoblast fusion. Together, our findings provide structural and functional insights into the process of myoblast fusion.
Collapse
Affiliation(s)
- Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu-Chung Pien
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
36
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
37
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
38
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
39
|
Wang K, Lee CW, Sui X, Kim S, Wang S, Higgs AB, Baublis AJ, Voth GA, Liao M, Walther TC, Farese RV. The structure of phosphatidylinositol remodeling MBOAT7 reveals its catalytic mechanism and enables inhibitor identification. Nat Commun 2023; 14:3533. [PMID: 37316513 PMCID: PMC10267149 DOI: 10.1038/s41467-023-38932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Cells remodel glycerophospholipid acyl chains via the Lands cycle to adjust membrane properties. Membrane-bound O-acyltransferase (MBOAT) 7 acylates lyso-phosphatidylinositol (lyso-PI) with arachidonyl-CoA. MBOAT7 mutations cause brain developmental disorders, and reduced expression is linked to fatty liver disease. In contrast, increased MBOAT7 expression is linked to hepatocellular and renal cancers. The mechanistic basis of MBOAT7 catalysis and substrate selectivity are unknown. Here, we report the structure and a model for the catalytic mechanism of human MBOAT7. Arachidonyl-CoA and lyso-PI access the catalytic center through a twisted tunnel from the cytosol and lumenal sides, respectively. N-terminal residues on the ER lumenal side determine phospholipid headgroup selectivity: swapping them between MBOATs 1, 5, and 7 converts enzyme specificity for different lyso-phospholipids. Finally, the MBOAT7 structure and virtual screening enabled identification of small-molecule inhibitors that may serve as lead compounds for pharmacologic development.
Collapse
Affiliation(s)
- Kun Wang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Shuhui Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aidan B Higgs
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron J Baublis
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Harvard T.H. Chan Advanced Multi-Omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
40
|
Coupland CE, Ansell TB, Sansom MSP, Siebold C. Rocking the MBOAT: Structural insights into the membrane bound O-acyltransferase family. Curr Opin Struct Biol 2023; 80:102589. [PMID: 37040671 DOI: 10.1016/j.sbi.2023.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
The membrane-bound O-acyltransferase (MBOAT) superfamily catalyses the transfer of acyl chains to substrates implicated in essential cellular functions. Aberrant function of MBOATs is associated with various diseases and MBOATs are promising drug targets. There has been recent progress in structural characterisation of MBOATs, advancing our understanding of their functional mechanism. Integrating information across the MBOAT family, we characterise a common MBOAT fold and provide a blueprint for substrate and inhibitor engagement. This work provides context for the diverse substrates, mechanisms, and evolutionary relationships of protein and small-molecule MBOATs. Further work should aim to characterise MBOATs, as inherently lipid-associated proteins, within their membrane environment.
Collapse
Affiliation(s)
- Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - T Bertie Ansell
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
41
|
Sui X, Wang K, Song K, Xu C, Song J, Lee CW, Liao M, Farese RV, Walther TC. Mechanism of action for small-molecule inhibitors of triacylglycerol synthesis. Nat Commun 2023; 14:3100. [PMID: 37248213 PMCID: PMC10227072 DOI: 10.1038/s41467-023-38934-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Inhibitors of triacylglycerol (TG) synthesis have been developed to treat metabolism-related diseases, but we know little about their mechanisms of action. Here, we report cryo-EM structures of the TG-synthesis enzyme acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a membrane bound O-acyltransferase (MBOAT), in complex with two different inhibitors, T863 and DGAT1IN1. Each inhibitor binds DGAT1's fatty acyl-CoA substrate binding tunnel that opens to the cytoplasmic side of the ER. T863 blocks access to the tunnel entrance, whereas DGAT1IN1 extends further into the enzyme, with an amide group interacting with more deeply buried catalytic residues. A survey of DGAT1 inhibitors revealed that this amide group may serve as a common pharmacophore for inhibition of MBOATs. The inhibitors were minimally active against the related MBOAT acyl-CoA:cholesterol acyltransferase 1 (ACAT1), yet a single-residue mutation sensitized ACAT1 for inhibition. Collectively, our studies provide a structural foundation for developing DGAT1 and other MBOAT inhibitors.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Kun Wang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Cryo-EM Core Facility, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiunn Song
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
42
|
Borlongan MC, Wang H. Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Front Cell Dev Biol 2023; 11:1125174. [PMID: 37305676 PMCID: PMC10247984 DOI: 10.3389/fcell.2023.1125174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Tumorigenic cancer stem cells (CSCs) represent a subpopulation of cells within the tumor that express genetic and phenotypic profiles and signaling pathways distinct from the other tumor cells. CSCs have eluded many conventional anti-oncogenic treatments, resulting in metastases and relapses of cancers. Effectively targeting CSCs' unique self-renewal and differentiation properties would be a breakthrough in cancer therapy. A better characterization of the CSCs' unique signaling mechanisms will improve our understanding of the pathology and treatment of cancer. In this paper, we will discuss CSC origin, followed by an in-depth review of CSC-associated signaling pathways. Particular emphasis is given on CSC signaling pathways' ligand-receptor engagement, upstream and downstream mechanisms, and associated genes, and molecules. Signaling pathways associated with regulation of CSC development stand as potential targets of CSC therapy, which include Wnt, TGFβ (transforming growth factor-β)/SMAD, Notch, JAK-STAT (Janus kinase-signal transducers and activators of transcription), Hedgehog (Hh), and vascular endothelial growth factor (VEGF). Lastly, we will also discuss milestone discoveries in CSC-based therapies, including pre-clinical and clinical studies featuring novel CSC signaling pathway cancer therapeutics. This review aims at generating innovative views on CSCs toward a better understanding of cancer pathology and treatment.
