1
|
Zhang C, Chen S, Wang Z, Zhang J, Yu W, Wang Y, Si W, Zhang Y, Zhang Y, Liang T. Exploring the mechanism of intestinal bacterial translocation after severe acute pancreatitis: the role of Toll-like receptor 5. Gut Microbes 2025; 17:2489768. [PMID: 40243695 PMCID: PMC11980482 DOI: 10.1080/19490976.2025.2489768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Severe acute pancreatitis (SAP)-induced intestinal bacterial translocation and enterogenic infection are among the leading causes of mortality in patients. However, the mechanisms by which SAP disrupted the intestinal barrier and led to bacterial translocation remained unclear. Therefore, we employed multi-omics analysis including microbiome, metabolome, epigenome, transcriptome, and mass cytometry (CyTOF) to identify potential targets, followed by functional validation using transgenic mice. The integrated multi-omics analysis primarily indicated overgrowth of intestinal flagellated bacteria, upregulation of intestinal Toll-like receptor 5 (TLR5) and acute inflammatory response, and increased infiltration of intestinal high-expressing TLR5 lamina propria dendritic cells (TLR5hi LPDC) after SAP. Subsequently, intestinal flagellin-TLR5 signaling was activated after SAP. Intestinal barrier disruption, bacterial translocation, and helper T cells (Th) differentiation imbalance caused by SAP were alleviated in TLR5 knocked out (Tlr5-/-) or conditionally knocked out on LPDC (Tlr5ΔDC) mice. However, TLR5 conditional knockout on intestinal epithelial cells (Tlr5ΔIEC) failed to improve SAP-induced bacterial translocation. Moreover, depletion of LPDC and regulatory T cells (Treg) ameliorated bacterial translocation after SAP. Our findings identify TLR5 on LPDC as a potential novel target for preventing or treating intestinal bacterial translocation caused by SAP.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang Province, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
| | - Shiyin Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang Province, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
| | - Zhien Wang
- Department of Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang Province, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
| | - Wenqiao Yu
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yanshuai Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang Province, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
| | - Weiwei Si
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang Province, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
| | - Yuwei Zhang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang Province, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Department of Nutrition, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, Zhejiang Province, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- MOE Joint International Research Laboratory of Pancreatic Diseases, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Luo R, Liu J, Wang T, Zhao W, Wang Y, Wen J, Wang H, Ding S, Zhou X. The landscape of malignant transition: Unraveling cancer cell-of-origin and heterogeneous tissue microenvironment. Cancer Lett 2025; 621:217591. [PMID: 40054660 PMCID: PMC12040592 DOI: 10.1016/j.canlet.2025.217591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/12/2025]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
- Ruihan Luo
- Laboratory of Hepatic AI Translation, Frontier Science Center for Disease-Related Molecular Network and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tiangang Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanfei Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hongyu Wang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Center for Nursing Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shanli Ding
- Graduate School of Biomedical Sciences, The University of MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Bhattacharya S, Tie G, Singh PNP, Malagola E, Eskiocak O, He R, Kraiczy J, Gu W, Perlov Y, Alici-Garipcan A, Beyaz S, Wang TC, Zhou Q, Shivdasani RA. Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell. Cell Stem Cell 2025; 32:952-969.e8. [PMID: 40203837 PMCID: PMC12145258 DOI: 10.1016/j.stem.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings. Mouse and human goblet and Paneth cells express extraordinary fractions of few antimicrobial genes, which reflect specific responses to local niches. Wnt signaling retains some ATOH1+ secretory cells in crypt bottoms, where the absence of BMP signaling potently induces Paneth features. Cells that migrate away from crypt bottoms encounter BMPs and thereby acquire goblet properties. These phenotypes and underlying accessible cis-elements interconvert in post-mitotic cells. Thus, goblet and Paneth properties represent alternative phenotypic manifestations of a common signal-responsive terminal cell type. These findings reveal exquisite niche-dependent cell plasticity and cis-regulatory dynamics in likely response to antimicrobial needs.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pratik N P Singh
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, State University of New York, Stony Brook, NY 11794, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Gu
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yakov Perlov
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Zhan Y, Deng Q, Jia Y, Chen Z, Zhao X, Ling Y, Qiu Y, Wang X, Wang F, He M, Huang W, Shen J, Wen S. Pdia3 deficiency exacerbates intestinal injury by disrupting goblet and Paneth cell function during ischemia/reperfusion. Cell Signal 2025; 130:111682. [PMID: 39988288 DOI: 10.1016/j.cellsig.2025.111682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a severe medical condition associated with high mortality rates due to its disruption of intestinal homeostasis and impairment of mucosal defenses. The intestinal epithelium, particularly goblet and Paneth cells, plays a critical role in maintaining gut barrier integrity. Protein disulfide isomerase A3 (PDIA3) is involved in protein folding within intestinal epithelial cells (IECs) and has been linked to the stress response during I/R injury. This study aims to explore the role of PDIA3 in preserving intestinal integrity and immune function during I/R injury. Our study employed both human and mouse models to investigate PDIA3's expression and function. The correlation between PDIA3 expression and disease severity was analyzed using statistical tests, including Pearson's correlation coefficient. An intestinal I/R model was established in intestinal epithelium-specific conditional knockout mice lacking the Pdia3 gene. Single-cell RNA sequencing, immunohistochemistry, and transcriptomic analysis were used to assess PDIA3 expression in various intestinal cell types and to evaluate its role in epithelial differentiation and immune responses. PDIA3 was found to be highly expressed in healthy IECs, especially in goblet and Paneth cells. Its expression was reduced in patients with mesenteric artery ischemia and Pdia3-deficient mice, leading to severe intestinal damage, including impaired goblet and Paneth cell function, reduced antimicrobial peptide production, and altered gut microbiota. Treatment with recombinant defensin α1, an antimicrobial peptide secreted by Paneth cells, significantly alleviated the adverse effects of Pdia3 deficiency, restoring gut microbiota balance and reducing inflammation in the intestinal I/R injury mice. Taken together, our findings suggest that Pdia3 plays a vital role in maintaining intestinal barrier function and immune defense. Its deficiency exacerbates I/R-induced intestinal damage by impairing epithelial differentiation, mucus production, and antimicrobial peptide secretion. Targeting Pdia3 and associated pathways offers promising therapeutic strategies for mitigating I/R injury and restoring intestinal homeostasis.
Collapse
Affiliation(s)
- Yaqing Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiwen Deng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yifan Jia
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Xu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yihong Ling
- State Key Laboratory of Oncology in South, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxin Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiwen Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Muchen He
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jiantong Shen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Department of Anesthesiology, Guangxi Hospital Division of the First Affiliated Hospital of Sun Yat-sen University, Nanning, China.
| |
Collapse
|
5
|
Bellampalli SS, Joshi V, Fonar G, Beyder A. Integration of signal transduction pathways in sensory epithelial enteroendocrine cells. Mol Biol Cell 2025; 36:re3. [PMID: 40408598 DOI: 10.1091/mbc.e24-03-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025] Open
Abstract
The gastrointestinal (GI) tract plays a crucial role in nutrient absorption, motility, and metabolism, while serving as a barrier against pathogens. The intestinal epithelial layer, particularly enteroendocrine cells (EEC), is pivotal in sensing luminal stimuli due to its strategic position. Although comprising only 1% of the GI epithelium, in total EEC comprises perhaps the largest endocrine organ that couples GI luminal stimuli with release of hormones and neurotransmitters such as serotonin, glucagon-like peptide-1 (GLP-1), and peptide-tyrosine-tyrosine (PYY), which regulate local and systemic physiology. In this review, we use EECs as a model to explore critical intracellular signaling pathways-centering around calcium (Ca²⁺) and cyclic adenosine monophosphate (cAMP). EECs utilize ionotropic and metabotropic receptors to detect luminal stimuli, leading to increased intracellular cytoplasmic Ca²⁺ and altered intracellular cAMP dynamics. Ca²⁺ influx is critical for the exocytosis of signaling molecules. The interplay between Ca²⁺ and cAMP signaling pathways enhances the release of these molecules, affecting both local and systemic responses. We make a point to discuss the conventional and emerging methodologies for measuring Ca²⁺ and cAMP dynamics in EECs, which is a rapidly expanding toolbox, containing genetically encoded indicators and resonance energy transfer techniques. Understanding these signaling cascades is essential for deciphering the complex roles of EECs in GI physiology and their impact on systemic health.
Collapse
Affiliation(s)
- Shreya S Bellampalli
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905
| | - Vikram Joshi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gennadiy Fonar
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
6
|
Wang G, Zhao J, Lin Y, Liu T, Zhao Y, Zhao H. scMODAL: a general deep learning framework for comprehensive single-cell multi-omics data alignment with feature links. Nat Commun 2025; 16:4994. [PMID: 40442129 PMCID: PMC12122792 DOI: 10.1038/s41467-025-60333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Abstract
Recent advancements in single-cell technologies have enabled comprehensive characterization of cellular states through transcriptomic, epigenomic, and proteomic profiling at single-cell resolution. These technologies have significantly deepened our understanding of cell functions and disease mechanisms from various omics perspectives. As these technologies evolve rapidly and data resources expand, there is a growing need for computational methods that can integrate information from different modalities to facilitate joint analysis of single-cell multi-omics data. However, integrating single-cell omics datasets presents unique challenges due to varied feature correlations and technology-specific limitations. To address these challenges, we introduce scMODAL, a deep learning framework tailored for single-cell multi-omics data alignment using feature links. scMODAL integrates datasets with limited known positively correlated features, leveraging neural networks and generative adversarial networks to align cell embeddings and preserve feature topology. Our experiments demonstrate scMODAL's effectiveness in removing unwanted variation, preserving biological information, and accurately identifying cell subpopulations across diverse datasets. scMODAL not only advances integration tasks but also supports downstream analyses such as feature imputation and feature relationship inference, offering a robust solution for advancing single-cell multi-omics research.
Collapse
Affiliation(s)
- Gefei Wang
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Jia Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Yingxin Lin
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Tianyu Liu
- Department of Biostatistics, Yale University, New Haven, CT, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Yize Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA.
