1
|
Sharma M, Sasaki K, Halada G, Pamula K, Kim T, Wong SS. Ketjenblack-Supported and Unsupported ZrO 2-ZrN Nanoparticle Systems for Enabling Efficient Electrochemical Nitrogen Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39723925 DOI: 10.1021/acsami.4c17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Artificial N2 fixation via the electrocatalytic nitrogen (N2) reduction reaction (NRR) has been recently promoted as a rational route toward reducing energy consumption and CO2 emission as compared with the traditional Haber-Bosch process. Nevertheless, optimizing NRR relies on developing highly efficient electrocatalysts. Herein, we report on the reliable and reproducible synthesis of two promising electrocatalysts in either the presence or absence of Ketjenblack (KB), namely, ZrO2-ZrN@KB and ZrO2-ZrN systems, synthesized through the nitriding of Zr. Both materials had never previously been considered for NRR, to the best of our knowledge. Nevertheless, both of these electrocatalysts incorporated a combination of tetragonal ZrO2, ZrON, and cubic ZrN and showed excellent activity and durability toward NH3 formation. Moreover, the maximum NH3 production rate of 84.1 μg h-1 mg-1 at -0.7 V vs a reversible hydrogen electrode (RHE) was achieved with the ZrO2-ZrN electrocatalyst with an impressive Faradaic efficiency of 21.2% at -0.6 V vs RHE, indicating a high selectivity associated with the NRR. Additionally, the catalysts demonstrated excellent stability during the electrolysis process and recycling tests. We postulate that the combination of exposed active sites of ZrN and ZrO2 likely contributes to the enhanced NRR performance attributed to ZrO2-ZrN.
Collapse
Affiliation(s)
- Mitu Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gary Halada
- Materials Science and Chemical Engineering Department, Stony Brook University,Stony Brook, New York 11794-2275, United States
| | - Krishnakumari Pamula
- Materials Science and Chemical Engineering Department, Stony Brook University,Stony Brook, New York 11794-2275, United States
| | - Taejin Kim
- Materials Science and Chemical Engineering Department, Stony Brook University,Stony Brook, New York 11794-2275, United States
| | - Stanislaus S Wong
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
2
|
Ge X, Zhang C, Janpandit M, Prakash S, Gogoi P, Zhang D, Cook TR, Waterhouse GIN, Yin L, Wang Z, Li YC. Controlling the Reaction Pathways of Mixed NO xH y Reactants in Plasma-Electrochemical Ammonia Synthesis. J Am Chem Soc 2024; 146:35305-35312. [PMID: 39668149 DOI: 10.1021/jacs.4c12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Electrochemical activation of dinitrogen (N2) is notoriously challenging, typically yielding very low ammonia (NH3) production rates. In this study, we present a continuous flow plasma-electrochemical reactor system for the direct conversion of nitrogen from air into ammonia. In our system, nitrogen molecules are first converted into a mixture of NOx species in the plasma reactor, which are then fed into an electrochemical reactor. To selectively convert the generated NOx species into NH3, we employed a graph theory approach combined with first-principles calculations to comprehensively enumerate all possible pathways from N2-to-NH3, pinpointing key intermediates (NH2* and NO*). A series of bimetallic catalysts was then designed to target the optimal adsorption and conversion of the limiting intermediate in the NOx-to-NH3 pathway. Using an optimized CuPd foam catalyst, we demonstrated an ammonia production rate of 81.2 mg h-1 cm-2 with stability over 1000 h at an applied current of 2 A.
Collapse
Affiliation(s)
- Xiaoli Ge
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Chengyi Zhang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Mayuresh Janpandit
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Shwetha Prakash
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Pratahdeep Gogoi
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Daoyang Zhang
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | | | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Yuguang C Li
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
3
|
Kim GM, Choi Y, Choi KR, Lee I, Kim J, Lee B, Lee SY, Lee DC. In vivo synthesis of semiconductor nanoparticles in Azotobacter vinelandii for light-driven ammonia production. NANOSCALE 2024. [PMID: 39699089 DOI: 10.1039/d4nr02177k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Ammonia (NH3) is an important commodity chemical used as an agricultural fertilizer and hydrogen-storage material. There has recently been much interest in developing an environmentally benign process for NH3 synthesis. Here, we report enhanced production of ammonia from diazotrophs under light irradiation using hybrid composites of inorganic nanoparticles (NPs) and bacterial cells. The primary focus of this study lies in the intracellular biosynthesis of semiconductor NPs within Azotobacter vinelandii, a diazotroph, when bacterial cells are cultured in a medium containing precursor molecules. For example, enzymes in bacterial cells, such as cysteine desulfurase, convert cysteine (Cys) into precursors for cadmium sulfide (CdS) synthesis when supplied with CdCl2. Photoexcited charge carriers in the biosynthesized NPs are transferred to nitrogen fixation enzymes, e.g., nitrogenase, facilitating the production of ammonium ions. Notably, the intracellular biosynthesis approach minimizes cell toxicity compared to extracellular synthesis due to the diminished generation of reactive oxygen species. The biohybrid system based on the in vivo approach results in a fivefold increase in ammonia production (0.45 mg gDCW-1 h-1) compared to the case of diazotroph cells only (0.09 mg gDCW-1 h-1).
Collapse
Affiliation(s)
- Gui-Min Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for the Nanocentury (KINC), Energy & Environmental Research Center (EERC), KAIST, Daejeon, Republic of Korea
| | - Yoojin Choi
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyeong Rok Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
- R&D Center, GS Caltex Corporation, Yuseong-gu, Daejeon, Republic of Korea
| | - Ilsong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for the Nanocentury (KINC), Energy & Environmental Research Center (EERC), KAIST, Daejeon, Republic of Korea
| | - Jayeong Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for the Nanocentury (KINC), Energy & Environmental Research Center (EERC), KAIST, Daejeon, Republic of Korea
| | - Byunghyun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for the Nanocentury (KINC), Energy & Environmental Research Center (EERC), KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
- BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- KAIST Institute for the Nanocentury (KINC), Energy & Environmental Research Center (EERC), KAIST, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Yun H, Lim C, Kwon M, Lee D, Yun Y, Seo D, Yong K. Localized High-Concentration Electrolyte in Li-Mediated Nitrogen Reduction for Ammonia Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408280. [PMID: 39434486 PMCID: PMC11619219 DOI: 10.1002/adma.202408280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Indexed: 10/23/2024]
Abstract
The lithium-mediated nitrogen reduction reaction (Li-NRR) is a promising green alternative to the Haber-Bosch process for ammonia synthesis. The solid electrolyte interphase (SEI) is crucial for high efficiency and stability, as it regulates reactant diffusion and suppresses side reactions. The SEI properties are greatly influenced by the Li+ ion solvation structure, which is controllable through electrolyte engineering. Although anion-derived SEI enhances selectivity and stability, it has typically been engineered using high-concentration electrolytes (HCEs), which face mass transfer, viscosity, and cost issues. In this study, a localized high-concentration electrolyte (LHCE) in the Li-NRR is first introduced, enabling the formation of anion-derived SEI in a low-concentration electrolyte (LCE) by enhancing the Li-anion coordination using an antisolvent. Among various antisolvents, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) achieves the highest ammonia Faradaic efficiency (73.6 ± 2.5%), more than double that of the LCE (34.3 ± 2.8%) and exceeding the HCE (56.0 ± 2.8%). Systematic calculations and experimental analyses show that the LHCE exhibits anion-rich solvation structures and forms thin, inorganic SEI. Moreover, the LHCE has advantages of low viscosity and high N2 solubility, which facilitate mass transport. This study suggests the application of LHCE as an effective electrolyte engineering strategy to enhance the Li-NRR efficiency.