Collapse
Affiliation(s)
- Mia C. Borlongan
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
| | - Hongbin Wang
- Master Program of Pharmaceutical Science College of Graduate Studies, Elk Grove, CA, United States
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Elk Grove, CA, United States
- Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
43
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
44
|
Yang Q, Qin T, An T, Wu H, Xu G, Xiang J, Lei K, Zhang S, Xia J, Su G, Wang D, Xue M, Kong L, Zhang W, Wu S, Li Y. Novel PORCN inhibitor WHN-88 targets Wnt/β-catenin pathway and prevents the growth of Wnt-driven cancers. Eur J Pharmacol 2023; 945:175628. [PMID: 36858339 DOI: 10.1016/j.ejphar.2023.175628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Wnt/β-catenin signaling pathway is a classical and crucial oncogenic pathway in many carcinomas, and Porcupine (PORCN) is an O-acyltransferase, which is indispensable and highly specific for catalyzing palmitoylation of Wnt ligands and facilitating their secretion and biofunction. Targeting PORCN provides a promising approach to specifically cure Wnt-driven cancers from the root. In this study, we designed series of pyridonyl acetamide compounds, and discovered a novel PORCN inhibitor WHN-88 with a unique di-iodinated pyridone structural fragment, which is significantly different from the reported inhibitors. We demonstrated that WHN-88 effectively abolished palmitoylation of Wnt ligands and prevented their secretion and the subsequent Wnt/β-catenin signaling transduction. Further experiments showed that, at well-tolerated doses, WHN-88 remarkably suppressed the spontaneous occurrence and growth of MMTV-Wnt1 murine breast tumors. Consistently, WHN-88 also notably restrained the progress of xenografted Wnt-driven human tumors, including PA-1 teratocarcinoma with high autocrine Wnt signaling and Aspc-1 pancreatic carcinoma with Wnt-sensitizing RNF43 mutation. Additionally, we disclosed that WHN-88 inhibited cancer cell stemness obviously. Together, we verified WHN-88 is a novel PORCN inhibitor with potent efficacy against the Wnt-driven cancers. Our findings enriched the structural types of PORCN inhibitors, and facilitated the development and application of PORCN inhibiting therapy in clinic.
Collapse
Affiliation(s)
- Qihong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Qin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Hongna Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Gang Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Jin Xiang
- State Key Laboratory of Functions and Applications of Medicinal Plants/School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Kangfan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Shaohua Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Guifeng Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Minggao Xue
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
45
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Muto S, Enta A, Maruya Y, Inomata S, Yamaguchi H, Mine H, Takagi H, Ozaki Y, Watanabe M, Inoue T, Yamaura T, Fukuhara M, Okabe N, Matsumura Y, Hasegawa T, Osugi J, Hoshino M, Higuchi M, Shio Y, Hamada K, Suzuki H. Wnt/β-Catenin Signaling and Resistance to Immune Checkpoint Inhibitors: From Non-Small-Cell Lung Cancer to Other Cancers. Biomedicines 2023; 11:biomedicines11010190. [PMID: 36672698 PMCID: PMC9855612 DOI: 10.3390/biomedicines11010190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. The standard of care for advanced non-small-cell lung cancer (NSCLC) without driver-gene mutations is a combination of an anti-PD-1/PD-L1 antibody and chemotherapy, or an anti-PD-1/PD-L1 antibody and an anti-CTLA-4 antibody with or without chemotherapy. Although there were fewer cases of disease progression in the early stages of combination treatment than with anti-PD-1/PD-L1 antibodies alone, only approximately half of the patients had a long-term response. Therefore, it is necessary to elucidate the mechanisms of resistance to immune checkpoint inhibitors. Recent reports of such mechanisms include reduced cancer-cell immunogenicity, loss of major histocompatibility complex, dysfunctional tumor-intrinsic interferon-γ signaling, and oncogenic signaling leading to immunoediting. Among these, the Wnt/β-catenin pathway is a notable potential mechanism of immune escape and resistance to immune checkpoint inhibitors. In this review, we will summarize findings on these resistance mechanisms in NSCLC and other cancers, focusing on Wnt/β-catenin signaling. First, we will review the molecular biology of Wnt/β-catenin signaling, then discuss how it can induce immunoediting and resistance to immune checkpoint inhibitors. We will also describe other various mechanisms of immune-checkpoint-inhibitor resistance. Finally, we will propose therapeutic approaches to overcome these mechanisms.