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
AlShmmari SK, Fardous RS, ALHamamah MA, Cialla-May D, Popp J, Ramadan Q, Zourob M. Characterization of Pro-Drug Metabolism and Drug Permeability Kinetics in a Microphysiological In Vitro Model of the Human Small Intestinal Barrier Incorporating Mucus-Generating Cells Coupled with LC-MS/MS Analysis. Adv Healthc Mater 2025:e2500692. [PMID: 40424025 DOI: 10.1002/adhm.202500692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/17/2025] [Indexed: 05/28/2025]
Abstract
A micro-physiological model of the human small intestinal barrier incorporating mucus-generating cells has been developed. The established barrier was utilized to assess the absorption kinetics of three selected therapeutic compounds: Doxycycline, Ganciclovir, and its prodrug Valganciclovir, following the implementation of a thorough LC-MS/MS validation protocol. The co-culture of Caco-2 cells, representing absorptive enterocytes, and HT-29 MTX cells, modeling goblet cells, enabled the in-situ generation of a sufficiently thick mucus layer covering the entire cell monolayer. The presence of HT-29 MTX cells, which exhibit weaker tight junctions than enterocytes, contributed to the observed lower transepithelial electrical resistance (TEER) and higher FITC-dextran flux. The permeability of all the compounds was higher when tested in the co-culture system containing mucus-generating cells, compared to the Caco-2 monoculture, demonstrating the impact of mucus on intestinal drug transport kinetics. The permeability of ganciclovir following its generation from the prodrug valganciclovir was significantly higher than the permeability of ganciclovir itself, as the active metabolite ganciclovir exhibited an enhanced transport rate compared to when administered without metabolic activation. The developed microfluidic-based intestinal barrier model has demonstrated the capability to reliably simulate drug absorption and prodrug metabolism, and its impact on drug permeation kinetics across the small intestine.
Collapse
Affiliation(s)
- Sultan K AlShmmari
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
- College of Science & General Studies, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Roa S Fardous
- College of Science & General Studies, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, G4 0RE, UK
| | - Mohammed A ALHamamah
- College of Veterinary Medicine, King Faisal University, Hufuf, 31982, Saudi Arabia
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Qasem Ramadan
- College of Science & General Studies, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Mohammed Zourob
- College of Science & General Studies, Alfaisal University, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
8
|
Hu Y, Zhu Y, Tang G, Shan M, Tan P, Yi Y, Zhang X, Liu M, Li X, Wu L, Chen J, Zheng H, Huang Y, Li Z, Li X, Wang D. Accurate Transcription Factor Activity Inference to Decipher Cell Identity from Single-Cell Transcriptomic Data with MetaTF. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e10745. [PMID: 40397381 DOI: 10.1002/advs.202410745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/21/2025] [Indexed: 05/22/2025]
Abstract
Cellular heterogeneity within cancer tissues determines cancer progression and treatment response. Single-cell RNA sequencing (scRNA-seq) has provided a powerful approach for investigating the cellular heterogeneity of both cancer cells and stroma cells in the tumor microenvironment. However, the common practice to characterize cell identity based on the similarity of their gene expression profiles may not really indicate distinct cellular populations with unique roles. Generally, the cell identity and function are orchestrated by the expression of given specific genes tightly regulated by transcription factors (TFs). Therefore, deciphering TF activity is essential for gaining a better understanding of the uniqueness and functionality of each cell type. Herein, metaTF, a computational framework designed to infer TF activity in scRNA-seq data, is introduced and existing methods are outperformed for estimating TF activity. It presents the improved effectiveness in characterizing cell identity during mouse hematopoietic stem cell development. Furthermore, metaTF provides a superior characterization of the functional identity of breast cancer epithelial cells, and identifies a novel subset of neural-regulated T cells within the tumor immune microenvironment, which potentially activates BCL6 in response to neural-related signals. Overall, metaTF enables robust TF activity analysis from scRNA-seq data, significantly enhancing the characterization of cell identity and function.
Collapse
Affiliation(s)
- Yongfei Hu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yuanyuan Zhu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Guangjue Tang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Shan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150000, China
| | - Puwen Tan
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Yi
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xiyuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Man Liu
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xinyu Li
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Le Wu
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Chen
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hailong Zheng
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510060, China
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Dong Wang
- Department of Bioinformatics, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
9
|
O'Mahony ET, Arian CM, Aryeh KS, Wang K, Thummel KE, Kelly EJ. Human intestinal enteroids: Nonclinical applications for predicting oral drug disposition, toxicity, and efficacy. Pharmacol Ther 2025:108879. [PMID: 40398537 DOI: 10.1016/j.pharmthera.2025.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
The application of human enteroid systems presents a significant opportunity within the drug development pipeline, highlighting considerable potential for advancements in the characterization and evaluation of new molecular entities. Derived from LGR5+ crypt-based columnar cells, enteroid systems more accurately recapitulate the microanatomy and physiological processes of the human intestinal mucosa compared to traditionally used systems. They contain the complement of major mucosal epithelial cell types, maintain the genetic identity of the donor and intestinal segment they were derived from, and exhibit biological functions and specific activities that are seen in vivo. In this review, we examine the applications of human enteroid systems in nonclinical drug development and compare findings to existing and emerging in vitro models of the small intestine. Specifically, we explore enteroid systems in the context of predicting oral drug disposition, focusing on apparent permeability, intestinal first-pass metabolism, and drug interactions, as well as their utility in assessing drug-induced gastrointestinal toxicity and screening therapeutic efficacy against enteric diseases. Additionally, we highlight aspects of enteroid systems that warrant further study.
Collapse
Affiliation(s)
- Eimear T O'Mahony
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kayenat S Aryeh
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kai Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Center of Excellence for Natural Product Drug Interaction Research, Spokane, WA, United States of America
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Kidney Research Institute, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
10
|
Tonini L, Ahn C. Latest Advanced Techniques for Improving Intestinal Organoids Limitations. Stem Cell Rev Rep 2025:10.1007/s12015-025-10894-9. [PMID: 40388043 DOI: 10.1007/s12015-025-10894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Intestinal organoids are valuable tools across different disciplines, from a clinical aspect to the biomedical research, providing a unique perspective on the complexity of the gastrointestinal system. They are alternatives to common cell lines as they can offer insights into architectural functionality and reduce the use of animal models. A deeper understanding of their organoid characteristics is required to harness their full potential. Despite their beneficial uses and multiple advantages, organoids have limitations that remain unaddressed. This review aims to elucidate the principal limitations of intestinal organoids, investigate structural defects such as the deficiency in a vascularized and lymphatic system, and absence of the microbiome, restrictions in mimicking the physiological gut model, including the lack of an acid-neutralizing system or a shortage of digestive enzymes, and the difficulties in their long-term maintenance and polarity accessibility. Development of innovative techniques to address these limitations will lead to improve in vivo recapitulation and pioneering further advancements in this field.
Collapse
Affiliation(s)
- Lisa Tonini
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
11
|
Ogden S, Metic N, Leylek O, Smith EA, Berner AM, Baker AM, Uddin I, Buzzetti M, Gerlinger M, Graham T, Kocher HM, Efremova M. Phenotypic heterogeneity and plasticity in colorectal cancer metastasis. CELL GENOMICS 2025:100881. [PMID: 40393458 DOI: 10.1016/j.xgen.2025.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Phenotypic heterogeneity and plasticity in colorectal cancer (CRC) has a crucial role in tumor progression, metastasis, and therapy resistance. However, the regulatory factors and the extrinsic signals driving phenotypic heterogeneity remain unknown. Using a combination of single-cell multiomics and spatial transcriptomics data from primary and metastatic CRC patients, we reveal cancer cell states with regenerative and inflammatory phenotypes that closely resemble metastasis-initiating cells in mouse models. We identify an intermediate population with a hybrid regenerative and stem phenotype. We reveal the transcription factors AP-1 and nuclear factor κB (NF-κB) as their key regulators and show localization of these states in an immunosuppressive niche both at the invasive edge in primary CRC and in liver metastasis. We uncover ligand-receptor interactions predicted to activate the regenerative and inflammatory phenotype in cancer cells. Together, our findings reveal regulatory and signaling factors that mediate distinct cancer cell states and can serve as potential targets to impair metastasis.
Collapse
Affiliation(s)
- Samuel Ogden
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nasrine Metic
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ozen Leylek
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Elise A Smith
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alison M Berner
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Imran Uddin
- CRUK City of London Centre Single Cell Genomics Facility, University College London, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mirjana Efremova
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
12
|
Zhu B, Chen P, Aminu M, Li JR, Fujimoto J, Tian Y, Hong L, Chen H, Hu X, Li C, Vokes N, Moreira AL, Gibbons DL, Solis Soto LM, Parra Cuentas ER, Shi O, Diao S, Ye J, Rojas FR, Vilar E, Maitra A, Chen K, Navin N, Nilsson M, Huang B, Heeke S, Zhang J, Haymaker CL, Velcheti V, Sterman DH, Kochat V, Padron WI, Alexandrov LB, Wei Z, Le X, Wang L, Fukuoka J, Lee JJ, Wistuba II, Pass HI, Davis M, Hanash S, Cheng C, Dubinett S, Spira A, Rai K, Lippman SM, Futreal PA, Heymach JV, Reuben A, Wu J, Zhang J. Spatial and multiomics analysis of human and mouse lung adenocarcinoma precursors reveals TIM-3 as a putative target for precancer interception. Cancer Cell 2025:S1535-6108(25)00162-X. [PMID: 40345189 DOI: 10.1016/j.ccell.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/31/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
How tumor microenvironment shapes lung adenocarcinoma (LUAD) precancer evolution remains poorly understood. Spatial immune profiling of 114 human LUAD and LUAD precursors reveals a progressive increase of adaptive response and a relative decrease of innate immune response as LUAD precursors progress. The immune evasion features align the immune response patterns at various stages. TIM-3-high features are enriched in LUAD precancers, which decrease in later stages. Furthermore, single-cell RNA sequencing (scRNA-seq) and spatial immune and transcriptomics profiling of LUAD and LUAD precursor specimens from 5 mouse models validate high TIM-3 features in LUAD precancers. In vivo TIM-3 blockade at precancer stage, but not at advanced cancer stage, decreases tumor burden. Anti-TIM-3 treatment is associated with enhanced antigen presentation, T cell activation, and increased M1/M2 macrophage ratio. These results highlight the coordination of innate and adaptive immune response/evasion during LUAD precancer evolution and suggest TIM-3 as a potential target for LUAD precancer interception.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Junya Fujimoto
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima, Japan
| | - Yanhua Tian
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyang Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andre L Moreira
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Roger Parra Cuentas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ou Shi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Songhui Diao
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Ye
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank R Rojas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikn Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Navin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beibei Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara L Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vamsidhar Velcheti
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel H Sterman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA; Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Veena Kochat
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William I Padron
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
| | - Zhubo Wei
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| | - Mark Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, CA, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Steven Dubinett
- Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avrum Spira
- Pathology & Laboratory Medicine, and Bioinformatics, Boston University, Boston, MA, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1226-1282. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Song L, Wang L, He Z, Cui X, Peng C, Xu J, Yong Z, Liu Y, Fei JF. Improving Spatial Transcriptomics with Membrane-Based Boundary Definition and Enhanced Single-Cell Resolution. SMALL METHODS 2025; 9:e2401056. [PMID: 39871658 DOI: 10.1002/smtd.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/03/2025] [Indexed: 01/29/2025]
Abstract
Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections. Use of this membrane-based method greatly increases the number of genes captured in cells compared to the number captured using nucleus-based methods; the numbers of genes are increased by 67% and 119% in mouse and axolotl livers, respectively. The obtained expression profiles are more consistent with single-cell RNA-seq data, demonstrating more rational clustering and apparent cell type-specific markers. Furthermore, improved single-cell resolution is achieved to better identify rare cell types and elaborate spatial domains in the axolotl brain and intestine. In addition to regular cells, accurate recognition of multinucleated cells and cells lacking nuclei in the mouse liver is achieved, demonstrating its ability to analyze complex tissues and organs, which is not achievable using previous methods. This study provides a powerful tool for improving spatial transcriptomics that has broad potential for its applications in the biological and medical sciences.