Collapse
Affiliation(s)
- Hyeju Yun
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- Research Center for Carbon‐zero Green Ammonia CyclingPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Chaeeun Lim
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- Research Center for Carbon‐zero Green Ammonia CyclingPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Minjun Kwon
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Dongmin Lee
- Nanocatalysis and Surface Science LaboratoryDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673Republic of Korea
| | - Yongju Yun
- Nanocatalysis and Surface Science LaboratoryDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673Republic of Korea
| | - Dong‐Hwa Seo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Kijung Yong
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- Research Center for Carbon‐zero Green Ammonia CyclingPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| |
Collapse
|
5
|
Wu T, Dhaka K, Luo M, Wang B, Wang M, Xi S, Zhang M, Huang F, Exner KS, Lum Y. Cooperative Active Sites on Ag 2Pt 3TiS 6 for Enhanced Low-Temperature Ammonia Fuel Cell Electrocatalysis. Angew Chem Int Ed Engl 2024:e202418691. [PMID: 39587937 DOI: 10.1002/anie.202418691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024]
Abstract
Ammonia has attracted considerable interest as a hydrogen carrier that can help decarbonize global energy networks. Key to realizing this is the development of low temperature ammonia fuel cells for the on-demand generation of electricity. However, the efficiency of such systems is significantly impaired by the sluggish ammonia oxidation reaction (AOR) and oxygen reduction reaction (ORR). Here, we report the design of a bifunctional Ag2Pt3TiS6 electrocatalyst that facilitates both reactions at mass activities exceeding that of commercial Pt/C. Through comprehensive density functional theory calculations, we identify that active site motifs composed of Pt and Ti atoms work cooperatively to catalyze ORR and AOR. Notably, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) experiments indicate a decreased propensity for *NOx formation and hence an increased resistance toward catalyst poisoning for AOR. Employing Ag2Pt3TiS6 as both the cathode and anode, we constructed a low temperature ammonia fuel cell with a high peak power density of 8.71 mW cm-2 and low Pt loading of 0.45 mg cm-2. Our findings demonstrate a pathway towards the rational design of effective electrocatalysts with multi-element active sites that work cooperatively.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Republic of Singapore
| | - Kapil Dhaka
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Mengjia Luo
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Bingqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
| | - Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057, Duisburg, Germany
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
6
|
De Alwis Jayasinghe D, Chen Y, Li J, Rogacka JM, Kippax Jones M, Lu W, Sapchenko S, Yang J, Chansai S, Zhou T, Guo L, Ma Y, Dong L, Polyukhov D, Shan L, Han Y, Crawshaw D, Zeng X, Zhu Z, Hughes L, Frogley MD, Manuel P, Rudić S, Cheng Y, Hardacre C, Schröder M, Yang S. A Flexible Phosphonate Metal-Organic Framework for Enhanced Cooperative Ammonia Capture. J Am Chem Soc 2024; 146:32040-32048. [PMID: 39513623 PMCID: PMC11583364 DOI: 10.1021/jacs.4c12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal-organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100-220 °C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g-1 at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
Collapse
Affiliation(s)
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Jiangnan Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Justyna M Rogacka
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- Department of Micro, Nano and Bioprocess Engineering, Faculty of Chemistry Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Meredydd Kippax Jones
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Wanpeng Lu
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Sergei Sapchenko
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Jinyue Yang
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Sarayute Chansai
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Tianze Zhou
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Lixia Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yujie Ma
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Longzhang Dong
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Daniil Polyukhov
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Lutong Shan
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Yu Han
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Danielle Crawshaw
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Xiangdi Zeng
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Zhaodong Zhu
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Lewis Hughes
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, U.K
| | - Pascal Manuel
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K
| | - Svemir Rudić
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, Chilton OX11 0QX, U.K
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Christopher Hardacre
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Martin Schröder
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Sun Y, Dai L, Sui NLD, Li Y, Tian M, Duan J, Chen S, Lee JM. Direct parallel electrosynthesis of high-value chemicals from atmospheric components on symmetry-breaking indium sites. Proc Natl Acad Sci U S A 2024; 121:e2409620121. [PMID: 39546577 PMCID: PMC11588137 DOI: 10.1073/pnas.2409620121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
To tackle significant environmental and energy challenges from increased greenhouse gas emissions in the atmosphere, we propose a method that synergistically combines cost-efficient integrated systems with parallel catalysis to produce high-value chemicals from CO2, NO, and other gases. We employed asymmetrically stretched InO5S with symmetry-breaking indium sites as a highly efficient trifunctional catalysts for NO reduction, CO2 reduction, and O2 reduction. Mechanistic studies reveal that the symmetry-breaking at indium sites substantially improves d-band center interactions and adsorption of intermediates, thereby enhancing trifunctional catalytic activity. Employed in a flow electrolysis system, the catalyst achieves continuous and flexible production of NH3, HCOO-, and H2O2, maintaining over 90% Faradaic efficiency at industrial scales. Notably, the parallel electrolysis device reported in this study effectively produces high-value products like NH4COOH directly from greenhouse gases in pure water, offering an economically efficient solution for small molecule synthesis and unique insights for the sustainable conversion of inexhaustible gases into valuable products. Therefore, this work possesses considerable potential for future practical applications in sustainable industrial processes.
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
| | - Liming Dai
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Nicole L. D. Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore637141, Singapore
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
| | - Meng Tian
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu214443, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
| |
Collapse
|
8
|
Feng Y, Jiao L, Zhuang X, Wang Y, Yao J. The Development, Essence and Perspective of Nitrogen Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410909. [PMID: 39533455 DOI: 10.1002/adma.202410909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Ammonia plays a pivotal role in agriculture and meanwhile holds promising potential as an energy vector for the hydrogen economy, where the nitrogen reduction to ammonia is a critical pathway for achieving sustainable development. Over the past hundred years, ammonia synthesis has undergone several breakthrough developments from Haber-Bosch process to photo/electro-catalysis and Li-mediated strategy, but still faces the challenges of low yield rate, selectivity and efficiency. Therefore, there is a pressing demand to develop efficient and green ammonia synthesis from nitrogen. This review summarizes the development of the nitrogen reduction to ammonia, highlighting six milestones during the whole journey. From the development direction, this work finds and extracts the essence of ammonia synthesis, that is the reaction pathways are affected by the energy barrier of reaction intermediates, which can be altered by proton sources, auxiliaries and catalysts. Then this work discusses the detailed overview of the significant development of proton source, auxiliaries and catalysts. Finally, based on the essence, the possible opportunities of ammonia synthesis from nitrogen reduction are presented, including the design of new ammonia synthesis pathways and efficient catalysts. The deep insight of nitrogen reduction to ammonia will provide a design guidance for efficient ammonia synthesis.
Collapse
Affiliation(s)
- Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lei Jiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Zhuang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Jiannian Yao
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|
9
|
Mu BS, Xu Y, Tu Z, Zhang Y, Liang W, Li J, Wang X, Shen S, Chen J, Liu Z. Radiocatalytic ammonia synthesis from nitrogen and water. Natl Sci Rev 2024; 11:nwae302. [PMID: 39440259 PMCID: PMC11493089 DOI: 10.1093/nsr/nwae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 10/25/2024] Open
Abstract
The development of alternative methods to the Haber-Bosch process for ammonia (NH3) synthesis is a pressing and formidable challenge. Nuclear energy represents a low-carbon, efficient and stable source of power. The harnessing of nuclear energy to drive nitrogen (N2) reduction not only allows 'green' NH3 synthesis, but also offers the potential for the storage of nuclear energy as a readily transportable zero-carbon fuel. Herein, we explore radiocatalytic N2 fixation to NH3 induced by γ-ray radiation. Hydrated electrons (e- aq) that are generated from water radiolysis enable N2 reduction to produce NH3. Ru-based catalysts synthesized by using γ-ray radiation with excellent radiation stability substantially improve NH3 production in which the B5 sites of Ru particles may play an important role in the activation of N2. By benefitting from the remarkable penetrating power of γ-ray radiation, radiocatalytic NH3 synthesis can proceed in an autoclave under appropriate pressure conditions, resulting in an NH3 concentration of ≤5.1 mM. The energy conversion efficiency of the reaction is as high as 563.7 mgNH3·MJ-1. This radiocatalytic chemistry broadens the research scope of catalytic N2 fixation while offering promising opportunities for converting nuclear energy into chemical energy.
Collapse
Affiliation(s)
- Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yugang Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiqiu Liang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiahao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
10
|
Izelaar B, Ramdin M, Vlierboom A, Pérez-Fortes M, van der Slikke D, Sajeev Kumar A, de Jong W, Mulder FM, Kortlever R. Techno-economic assessment of different small-scale electrochemical NH 3 production plants. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:7983-7998. [PMID: 39398319 PMCID: PMC11462118 DOI: 10.1039/d4ee03299c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Electrochemical ammonia synthesis via the nitrogen reduction reaction (NRR) has been poised as one of the promising technologies for the sustainable production of green ammonia. In this work, we developed extensive process models of fully integrated electrochemical NH3 production plants at small scale (91 tonnes per day), including their techno-economic assessments, for (Li-)mediated, direct and indirect NRR pathways at ambient and elevated temperatures, which were compared with electrified and steam-methane reforming (SMR) Haber-Bosch processes. The levelized cost of ammonia (LCOA) of aqueous NRR at ambient conditions only becomes comparable with SMR Haber-Bosch at very optimistic electrolyzer performance parameters (FE > 80% at j ≥ 0.3 A cm-2) and electricity prices (<$0.024 per kW h). Both high temperature NRR and Li-mediated NRR are not economically comparable within the tested variable ranges. High temperature NRR is very capital intensive due the requirement of a heat exchanger network, more auxiliary equipment and an additional water electrolyzer (considering the indirect route). For Li-mediated NRR, the high lithium plating potentials, ohmic losses and the requirement for H2, limits its commercial competitiveness with SMR Haber-Bosch. This incentivises the search for materials beyond lithium.
Collapse
Affiliation(s)
- Boaz Izelaar
- Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology 2628 CB Delft The Netherlands
| | - Mahinder Ramdin
- Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology 2628 CB Delft The Netherlands
| | - Alexander Vlierboom
- Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology 2628 CB Delft The Netherlands
| | - Mar Pérez-Fortes
- Engineering, Systems and Services Department, Faculty of Technology, Policy and Management, Delft University of Technology 2628 BX Delft The Netherlands
| | - Deanne van der Slikke
- Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology 2628 CB Delft The Netherlands
| | - Asvin Sajeev Kumar
- Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology 2628 CB Delft The Netherlands
| | - Wiebren de Jong
- Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology 2628 CB Delft The Netherlands
| | - Fokko M Mulder
- Chemical Engineering Department, Faculty of Applied Sciences, Delft University of Technology 2629 HZ Delft The Netherlands
| | - Ruud Kortlever
- Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology 2628 CB Delft The Netherlands
| |
Collapse
|
11
|
Atkin R. Concluding remarks: Dense ionic fluids: because sometimes, more is more. Faraday Discuss 2024; 253:510-523. [PMID: 39350597 DOI: 10.1039/d4fd00150h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
It is a formidable challenge, and a distinct privilege, to provide the concluding remarks for this Faraday Discussion on Dense Ionic Fluids (DIFs). What follows is an inherently subjective distillation of the insights that have shaped our understanding of these complex systems over the last few days, with the goal of capturing the essence of the Discussion and providing suggestions for future investigations in this rapidly evolving field. DIFs are a fascinating class of electrolyte systems characterized by high ion concentrations in correlated domains. The multiscale nature of DIFs, and the challenges in connecting nanoscale phenomena to bulk properties, are discussed in the context of contemporary experimental and computational methods. Next, emerging trends are explored, and then the paper concludes by identifying promising future research directions.