Collapse
Affiliation(s)
- Satoshi Muto
- Correspondence: ; Tel.: +81-24-547-1252; Fax: +81-24-548-2735
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Molecular Alterations and Putative Therapeutic Targeting of Planar Cell Polarity Proteins in Breast Cancer. J Clin Med 2023; 12:jcm12020411. [PMID: 36675340 PMCID: PMC9864096 DOI: 10.3390/jcm12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Treatment and outcomes of breast cancer, one of the most prevalent female cancers, have improved in recent decades. However, metastatic breast cancer remains incurable in most cases, and new therapies are needed to ameliorate prognosis. Planar cell polarity (PCP) is a characteristic of epithelial cells that form layers and is integral to the communication of these cells with neighboring cells. Dysfunction of PCP is observed in cancers and may confer a targetable vulnerability. METHODS The breast cancer cohorts from The Cancer Genome Atlas (TCGA) and the METABRIC study were interrogated for molecular alterations in genes of the PCP pathway. The groups with the most prevalent alterations were characterized, and survival was compared with counterparts not possessing PCP alterations. Breast cancer cell lines with PCP alterations from the Cancer Cell Line Encyclopedia (CCLE) were interrogated for sensitivity to drugs affecting PCP. RESULTS Among genes of the PCP pathway, VANGL2, NOS1AP and SCRIB display amplifications in a sizable minority of breast cancers. Concomitant up-regulation at the mRNA level can be observed mostly in basal cancers, but it does not correlate well with the amplification status of the genes, as it can also be observed in non-amplified cases. In an exploration of cell line models, two of the four breast cancer cell line models with amplifications in VANGL2, NOS1AP and SCRIB display sensitivity to drugs inhibiting acyl-transferase porcupine interfering with the WNT pathway. This sensitivity suggests a possible therapeutic role of these inhibitors in cancers bearing the amplifications. CONCLUSION Molecular alterations in PCP genes can be observed in breast cancers with a predilection for the basal sub-type. An imperfect correlation of copy number alterations with mRNA expression suggests that post-translational modifications are important in PCP regulation. Inhibitors of acyl-transferase porcupine may be rational candidates for combination therapy development in PCP-altered breast cancers.
Collapse
|
48
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
49
|
Abstract
WNT/CTNNB1 signaling plays a critical role in the development of all multicellular animals. Here, we include both the embryonic stages, during which tissue morphogenesis takes place, and the postnatal stages of development, during which tissue homeostasis occurs. Thus, embryonic development concerns lineage development and cell fate specification, while postnatal development involves tissue maintenance and regeneration. Multiple tools are available to researchers who want to investigate, and ideally visualize, the dynamic and pleiotropic involvement of WNT/CTNNB1 signaling in these processes. Here, we discuss and evaluate the decisions that researchers need to make in identifying the experimental system and appropriate tools for the specific question they want to address, covering different types of WNT/CTNNB1 reporters in cells and mice. At a molecular level, advanced quantitative imaging techniques can provide spatio-temporal information that cannot be provided by traditional biochemical assays. We therefore also highlight some recent studies to show their potential in deciphering the complex and dynamic mechanisms that drive WNT/CTNNB1 signaling.
Collapse
|
50
|
Gone with the Wnt(less): a mechanistic perspective on the journey of Wnt. Biochem Soc Trans 2022; 50:1763-1772. [PMID: 36416660 DOI: 10.1042/bst20220634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Wnts are short-range signaling proteins, expressed in all metazoans from sponges to humans, critical for cell development and fate. There are 19 different Wnts in the human genome with varying expression levels and patterns, and post-translational modifications. Common to essentially all Wnts is the palmitoleation of a conserved serine by the O-acyltransferase PORCN in the endoplasmic reticulum (ER). All lipidated Wnts then bind a dedicated carrier Wntless (WLS), endowed with the task of transporting them from the ER to the plasma membrane, and ultimately facilitating their release to receptors on the Wnt-receiving cell to initiate signaling. Here, we will focus on the WLS-mediated transport step. There are currently two published structures, both obtained by single-particle cryo-electron microscopy of the Wnt/WLS complex: human Wnt8A-bound and human Wnt3A-bound WLS. We analyze the two Wnt/WLS structures - remarkably similar despite the sequence similarity between Wnt8A and Wnt3A being only ∼39% - to begin to understand the conserved nature of this binding mechanism, and ultimately how one carrier can accommodate a family of 19 different Wnts. By comparing how Wnt associates with WLS with how it binds to PORCN and FZD receptors, we can begin to speculate on mechanisms of Wnt transfer from PORCN to WLS, and from WLS to FZD, thus providing molecular-level insight into these essential steps of the Wnt signaling pathway.
Collapse
|