Collapse
Affiliation(s)
- Li Song
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Liqun Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Zitian He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Xiao Cui
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jie Xu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Zhouying Yong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
15
|
Han Y, Shi L, Jiang N, Huang J, Jia X, Zhu B. Dissecting the Single-Cell Diversity and Heterogeneity Underlying Cervical Precancerous Lesions and Cancer Tissues. Reprod Sci 2025; 32:1502-1519. [PMID: 39354287 PMCID: PMC12041141 DOI: 10.1007/s43032-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/08/2024] [Indexed: 10/03/2024]
Abstract
The underlying cellular diversity and heterogeneity from cervix precancerous lesions to cervical squamous cell carcinoma (CSCC) is investigated. Four single-cell datasets including normal tissues, normal adjacent tissues, precancerous lesions, and cervical tumors were integrated to perform disease stage analysis. Single-cell compositional data analysis (scCODA) was utilized to reveal the compositional changes of each cell type. Differentially expressed genes (DEGs) among cell types were annotated using BioCarta. An assay for transposase-accessible chromatin sequencing (ATAC-seq) analysis was performed to correlate epigenetic alterations with gene expression profiles. Lastly, a logistic regression model was used to assess the similarity between the original and new cohort data (HRA001742). After global annotation, seven distinct cell types were categorized. Eight consensus-upregulated DEGs were identified in B cells among different disease statuses, which could be utilized to predict the overall survival of CSCC patients. Inferred copy number variation (CNV) analysis of epithelial cells guided disease progression classification. Trajectory and ATAC-seq integration analysis identified 95 key transcription factors (TF) and one immunohistochemistry (IHC) testified key-node TF (YY1) involved in epithelial cells from CSCC initiation to progression. The consistency of epithelial cell subpopulation markers was revealed with single-cell sequencing, bulk sequencing, and RT-qPCR detection. KRT8 and KRT15, markers of Epi6, showed progressively higher expression with disease progression as revealed by IHC detection. The logistic regression model testified the robustness of the resemblance of clusters among the various datasets utilized in this study. Valuable insights into CSCC cellular diversity and heterogeneity provide a foundation for future targeted therapy.
Collapse
Affiliation(s)
- Yanling Han
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Lu Shi
- CRE Life Institute, Beijing, 100000, China
| | - Nan Jiang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiuzhi Jia
- Department of Immunology and Pathogen Biology, College of Medicine, Lishui University, Lishui, 323000, China.
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Bo Zhu
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
16
|
Khasraw M, Hotchkiss K, Zhang K, Corcoran A, Owens E, Noldner P, Railton C, Van Batavia K, Zhou Y, Jepson J, Singh K, McLendon R, Batich K, Patel A, Ayasoufi K, Brown M, Calabrese E, Xie J, Conejo-Garcia J, Shaz B, Hickey J. A Spatial Multi-Omic Framework Identifies Gliomas Permissive to TIL Expansion. RESEARCH SQUARE 2025:rs.3.rs-6314842. [PMID: 40313763 PMCID: PMC12045381 DOI: 10.21203/rs.3.rs-6314842/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy, recently approved by the FDA for melanoma, is an emerging modality for cell-based immunotherapy. However, its application in immunologically "cold" tumors such as glioblastoma remains limited due to sparse T cell infiltration, antigenic heterogeneity, and a suppressive tumor microenvironment. To identify genomic and spatial determinants of TIL expandability, we performed integrated, multimodal profiling of high-grade gliomas using spectral flow cytometry, TCR sequencing, single-cell RNA-seq, Xenium in situ transcriptomics, and CODEX spatial proteomics. Comparative analysis of TIL-generating (TIL+) versus non-generating (TIL-) tumors revealed that IL7Rexpression, structured perivascular immune clustering, and tumor-intrinsic metabolic programs such as ACSS3 were associated with successful TIL expansion. In contrast, TIL-tumors were enriched for neuronal lineage signatures, immunosuppressive transcripts including TOX and FERMT1, and tumor-connected macrophages. This study defines spatial and molecular correlates of TIL manufacturing success and establishes a genomics-enabled selection platform for adoptive T cell therapy. The profiling approach is now being prospectively implemented in the GIANT clinical trial (NCT06816927), supporting its translational relevance and scalability across glioblastoma and other immune-excluded cancers.
Collapse
|
17
|
Huynh KLA, Tyc KM, Matuck BF, Easter QT, Pratapa A, Kumar NV, Pérez P, Kulchar RJ, Pranzatelli TJF, de Souza D, Weaver TM, Qu X, Soares Junior LAV, Dolhnokoff M, Kleiner DE, Hewitt SM, da Silva LFF, Rocha VG, Warner BM, Byrd KM, Liu J. Deconvolution of cell types and states in spatial multiomics utilizing TACIT. Nat Commun 2025; 16:3747. [PMID: 40258827 PMCID: PMC12012066 DOI: 10.1038/s41467-025-58874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning increasingly plays a role, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we develop TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data. TACIT uses unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000 cells; 51 cell types) from three niches (brain, intestine, gland), TACIT outperforms existing unsupervised methods in accuracy and scalability. Integrating TACIT-identified cell types reveals new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.
Collapse
Affiliation(s)
- Khoa L A Huynh
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Katarzyna M Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Richmond, VA, USA
| | - Bruno F Matuck
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Quinn T Easter
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Aditya Pratapa
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nikhil V Kumar
- Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
| | - Paola Pérez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Kulchar
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J F Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Deiziane de Souza
- Department of Pathology, Medicine School of University of Sao Paulo, SP, BR, Sao Paulo, Brazil
| | - Theresa M Weaver
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Xufeng Qu
- Massey Cancer Center, Richmond, VA, USA
| | | | - Marisa Dolhnokoff
- Department of Pathology, Medicine School of University of Sao Paulo, SP, BR, Sao Paulo, Brazil
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Vanderson Geraldo Rocha
- Department of Hematology, Transfusion and Cell Therapy Service, University of Sao Paulo, Sao Paulo, Brazil
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Byrd
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.
- Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
18
|
Wu W, Liu Z. Human small intestine: The mysterious security guard. Chin Med J (Engl) 2025; 138:1006-1008. [PMID: 40008820 PMCID: PMC12037082 DOI: 10.1097/cm9.0000000000003537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Indexed: 02/27/2025] Open
Affiliation(s)
- Wei Wu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| |
Collapse
|
19
|
Hotchkiss KM, Zhang K, Corcoran AM, Owens E, Noldner P, Railton C, Van Batavia K, Zhou Y, Jepson J, Singh K, McLendon R, Batich K, Patel AP, Ayasoufi K, Brown MC, Calabrese E, Xie J, Conejo-Garcia J, Shaz BH, Hickey JW, Khasraw M. A Spatial Multi-Omic Framework Identifies Gliomas Permissive to TIL Expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645566. [PMID: 40236001 PMCID: PMC11996311 DOI: 10.1101/2025.03.26.645566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Tumor-infiltrating lymphocyte (TIL) therapy, recently approved by the FDA for melanoma, is an emerging modality for cell-based immunotherapy. However, its application in immunologically 'cold' tumors such as glioblastoma remains limited due to sparse T cell infiltration, antigenic heterogeneity, and a suppressive tumor microenvironment. To identify genomic and spatial determinants of TIL expandability, we performed integrated, multimodal profiling of high-grade gliomas using spectral flow cytometry, TCR sequencing, single-cell RNA-seq, Xenium in situ transcriptomics, and CODEX spatial proteomics. Comparative analysis of TIL-generating (TIL+) versus non-generating (TIL-) tumors revealed that IL7R expression, structured perivascular immune clustering, and tumor-intrinsic metabolic programs such as ACSS3 were associated with successful TIL expansion. In contrast, TIL-; tumors were enriched for neuronal lineage signatures, immunosuppressive transcripts including TOX and FERMT1, and tumor-connected macrophages. This study defines spatial and molecular correlates of TIL manufacturing success and establishes a genomics-enabled selection platform for adoptive T cell therapy. The profiling approach is now being prospectively implemented in the GIANT clinical trial ( NCT06816927 ), supporting its translational relevance and scalability across glioblastoma and other immune-excluded cancers.
Collapse
|
20
|
Wang D, Spoelstra WK, Lin L, Akkerman N, Krueger D, Dayton T, van Zon JS, Tans SJ, van Es JH, Clevers H. Interferon-responsive intestinal BEST4/CA7 + cells are targets of bacterial diarrheal toxins. Cell Stem Cell 2025; 32:598-612.e5. [PMID: 40010349 DOI: 10.1016/j.stem.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BEST4/CA7+ cells of the human intestine were recently identified by single-cell RNA sequencing. While their gene expression profile predicts a role in electrolyte balance, BEST4/CA7+ cell function has not been explored experimentally owing to the absence of BEST4/CA7+ cells in mice and the paucity of human in vitro models. Here, we establish a protocol that allows the emergence of BEST4/CA7+ cells in human intestinal organoids. Differentiation of BEST4/CA7+ cells requires activation of Notch signaling and the transcription factor SPIB. BEST4/CA7+ cell numbers strongly increase in response to the cytokine interferon-γ, supporting a role in immunity. Indeed, we demonstrate that BEST4/CA7+ cells generate robust CFTR-mediated fluid efflux when stimulated with bacterial diarrhea-causing toxins and find the norepinephrine-ADRA2A axis as a potential mechanism in blocking BEST4/CA7+ cell-mediated fluid secretion. Our observations identify a central role of BEST4/CA7+ cells in fluid homeostasis in response to bacterial infections.
Collapse
Affiliation(s)
- Daisong Wang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Lin Lin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Talya Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Sander J Tans
- AMOLF, Amsterdam 1009 DB, the Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Hubrecht Institute, Utrecht 3584 CT, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
21
|
Kim J, Park H, Park NY, Hwang SI, Kim YE, Sung SI, Chang YS, Koh A. Functional maturation of preterm intestinal epithelium through CFTR activation. Commun Biol 2025; 8:540. [PMID: 40169914 PMCID: PMC11961738 DOI: 10.1038/s42003-025-07944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Preterm birth disrupts intestinal epithelial maturation, impairing digestive and absorptive functions. This study integrates analysis of single-cell RNA sequencing datasets, spanning fetal to adult stages, with human preterm intestinal models derived from the ileal tissue of preterm infants. We investigate the potential of extracellular vesicles (EVs) derived from human Wharton's jelly mesenchymal stem cells to promote intestinal maturation. Distinct enterocyte differentiation trajectories are identified during the transition from immature to mature stages of human intestinal development. EV treatment, particularly with the EV39 line, significantly upregulates maturation-specific gene expression related to enterocyte function. Gene set enrichment analysis reveals an enrichment of TGFβ1 signaling pathways, and proteomic analysis identifies TGFβ1 and FGF2 as key mediators of EV39's effects. These treatments enhance cell proliferation, epithelial barrier integrity, and fatty acid uptake, primarily through CFTR-dependent mechanisms-unique to human preterm models, not observed in mouse intestinal organoids. This highlights the translational potential of EV39 and CFTR activation in promoting the functional maturation of the premature human intestine.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Hyunji Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Se In Hwang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, South Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| | - Yun Sil Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, South Korea.
