1
|
Chantzi N, Chan CY, Patsakis M, Nayak A, Montgomery A, Mouratidis I, Georgakopoulos-Soares I. Ribosomal DNA arrays are the most H-DNA rich element in the human genome. NAR Genom Bioinform 2025; 7:lqaf012. [PMID: 40041207 PMCID: PMC11879447 DOI: 10.1093/nargab/lqaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/08/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
Repetitive DNA sequences can form noncanonical structures such as H-DNA. The new telomere-to-telomere genome assembly for the human genome has eliminated gaps, enabling examination of highly repetitive regions including centromeric and pericentromeric repeats and ribosomal DNA arrays. We find that H-DNA appears once every 25 000 base pairs in the human genome. Its distribution is highly inhomogeneous with H-DNA motif hotspots being detectable in acrocentric chromosomes. Ribosomal DNA arrays are the genomic element with a 40.94-fold H-DNA enrichment. Across acrocentric chromosomes, we report that 54.82% of H-DNA motifs found in these chromosomes are in rDNA array loci. We discover that binding sites for the PRDM9-B allele, a variant of the PRDM9 protein, are enriched for H-DNA motifs. We further investigate these findings through an analysis of PRDM-9 ChIP-seq data across various PRDM-9 alleles, observing an enrichment of H-DNA motifs in the binding sites of A-like alleles (including A, B, and N alleles), but not C-like alleles (including C and L4 alleles). The enrichment of H-DNA motifs at ribosomal DNA arrays is consistent in nonhuman great ape genomes. We conclude that ribosomal DNA arrays are the most enriched genomic loci for H-DNA sequences in human and other great ape genomes.
Collapse
Affiliation(s)
- Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, C5716 Hershey, PA 17033, USA
| | - Candace S Y Chan
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, C5716 Hershey, PA 17033, USA
| | - Michail Patsakis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, C5716 Hershey, PA 17033, USA
| | - Akshatha Nayak
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, C5716 Hershey, PA 17033, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, C5716 Hershey, PA 17033, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, C5716 Hershey, PA 17033, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, C5716 Hershey, PA 17033, USA
| |
Collapse
|
2
|
Villani F, Guarracino A, Ward RR, Green T, Emms M, Pravenec M, Sharp B, Prins P, Garrison E, Williams RW, Chen H, Colonna V. Pangenome reconstruction in rats enhances genotype-phenotype mapping and variant discovery. iScience 2025; 28:111835. [PMID: 40034122 PMCID: PMC11875200 DOI: 10.1016/j.isci.2025.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
The HXB/BXH family of recombinant inbred rat strains is a unique genetic resource that has been extensively phenotyped over 25 years, resulting in a vast dataset of quantitative molecular and physiological phenotypes. We built a pangenome graph from 10x Genomics Linked-Read data for 31 recombinant inbred rats to study genetic variation and association mapping. The pangenome includes 0.2Gb of sequence that is not present the reference mRatBN7.2, confirming the capture of substantial additional variation. We validated variants in challenging regions, including complex structural variants resolving into multiple haplotypes. Phenome-wide association analysis of validated SNPs uncovered variants associated with glucose/insulin levels and hippocampal gene expression. We propose an interaction between Pirl1l1, chromogranin expression, TNF-α levels, and insulin regulation. This study demonstrates the utility of linked-read pangenomes for comprehensive variant detection and mapping phenotypic diversity in a widely used rat genetic reference panel.