Collapse
Affiliation(s)
- Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
12
|
Rakov DA, Ahmed N, Kong Y, Nanjundan AK, Popov I, Sokolov AP, Huang X, Yu C. Exploring the Impact of In Situ-Formed Solid-Electrolyte Interphase on the Cycling Performance of Aluminum Metal Anodes. ACS NANO 2024; 18:28456-28468. [PMID: 39357008 DOI: 10.1021/acsnano.4c11391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions. Specifically, for aluminum-ion batteries (AIBs), the role of the solid-electrolyte interphase (SEI) on the Al0 electrodeposition mechanism and associated changes during resting or cycling remain unclear. Here, we investigated the current-dependent changes at the electrified aluminum anode/ionic liquid electrolyte interface to reveal the conditions of the SEI formation leading to irreversible cycling in the AIBs. We identified that the mechanism of anode failure depends on the nature of the counter electrode, where the areal capacity and cycling current for Al0 electrodeposition dictates the number of successful cycles. Notwithstanding the differences behind unstable aluminum anode cycling in symmetrical cells and AIBs, the uniform removal of electrochemically inactive SEI components, e.g., oxide-rich or solvent-derived organic-rich interphases, leads to more efficient cycling behavior. These understandings raise the importance of using specific conditioning protocols for efficient cycling of the aluminum anode in conjugation with different cathode materials.
Collapse
Affiliation(s)
- Dmitrii A Rakov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Nashaat Ahmed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yueqi Kong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ashok Kumar Nanjundan
- School of Engineering and the Centre for Future Materials, University of Southern Queensland, Springfield, Queensland 4300, Australia
| | - Ivan Popov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xiaodan Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
13
|
Bagger A, Tort R, Titirici MM, Walsh A, Stephens IEL. Electrochemical Nitrogen Reduction: The Energetic Distance to Lithium. ACS ENERGY LETTERS 2024; 9:4947-4952. [PMID: 39416676 PMCID: PMC11474955 DOI: 10.1021/acsenergylett.4c01638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Energy-efficient electrochemical reduction of nitrogen to ammonia could help in mitigating climate change. Today, only Li- and recently Ca-mediated systems can perform the reaction. These materials have a large intrinsic energy loss due to the need to electroplate the metal. In this work, we present a series of calculated energetics, formation energies, and binding energies as fundamental features to calculate the energetic distance between Li and Ca and potential new electrochemical nitrogen reduction systems. The featured energetic distance increases with the standard potential. However, dimensionality reduction using principal component analysis provides an encouraging picture; Li and Ca are not exceptional in this feature space, and other materials should be able to carry out the reaction. However, it becomes more challenging the more positive the plating potential is.
Collapse
Affiliation(s)
- Alexander Bagger
- Department
of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Romain Tort
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, United Kingdom
| | | | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Shin D, Jeon Y, Nguyen VT, Kang S, Hong Y, Lim C, Yong K, Shin H, Hwang YJ. Insight into Fluoride Additives to Enhance Ammonia Production from Lithium-Mediated Electrochemical Nitrogen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404525. [PMID: 38984768 DOI: 10.1002/smll.202404525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Demands for green ammonia production increase due to its application as a proton carrier, and recent achievements in electrochemical Li-mediated nitrogen reduction reactions (Li-NRRs) show promising reliability. Here, it is demonstrated that F-containing additives in the electrolyte improve ammonia production by modulating the solid electrolyte interphase (SEI). It is suggested that the anionic additives with low lowest unoccupied molecular orbital levels enhance efficiency by contributing to the formation of a conductive SEI incorporated with LiF. Specifically, as little as 0.3 wt.% of BF4 - additive to the electrolyte, the Faradaic efficiency (FE) for ammonia production is enhanced by over 15% compared to an additive-free electrolyte, achieving a high yield of 161 ± 3 nmol s-1 cm-2. The BF4 - additive exhibits advantages, with decreased overpotential and improved FE, compared to its use as the bulk electrolyte. The observation of the Li3N upper layer implies that active Li-NRR catalytic cycles are occurring on the outermost SEI, and density functional theory simulations propose that an SEI incorporated with LiF facilitates energy profiles for the protonation by adjusting the binding energies of the intermediates compared to bare copper. This study unlocks the potential of additives and offers insights into the SEIs for efficient Li-NRRs.
Collapse
Affiliation(s)
- Dongwoo Shin
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Yeongbae Jeon
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Vy Thuy Nguyen
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Shinmyeong Kang
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Yewon Hong
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Chaeeun Lim
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Research Center for Carbon-zero Green Ammonia Cycling (RCCGAC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kijung Yong
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Research Center for Carbon-zero Green Ammonia Cycling (RCCGAC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yun Jeong Hwang
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Kong X, Liu C, Xu Z, Zhao J, Ni J, Li H, Zheng T, Xia C, Geng Z, Zeng J. Oriented Synthesis of Glycine from CO 2, N 2, and H 2O via a Cascade Process. Angew Chem Int Ed Engl 2024:e202411160. [PMID: 39192482 DOI: 10.1002/anie.202411160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Air contains carbon, hydrogen, oxygen, and nitrogen elements that are essential for the constitution of amino acids. Converting the air into amino acids, powered with renewable electricity, provides a green and sustainable alternative to petrochemical-based methods that produce waste and pollution. Here, taking glycine as an example, we demonstrated the complete production chain for electrorefining amino acids directly from CO2, N2, and H2O. Such a prospective Scheme was composed of three modules, linked by a spontaneous C-N bond formation process. The high-purity bridging intermediates, separated from the stepwise synthesis, boosted both the carbon selectivity from CO2 to glycine of 91.7 % and nitrogen selectivity from N2 to glycine of 98.7 %. Under the optimum condition, we obtained glycine with a partial current density of 160.8 mA cm-2. The high-purity solid glycine product was acquired with a separation efficiency of 98.4 %. This work unveils a green and sustainable method for the abiotic creation of amino acids from the air components.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zifan Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Ni
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| |
Collapse
|
16
|
Yuan H, Zhu C, Hou Y, Yang HG, Wang H. Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction. JACS AU 2024; 4:3038-3048. [PMID: 39211580 PMCID: PMC11350572 DOI: 10.1021/jacsau.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (Nlat) and the unique ability of Nlat vacancies to activate N2. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH3 via the reductive decomposition of Nlat without N2 activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which Nlat plays a pivotal role in achieving the Volmer process and N2 activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of Nlat vacancy (E vac) can achieve maximum activity and maintain electrochemical stability, while low- or high-E vac ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of Nlat on rocksalt-type MN(100), this maximum activity is limited to a yield of NH3 of only ∼10-15 mol s-1 cm-2. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of Nlat and show that the four-coordinate Nlat can exhibit optimal activity and overcome the performance limitation, while less coordinated Nlat fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.
Collapse
Affiliation(s)
- Haiyang Yuan
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Chen Zhu
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Yu Hou
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Hua Gui Yang
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Wang
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis,
Center for Computational Chemistry and Research Institute of Industrial
Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Yang S, Chu J, Park J, Kim H, Shin B. Enhancement of Lithium-Mediated Nitrogen Reduction by Modifying Center Atom of Tetraalkyl-Type Ionic Liquids. Angew Chem Int Ed Engl 2024:e202411909. [PMID: 39183595 DOI: 10.1002/anie.202411909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
The lithium-mediated nitrogen reduction reaction (Li-NRR) offers a viable alternative to the Haber-Bosch process for ammonia production. However, ethanol, a common proton carrier in Li-NRR, exhibits electrochemical instability, leading to oxidation at the anode or byproduct formation at the cathode. This study replaces alcoholic proton carriers with ionic liquids (ILs), specifically tetrabutylphosphonium chloride (TBPCl) and tetrabutylammonium chloride (TBACl), to examine how the electronegativity differences between the central atom and adjacent carbon of the cation affect catalytic performance. The results show that switching the central atom in tetraalkyl-type ILs markedly enhances performance, specifically resulting in a 1.45-fold increase in Faradaic efficiency (FE) with the transition from phosphonium to ammonium cation of ILs. Additionally, optimal IL concentrations in the electrolyte are identified to maximize ammonia yield. TBACl, in particular, demonstrates enhanced ammonia production and operational stability, achieving an ammonia yield rate of 13.60 nmol/cm2/s, an FE of 39.5 %, and operational stability for over 12 h under conditions of 10 mA/cm2 and 10 atm. This research underscores the potential of precise IL modifications for more efficient and sustainable Li-NRR.
Collapse
Affiliation(s)
- Sungbin Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwoo Chu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Zhang S, Hong H, Zhang R, Wei Z, Wang Y, Chen D, Li C, Li P, Cui H, Hou Y, Wang S, Ho JC, Guo Y, Huang Z, Zhi C. Modulating the Leverage Relationship in Nitrogen Fixation Through Hydrogen-Bond-Regulated Proton Transfer. Angew Chem Int Ed Engl 2024:e202412830. [PMID: 39157915 DOI: 10.1002/anie.202412830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/20/2024]
Abstract
In the electrochemical nitrogen reduction reaction (NRR), a leverage relationship exists between NH3-producing activity and selectivity because of the competing hydrogen evolution reaction (HER), which means that high activity with strong protons adsorption causes low product selectivity. Herein, we design a novel metal-organic hydrogen bonding framework (MOHBF) material to modulate this leverage relationship by a hydrogen-bond-regulated proton transfer pathway. The MOHBF material was composited with reduced graphene oxide (rGO) to form a Ni-N2O2 molecular catalyst (Ni-N2O2/rGO). The unique structure of O atoms in Ni-O-C and N-O-H could form hydrogen bonds with H2O molecules to interfere with protons being directly adsorbed onto Ni active sites, thus regulating the proton transfer mechanism and slowing the HER kinetics, thereby modulating the leverage relationship. Moreover, this catalyst has abundant Ni-single-atom sites enriched with Ni-N/O coordination, conducive to the adsorption and activation of N2. The Ni-N2O2/rGO exhibits simultaneously enhanced activity and selectivity of NH3 production with a maximum NH3 yield rate of 209.7 μg h-1 mgcat. -1 and a Faradaic efficiency of 45.7 %, outperforming other reported single-atom NRR catalysts.