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, South Korea.
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
22
|
Börner K, Blood PD, Silverstein JC, Ruffalo M, Satija R, Teichmann SA, Pryhuber GJ, Misra RS, Purkerson JM, Fan J, Hickey JW, Molla G, Xu C, Zhang Y, Weber GM, Jain Y, Qaurooni D, Kong Y, Bueckle A, Herr BW. Human BioMolecular Atlas Program (HuBMAP): 3D Human Reference Atlas construction and usage. Nat Methods 2025; 22:845-860. [PMID: 40082611 PMCID: PMC11978508 DOI: 10.1038/s41592-024-02563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 03/16/2025]
Abstract
The Human BioMolecular Atlas Program (HuBMAP) aims to construct a 3D Human Reference Atlas (HRA) of the healthy adult body. Experts from 20+ consortia collaborate to develop a Common Coordinate Framework (CCF), knowledge graphs and tools that describe the multiscale structure of the human body (from organs and tissues down to cells, genes and biomarkers) and to use the HRA to characterize changes that occur with aging, disease and other perturbations. HRA v.2.0 covers 4,499 unique anatomical structures, 1,195 cell types and 2,089 biomarkers (such as genes, proteins and lipids) from 33 ASCT+B tables and 65 3D Reference Objects linked to ontologies. New experimental data can be mapped into the HRA using (1) cell type annotation tools (for example, Azimuth), (2) validated antibody panels or (3) by registering tissue data spatially. This paper describes HRA user stories, terminology, data formats, ontology validation, unified analysis workflows, user interfaces, instructional materials, application programming interfaces, flexible hybrid cloud infrastructure and previews atlas usage applications.
Collapse
Grants
- OT2 OD026675 NIH HHS
- U54 HL165443 NHLBI NIH HHS
- OT2 OD033759 NIH HHS
- U54 AG075936 NIA NIH HHS
- OT2 OD026671 NIH HHS
- OT2 OD033761 NIH HHS
- RM1HG011014 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- U24CA268108 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- OT2 OD033760 NIH HHS
- OT2OD033760 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R03 OD036499 NIH HHS
- U24 DK135157 NIDDK NIH HHS
- U54HL165443 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- OT2OD033759 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- OT2OD026671 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- RM1 HG011014 NHGRI NIH HHS
- U2C DK114886 NIDDK NIH HHS
- OT2OD026673 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- OT2 OD026682 NIH HHS
- OT2 OD033756 NIH HHS
- 3U54AG075936 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- U24DK135157 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 3OT2OD026682 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 1R03OD036499 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- U24 CA268108 NCI NIH HHS
- U2CDK114886 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- OT2OD033756 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- OT2OD026675 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- HLU01148861 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 3OT2OD033760 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- 1OT2OD033761 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- NIH: OT2OD033759
- K.B. is a co-director of and is funded by the CIFAR MacMillan Multiscale Human program.
- S.A.T. is a co-director of and is funded by the CIFAR MacMillan Multiscale Human program. S.A.T. is a remunerated member of the Scientific Advisory Boards of Qiagen, Foresite Labs and Element Biosciences, a co-founder and equity holder of TransitionBio and EnsoCell Therapeutics, and a part-time employee of GlaxoSmithKline since January 2024.
- NIH: U2CDK114886
- U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- In the past 3 years, RS has received compensation from Bristol-Myers Squibb, ImmunAI, Resolve Biosciences, Nanostring, 10X Genomics, Neptune Bio, and the NYC Pandemic Response Lab. RS is a co-founder and equity holder of Neptune Bio.
Collapse
Affiliation(s)
- Katy Börner
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
- CIFAR MacMillan Multiscale Human program, CIFAR, Toronto, Ontario, Canada.
| | - Philip D Blood
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew Ruffalo
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Sarah A Teichmann
- CIFAR MacMillan Multiscale Human program, CIFAR, Toronto, Ontario, Canada
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Ravi S Misra
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John W Hickey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Chuan Xu
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA, USA
| | - Griffin M Weber
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yashvardhan Jain
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Danial Qaurooni
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Yongxin Kong
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
| | - Andreas Bueckle
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
| | - Bruce W Herr
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
23
|
Ding DY, Tang Z, Zhu B, Ren H, Shalek AK, Tibshirani R, Nolan GP. Quantitative characterization of tissue states using multiomics and ecological spatial analysis. Nat Genet 2025; 57:910-921. [PMID: 40169791 PMCID: PMC11985343 DOI: 10.1038/s41588-025-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/05/2025] [Indexed: 04/03/2025]
Abstract
The spatial organization of cells in tissues underlies biological function, and recent advances in spatial profiling technologies have enhanced our ability to analyze such arrangements to study biological processes and disease progression. We propose MESA (multiomics and ecological spatial analysis), a framework drawing inspiration from ecological concepts to delineate functional and spatial shifts across tissue states. MESA introduces metrics to systematically quantify spatial diversity and identify hot spots, linking spatial patterns to phenotypic outcomes, including disease progression. Furthermore, MESA integrates spatial and single-cell multiomics data to facilitate an in-depth, molecular understanding of cellular neighborhoods and their spatial interactions within tissue microenvironments. Applying MESA to diverse datasets demonstrates additional insights it brings over prior methods, including newly identified spatial structures and key cell populations linked to disease states. Available as a Python package, MESA offers a versatile framework for quantitative decoding of tissue architectures in spatial omics across health and disease.
Collapse
Affiliation(s)
- Daisy Yi Ding
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Zeyu Tang
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hongyu Ren
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Robert Tibshirani
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Neylan CJ, Levin MG, Hartmann K, Beigel K, Khodursky S, DePaolo JS, Abramowitz S, Furth EE, Heuckeroth RO, Damrauer SM, Maguire LH. Genome-wide association meta-analysis identifies 126 novel loci for diverticular disease and implicates connective tissue and colonic motility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.27.25324777. [PMID: 40196262 PMCID: PMC11974943 DOI: 10.1101/2025.03.27.25324777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Diverticular disease is a common and morbid complex phenotype influenced by both innate and environmental risk factors. We performed the largest genome-wide association study meta-analysis for diverticular disease, identifying 126 novel loci. Employing multiple downstream analytic strategies, including tissue and pathway enrichment, statistical fine-mapping, allele-specific expression, protein quantitative trait loci and drug-target investigations, and linkage disequilibrium score regression, we prioritized causal genes and produced several lines of evidence linking diverticular disease to connective tissue biology and colonic motility. We substantiated these findings by integrating single-cell RNA sequencing data, showing that prioritized diverticular disease-associated genes are enriched for expression in colonic smooth muscle, fibroblasts, and interstitial cells of Cajal. In quantitative analysis of surgical specimens, we found a substantial reduction in the density of elastin present in the sigmoid colon in severe diverticulitis.
Collapse
Affiliation(s)
- Christopher J. Neylan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael G. Levin
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Katherine Hartmann
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katherine Beigel
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Sam Khodursky
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John S. DePaolo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sarah Abramowitz
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Robert O. Heuckeroth
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104
- The Children’s Hospital of Philadelphia Research Institute and Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104
| | - Scott M. Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lillias H. Maguire
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA 19104
- Division of Colon and Rectal Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
25
|
Jones AP, Haley MJ, Meadows MH, Gregory GE, Hannan CJ, Simmons AK, Bere LD, Lewis DG, Oliveira P, Smith MJ, King AT, Evans DGR, Paszek P, Brough D, Pathmanaban ON, Couper KN. Spatial mapping of immune cell environments in NF2-related schwannomatosis vestibular schwannoma. Nat Commun 2025; 16:2944. [PMID: 40140675 PMCID: PMC11947219 DOI: 10.1038/s41467-025-57586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
NF2-related Schwannomatosis (NF2 SWN) is a rare disease characterised by the growth of multiple nervous system neoplasms, including bilateral vestibular schwannoma (VS). VS tumours are characterised by extensive leucocyte infiltration. However, the immunological landscape in VS and the spatial determinants within the tumour microenvironment that shape the trajectory of disease are presently unknown. In this study, to elucidate the complex immunological networks across VS, we performed imaging mass cytometry (IMC) on clinically annotated VS samples from NF2 SWN patients. We reveal the heterogeneity in neoplastic cell, myeloid cell and T cell populations that co-exist within VS, and that distinct myeloid cell and Schwann cell populations reside within varied spatial contextures across characteristic Antoni A and B histomorphic niches. Interestingly, T-cell populations co-localise with tumour-associated macrophages (TAMs) in Antoni A regions, seemingly limiting their ability to interact with tumorigenic Schwann cells. This spatial landscape is altered in Antoni B regions, where T-cell populations appear to interact with PD-L1+ Schwann cells. We also demonstrate that prior bevacizumab treatment (VEGF-A antagonist) preferentially reduces alternatively activated-like TAMs, whilst enhancing CD44 expression, in bevacizumab-treated tumours. Together, we describe niche-dependent modes of T-cell regulation in NF2 SWN VS, indicating the potential for microenvironment-altering therapies for VS.
Collapse
Affiliation(s)
- Adam P Jones
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Miriam H Meadows
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Grace E Gregory
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Cathal J Hannan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Ana K Simmons
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Leoma D Bere
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Daniel G Lewis
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie Hospital, Manchester, UK
| | - Miriam J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - D Gareth R Evans
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Pawel Paszek
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK.