Collapse
Affiliation(s)
- Flavia Villani
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rachel R. Ward
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tomomi Green
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madeleine Emms
- Institute of Genetics and Biophysics, National Research Council, 80111 Naples, Italy
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Burt Sharp
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pjotr Prins
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert W. Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Vincenza Colonna
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Genetics and Biophysics, National Research Council, 80111 Naples, Italy
| |
Collapse
|
3
|
Höps W, Weiss MM, Derks R, Galbany JC, Ouden AD, van den Heuvel S, Timmermans R, Smits J, Mokveld T, Dolzhenko E, Chen X, van den Wijngaard A, Eberle MA, Yntema HG, Hoischen A, Gilissen C, Vissers LELM. HiFi long-read genomes for difficult-to-detect, clinically relevant variants. Am J Hum Genet 2025; 112:450-456. [PMID: 39809270 DOI: 10.1016/j.ajhg.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Clinical short-read exome and genome sequencing approaches have positively impacted diagnostic testing for rare diseases. Yet, technical limitations associated with short reads challenge their use for the detection of disease-associated variation in complex regions of the genome. Long-read sequencing (LRS) technologies may overcome these challenges, potentially qualifying as a first-tier test for all rare diseases. To test this hypothesis, we performed LRS (30× high-fidelity [HiFi] genomes) for 100 samples with 145 known clinically relevant germline variants that are challenging to detect using short-read sequencing and necessitate a broad range of complementary test modalities in diagnostic laboratories. We show that relevant variant callers readily re-identified the majority of variants (120/145, 83%), including ∼90% of structural variants, SNVs/insertions or deletions (indels) in homologous sequences, and expansions of short tandem repeats. Another 10% (n = 14) was visually apparent in the data but not automatically detected. Our analyses also identified systematic challenges for the remaining 7% (n = 11) of variants, such as the detection of AG-rich repeat expansions. Titration analysis showed that 90% of all automatically called variants could also be identified using 15-fold coverage. Long-read genomes thus identified 93% of challenging pathogenic variants from our dataset. Even with reduced coverage, the vast majority of variants remained detectable, possibly enhancing cost-effective diagnostic implementation. Most importantly, we show the potential to use a single technology to accurately identify all types of clinically relevant variants.
Collapse
Affiliation(s)
- Wolfram Höps
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marjan M Weiss
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Amber den Ouden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone van den Heuvel
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raoul Timmermans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jos Smits
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Xiao Chen
- Pacific Biosciences, Menlo Park, CA, USA
| | | | | | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, and Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboudumc Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, Kordosky J, Garcia GH, Yilmaz F, Hallast P, Lee C, Pastinen T, Eichler EE. Structural polymorphism and diversity of human segmental duplications. Nat Genet 2025; 57:390-401. [PMID: 39779957 PMCID: PMC11821543 DOI: 10.1038/s41588-024-02051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Segmental duplications (SDs) contribute significantly to human disease, evolution and diversity but have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies (from 85 samples representing 38 Africans and 47 non-Africans) in which the majority of autosomal SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms and sex chromosomes, we identify 173.2 Mb of duplicated sequence (47.4 Mb not present in the telomere-to-telomere reference) distinguishing fixed from structurally polymorphic events. We find that intrachromosomal SDs are among the most variable, with rare events mapping near their progenitor sequences. African genomes harbor significantly more intrachromosomal SDs and are more likely to have recently duplicated gene families with higher copy numbers than non-African samples. Comparison to a resource of 563 million full-length isoform sequencing reads identifies 201 novel, potentially protein-coding genes corresponding to these copy number polymorphic SDs.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Altos Labs, San Diego, CA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Kordosky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Tomi Pastinen
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Secomandi S, Gallo GR, Rossi R, Rodríguez Fernandes C, Jarvis ED, Bonisoli-Alquati A, Gianfranceschi L, Formenti G. Pangenome graphs and their applications in biodiversity genomics. Nat Genet 2025; 57:13-26. [PMID: 39779953 DOI: 10.1038/s41588-024-02029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Complete datasets of genetic variants are key to biodiversity genomic studies. Long-read sequencing technologies allow the routine assembly of highly contiguous, haplotype-resolved reference genomes. However, even when complete, reference genomes from a single individual may bias downstream analyses and fail to adequately represent genetic diversity within a population or species. Pangenome graphs assembled from aligned collections of high-quality genomes can overcome representation bias by integrating sequence information from multiple genomes from the same population, species or genus into a single reference. Here, we review the available tools and data structures to build, visualize and manipulate pangenome graphs while providing practical examples and discussing their applications in biodiversity and conservation genomics across the tree of life.