Collapse
Affiliation(s)
- Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Shengnan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, 518061, Shenzhen, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
19
|
Wu J, Wang S, Ji R, Kai D, Kong J, Liu S, Thitsartarn W, Tan BH, Chua MH, Xu J, Loh XJ, Yan Q, Zhu Q. In Situ Characterization Techniques for Electrochemical Nitrogen Reduction Reaction. ACS NANO 2024. [PMID: 39092833 DOI: 10.1021/acsnano.4c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The electrochemical reduction of nitrogen to produce ammonia is pivotal in modern society due to its environmental friendliness and the substantial influence that ammonia has on food, chemicals, and energy. However, the current electrochemical nitrogen reduction reaction (NRR) mechanism is still imperfect, which seriously impedes the development of NRR. In situ characterization techniques offer insight into the alterations taking place at the electrode/electrolyte interface throughout the NRR process, thereby helping us to explore the NRR mechanism in-depth and ultimately promote the development of efficient catalytic systems for NRR. Herein, we introduce the popular theories and mechanisms of the electrochemical NRR and provide an extensive overview on the application of various in situ characterization approaches for on-site detection of reaction intermediates and catalyst transformations during electrocatalytic NRR processes, including different optical techniques, X-ray-based techniques, electron microscopy, and scanning probe microscopy. Finally, some major challenges and future directions of these in situ techniques are proposed.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Rong Ji
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Songlin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Republic of Singapore
| | - Qingyu Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Qiang Zhu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| |
Collapse
|
20
|
Assafiri A, Jia C, Thomas DS, Hibbert DB, Zhao C. Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping. SMALL METHODS 2024; 8:e2301373. [PMID: 38353380 DOI: 10.1002/smtd.202301373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Indexed: 08/18/2024]
Abstract
A facile NMR method is reported for analysis of ammonia from the electrochemical reduction of nitrogen, which compares a calibrated colorimetric method, a calibrated 1H NMR method and two 1H NMR direct measurements using external reference materials. Unlike spectrophotometric methods, 1H NMR requires less bench time and does not require separation of ammonia from the electrolyte. A novel approach to the problem of radiation damping in NMR measurements considered the specific role of hardware tuning. Radiation damping is suppressed improving signal-to-noise ratio and detection limit (1.5 µg L-1). The method is demonstrated to be effective for the analysis of ammonia from direct electrochemical nitrogen reduction in KOH, and from lithium-mediated nitrogen reduction in a non-aqueous solution. An uncertainty budget is prepared for the measurement of ammonia.
Collapse
Affiliation(s)
- Aya Assafiri
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Chen Jia
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Donald S Thomas
- NMR Facility, Mark Wainwright Analytical Center, University of New South Wales, Sydney, 2052, Australia
| | - David B Hibbert
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
21
|
Lim M, Ma Z, O'Connell G, Yuwono JA, Kumar P, Jalili R, Amal R, Daiyan R, Lovell EC. Ru-Induced Defect Engineering in Co 3O 4 Lattice for High Performance Electrochemical Reduction of Nitrate to Ammonium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401333. [PMID: 38602227 DOI: 10.1002/smll.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.
Collapse
Affiliation(s)
- Maggie Lim
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Zhipeng Ma
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - George O'Connell
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jodie A Yuwono
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Priyank Kumar
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rouhollah Jalili
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Laboratories and School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Purohit SV, Mohanty RI, Dash B, Bhanja P, Jena BK. Selective electrochemical nitrogen fixation to ammonia catalyzed by a novel microporous vanadium phosphonate via the distal pathway. Chem Commun (Camb) 2024; 60:7463-7466. [PMID: 38932678 DOI: 10.1039/d4cc01045k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Herein, a microporous organic-inorganic hybrid, vanadium phosphonate (VPn) material has been developed. With the combined advantages of the periodic organic-inorganic skeleton, a regular microporous channel with a crystalline pore wall, and good surface area, VPn displays electrocatalytic NRR activity with a selective NH3 yield (11.84 μg h-1 mgcat-1), faradaic efficiency of 26.29% at -0.6 V and high stability up to 15 h. The isotopic labeling experiment also verifies the electrosynthesis of NH3 both qualitatively and quantitatively. The theoretical simulation reveals that the associative distal route serves as the most favourable pathway during the NRR, with the first protonation step of *N2 leading to *NNH as the potential determining step.
Collapse
Affiliation(s)
- Smruti Vardhan Purohit
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rupali Ipsita Mohanty
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Bibek Dash
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India.
| | - Piyali Bhanja
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India.
| | - Bikash Kumar Jena
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
23
|
Mao X, Bai X, Wu G, Qin Q, O'Mullane AP, Jiao Y, Du A. Electrochemical Reduction of N 2 to Ammonia Promoted by Hydrated Cation Ions: Mechanistic Insights from a Combined Computational and Experimental Study. J Am Chem Soc 2024; 146:18743-18752. [PMID: 38916520 DOI: 10.1021/jacs.4c06629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Alkali ions, major components at the electrode-electrolyte interface, are crucial to modulating reaction activity and selectivity of catalyst materials. However, the underlying mechanism of how the alkali ions catalyze the N2 reduction reaction (NRR) into ammonia remains elusive, posing challenges for experimentalists to select appropriate electrolyte solutions. In this work, by employing a combined experimental and computational approach, we proposed four essential roles of cation ions at Fe electrodes for N2 fixation: (i) promoting NN bond cleavage; (ii) stabilizing NRR intermediates; (iii) suppressing the competing hydrogen evolution reaction (HER); and (iv) modulating the interfacial charge distribution at the electrode-electrolyte interface. For N2 adsorption on an Fe electrode with cation ions, our constrained ab initio molecular dynamic (c-AIMD) results demonstrate a barrierless process, while an extra 0.52 eV barrier requires to be overcome to adsorb N2 for the pure Fe-water interface. For the formation of *NNH species within the N2 reduction process, the calculated free energy barrier is 0.50 eV at the Li+-Fe-water interface. However, the calculated barrier reaches 0.81 eV in pure Fe-water interface. Furthermore, experiments demonstrate a high Faradaic efficiency for ammonia synthesis on a Li+-Fe-water interface, reaching 27.93% at a working potential of -0.3 V vs RHE and pH = 6.8. These results emphasize how alkali metal cations and local reaction environments on the electrode surface play crucial roles in influencing the kinetics of interfacial reactions.
Collapse
Affiliation(s)
- Xin Mao
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4001, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaowan Bai
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Guanzheng Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002 China
| | - Qing Qin
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002 China
| | - Anthony P O'Mullane
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4001, Australia
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4001, Australia
| |
Collapse
|
24
|
Lv SH, Wang Y, Wang DB, Song CX. Defect Engineering in Bi-Based Photo/Electrocatalysts for Nitrogen Reduction to Ammonia. Chemistry 2024; 30:e202400342. [PMID: 38687194 DOI: 10.1002/chem.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Main group Bi-based materials have gained popularity as N2 reduction reaction (NRR) photo/electrocatalysts due to their ability to inhibit competitive H2 evolution reactions (HER) and the unique N2 adsorption activities. The introduction of defects in Bi-based catalysts represents a highly effective strategy for enhancing light absorption, promoting efficient separation of photogenerated carriers, optimizing the activity of free radicals, regulating electronic structure, and improving catalytic performance. In this review, we outline the various applications of state of the defect engineering in Bi-based catalysts and elucidate the impact of vacancies on NRR performance. In particular, the types of defects, methods of defects tailoring, advanced characterization techniques, as well as the Bi-based catalysts with abundant defects and their corresponding catalytic behavior in NRR were elucidated in detail. Finally, the main challenges and opportunities for future development of defective Bi-based NRR catalysts are discussed, which provides a comprehensive theoretical guidance for this field.
Collapse
Affiliation(s)
- Shuhua H Lv
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Ying Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Debao B Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Caixia X Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
25
|
Liu M, Ma Y, Zhang S, Chen M, Wu L. Regulating Interfacial Microenvironment in Aqueous Electrolyte via a N 2 Filtering Membrane for Efficient Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309200. [PMID: 38733091 PMCID: PMC11267261 DOI: 10.1002/advs.202309200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Indexed: 05/13/2024]
Abstract
Electrochemical synthesis of ammonia (NH3) in aqueous electrolyte has long been suffered from poor nitrogen (N2) supply owing to its low solubility and sluggish diffusion kinetics. Therefore, creating a N2 rich microenvironment around catalyst surface may potentially improve the efficiency of nitrogen reduction reaction (NRR). Herein, a delicately designed N2 filtering membrane consisted of polydimethylsiloxane is covered on catalyst surface via superspreading. Because this membrane let the dissolved N2 molecules be accessible to the catalyst but block excess water, the designed N2 rich microenvironment over catalyst leads to an optimized Faradaic efficiency of 39.4% and an NH3 yield rate of 109.2 µg h-1 mg-1, which is superior to those of the most report metal-based catalysts for electrochemical NRR. This study offers alternative strategy for enhancing NRR performance.