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
| |
Collapse
|
26
|
Mátis G, Sebők C, Horváth DG, Márton RA, Mackei M, Vörösházi J, Kemény Á, Neogrády Z, Varga I, Tráj P. Miniature chicken ileal explant culture to investigate the inflammatory response induced by pathogen-associated molecular patterns. Front Vet Sci 2025; 12:1484333. [PMID: 40171408 PMCID: PMC11960747 DOI: 10.3389/fvets.2025.1484333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/17/2025] [Indexed: 04/03/2025] Open
Abstract
Gastrointestinal inflammation leads to maldigestion and systemic diseases in poultry. To tackle the problem of the industry and to search for therapeutic candidates in vitro models are inevitable. Both immersion and air-liquid interface explant models are available, although there is limited information on the size-dependent applicability and response to different pathogen-associated molecular patterns (PAMPs) in the case of these model systems. The study aimed to compare the morphology and viability of miniature chicken gut explant cultures obtained with a biopsy punch to examine the size-dependent change over time. To verify the applicability of the model, pathogen-associated molecular patterns (PAMPs): flagellin, lipoteichoic acid (LTA) and polyinosinic polycytidylic acid (poly I:C) were applied to induce inflammation. The 2 mm diameter explants showed a decrease in metabolic activity measured by CCK-8 assay after 12 h and a significantly higher extracellular lactate dehydrogenase activity indicating cellular damage compared to the 1 mm explants, supported by histological differences after 24 h of culturing. After 12 h of incubation, the 1.5 mm explants retained columnar epithelial lining with moderate damage of the lamina propria (H&E and pan-cytokeratin staining). Exposure to 100 μg/mL poly I:C reduced the metabolic activity of the 1.5 mm explants. LTA and poly I:C increased IFN-γ concentration at both applied doses and IFN-α concentration was elevated by 50 μg/mL poly I:C treatment. Flagellin administration raised IL-2, IL-6, and RANTES levels, while higher LTA and poly I:C concentrations increased the IFN-γ/IL-10 ratio. According to the observations, the viability and integrity of the explants decreases with their size. After 12 h, the 1.5 mm diameter miniature chicken ileal explant stimulated with PAMPs can be an appropriate model to mimic diseases involving tissue damage and inflammation.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Dávid G. Horváth
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ágnes Kemény
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ilona Varga
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
27
|
Holland T, Mattner J. Metaplastic epithelial cells: origination from stem cells and promotion of intestinal inflammation. Signal Transduct Target Ther 2025; 10:80. [PMID: 40038237 PMCID: PMC11880517 DOI: 10.1038/s41392-025-02165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 03/06/2025] Open
Affiliation(s)
- Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- FAU Profilzentrum Immunmedizin (FAU I-MED), FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
28
|
Kang Z, Szabo A, Farago T, Perez-Villatoro F, Junquera A, Shah S, Launonen IM, Anttila E, Casado J, Elias K, Virtanen A, Haltia UM, Färkkilä A. Tribus: semi-automated discovery of cell identities and phenotypes from multiplexed imaging and proteomic data. Bioinformatics 2025; 41:btaf082. [PMID: 39982403 PMCID: PMC11932726 DOI: 10.1093/bioinformatics/btaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 02/19/2025] [Indexed: 02/22/2025] Open
Abstract
MOTIVATION Multiplexed imaging and single-cell analysis are increasingly applied to investigate the tissue spatial ecosystems in cancer and other complex diseases. Accurate single-cell phenotyping based on marker combinations is a critical but challenging task due to (i) low reproducibility across experiments with manual thresholding, and, (ii) labor-intensive ground-truth expert annotation required for learning-based methods. RESULTS We developed Tribus, an interactive knowledge-based classifier for multiplexed images and proteomic datasets that avoids hard-set thresholds and manual labeling. We demonstrated that Tribus recovers fine-grained cell types, matching the gold standard annotations by human experts. Additionally, Tribus can target ambiguous populations and discover phenotypically distinct cell subtypes. Through benchmarking against three similar methods in four public datasets with ground truth labels, we show that Tribus outperforms other methods in accuracy and computational efficiency, reducing runtime by an order of magnitude. Finally, we demonstrate the performance of Tribus in rapid and precise cell phenotyping with two large in-house whole-slide imaging datasets. AVAILABILITY AND IMPLEMENTATION Tribus is available at https://github.com/farkkilab/tribus as an open-source Python package.
Collapse
Affiliation(s)
- Ziqi Kang
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | - Angela Szabo
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | - Teodora Farago
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | | | - Ada Junquera
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | - Saundarya Shah
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | - Inga-Maria Launonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | - Ella Anttila
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | - Julia Casado
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
| | - Kevin Elias
- Division of Gynecologic Oncology, Brigham and Women’s Hospital, Harvard Medical School, MA, Boston, 02115, United States
- Dana-Farber Cancer Institute, Boston, MA, 02215, United States
| | - Anni Virtanen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital Helsinki, 00290, Finland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, 00290, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, 00290, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, 00290, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, 00290, Finland
| |
Collapse
|
29
|
Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T. AI-driven 3D bioprinting for regenerative medicine: From bench to bedside. Bioact Mater 2025; 45:201-230. [PMID: 39651398 PMCID: PMC11625302 DOI: 10.1016/j.bioactmat.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 12/11/2024] Open
Abstract
In recent decades, 3D bioprinting has garnered significant research attention due to its ability to manipulate biomaterials and cells to create complex structures precisely. However, due to technological and cost constraints, the clinical translation of 3D bioprinted products (BPPs) from bench to bedside has been hindered by challenges in terms of personalization of design and scaling up of production. Recently, the emerging applications of artificial intelligence (AI) technologies have significantly improved the performance of 3D bioprinting. However, the existing literature remains deficient in a methodological exploration of AI technologies' potential to overcome these challenges in advancing 3D bioprinting toward clinical application. This paper aims to present a systematic methodology for AI-driven 3D bioprinting, structured within the theoretical framework of Quality by Design (QbD). This paper commences by introducing the QbD theory into 3D bioprinting, followed by summarizing the technology roadmap of AI integration in 3D bioprinting, including multi-scale and multi-modal sensing, data-driven design, and in-line process control. This paper further describes specific AI applications in 3D bioprinting's key elements, including bioink formulation, model structure, printing process, and function regulation. Finally, the paper discusses current prospects and challenges associated with AI technologies to further advance the clinical translation of 3D bioprinting.
Collapse
Affiliation(s)
- Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, PR China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China
- “Biomanufacturing and Engineering Living Systems” Innovation International Talents Base (111 Base), Beijing, 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
30
|
Lee CYC, McCaffrey J, McGovern D, Clatworthy MR. Profiling immune cell tissue niches in the spatial -omics era. J Allergy Clin Immunol 2025; 155:663-677. [PMID: 39522655 DOI: 10.1016/j.jaci.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Immune responses require complex, spatially coordinated interactions between immune cells and their tissue environment. For decades, we have imaged tissue sections to visualize a limited number of immune-related macromolecules in situ, functioning as surrogates for cell types or processes of interest. However, this inevitably provides a limited snapshot of the tissue's immune landscape. Recent developments in high-throughput spatial -omics technologies, particularly spatial transcriptomics, and its application to human samples has facilitated a more comprehensive understanding of tissue immunity by mapping fine-grained immune cell states to their precise tissue location while providing contextual information about their immediate cellular and tissue environment. These data provide opportunities to investigate mechanisms underlying the spatial distribution of immune cells and its functional implications, including the identification of immune niches, although the criteria used to define this term have been inconsistent. Here, we review recent technological and analytic advances in multiparameter spatial profiling, focusing on how these methods have generated new insights in translational immunology. We propose a 3-step framework for the definition and characterization of immune niches, which is powerfully facilitated by new spatial profiling methodologies. Finally, we summarize current approaches to analyze adaptive immune repertoires and lymphocyte clonal expansion in a spatially resolved manner.
Collapse
Affiliation(s)
- Colin Y C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James McCaffrey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Dominic McGovern
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| |
Collapse
|
31
|
Wang Q, Hermannsson K, Másson E, Bergman P, Guðmundsson GH. Host-directed therapies modulating innate immunity against infection in hematologic malignancies. Blood Rev 2025; 70:101255. [PMID: 39690006 DOI: 10.1016/j.blre.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Patients with hematologic malignancies (HM) are highly susceptible to bloodstream infection (BSI), particularly those undergoing treatments such as chemotherapy. A common and debilitating side effect of chemotherapy is oral and intestinal mucositis. These Patients are also at high risk of developing sepsis, which can arise from mucosal barrier injuries and significantly increases mortality in these patients. While conventional antibiotics are effective, their use can lead to antimicrobial resistance (AMR) and disrupt the gut microbiota (dysbiosis). In this review, we discuss utilizing host defense peptides (HDPs), key components of the innate immune system, and immune system inducers (ISIs) to maintain mucosal barrier integrity against infection, an underexplored host-directed therapy (HDT) approach to prevent BSI and sepsis. We advocate for the discovery of potent and safe ISIs for clinical use and call for further research into the mechanisms by which these ISIs induce HDPs and strengthen mucosal barriers.
Collapse
Affiliation(s)
- Qiong Wang
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Kristján Hermannsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| | - Egill Másson
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland.
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
32
|
Meng X, Tomassen MMM, Fryganas C, Fogliano V, Hoppenbrouwers T. Encapsulated hesperetin modulates inflammatory responses in an in vitro intestinal immune co-culture model. Food Res Int 2025; 204:115916. [PMID: 39986769 DOI: 10.1016/j.foodres.2025.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
In vitro cell models are an effective way to evaluate the biological activities of functional compounds. Hesperetin (HST) is a flavanone with various potential health-related benefits, and encapsulation improved its stability and bioavailability. This study aimed to investigate the anti-inflammatory effects of encapsulated HST using different delivery systems, including β-cyclodextrin (CD), nanoliposomes (NL), and NL coated with chitosan (CH) and carrageenan (CGN). A Caco-2 and THP-1 co-culture model characterized by direct cell-to-cell contact was developed, and these delivery systems were digested in vitro and subsequently tested on this model. The addition of lipopolysaccharide (LPS) in the model resulted in high secretion of the pro-inflammatory cytokines (IL-8, TNF-α, and IL-1β), the upregulation of the phenotype genes (CD68 and CD80) and the inflammation-related genes (MYD88, NFκB, and COX-2), marking the differentiation of M0 macrophages into M1 macrophages. Among the delivery systems, HST encapsulated in CH and CGN coated NL (CGN-CH-NL-HST) was the most effective in suppressing the production of IL-8 and expression of MYD88 and COX-2 in the inflammatory co-culture model. Metabolomic data showed that the M1 macrophage metabolic profile was changed by applying free HST and encapsulated HST, mostly in glycolysis and amino acid metabolism. Encapsulated HST in the CGN-CH-NL delivery system showed anti-inflammatory activity in the Caco-2 and THP-1 direct co-culture model, suggesting a potential of encapsulated bioactive compounds in treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiangnan Meng
- Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Christos Fryganas
- Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Tamara Hoppenbrouwers
- Food Quality and Design, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
33
|
Reina-Campos M, Monell A, Ferry A, Luna V, Cheung KP, Galletti G, Scharping NE, Takehara KK, Quon S, Challita PP, Boland B, Lin YH, Wong WH, Indralingam CS, Neadeau H, Alarcón S, Yeo GW, Chang JT, Heeg M, Goldrath AW. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 2025; 639:483-492. [PMID: 39843748 PMCID: PMC11903307 DOI: 10.1038/s41586-024-08466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Tissue-resident memory CD8 T (TRM) cells provide protection from infection at barrier sites. In the small intestine, TRM cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential1. However, the origins of this diversity remain unknown. Here we proposed that distinct tissue niches drive the phenotypic heterogeneity of TRM cells. To test this, we leveraged spatial transcriptomics of human samples, a mouse model of acute systemic viral infection and a newly established strategy for pooled optically encoded gene perturbations to profile the locations, interactions and transcriptomes of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. Our study reveals that the regionalized signalling of the intestinal architecture supports two distinct TRM cell states: differentiated TRM cells and progenitor-like TRM cells, located in the upper villus and lower villus, respectively. This diversity is mediated by distinct ligand-receptor activities, cytokine gradients and specialized cellular contacts. Blocking TGFβ or CXCL9 and CXCL10 sensing by antigen-specific CD8 T cells revealed a model consistent with anatomically delineated, early fate specification. Ultimately, our framework for the study of tissue immune networks reveals that T cell location and functional state are fundamentally intertwined.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alexander Monell
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amir Ferry
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Vida Luna
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kitty P Cheung
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Giovanni Galletti
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E Scharping
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kennidy K Takehara
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Peter P Challita
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Brigid Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Hsuan Lin
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - William H Wong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Suzie Alarcón
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Veteran Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
- Allen Institute for Immunology, Seattle, WA, USA.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
- Allen Institute for Immunology, Seattle, WA, USA.