Collapse
Affiliation(s)
- Simona Secomandi
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
| | | | - Riccardo Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlos Rodríguez Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) and CHANGE, Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, New York, NY, USA
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, USA
| | | | | |
Collapse
|
7
|
Fernandez-Luna L, Aguilar-Perez C, Grochowski CM, Mehaffey MG, Carvalho CMB, Gonzaga-Jauregui C. Genome-wide maps of highly-similar intrachromosomal repeats that can mediate ectopic recombination in three human genome assemblies. HGG ADVANCES 2024; 6:100396. [PMID: 39722459 PMCID: PMC11794170 DOI: 10.1016/j.xhgg.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation through structural rearrangements. Several mechanisms of structural variation formation use shared nucleotide similarity between repeated sequences as substrate for ectopic recombination. We performed genome-wide analyses of direct and inverted intrachromosomal repeated sequence pairs with 200 bp or more and 80% or greater sequence identity in three human genome assemblies, GRCh37, GRCh38, and T2T-CHM13. Overall, the composition and distribution of direct and inverted repeated sequences identified was similar among the three assemblies involving 13%-15% of the haploid genome, with an increased, albeit not significant, number of repeated sequences in T2T-CHM13. Interestingly, the majority of repeated sequences are below 1 kb in length with a median of 84.2% identity, highlighting the potential relevance of smaller, less identical repeats, such as Alu-Alu pairs, for ectopic recombination. We cross-referenced the identified repeated sequences with protein-coding genes to identify those at risk for being involved in genomic rearrangements. Olfactory receptors and immune response genes were enriched among those impacted.
Collapse
Affiliation(s)
- Luis Fernandez-Luna
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Carlos Aguilar-Perez
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | | | | | | | - Claudia Gonzaga-Jauregui
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México; Pacific Northwest Research Institute, Seattle, WA, USA.
| |
Collapse
|
8
|
Kim C, Kang N, Min S, Thangam R, Lee S, Hong H, Kim K, Kim SY, Kim D, Rha H, Tag KR, Lee HJ, Singh N, Jeong D, Hwang J, Kim Y, Park S, Lee H, Kim T, Son SW, Park S, Karamikamkar S, Zhu Y, Hassani Najafabadi A, Chu Z, Sun W, Zhao P, Zhang K, Bian L, Song HC, Park SG, Kim JS, Lee SY, Ahn JP, Kim HK, Zhang YS, Kang H. Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation. Nat Commun 2024; 15:10665. [PMID: 39715783 DOI: 10.1038/s41467-024-54557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability. Here we report modularity-based mathematical modeling of extracellular matrix-emulating ligand inter-cluster connectivity using the graph theory. Increasing anisotropy of magnetic nano-blockers proportionately disconnects arginine-glycine-aspartic acid ligand-to-ligand interconnections and decreases the number of ligand inter-cluster edges. This phenomenon deactivates stem cells, which can be partly activated by linearizing the nano-blockers. Remote cyclic elevation of high-anisotropy nano-blockers flexibly generates nano-gaps under the nano-blockers and augments the number of ligand inter-cluster edges. Subsequently, integrin-presenting stem cell infiltration is stimulated, which reversibly intensifies focal adhesion and mechanotransduction-driven differentiation both in vitro and in vivo. Designing and systemically modeling extracellular matrix-mimetic geometries opens avenues for unraveling dynamic cell-material interactions for tissue regeneration.
Collapse
Affiliation(s)
- Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyunji Rha
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Nem Singh
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Daun Jeong
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jangsun Hwang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sangwoo Park
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taeeon Kim
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | | | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, PR China
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, PR China
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Sung-Gyu Park
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sang-Yup Lee
- Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, USA.
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea.
- Department of Future Convergence Materials, Korea University, Seoul, Republic of Korea.
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Wu H, Luo LY, Zhang YH, Zhang CY, Huang JH, Mo DX, Zhao LM, Wang ZX, Wang YC, He-Hua EE, Bai WL, Han D, Dou XT, Ren YL, Dingkao R, Chen HL, Ye Y, Du HD, Zhao ZQ, Wang XJ, Jia SG, Liu ZH, Li MH. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits. Nat Commun 2024; 15:10041. [PMID: 39567477 PMCID: PMC11579321 DOI: 10.1038/s41467-024-54188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
A complete goat (Capra hircus) reference genome enhances analyses of genetic variation, thus providing insights into domestication and selection in goats and related species. Here, we assemble a telomere-to-telomere (T2T) gap-free genome (2.86 Gb) from a cashmere goat (T2T-goat1.0), including a Y chromosome of 20.96 Mb. With a base accuracy of >99.999%, T2T-goat1.0 corrects numerous genome-wide structural and base errors in previous assemblies and adds 288.5 Mb of previously unresolved regions and 446 newly assembled genes to the reference genome. We sequence the genomes of five representative goat breeds for PacBio reads, and use T2T-goat1.0 as a reference to identify a total of 63,417 structural variations (SVs) with up to 4711 (7.42%) in the previously unresolved regions. T2T-goat1.0 was applied in population analyses of global wild and domestic goats, which revealed 32,419 SVs and 25,397,794 SNPs, including 870 SVs and 545,026 SNPs in the previously unresolved regions. Also, our analyses reveal a set of selective variants and genes associated with domestication (e.g., NKG2D and ABCC4) and cashmere traits (e.g., ABCC4 and ASIP).