Collapse
Affiliation(s)
- Mengdi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Yan Ma
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Sai Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| |
Collapse
|
26
|
Ma X, Liu Z, Sun H, Liang Y, Zhou H, Sun H. Cu(N 2)-Li Battery for Ammonia Synthesis. J Phys Chem Lett 2024; 15:6435-6442. [PMID: 38865163 DOI: 10.1021/acs.jpclett.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The cathodic mechanism of Li-N2 batteries is similar to Li-mediated N2 reduction (LiNR). Herein, the Li-N2, LiNR, and Cu-Li battery were amalgamated to a milliliter-scale Cu(N2)-Li system. The utilization of a lithium anode with lithium oxidation reaction (LiOR), ensures an uninterrupted supply of lithium ions to active N2. LiOR not only enhances electrolyte stability but also reduces voltage by stripping Li ions, in contrast to the inert platinum anode, commonly employed in LiNR. Notably, an unusual observation of ammonia accumulation within the anode chamber elucidates the presence and role of reaction intermediates. The charging process aimed at lithium regeneration faces high polarization, and a cycling procedure involving low-current charging was proposed to improve cycling. This study integrates insights from three distinct research directions to leverage their respective advantages and scientific insights. The Li-N2 battery emerges as a highly advantageous strategy for ammonia synthesis due to the progressiveness of lithium anode.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Zhiyang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Houkang Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Yongxiang Liang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| |
Collapse
|
27
|
Wang G, Wang C, Tian X, Li Q, Liu S, Zhao X, Waterhouse GIN, Zhao X, Lv X, Xu J. Facile Construction of CuFe-Based Metal Phosphides for Synergistic NO x -Reduction to NH 3 and Zn-Nitrite Batteries in Electrochemical Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311439. [PMID: 38161250 DOI: 10.1002/smll.202311439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The electrocatalytic nitrite/nitrate reduction reaction (eNO2RR/eNO3RR) offer a promising route for green ammonia production. The development of low cost, highly selective and long-lasting electrocatalysts for eNO2RR/eNO3RR is challenging. Herein, a method is presented for constructing Cu3P-Fe2P heterostructures on iron foam (CuFe-P/IF) that facilitates the effective conversion of NO2 - and NO3 - to NH3. At -0.1 and -0.2 V versus RHE (reversible hydrogen electrode), CuFe-P/IF achieves a Faradaic efficiency (FE) for NH3 production of 98.36% for eNO2RR and 72% for eNO3RR, while also demonstrating considerable stability across numerous cycles. The superior performance of CuFe-P/IF catalyst is due tothe rich Cu3P-Fe2P heterstuctures. Density functional theory calculations have shed light on the distinct roles that Cu3P and Fe2P play at different stages of the eNO2RR/eNO3RR processes. Fe2P is notably active in the early stages, engaging in the capture of NO2 -/NO3 -, O─H formation, and N─OH scission. Conversely, Cu3P becomes more dominant in the subsequent steps, which involve the formation of N─H bonds, elimination of OH* species, and desorption of the final products. Finally, a primary Zn-NO2 - battery is assembled using CuFe-P/IF as the cathode catalyst, which exhibits a power density of 4.34 mW cm-2 and an impressive NH3 FE of 96.59%.
Collapse
Affiliation(s)
- Guoqiang Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chuanjun Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, 271018, China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Qiang Li
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Shenjie Liu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiuying Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | | | - Xin Zhao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoqing Lv
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Tai'an, Shandong, 271018, China
| |
Collapse
|
28
|
Quoie Jr GDS, Jiao M, Lászlód K, Wang Y. Progress Made in Non-Metallic-Doped Materials for Electrocatalytic Reduction in Ammonia Production. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2419. [PMID: 38793485 PMCID: PMC11122855 DOI: 10.3390/ma17102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The electrocatalytic production of ammonia has garnered considerable interest as a potentially sustainable technology for ammonia synthesis. Recently, non-metallic-doped materials have emerged as promising electrochemical catalysts for this purpose. This paper presents a comprehensive review of the latest research on non-metallic-doped materials for electrocatalytic ammonia production. Researchers have engineered a variety of materials, doped with non-metals such as nitrogen (N), boron (B), phosphorus (P), and sulfur (S), into different forms and structures to enhance their electrocatalytic activity and selectivity. A comparison among different non-metallic dopants reveals their distinct effects on the electrocatalytic performance for ammonia production. For instance, N-doping has shown enhanced activity owing to the introduction of nitrogen vacancies (NVs) and improved charge transfer kinetics. B-doping has demonstrated improved selectivity and stability, which is attributed to the formation of active sites and the suppression of competing reactions. P-doping has exhibited increased ammonia generation rates and Faradaic efficiencies, likely due to the modification of the electronic structure and surface properties. S-doping has shown potential for enhancing electrocatalytic performance, although further investigations are needed to elucidate the underlying mechanisms. These comparisons provide valuable insights for researchers to conduct in-depth studies focusing on specific non-metallic dopants, exploring their unique properties, and optimizing their performance for electrocatalytic ammonia production. However, we consider it a priority to provide insight into the recent progress made in non-metal-doped materials and their potential for enabling long-term and efficient electrochemical ammonia production. Additionally, this paper discusses the synthetic procedures used to produce non-metal-doped materials and highlights the advantages and disadvantages of each method. It also provides an in-depth analysis of the electrochemical performance of these materials, including their Faradaic efficiencies, ammonia yield rate, and selectivity. It examines the challenges and prospects of developing non-metallic-doped materials for electrocatalytic ammonia production and suggests future research directions.
Collapse
Affiliation(s)
- Gerald D. S. Quoie Jr
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (G.D.S.Q.J.); (M.J.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mingshuo Jiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (G.D.S.Q.J.); (M.J.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Krisztina Lászlód
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (G.D.S.Q.J.); (M.J.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
29
|
Jin D, Chen A, Lin BL. What Metals Should Be Used to Mediate Electrosynthesis of Ammonia from Nitrogen and Hydrogen from a Thermodynamic Standpoint? J Am Chem Soc 2024; 146:12320-12323. [PMID: 38597430 DOI: 10.1021/jacs.4c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Recently, metal-mediated electrochemical conversion of nitrogen and hydrogen to ammonia (M-eNRRs) has been attracting intense research attention as a potential route for ammonia synthesis under ambient conditions. However, which metals should be used to mediate M-eNRRs remains unanswered. This work provides an extensive comparison of the energy consumption in the classical Haber Bosch (H-B) process and the M-eNRRs. The results indicate that when employing lithium and calcium, metals popularly used to mediate the M-eNRRs, the energy consumption is more than 10 times greater than that of the H-B process even assuming a 100% Faradaic efficiency and zero overpotentials. Only electrosynthesis with a cell voltage not exceeding 0.38 V might have the potential to rival the H-B process from an energetic perspective. A further analysis of other metals in the periodic table reveals that only some heavy metals, including In, Tl, Co, Ni, Ga, Mo, Sn, Pb, Fe, W, Ge, Re, Bi, Cu, Po, Tc, Ru, Rh, Ag, Hg, Pd, Ir, Pt, and Au, can potentially consume less energy than that of the H-B process purely from a thermodynamic standpoint, but whether they can activate N2 under ambient conditions is yet to be explored. This work shows the importance of performing thermodynamic analysis for the development of an innovative strategy to synthesize ammonia with the ultimate goal of replacing the H-B process on a large scale.
Collapse
Affiliation(s)
- Dongling Jin
- School of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology (SIST), ShanghaiTech University, Shanghai, 201210, China
| | - Anqi Chen
- CarbonXtech Co., Ltd., Shanghai, 200041, China
| | - Bo-Lin Lin
- School of Physical Science and Technology (SPST), ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
30
|
Li S, Zhou Y, Fu X, Pedersen JB, Saccoccio M, Andersen SZ, Enemark-Rasmussen K, Kempen PJ, Damsgaard CD, Xu A, Sažinas R, Mygind JBV, Deissler NH, Kibsgaard J, Vesborg PCK, Nørskov JK, Chorkendorff I. Long-term continuous ammonia electrosynthesis. Nature 2024; 629:92-97. [PMID: 38503346 DOI: 10.1038/s41586-024-07276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.
Collapse
Affiliation(s)
- Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yuanyuan Zhou
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Pedersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mattia Saccoccio
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Suzanne Z Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Paul J Kempen
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Danvad Damsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aoni Xu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rokas Sažinas
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Niklas H Deissler
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter C K Vesborg
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens K Nørskov
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
31
|
Mushtaq MA, Kumar A, Liu W, Ji Q, Deng Y, Yasin G, Saad A, Raza W, Zhao J, Ajmal S, Wu Y, Ahmad M, Lashari NUR, Wang Y, Li T, Sun S, Zheng D, Luo Y, Cai X, Sun X. A Metal Coordination Number Determined Catalytic Performance in Manganese Borides for Ambient Electrolysis of Nitrogen to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313086. [PMID: 38341608 DOI: 10.1002/adma.202313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Indexed: 02/12/2024]
Abstract
A new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnBx) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N2 on the Mn catalytic sites (*) and the hydrogenation of N2 to form *NNH intermediates. Furthermore, the increase in coordination number reduces the charge density of Mn atoms at the Fermi level, which facilitates the desorption of ammonia from the catalyst surface. Notably, the MnB4 compound with a Mn coordination number of up to 12 exhibits a high ammonia yield rate (74.9 ± 2.1 µg h-1 mgcat -1) and Faradaic efficiency (38.5 ± 2.7%) at -0.3 V versus reversible hydrogen electrode (RHE) in a 0.1 m Li2SO4 electrolyte, exceeding those reported for other boron-related catalysts.