| |
Collapse
|
34
|
Artegiani B, Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev Cell 2025; 60:493-511. [PMID: 39999776 DOI: 10.1016/j.devcel.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/13/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Human organoids are a widely used tool in cell biology to study homeostatic processes, disease, and development. The term organoids covers a plethora of model systems from different cellular origins that each have unique features and applications but bring their own challenges. This review discusses the basic principles underlying organoids generated from pluripotent stem cells (PSCs) as well as those derived from tissue stem cells (TSCs). We consider how well PSC- and TSC-organoids mimic the different intended organs in terms of cellular complexity, maturity, functionality, and the ongoing efforts to constitute predictive complex models of in vivo situations. We discuss the advantages and limitations associated with each system to answer different biological questions including in the field of cancer and developmental biology, and with respect to implementing emerging advanced technologies, such as (spatial) -omics analyses, CRISPR screens, and high-content imaging screens. We postulate how the two fields may move forward together, integrating advantages of one to the other.
Collapse
Affiliation(s)
| | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
35
|
Reynoso S, Schiebout C, Krishna R, Zhang F. STEAM: Spatial Transcriptomics Evaluation Algorithm and Metric for clustering performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.636505. [PMID: 40027655 PMCID: PMC11870515 DOI: 10.1101/2025.02.17.636505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Motivation Spatial transcriptomic technologies allow researchers to explore the diversity and specificity of gene expression within their original tissue structure. Accurately identifying regions that are spatially coherent in both gene expression and physical tissue structures is an emerging topic, but challenging due to the lack of ground truth labels which renders complicating validation of clustering consistency and reproducibility. This highlights a need for a computational evaluation framework to rigorously and unbiasedly assess clustering performance. Results To address this gap, we propose STEAM (Spatial Transcriptomics Evaluation Algorithm and Metric), a user-friendly computational pipeline designed to evaluate the consistency and reliability of clustering results by leveraging machine learning classification and prediction methods, with the goal of maintaining the spatial proximity and gene expression patterns within clusters. We benchmarked STEAM on various public datasets, spanning multi-cell to single-cell resolution, as well as spatial transcriptomics and proteomics. The results highlighted its robustness and generalizability through comprehensive statistical evaluation metrics, such as Kappa score, F1 score, accuracy, and adjusted rand index. Notably, STEAM supports multi-sample training, enabling cross-replicate clustering consistency assessment. Moreover, STEAM provides practical guidance by comparing clustering results across multiple approaches; here, we evaluated four different methods, including spatial-aware and spatial-ignorant approaches. In summary, we believe that STEAM provides researchers a promising tool for evaluating clustering robustness and benchmarking clustering performance for spatial omics data, offering valuable insights to drive reproducible discoveries in spatial biology. Availability and implementation Source code and the R software tool STEAM are available from https://github.com/fanzhanglab/STEAM .
Collapse
Affiliation(s)
- Samantha Reynoso
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Medicine Rheumatology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Computational Bioscience PhD Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Courtney Schiebout
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Medicine Rheumatology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Revanth Krishna
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Medicine Rheumatology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Fan Zhang
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Medicine Rheumatology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
36
|
Bidanta S, Börner K, Herr Ii BW, Quardokus EM, Nagy M, Gustilo KS, Bajema R, Maier E, Molontay R, Weber GM. Functional tissue units in the Human Reference Atlas. Nat Commun 2025; 16:1526. [PMID: 39934102 PMCID: PMC11814273 DOI: 10.1038/s41467-024-54591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 11/14/2024] [Indexed: 02/13/2025] Open
Abstract
Functional tissue units form the basic building blocks of organs and are important for understanding and modeling the healthy physiological function of the organ and changes that occur during disease states. In this comprehensive catalog of 22 anatomically based, nested functional tissue units from 10 healthy human organs, we document the definition, physical dimensions, blood vasculature connections, and cellular composition. All anatomy terms are mapped to the multi-species Uber-anatomy Ontology (Uberon) and cells are mapped to Cell Ontology to support computational access via standardized metadata. The catalog includes datasets, illustrations, and a large printable poster illustrating how the blood vasculature connects the 22 functional tissue units in 10 organs. All data and code are freely available. The work is part of an ongoing international effort to construct a Human Reference Atlas of the 37 trillion cells that make up the healthy human body.
Collapse
Affiliation(s)
- Supriya Bidanta
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Katy Börner
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA.
| | - Bruce W Herr Ii
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Marcell Nagy
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
- Institute of Biostatistics and Network Science, Semmelweis University, H-1085, Budapest, Hungary
| | - Katherine S Gustilo
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Rachel Bajema
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Elizabeth Maier
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA
| | - Roland Molontay
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
- Institute of Biostatistics and Network Science, Semmelweis University, H-1085, Budapest, Hungary
| | - Griffin M Weber
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Gudiño V, Bartolomé-Casado R, Salas A. Single-cell omics in inflammatory bowel disease: recent insights and future clinical applications. Gut 2025:gutjnl-2024-334165. [PMID: 39904604 DOI: 10.1136/gutjnl-2024-334165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Inflammatory bowel diseases (IBDs), which include ulcerative colitis (UC) and Crohn's disease (CD), are chronic conditions characterised by inflammation of the intestinal tract. Alterations in virtually all intestinal cell types, including immune, epithelial and stromal cells, have been described in these diseases. The study of IBD has historically relied on bulk transcriptomics, but this method averages signals across diverse cell types, limiting insights. Single-cell omic technologies overcome the intrinsic limitations of bulk analysis and reveal the complexity of multicellular tissues at a cell-by-cell resolution. Within healthy and inflamed intestinal tissues, single-cell omics, particularly single-cell RNA sequencing, have contributed to uncovering novel cell types and cell functions linked to disease activity or the development of complications. Collectively, these results help identify therapeutic targets in difficult-to-treat complications such as fibrostenosis, creeping fat accumulation, perianal fistulae or inflammation of the pouch. More recently, single-cell omics have gradually been adopted in studies to understand therapeutic responses, identify mechanisms of drug failure and potentially develop predictors with clinical utility. Although these are early days, such studies lay the groundwork for the implementation in clinical practice of new technologies in diagnostics, monitoring and prediction of disease prognosis. With this review, we aim to provide a comprehensive survey of the studies that have applied single-cell omics to the study of UC or CD, and offer our perspective on the main findings these studies contribute. Finally, we discuss the limitations and potential benefits that the integration of single-cell omics into clinical practice and drug development could offer.
Collapse
Affiliation(s)
- Victoria Gudiño
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Raquel Bartolomé-Casado
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
38
|
Rouseti GM, Fischer A, Rathfelder N, Grimes K, Waldt A, Cuttat R, Schuierer S, Wild S, Jivkov M, Dubost V, Schadt HS, Odermatt A, Vicart A, Moretti F. Disruption of serotonin homeostasis in intestinal organoids provides insights into drug-induced gastrointestinal toxicity. Toxicology 2025; 511:154028. [PMID: 39643203 DOI: 10.1016/j.tox.2024.154028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Drug-induced gastrointestinal toxicity is a frequent clinical adverse event that needs to be carefully monitored and managed to ensure patient compliance. While preclinical assessment of drug-induced gastrointestinal toxicity mostly relies on animal experimentation, intestinal organoids have gained increasing attention to identify gastrointestinal toxicants in vitro. Nonetheless, current in vitro protocols primarily assess structural alterations induced by drugs, whereas gastrointestinal adverse events can often stem from functional disturbances. Disruption of serotonin signaling in the gastrointestinal tract is associated with impaired motility, as well as nausea and vomiting. We aimed to investigate alterations of serotonin homeostasis in organoids derived from the canine small intestine as a driver of drug-induced gastrointestinal toxicity. Treatment of the organoids with a compound (NVS-1) inducing acute gastrointestinal toxicity in dogs as well as with three tyrosine kinase inhibitors with known preclinical and clinical gastrointestinal adverse effects (afatinib, crizotinib and vandetanib) led to increased supernatant serotonin levels. Mechanistic assays showed that, while NVS-1 and afatinib stimulate serotonin release, crizotinib and vandetanib inhibit serotonin re-uptake via direct inhibition of the serotonin re-uptake transporter. Using a data mining approach, we further suggest that inhibition of serotonin re-uptake could contribute to gastrointestinal toxicity observed with multiple marketed drugs. In conclusion, we present the implementation of a novel in vitro gastrointestinal toxicity endpoint that could complement current methods and serve as a mechanistic and predictive/screening tool for drug-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Georgia M Rouseti
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Audrey Fischer
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Nicole Rathfelder
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland; present address: Department of Chemistry, University of Basel, Basel, Switzerland
| | - Karen Grimes
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Annick Waldt
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Rachel Cuttat
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sven Schuierer
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Sophia Wild
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Magali Jivkov
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Valerie Dubost
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Heiko S Schadt
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Axel Vicart
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Francesca Moretti
- Preclinical Safety, Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
39
|
To A, Yu Z, Sugimura R. Recent advancement in the spatial immuno-oncology. Semin Cell Dev Biol 2025; 166:22-28. [PMID: 39705969 DOI: 10.1016/j.semcdb.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Recent advancements in spatial transcriptomics and spatial proteomics enabled the high-throughput profiling of single or multi-cell types and cell states with spatial information. They transformed our understanding of the higher-order architectures and paired cell-cell interactions within a tumor microenvironment (TME). Within less than a decade, this rapidly emerging field has discovered much crucial fundamental knowledge and significantly improved clinical diagnosis in the field of immuno-oncology. This review summarizes the conceptual frameworks to understand spatial omics data and highlights the updated knowledge of spatial immuno-oncology.