Collapse
Affiliation(s)
- Muhammad Asim Mushtaq
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Wei Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qianqian Ji
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yonggui Deng
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ghulam Yasin
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ali Saad
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Waseem Raza
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jie Zhao
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Saira Ajmal
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yanyan Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Muhammad Ahmad
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Najeeb Ur Rehman Lashari
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
32
|
Liu W, Xia M, Zhao C, Chong B, Chen J, Li H, Ou H, Yang G. Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions. Nat Commun 2024; 15:3524. [PMID: 38664388 PMCID: PMC11045753 DOI: 10.1038/s41467-024-47765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
While electrochemical N2 reduction presents a sustainable approach to NH3 synthesis, addressing the emission- and energy-intensive limitations of the Haber-Bosch process, it grapples with challenges in N2 activation and competing with pronounced hydrogen evolution reaction. Here we present a tandem air-NOx-NOx--NH3 system that combines non-thermal plasma-enabled N2 oxidation with Ni(OH)x/Cu-catalyzed electrochemical NOx- reduction. It delivers a high NH3 yield rate of 3 mmol h-1 cm-2 and a corresponding Faradaic efficiency of 92% at -0.25 V versus reversible hydrogen electrode in batch experiments, outperforming previously reported ones. Furthermore, in a flow mode concurrently operating the non-thermal plasma and the NOx- electrolyzer, a stable NH3 yield rate of approximately 1.25 mmol h-1 cm-2 is sustained over 100 h using pure air as the intake. Mechanistic studies indicate that amorphous Ni(OH)x on Cu interacts with hydrated K+ in the double layer through noncovalent interactions and accelerates the activation of water, enriching adsorbed hydrogen species that can readily react with N-containing intermediates. In situ spectroscopies and density functional theory (DFT) results reveal that NOx- adsorption and their hydrogenation process are optimized over the Ni(OH)x/Cu surface. This work provides new insights into electricity-driven distributed NH3 production using natural air at ambient conditions.
Collapse
Grants
- This work was supported by the National Key R&D Program of China (2020YFA0710000, G.Y.), Joint Funds of the National Natural Science Foundation of China (U22A20391, G.Y.), National Natural Science Foundation of China (Grant Nos. 22108214, 22078256, G.Y.), Innovation Capability Support Program of Shaanxi (NO. 2023-CX-TD-26, G.Y.), and the Programme of Introducing Talents of Discipline to Universities (B23025, G.Y.)
Collapse
Affiliation(s)
- Wei Liu
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Mengyang Xia
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chao Zhao
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ben Chong
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiahe Chen
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - He Li
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Honghui Ou
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guidong Yang
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
33
|
Fernández C, Chapman O, Brown MA, Alvarez-Pugliese CE, Hatzell MC. Achieving Decentralized, Electrified, and Decarbonized Ammonia Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6964-6977. [PMID: 38602491 PMCID: PMC11044596 DOI: 10.1021/acs.est.3c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The rapid reduction in the cost of renewable energy has motivated the transition from carbon-intensive chemical manufacturing to renewable, electrified, and decarbonized technologies. Although electrified chemical manufacturing technologies differ greatly, the feasibility of each electrified approach is largely related to the energy efficiency and capital cost of the system. Here, we examine the feasibility of ammonia production systems driven by wind and photovoltaic energy. We identify the optimal regions where wind and photovoltaic electricity production may be able to meet the local demand for ammonia-based fertilizers and set technology targets for electrified ammonia production. To compete with the methane-fed Haber-Bosch process, electrified ammonia production must reach energy efficiencies of above 20% for high natural gas prices and 70% for low natural gas prices. To account for growing concerns regarding access to water, geospatial optimization considers water stress caused by new ammonia facilities, and recommendations ensure that the identified regions do not experience an increase in water stress. Reducing water stress by 99% increases costs by only 1.4%. Furthermore, a movement toward a more decentralized ammonia supply chain driven by wind and photovoltaic electricity can reduce the transportation distance for ammonia by up to 76% while increasing production costs by 18%.
Collapse
Affiliation(s)
- Carlos
A. Fernández
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Oliver Chapman
- School
of Public Policy, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marilyn A. Brown
- School
of Public Policy, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Marta C. Hatzell
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| |
Collapse
|
34
|
Kani NC, Goyal I, Gauthier JA, Shields W, Shields M, Singh MR. Pathway toward Scalable Energy-Efficient Li-Mediated Ammonia Synthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16203-16212. [PMID: 38506506 DOI: 10.1021/acsami.3c19499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lithium-mediated ammonia synthesis (LiMAS) is an emerging electrochemical method for NH3 production, featuring a meticulous three-step process involving Li+ electrodeposition, Li nitridation, and Li3N protolysis. The essence lies in the electrodeposition of Li+, a critical phase demanding current oscillations to fortify the solid-electrolyte interface (SEI) and ensure voltage stability. This distinctive operational cadence orchestrates Li nitridation and Li3N protolysis, profoundly influencing the NH3 selectivity. Increasing N2 pressure enhances the NH3 faradaic efficiency (FE) up to 20 bar, beyond which proton availability controls selectivity between Li nitridation and Li3N protolysis. The proton donor, typically alcohols, is a key factor, with 1-butanol observed to yield the highest NH3 FE. Counterion in the Li salt is also observed to be significant, with larger anions (e.g., exemplified by BF4-) improving SEI stability, directly impacting LiMAS efficacy. Notably, we report a peak NH3 FE of ∼70% and an NH3 current density of ∼-100 mA/cm2 via a delicate balance of process conditions, encompassing N2 pressure, proton donor, Li salt, and their respective concentrations. In contrast to the recent literature, we find that the theoretical maximum energy efficiency of LiMAS hinges significantly on the proton source, with LiMAS utilizing H2O calculated to have a maximum achievable energy efficiency of 27.8%. Despite inherent challenges, a technoeconomic analysis suggests high-pressure LiMAS to be more feasible than both ambient LiMAS and a modified green Haber-Bosch process. Our analysis finds that, at a 100 mA/cm2 NH3 current density and a 6 V cell voltage, LiMAS delivers green NH3 at an all-inclusive cost of $456 per ton, significantly lower than conventional cost barriers. Our economic analysis underscores high-pressure LiMAS as a potentially transformative technology that may revolutionize large-scale NH3 production, paving the way for a sustainable future.
Collapse
Affiliation(s)
- Nishithan C Kani
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ishita Goyal
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Joseph A Gauthier
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Windom Shields
- General Ammonia Company LLC, 3155 Lakeshore Avenue, Maple Plain, Minnesota 55359, United States
| | - Mitchell Shields
- General Ammonia Company LLC, 3155 Lakeshore Avenue, Maple Plain, Minnesota 55359, United States
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
35
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
36
|
Fu X, Xu A, Pedersen JB, Li S, Sažinas R, Zhou Y, Andersen SZ, Saccoccio M, Deissler NH, Mygind JBV, Kibsgaard J, Vesborg PCK, Nørskov JK, Chorkendorff I. Phenol as proton shuttle and buffer for lithium-mediated ammonia electrosynthesis. Nat Commun 2024; 15:2417. [PMID: 38499554 PMCID: PMC10948763 DOI: 10.1038/s41467-024-46803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Ammonia is a crucial component in the production of fertilizers and various nitrogen-based compounds. Now, the lithium-mediated nitrogen reduction reaction (Li-NRR) has emerged as a promising approach for ammonia synthesis at ambient conditions. The proton shuttle plays a critical role in the proton transfer process during Li-NRR. However, the structure-activity relationship and design principles for effective proton shuttles have not yet been established in practical Li-NRR systems. Here, we propose a general procedure for verifying a true proton shuttle and established design principles for effective proton shuttles. We systematically evaluate several classes of proton shuttles in a continuous-flow reactor with hydrogen oxidation at the anode. Among the tested proton shuttles, phenol exhibits the highest Faradaic efficiency of 72 ± 3% towards ammonia, surpassing that of ethanol, which has been commonly used so far. Experimental investigations including operando isotope-labelled mass spectrometry proved the proton-shuttling capability of phenol. Further mass transport modeling sheds light on the mechanism.
Collapse
Affiliation(s)
- Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aoni Xu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Pedersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rokas Sažinas
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yuanyuan Zhou
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Suzanne Z Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mattia Saccoccio
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Niklas H Deissler
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter C K Vesborg
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens K Nørskov
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
37
|
Araujo RB, Edvinsson T. Supervised AI and Deep Neural Networks to Evaluate High-Entropy Alloys as Reduction Catalysts in Aqueous Environments. ACS Catal 2024; 14:3742-3755. [PMID: 38510666 PMCID: PMC10949192 DOI: 10.1021/acscatal.3c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Competitive surface adsorption energies on catalytic surfaces constitute a fundamental aspect of modeling electrochemical reactions in aqueous environments. The conventional approach to this task relies on applying density functional theory, albeit with computationally intensive demands, particularly when dealing with intricate surfaces. In this study, we present a methodological exposition of quantifying competitive relationships within complex systems. Our methodology leverages quantum-mechanical-guided deep neural networks, deployed in the investigation of quinary high-entropy alloys composed of Mo-Cr-Mn-Fe-Co-Ni-Cu-Zn. These alloys are under examination as prospective electrocatalysts, facilitating the electrochemical synthesis of ammonia in aqueous media. Even in the most favorable scenario for nitrogen fixation identified in this study, at the transition from O and OH coverage to surface hydrogenation, the probability of N2 coverage remains low. This underscores the fact that catalyst optimization alone is insufficient for achieving efficient nitrogen reduction. In particular, these insights illuminate that system consideration with oxygen- and hydrogen-repelling approaches or high-pressure solutions would be necessary for improved nitrogen reduction within an aqueous environment.
Collapse
Affiliation(s)
- Rafael B. Araujo
- Department
of Materials Science and Engineering, Solid State Physics, Uppsala University, Box 35, 75103 Uppsala, Sweden
| | - Tomas Edvinsson
- Department
of Materials Science and Engineering, Solid State Physics, Uppsala University, Box 35, 75103 Uppsala, Sweden
- Energy
Materials Laboratory, School of Natural and Environmental Science, Newcastle University, NE1 7RU Newcastle Upon Tyne, U.K.
| |
Collapse
|
38
|
Ren Y, Li S, Yu C, Zheng Y, Wang C, Qian B, Wang L, Fang W, Sun Y, Qiu J. NH 3 Electrosynthesis from N 2 Molecules: Progresses, Challenges, and Future Perspectives. J Am Chem Soc 2024; 146:6409-6421. [PMID: 38412558 DOI: 10.1021/jacs.3c11676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Green ammonia (NH3), made by using renewable electricity to split nearly limitless nitrogen (N2) molecules, is a vital platform molecule and an ideal fuel to drive the sustainable development of human society without carbon dioxide emission. The NH3 electrosynthesis field currently faces the dilemma of low yield rate and efficiency; however, decoupling the overlapping issues of this area and providing guidelines for its development directions are not trivial because it involves complex reaction process and multidisciplinary entries (for example, electrochemistry, catalysis, interfaces, processes, etc.). In this Perspective, we introduce a classification scheme for NH3 electrosynthesis based on the reaction process, namely, direct (N2 reduction reaction) and indirect electrosynthesis (Li-mediated/plasma-enabled NH3 electrosynthesis). This categorization allows us to finely decouple the complicated reaction pathways and identify the specific rate-determining steps/bottleneck issues for each synthesis approach such as N2 activation, H2 evolution side reaction, solid-electrolyte interphase engineering, plasma process, etc. We then present a detailed overview of the latest progresses on solving these core issues in terms of the whole electrochemical system covering the electrocatalysts, electrodes, electrolytes, electrolyzers, etc. Finally, we discuss the research focuses and the promising strategies for the development of NH3 electrosynthesis in the future with a multiscale perspective of atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes/interfaces, and macroscale electrolyzers/processes. It is expected that this Perspective will provide the readers with an in-depth understanding of the bottleneck issues and insightful guidance on designing the efficient NH3 electrosynthesis systems.
Collapse
Affiliation(s)
- Yongwen Ren
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yihan Zheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingzhi Qian
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Linshan Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenhui Fang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Wang C, Yu C, Qian B, Ren Y, Wang L, Xie Y, Tan X, He X, Qiu J. FeOOH with Low Spin State Iron as Electron Acceptors for High Yield Rate Electrosynthesis of Urea from Nitrate and Carbon Dioxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307349. [PMID: 38105349 DOI: 10.1002/smll.202307349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/28/2023] [Indexed: 12/19/2023]
Abstract
Co electroreduction of carbon dioxide and nitrate to synthesize urea provides an alternative strategy to high energy-consumption traditional methods. However, the complexity of the reaction mechanism and the high energy barrier of nitrate reduction result in a diminished production of urea. Herein, a convenient electrodeposition technique to prepare the FeOOH with low spin state iron that increases the yield rate of urea efficiently is employed. According to soft X-ray Absorption Spectroscopy and theoretical calculations, the unique configuration of low spin state iron as electron acceptors can effectively induce electron pair transfer from the occupied σ orbitals of intermediate * NO to empty d orbitals of iron. This σ→d donation mechanism leads to a reduction in the energy barrier associated with the rate-determining step (* NOOH→* NO + * OH), hence augmenting the urea generation. The low spin state iron presents a high urea yield rate of 512 µg h-1 cm-2 , representing approximately two times compared to the medium spin state iron. The key intermediates (* NH2 and * CO) in the formation of C─N bond are detected with in situ Fourier transform infrared spectroscopy. The coupling of * NH2 and * CO contributes to the formation of * CONH2 , which subsequently endures multi-step proton-coupled electron transfer to generate urea.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Bingzhi Qian
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yongwen Ren
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Linshan Wang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyang Xie
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinyi Tan
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaojun He
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan, 243002, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
40
|
Chen C, Jin H, Wang P, Sun X, Jaroniec M, Zheng Y, Qiao SZ. Local reaction environment in electrocatalysis. Chem Soc Rev 2024; 53:2022-2055. [PMID: 38204405 DOI: 10.1039/d3cs00669g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huanyu Jin
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaogang Sun
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
41
|
Gao Z, Zhao ZH, Wang H, Bai Y, Zhang X, Zhang Z, Mei H, Yuan M, Zhang G. Jahn-Teller Distortions Induced by in situ Li Migration in λ-MnO 2 for Boosting Electrocatalytic Nitrogen Fixation. Angew Chem Int Ed Engl 2024; 63:e202318967. [PMID: 38153676 DOI: 10.1002/anie.202318967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
Lithium-mediated electrochemical nitrogen reduction reaction (Li-NRR) completely eschews the competitive hydrogen evolution reaction (HER) occurred in aqueous system, whereas the continuous deposition of lithium readily blocks the active sites and further reduces the reaction kinetics. Herein, we propose an innovative in situ Li migration strategy to realize that Li substitutes Mn sites in λ-MnO2 instead of evolving into the dead Li. Comprehensive characterizations corroborate that the intercalation of Li+ at high voltage breaks the structural integrity of MnO6 octahedron and further triggers unique Jahn-Teller distortions, which promotes the spin state regulation of Mn sites to generate the ameliorative eg orbital configuration and accelerates N≡N bond cleavage via eg -σ and eg -π* interaction. To this end, the resulted cationic disordered LiMnO4 delivers the recorded highest NH3 yield rate of 220 μg h-1 cm-2 and a Faradaic efficiency (FE) 83.80 % in organic electrolyte.
Collapse
Affiliation(s)
- Zijian Gao
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, P. R. China
- Center of Materials Science and Optoeletronics Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhi-Hao Zhao
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Haifan Wang
- Center of Materials Science and Optoeletronics Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiling Bai
- State Key Laboratory of Coal Conversion, CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co. Ltd, Beijing, 101400, P. R. China
| | - Xuehua Zhang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- State Key Laboratory of Petroleum Molecular & Process Engineering(RIPP, SINOPEC), Beijing, 101407, P. R. China
| | - Zeyu Zhang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hui Mei
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Menglei Yuan
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Guangjin Zhang
- Center of Materials Science and Optoeletronics Engineering, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
42
|
Li S, Liu YT, Zhang YC, Du Y, Gao J, Zhai J, Liang Y, Han C, Zhu XD. Enhanced N 2 Adsorption and Activation by Combining Re Clusters and In Vacancies as Dual Sites for Efficient and Selective Electrochemical NH 3 Synthesis. NANO LETTERS 2024; 24:748-756. [PMID: 38166417 DOI: 10.1021/acs.nanolett.3c04416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The electrochemical N2 reduction reaction (NRR) is a green and energy-saving sustainable technology for NH3 production. However, high activity and high selectivity can hardly be achieved in the same catalyst, which severely restricts the development of the electrochemical NRR. In2Se3 with partially occupied p-orbitals can suppress the H2 evolution reaction (HER), which shows excellent selectivity in the electrochemical NRR. The presence of VIn can simultaneously provide active sites and confine Re clusters through strong charge transfer. Additionally, well-isolated Re clusters stabilized on In2Se3 by the confinement effect of VIn result in Re-VIn active sites with maximum availability. By combining Re clusters and VIn as dual sites for spontaneous N2 adsorption and activation, the electrochemical NRR performance is enhanced significantly. As a result, the Re-In2Se3-VIn/CC catalyst delivers a high NH3 yield rate (26.63 μg h-1 cm-2) and high FEs (30.8%) at -0.5 V vs RHE.
Collapse
Affiliation(s)
- Shaoquan Li
- State key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yong-Chao Zhang
- State key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yue Du
- State key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Gao
- State key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jingru Zhai
- Weichai Holding Group Co., Ltd., Weifang 261000, China
| | - Yue Liang
- State key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Caidi Han
- State key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiao-Dong Zhu
- State key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
43
|
Liao P, Kang J, Xiang R, Wang S, Li G. Electrocatalytic Systems for NO x Valorization in Organonitrogen Synthesis. Angew Chem Int Ed Engl 2024; 63:e202311752. [PMID: 37830922 DOI: 10.1002/anie.202311752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Inorganic nitrogen oxide (NOx ) species, such as NO, NO2 , NO3 - , NO2 - generated from the decomposition of organic matters, volcanic eruptions and lightning activated nitrogen, play important roles in the nitrogen cycle system and exploring the origin of life. Meanwhile, excessive emission of NOx gases and residues from industry and transportation causes troubling problems to the environment and human health. How to efficiently handle these wastes is a global problem. In response to the growing demand for sustainability, scientists are actively pursuing sustainable electrochemical technologies powered by renewable energy sources and efficient utilization of hydrogen energy to convert NOx species into high-value organonitrogen chemicals. In this minireview, recent advances of electrocatalytic systems for NOx species valorization in organonitrogen synthesis are classified and described, such as amino acids, amide, urea, oximes, nitrile etc., that have been widely applied in medicine, life science and agriculture. Additionally, the current challenges including multiple side reactions and complicated paths, viable solutions along with future directions ahead in this field are also proposed. The coupling electrocatalytic systems provide a green mode for fixing nitrogen cycle bacteria and bring enlightenment to human sustainable development.
Collapse
Affiliation(s)
- Peisen Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
| | - Jiawei Kang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Runan Xiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shihan Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
44
|
Bi Z, Hu J, Xu M, Zhang H, Zhou Y, Hu G. Nitrogen-bridged Fe-Cu Atomic Pair Sites for Efficient Electrochemical Ammonia Production and Electricity Generation with Zn-NO 2 Batteries. Angew Chem Int Ed Engl 2024; 63:e202313434. [PMID: 37996973 DOI: 10.1002/anie.202313434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The development of environmentally sustainable and highly efficient technologies for ammonia production is crucial for the future advancement of carbon-neutral energy systems. The nitrite reduction reaction (NO2 RR) for generating NH3 is a promising alternative to the low-efficiency nitrogen reduction reaction (NRR), owing to the low N=O bond energy and high solubility of nitrite. In this study, we designed a highly efficient dual-atom catalyst with Fe-Cu atomic pair sites (termed FeCu DAC), and the as-developed FeCu DAC was able to afford a remarkable NH3 yield of 24,526 μg h-1 mgcat. -1 at -0.6 V, with a Faradaic Efficiency (FE) for NH3 production of 99.88 %. The FeCu DAC also exhibited exceptional catalytic activity and selectivity in a Zn-NO2 battery, achieving a record-breaking power density of 23.6 mW cm-2 and maximum NH3 FE of 92.23 % at 20 mA cm-2 . Theoretical simulation demonstrated that the incorporation of the Cu atom changed the energy of the Fe 3d orbital and lowered the energy barrier, thereby accelerating the NO2 RR. This study not only demonstrates the potential of galvanic nitrite-based cells for expanding the field of Zn-based batteries, but also provides fundamental interpretation for the synergistic effect in highly dispersed dual-atom catalysts.