Collapse
Affiliation(s)
- Alex To
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Zou Yu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, University of Hong Kong, Hong Kong; Centre for Translational Stem Cell Biology, Hong Kong.
| |
Collapse
|
40
|
Zhu B, Bai Y, Yeo YY, Lu X, Rovira-Clavé X, Chen H, Yeung J, Nkosi D, Glickman J, Delgado-Gonzalez A, Gerber GK, Angelo M, Shalek AK, Nolan GP, Jiang S. A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment. Nat Commun 2025; 16:1230. [PMID: 39890778 PMCID: PMC11785740 DOI: 10.1038/s41467-025-56237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
The intricate interactions between the host immune system and its microbiome constituents undergo dynamic shifts in response to perturbations to the intestinal tissue environment. Our ability to study these events on the systems level is significantly limited by in situ approaches capable of generating simultaneous insights from both host and microbial communities. Here, we introduce Microbiome Cartography (MicroCart), a framework for simultaneous in situ probing of host and microbiome across multiple spatial modalities. We demonstrate MicroCart by investigating gut host and microbiome changes in a murine colitis model, using spatial proteomics, transcriptomics, and glycomics. Our findings reveal a global but systematic transformation in tissue immune responses, encompassing tissue-level remodeling in response to host immune and epithelial cell state perturbations, bacterial population shifts, localized inflammatory responses, and metabolic process alterations during colitis. MicroCart enables a deep investigation of the intricate interplay between the host tissue and its microbiome with spatial multi-omics.
Collapse
Affiliation(s)
- Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yunhao Bai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Lu
- Mass Spectrometry Core Facility, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Biological and Medical Informatics Program, UCSF, San Francisco, CA, USA
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dingani Nkosi
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | - Jonathan Glickman
- Department of Pathology, Massachusetts General Brigham, Boston, MA, USA
| | | | - Georg K Gerber
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard University and MIT, Cambridge, MA, USA
| | - Mike Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Division of Computational Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Qiu R, Pan C, Qin Y, Wei Q, Yu Y, Zhang Y, Xie X, Li J, Chen S, Li K, Fouad D, Wu Y, Zhong Q. Polygonatum kingianum polysaccharide alleviated intestinal injuries by mediating antioxidant ability and microbiota. Front Microbiol 2025; 16:1492710. [PMID: 39949622 PMCID: PMC11821965 DOI: 10.3389/fmicb.2025.1492710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Polygonatum kingianum is a well-known medicinal herb with proven bioactivities; however, little is known about the effects of its polysaccharide on intestinal injuries in animals induced by lipopolysaccharide (LPS). Methods A total of 30 Institute of Cancer Research (ICR) mice were divided into control (CH), induced (MH), and treated (H) groups. Mice in group H were supplemented with 100 mg/kg Polygonatum kingianum polysaccharides, while groups C and M were treated with the same amount of normal saline by gavage for 18 days. On the 18th day animals in groups M and H were induced by LPS (10 mg/kg). Results The results showed the weight of mice in group MH significantly dropped (P < 0.0001), while mice in the PK group had a higher weight (P < 0.01). Pathological analysis found that the majority of the villi in mice induced by LPS were broken and short, while PK-treated animals had longer and considerably integrated villi. The villi length in groups CH (P < 0.0001) and H (P < 0.0001) was longer than that in group M, and the value of villi length/crypt depth in group MH was smaller than that in groups CH (P < 0.0001) and H (P < 0.0001), while the crypt depth in group MH was higher than in groups CH (P < 0.0001) and H (P < 0.0001). Serum inspection showed that MAD (P < 0.05), IL-1β (P < 0.05), IL-6 (P < 0.05), and TNF-α (P < 0.01) were significantly higher in group MH, while SOD (P < 0.001), T-AOC (P < 0.01), and GSH-Px (P < 0.01) were notably higher in groups CH and H. Microbiome sequencing of mice obtained 844,477 raw and 725,469 filtered reads. There were 2,407 ASVs detected in animals, and there were 312 and 328 shared ASVs between CH and MH, and CH and H, respectively. There were 5 phyla and 20genera of remarkable bacteria found among mice groups including genera of Escherichia, Pseudomonas_E, Mailhella, Paramuribaculum, NM07-P-09, Odoribacter, Nanosyncoccus, SFM01, Onthenecus, Clostridium_Q, UBA6985, Ructibacterium, UBA946, Lachnoclostridium_B, Evtepia, CAG-269, Limivicinus, Formimonas, Dehalobacterium, Dwaynesavagella, and UBA6985. We revealed that Polygonatum kingianum polysaccharide could alleviate intestinal injuries by promoting oxidation resistance, decreasing inflammatory responses, and accommodating the intestinal microbiota of mice. Discussion Our results suggest the possibility of developing novel therapies for intestinal diseases.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Chuangye Pan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Yuxi Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Qianfei Wei
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yue Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xuehan Xie
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Jianqin Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shouhai Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yi Wu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiu Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
42
|
Zhu Y, Yao ZC, Li S, Ma J, Wei C, Yu D, Stelzel JL, Ni BYX, Miao Y, Van Batavia K, Lu X, Lin J, Dai Y, Kong J, Shen R, Goodier KD, Liu X, Cheng L, Vuong I, Howard GP, Livingston NK, Choy J, Schneck JP, Doloff JC, Reddy SK, Hickey JW, Mao HQ. mRNA lipid nanoparticle-incorporated nanofiber-hydrogel composite generates a local immunostimulatory niche for cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.633179. [PMID: 39975373 PMCID: PMC11838205 DOI: 10.1101/2025.01.27.633179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hydrogel materials have emerged as versatile platforms for various biomedical applications. Notably, the engineered nanofiber-hydrogel composite (NHC) has proven effective in mimicking the soft tissue extracellular matrix, facilitating substantial recruitment of host immune cells and the formation of a local immunostimulatory microenvironment. Leveraging this feature, here we report an mRNA lipid nanoparticle (LNP)-incorporated NHC microgel matrix, termed LiNx, by incorporating LNPs loaded with mRNA encoding tumour antigens. Harnessing the potent transfection efficiency of LNPs in antigen-presenting cells (APCs), LiNx demonstrates remarkable immune cell recruitment, antigen expression and presentation, and cellular interaction. These attributes collectively create an immunostimulating milieu and yield a potent immune response achievable with a single dose, comparable to the conventional three-dose LNP immunization regimen. Further investigations reveal that the LiNx not only generates heightened Th1 and Th2 responses but also elicits a distinctive Type 17 T helper cell-mediated response pivotal for bolstering antitumour efficacy. Our findings elucidate the mechanism underlying LiNx's role in potentiating antigen-specific immune responses, presenting a new strategy for cancer immunotherapy.
Collapse
|
43
|
Zhang X, Wang C, Pi X, Li B, Ding Y, Yu H, Sun J, Wang P, Chen Y, Wang Q, Zhang C, Meng X, Chen G, Wang D, Wang Z, Mu Z, Song H, Zhang J, Niu S, Han Z, Ren L. Bionic Recognition Technologies Inspired by Biological Mechanosensory Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418108. [PMID: 39838736 DOI: 10.1002/adma.202418108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Mechanical information is a medium for perceptual interaction and health monitoring of organisms or intelligent mechanical equipment, including force, vibration, sound, and flow. Researchers are increasingly deploying mechanical information recognition technologies (MIRT) that integrate information acquisition, pre-processing, and processing functions and are expected to enable advanced applications. However, this also poses significant challenges to information acquisition performance and information processing efficiency. The novel and exciting mechanosensory systems of organisms in nature have inspired us to develop superior mechanical information bionic recognition technologies (MIBRT) based on novel bionic materials, structures, and devices to address these challenges. Herein, first bionic strategies for information pre-processing are presented and their importance for high-performance information acquisition is highlighted. Subsequently, design strategies and considerations for high-performance sensors inspired by mechanoreceptors of organisms are described. Then, the design concepts of the neuromorphic devices are summarized in order to replicate the information processing functions of a biological nervous system. Additionally, the ability of MIBRT is investigated to recognize basic mechanical information. Furthermore, further potential applications of MIBRT in intelligent robots, healthcare, and virtual reality are explored with a view to solve a range of complex tasks. Finally, potential future challenges and opportunities for MIBRT are identified from multiple perspectives.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Changguang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Xiang Pi
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Yuechun Ding
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Hexuan Yu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Jialue Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Pinkun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - You Chen
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Qun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Xiancun Meng
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Guangjun Chen
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Dakai Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Ze Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Honglie Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
44
|
Zhao Y, Zhou R, Xie B, Liu CY, Kalski M, Cham CM, Jiang Z, Koval J, Weber CR, Rubin DT, Sogin M, Crosson S, Chen M, Huang J, Fiebig A, Dalal S, Chang EB, Basu A, Pott S. Multiomic analysis reveals cellular, transcriptomic and epigenetic changes in intestinal pouches of ulcerative colitis patients. Nat Commun 2025; 16:904. [PMID: 39837850 PMCID: PMC11751449 DOI: 10.1038/s41467-025-56212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Total proctocolectomy with ileal pouch anal anastomosis is the standard of care for patients with severe ulcerative colitis. We generated a cell-type-resolved transcriptional and epigenetic atlas of ileal pouches using scRNA-seq and scATAC-seq data from paired biopsy samples of the ileal pouch and the ileal segment above the pouch (pre-pouch) from patients (male=4, female=2), and paired biopsies of the terminal ileum and ascending colon from healthy individuals (male=3, female=3) serving as reference. Our study finds an additional population of absorptive and secretory epithelial cells within the pouch but not the pre-pouch. These pouch-specific enterocytes express a subset of colon-specific genes, including CEACAM5 and CD24. However, compared to normal colonocytes, expression of these genes is lower, and these enterocytes also express inflammatory and secretory genes while maintaining expression of some ileal-specific genes. This cell-type-resolved transcriptomic and epigenetic atlas of the ileal pouch establishes a reference for investigating pouch physiology and pathology.
Collapse
Affiliation(s)
- Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, USA
| | - Ran Zhou
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Bingqing Xie
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Cambrian Y Liu
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Martin Kalski
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Candace M Cham
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Zhiwei Jiang
- University of Chicago, Department of Chemistry, Chicago, IL, USA
| | - Jason Koval
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | | | - David T Rubin
- University of Chicago, Department of Medicine, Chicago, IL, USA
- University of Chicago, Department of Pathology, Chicago, IL, USA
| | - Mitch Sogin
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Sean Crosson
- Michigan State University, East Lansing, MI, USA
| | - Mengjie Chen
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Jun Huang
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, USA
| | | | - Sushila Dalal
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Eugene B Chang
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Anindita Basu
- University of Chicago, Department of Medicine, Chicago, IL, USA.
| | - Sebastian Pott
- University of Chicago, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
45
|
Kitata RB, Velickovic M, Xu Z, Zhao R, Scholten D, Chu RK, Orton DJ, Chrisler WB, Zhang T, Mathews JV, Bumgarner BM, Gursel DB, Moore RJ, Piehowski PD, Liu T, Smith RD, Liu H, Wasserfall CH, Tsai CF, Shi T. Robust collection and processing for label-free single voxel proteomics. Nat Commun 2025; 16:547. [PMID: 39805815 PMCID: PMC11730317 DOI: 10.1038/s41467-024-54643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single voxels dissected by LCM to the tube cap and SOP voxel processing in the same collection cap. This method enables reproducible, label-free quantification of approximately 900 and 4600 proteins for single voxels at 20 µm × 20 µm × 10 µm (~1 cell region) and 200 µm × 200 µm × 10 µm (~100 cell region) from fresh frozen human spleen tissue, respectively. It can reveal spatially resolved protein signatures and region-specific signaling pathways. Furthermore, wcSOP-MS is demonstrated to be broadly applicable for OCT-embedded and FFPE human archived tissues as well as for small-scale 2D proteome mapping of tissues at high spatial resolutions. wcSOP-MS may pave the way for routine robust single voxel proteomics and spatial proteomics.