Collapse
Affiliation(s)
- Zenghui Bi
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Jiao Hu
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hua Zhang
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Guangzhi Hu
- School of Materials and Energy, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
45
|
Li Y, Wang Z, Ji H, Wang M, Qian T, Yan C, Lu J. Extending Ring-Chain Coupling Empirical Law to Lithium-Mediated Electrochemical Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202311413. [PMID: 38009687 DOI: 10.1002/anie.202311413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
With its efficient nitrogen fixation kinetics, electrochemical lithium-mediated nitrogen reduction reaction (LMNRR) holds promise for replacing Haber-Bosch process and realizing sustainable and green ammonia production. However, the general interface problem in lithium electrochemistry seriously impedes the further enhancement of LMNRR performance. Inspired by the development history of lithium battery electrolytes, here, we extend the ring-chain solvents coupling law to LMNRR system to rationally optimize the interface during the reaction process, achieving nearly a two-fold Faradaic efficiency up to 54.78±1.60 %. Systematic theoretical simulations and experimental analysis jointly decipher that the anion-rich Li+ solvation structure derived from ring tetrahydrofuran coupling with chain ether successfully suppresses the excessive passivation of electrolyte decomposition at the reaction interface, thus promoting the mass transfer of active species and enhancing the nitrogen fixation kinetics. This work offers a progressive insight into the electrolyte design of LMNRR system.
Collapse
Affiliation(s)
- Ya Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Zhenkang Wang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Mengfan Wang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Tao Qian
- College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| |
Collapse
|
46
|
Fu X, Niemann VA, Zhou Y, Li S, Zhang K, Pedersen JB, Saccoccio M, Andersen SZ, Enemark-Rasmussen K, Benedek P, Xu A, Deissler NH, Mygind JBV, Nielander AC, Kibsgaard J, Vesborg PCK, Nørskov JK, Jaramillo TF, Chorkendorff I. Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis. NATURE MATERIALS 2024; 23:101-107. [PMID: 37884670 DOI: 10.1038/s41563-023-01702-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Ammonia (NH3) is a key commodity chemical for the agricultural, textile and pharmaceutical industries, but its production via the Haber-Bosch process is carbon-intensive and centralized. Alternatively, an electrochemical method could enable decentralized, ambient NH3 production that can be paired with renewable energy. The first verified electrochemical method for NH3 synthesis was a process mediated by lithium (Li) in organic electrolytes. So far, however, elements other than Li remain unexplored in this process for potential benefits in efficiency, reaction rates, device design, abundance and stability. In our demonstration of a Li-free system, we found that calcium can mediate the reduction of nitrogen for NH3 synthesis. We verified the calcium-mediated process using a rigorous protocol and achieved an NH3 Faradaic efficiency of 40 ± 2% using calcium tetrakis(hexafluoroisopropyloxy)borate (Ca[B(hfip)4]2) as the electrolyte. Our results offer the possibility of using abundant materials for the electrochemical production of NH3, a critical chemical precursor and promising energy vector.
Collapse
Affiliation(s)
- Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valerie A Niemann
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Yuanyuan Zhou
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ke Zhang
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Pedersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mattia Saccoccio
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Suzanne Z Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Peter Benedek
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Aoni Xu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Niklas H Deissler
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Adam C Nielander
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter C K Vesborg
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens K Nørskov
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
47
|
Yang L, Han H, Sun L, Wu J, Wang M. The Advances, Challenges, and Perspectives on Electrocatalytic Reduction of Nitrogenous Substances to Ammonia: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7647. [PMID: 38138789 PMCID: PMC10744934 DOI: 10.3390/ma16247647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Ammonia (NH3) is considered to be a critical chemical feedstock in agriculture, industry, and other fields. However, conventional Haber-Bosch (HB) ammonia (NH3) production suffers from high energy consumption, harsh reaction conditions, and large carbon dioxide emissions. Despite the emergence of electrocatalytic reduction of nitrogenous substances to NH3 under ambient conditions as a new frontier, there are several bottleneck problems that impede the commercialization process. These include low catalytic efficiency, competition with the hydrogen evolution reaction, and difficulties in breaking the N≡N triple bond. In this review, we explore the recent advances in electrocatalytic NH3 synthesis, using nitrogen and nitrate as reactants. We focus on the contribution of the catalyst design, specifically based on molecular-catalyst interaction mechanisms, as well as chemical bond breaking and directional coupling mechanisms, to address the aforementioned problems during electrocatalytic NH3 synthesis. Finally, we discuss the relevant opportunities and challenges in this field.
Collapse
Affiliation(s)
- Liu Yang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Huichun Han
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Lan Sun
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Jinxiong Wu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Meng Wang
- School of Materials Engineering, Xi’an Aeronautical University, 259 West Second Ring, Xi’an 710077, China
| |
Collapse
|
48
|
Liu S, Wang M, He Y, Cheng Q, Ji H, Huan Y, Shen X, Zhou X, Qian T, Yan C. Molecular Imprinting Technology Enables Proactive Capture of Nitrogen for Boosted Ammonia Synthesis under Ambient Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303703. [PMID: 37555529 DOI: 10.1002/adma.202303703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Electrochemical nitrogen reduction reaction (NRR) is a burgeoning field for green and sustainable ammonia production, in which numerous potential catalysts emerge endlessly. However, satisfactory performances are still not realized under practical applications due to the limited solubility and sluggish diffusion of nitrogen at the interface. Herein, molecular imprinting technology is adopted to construct an adlayer with abundant nitrogen imprints on the electrocatalyst, which is capable of selectively recognizing and proactively aggregating high-concentrated nitrogen at the interface while hindering the access of overwhelming water simultaneously. With this favorable microenvironment, nitrogen can preferentially occupy the active surface, and the NRR equilibrium can be positively shifted to facilitate the reaction kinetics. Approximately threefold improvements in both ammonia production rate (185.7 µg h-1 mg-1 ) and Faradaic efficiency (72.9%) are achieved by a metal-free catalyst compared with the bare one. It is believed that the molecular imprinting strategy should be a general method to find further applicability in numerous catalysts or even other reactions facing similar challenges.
Collapse
Affiliation(s)
- Sisi Liu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou, 215006, China
| | - Mengfan Wang
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou, 215006, China
| | - Yanzheng He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou, 215006, China
| | - Qiyang Cheng
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou, 215006, China
| | - Haoqing Ji
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou, 215006, China
| | - Yunfei Huan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Xiaowei Shen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou, 215600, China
| | - Chenglin Yan
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou, 215006, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou, 215600, China
| |
Collapse
|
49
|
Ahmed MI, Assafiri A, Hibbert DB, Zhao C. Li-Mediated Electrochemical Nitrogen Fixation: Key Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305616. [PMID: 37635122 DOI: 10.1002/smll.202305616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Indexed: 08/29/2023]
Abstract
The electrochemical nitrogen reduction reaction holds great potential for ammonia production using electricity generated from renewable energy sources and is sustainable. The low solubility of nitrogen in aqueous media, poor kinetics, and intrinsic competition by the hydrogen evolution reaction result in meager ammonia production rates. Attributing measured ammonia as a valid product, not an impurity, is challenging despite rigorous analytical experimentation. In this regard, Li-mediated electrochemical nitrogen reduction is a proven method providing significant ammonia yields. Herein, fundamental advances and insights into the Li-mediated strategy are summarized, emphasizing the role of lithium, reaction parameters, cell designs, and mechanistic evaluation. Challenges and perspectives are presented to highlight the prospects of this strategy as a continuous, stable, and modular approach toward sustainable ammonia production.
Collapse
Affiliation(s)
| | - Aya Assafiri
- School of Chemistry, University of New South Wales, 2052, Sydney, Australia
| | | | - Chuan Zhao
- School of Chemistry, University of New South Wales, 2052, Sydney, Australia
| |
Collapse
|
50
|
Cai X, Li X, You J, Yang F, Shadike Z, Qin S, Luo L, Guo Y, Yan X, Shen S, Wei G, Xu ZJ, Zhang J. Lithium-Mediated Ammonia Electrosynthesis with Ether-Based Electrolytes. J Am Chem Soc 2023; 145:25716-25725. [PMID: 37966315 DOI: 10.1021/jacs.3c08965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Ammonia is of great importance in fertilizer production and chemical synthesis. It can also potentially serve as a carbon-free energy carrier for a future hydrogen economy. Motivated by a worldwide effort to lower carbon emissions, ammonia synthesis by lithium-mediated electrochemical nitrogen reduction (LiNR) has been considered as a promising alternative to the Haber-Bosch process. A significant performance improvement in LiNR has been achieved in recent years by exploration of favorable lithium salt and proton donor for the electrolyte recipe, but the solvent study is still in its infancy. In this work, a systematic investigation on ether-based solvents toward LiNR is conducted. The assessments of solvent candidates are built on their conductivity, parasitic reactions, product distribution, and faradaic efficiency. Notably, dimethoxyethane gives the lowest potential loss among the investigated systems, while tetrahydrofuran achieves an outstanding faradaic efficiency of 58.5 ± 6.1% at an ambient pressure. We found that solvent molecules impact the above characteristics by dictating the solvation configurations of conductive ions and inducing the formation of solid electrolyte interphase with different compositions. This study highlights the importance of solvents in the LiNR process and advances the electrolyte optimization for better performance.
Collapse
Affiliation(s)
- Xiyang Cai
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xingdian Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiabin You
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zulipiya Shadike
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Song Qin
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangge Guo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Yan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|