Collapse
Affiliation(s)
- Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhangyang Xu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David Scholten
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeremy V Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin M Bumgarner
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Demirkan B Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
46
|
Zhao Y, Zhou R, Xie B, Liu CY, Kalski M, Cham CM, Jiang Z, Koval J, Weber CR, Rubin DT, Sogin M, Crosson S, Chen M, Huang J, Fiebig A, Dalal S, Chang EB, Basu A, Pott S. Multiomic analysis reveals cellular, transcriptomic and epigenetic changes in intestinal pouches of ulcerative colitis patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.11.11.23298309. [PMID: 38014192 PMCID: PMC10680893 DOI: 10.1101/2023.11.11.23298309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Total proctocolectomy with ileal pouch anal anastomosis is the standard of care for patients with severe ulcerative colitis. We generated a cell-type-resolved transcriptional and epigenetic atlas of ileal pouches using scRNA-seq and scATAC-seq data from paired biopsy samples of the ileal pouch and the ileal segment above the pouch (pre-pouch) from patients (male=4, female=2), and paired biopsies of the terminal ileum and ascending colon from healthy individuals (male=3, female=3) serving as reference. Our study finds previously uncharacterized populations of absorptive and secretory epithelial cells within the pouch but not the pre-pouch. These pouch-specific enterocytes express a subset of colon-specific genes, including CEACAM5 and CD24. However, compared to normal colonocytes, expression of these genes is lower, and these enterocytes also express inflammatory and secretory genes while maintaining expression of some ileal-specific genes. This cell-type-resolved transcriptomic and epigenetic atlas of the ileal pouch establishes a reference for investigating pouch physiology and pathology.
Collapse
Affiliation(s)
- Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, USA
| | - Ran Zhou
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Bingqing Xie
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Cambrian Y Liu
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Martin Kalski
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Candace M Cham
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Zhiwei Jiang
- University of Chicago, Department of Chemistry, Chicago, IL, USA
| | - Jason Koval
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | | | - David T Rubin
- University of Chicago, Department of Medicine, Chicago, IL, USA
- University of Chicago, Department of Pathology, Chicago, IL, USA
| | - Mitch Sogin
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Sean Crosson
- Michigan State University, East Lansing, MI, USA
| | - Mengjie Chen
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Jun Huang
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, USA
| | | | - Sushila Dalal
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Eugene B Chang
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Anindita Basu
- University of Chicago, Department of Medicine, Chicago, IL, USA
| | - Sebastian Pott
- University of Chicago, Department of Medicine, Chicago, IL, USA
| |
Collapse
|
47
|
Wijnakker JJ, van Son GJ, Krueger D, van de Wetering WJ, Lopez-Iglesias C, Schreurs R, van Rijt F, Lim S, Lin L, Peters PJ, Isberg RR, Janda CY, de Lau W, Clevers H. Integrin-activating Yersinia protein Invasin sustains long-term expansion of primary epithelial cells as 2D organoid sheets. Proc Natl Acad Sci U S A 2025; 122:e2420595121. [PMID: 39793062 PMCID: PMC11725944 DOI: 10.1073/pnas.2420595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025] Open
Abstract
Matrigel®/BME®, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato et al., Nature 459, 262-265 (2009); T. Sato et al., Gastroenterology 141, 1762-1772 (2011)]. Here, we show that interaction between Matrigel's major component laminin-111 with epithelial α6β1-integrin is crucial for this process. The outer membrane protein Invasin of Yersinia is known to activate multiple integrin-β1 complexes, including integrin α6β1. A C-terminal integrin-binding fragment of Invasin, coated on culture plates, mediated gut epithelial cell adhesion. Addition of organoid growth factors allowed multipassage expansion in 2D. Polarization, junction formation, and generation of enterocytes, goblet cells, Paneth cells, and enteroendocrine cells were stable over time. Sustained expansion of other human, mouse, and even snake epithelia was accomplished under comparable conditions. The 2D "organoid sheet" format holds advantages over the 3D "in gel" format in terms of imaging, accessibility of basal and apical domains, and automation for high-throughput screening. Invasin represents a fully defined, affordable, versatile, and animal-free complement to Matrigel®/BME®.
Collapse
Affiliation(s)
- Joost J.A.P.M. Wijnakker
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht3584 CT, The Netherlands
- University Medical Centre, Utrecht3584 CT, The Netherlands
| | - Gijs J.F. van Son
- Princess Maxima Center of Pediatric Oncology, Utrecht3584 CS, The Netherlands
| | - Daniel Krueger
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht3584 CT, The Netherlands
- University Medical Centre, Utrecht3584 CT, The Netherlands
| | | | - Carmen Lopez-Iglesias
- The Maastricht Multimodal Imaging Institute, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Robin Schreurs
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht3584 CT, The Netherlands
- University Medical Centre, Utrecht3584 CT, The Netherlands
| | - Fenna van Rijt
- Princess Maxima Center of Pediatric Oncology, Utrecht3584 CS, The Netherlands
| | - Sangho Lim
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht3584 CT, The Netherlands
- University Medical Centre, Utrecht3584 CT, The Netherlands
| | - Lin Lin
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht3584 CT, The Netherlands
- University Medical Centre, Utrecht3584 CT, The Netherlands
- Princess Maxima Center of Pediatric Oncology, Utrecht3584 CS, The Netherlands
| | - Peter J. Peters
- The Maastricht Multimodal Imaging Institute, Maastricht University, Maastricht6229 ER, The Netherlands
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA02111
| | - Claudia Y. Janda
- Princess Maxima Center of Pediatric Oncology, Utrecht3584 CS, The Netherlands
| | - Wim de Lau
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht3584 CT, The Netherlands
- University Medical Centre, Utrecht3584 CT, The Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht3584 CT, The Netherlands
- University Medical Centre, Utrecht3584 CT, The Netherlands
- Princess Maxima Center of Pediatric Oncology, Utrecht3584 CS, The Netherlands
| |
Collapse
|
48
|
Wang T, Chen X, Han Y, Yi J, Liu X, Kim P, Huang L, Huang K, Zhou X. scProAtlas: an atlas of multiplexed single-cell spatial proteomics imaging in human tissues. Nucleic Acids Res 2025; 53:D582-D594. [PMID: 39526396 PMCID: PMC11701751 DOI: 10.1093/nar/gkae990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial proteomics can visualize and quantify protein expression profiles within tissues at single-cell resolution. Although spatial proteomics can only detect a limited number of proteins compared to spatial transcriptomics, it provides comprehensive spatial information with single-cell resolution. By studying the spatial distribution of cells, we can clearly obtain the spatial context within tissues at multiple scales. Spatial context includes the spatial composition of cell types, the distribution of functional structures, and the spatial communication between functional regions, all of which are crucial for the patterns of cellular distribution. Here, we constructed a comprehensive spatial proteomics functional annotation knowledgebase, scProAtlas (https://relab.xidian.edu.cn/scProAtlas/#/), which is designed to help users comprehensively understand the spatial context within different tissue types at single-cell resolution and across multiple scales. scProAtlas contains multiple modules, including neighborhood analysis, proximity analysis and neighborhood network, to comprehensively construct spatial cell maps of tissues and multi-modal integration, spatial gene identification, cell-cell interaction and spatial pathway analysis to display spatial variable genes. scProAtlas includes data from eight spatial protein imaging techniques across 15 tissues and provides detailed functional annotation information for 17 468 394 cells from 945 region of interests. The aim of scProAtlas is to offer a new insight into the spatial structure of various tissues and provides detailed spatial functional annotation.
Collapse
Affiliation(s)
- Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, P.R. China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xuanmin Chen
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, P.R. China
| | - Yujuan Han
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 843000, P.R. China
| | - Jiahao Yi
- Department of Medical Informatics, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 561100, P.R. China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, P.R. China
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, P.R. China
| | - Kexin Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, P.R. China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
49
|
Dos Santos Peixoto R, Miller BF, Brusko MA, Aihara G, Atta L, Anant M, Atkinson MA, Brusko TM, Wasserfall CH, Fan J. Characterizing cell-type spatial relationships across length scales in spatially resolved omics data. Nat Commun 2025; 16:350. [PMID: 39753600 PMCID: PMC11699133 DOI: 10.1038/s41467-024-55700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
Spatially resolved omics (SRO) technologies enable the identification of cell types while preserving their organization within tissues. Application of such technologies offers the opportunity to delineate cell-type spatial relationships, particularly across different length scales, and enhance our understanding of tissue organization and function. To quantify such multi-scale cell-type spatial relationships, we present CRAWDAD, Cell-type Relationship Analysis Workflow Done Across Distances, as an open-source R package. To demonstrate the utility of such multi-scale characterization, recapitulate expected cell-type spatial relationships, and evaluate against other cell-type spatial analyses, we apply CRAWDAD to various simulated and real SRO datasets of diverse tissues assayed by diverse SRO technologies. We further demonstrate how such multi-scale characterization enabled by CRAWDAD can be used to compare cell-type spatial relationships across multiple samples. Finally, we apply CRAWDAD to SRO datasets of the human spleen to identify consistent as well as patient and sample-specific cell-type spatial relationships. In general, we anticipate such multi-scale analysis of SRO data enabled by CRAWDAD will provide useful quantitative metrics to facilitate the identification, characterization, and comparison of cell-type spatial relationships across axes of interest.
Collapse
Affiliation(s)
- Rafael Dos Santos Peixoto
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Brendan F Miller
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Gohta Aihara
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lyla Atta
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Manjari Anant
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Jean Fan
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
50
|
Gong J, Lee C, Kim H, Kim J, Jeon J, Park S, Cho K. Control of Cellular Differentiation Trajectories for Cancer Reversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402132. [PMID: 39661721 PMCID: PMC11744559 DOI: 10.1002/advs.202402132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Cellular differentiation is controlled by intricate layers of gene regulation, involving the modulation of gene expression by various transcriptional regulators. Due to the complexity of gene regulation, identifying master regulators across the differentiation trajectory has been a longstanding challenge. To tackle this problem, a computational framework, single-cell Boolean network inference and control (BENEIN), is presented. Applying BENEIN to human large intestinal single-cell transcriptome data, MYB, HDAC2, and FOXA2 are identified as the master regulators whose inhibition induces enterocyte differentiation. It is found that simultaneous knockdown of these master regulators can revert colorectal cancer cells into normal-like enterocytes by synergistically inducing differentiation and suppressing malignancy, which is validated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Jeong‐Ryeol Gong
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Chun‐Kyung Lee
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hoon‐Min Kim
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Juhee Kim
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Jaeog Jeon
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Sunmin Park
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|