Collapse
Affiliation(s)
- Hui Wu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Northern Agriculture and Animal Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ling-Yun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ya-Hui Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chong-Yan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jia-Hui Huang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Xin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Li-Ming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhi-Xin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Chuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - EEr He-Hua
- Institute of Animal Science, NingXia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wen-Lin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Di Han
- Modern Agricultural Production Base Construction Engineering Center of Liaoning Province, Liaoyang, China
| | - Xing-Tang Dou
- Liaoning Province Liaoning Cashmere Goat Original Breeding Farm Co., Ltd., Liaoyang, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | | | | | - Yong Ye
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Hai-Dong Du
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Zhan-Qiang Zhao
- Zhongwei Goat Breeding Center of Ningxia Province, Zhongwei, China
| | - Xi-Jun Wang
- Jiaxiang Animal Husbandry and Veterinary Development Center, Jining, China
| | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.
| | - Zhi-Hong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.
| | - Meng-Hua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Garrison E, Guarracino A, Heumos S, Villani F, Bao Z, Tattini L, Hagmann J, Vorbrugg S, Marco-Sola S, Kubica C, Ashbrook DG, Thorell K, Rusholme-Pilcher RL, Liti G, Rudbeck E, Golicz AA, Nahnsen S, Yang Z, Mwaniki MN, Nobrega FL, Wu Y, Chen H, de Ligt J, Sudmant PH, Huang S, Weigel D, Soranzo N, Colonna V, Williams RW, Prins P. Building pangenome graphs. Nat Methods 2024; 21:2008-2012. [PMID: 39433878 DOI: 10.1038/s41592-024-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/26/2024] [Indexed: 10/23/2024]
Abstract
Pangenome graphs can represent all variation between multiple reference genomes, but current approaches to build them exclude complex sequences or are based upon a single reference. In response, we developed the PanGenome Graph Builder, a pipeline for constructing pangenome graphs without bias or exclusion. The PanGenome Graph Builder uses all-to-all alignments to build a variation graph in which we can identify variation, measure conservation, detect recombination events and infer phylogenetic relationships.
Collapse
Affiliation(s)
- Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Human Technopole, Milan, Italy
| | - Simon Heumos
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, Germany
- Biomedical Data Science, Dept. of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zhigui Bao
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lorenzo Tattini
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
- Data Science Department, EURECOM, Biot, France
| | | | - Sebastian Vorbrugg
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Santiago Marco-Sola
- Computer Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Department of Computer Science, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Christian Kubica
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaisa Thorell
- Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | | | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Emilio Rudbeck
- Clinical Genomics Gothenburg, Bioinformatics and Data Centre, University of Gothenburg, Gothenburg, Sweden
| | - Agnieszka A Golicz
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, Germany
- Biomedical Data Science, Dept. of Computer Science, University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Zuyu Yang
- The Institute of Environmental Science and Research, Wellington, New Zealand
| | | | - Franklin L Nobrega
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Yi Wu
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joep de Ligt
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University Tübingen, Tübingen, Germany
| | - Nicole Soranzo
- Human Technopole, Milan, Italy
- Wellcome Sanger Institute, Genome Campus, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Vincenza Colonna
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
Heumos S, Heuer ML, Hanssen F, Heumos L, Guarracino A, Heringer P, Ehmele P, Prins P, Garrison E, Nahnsen S. Cluster-efficient pangenome graph construction with nf-core/pangenome. Bioinformatics 2024; 40:btae609. [PMID: 39400346 PMCID: PMC11568064 DOI: 10.1093/bioinformatics/btae609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024] Open
Abstract
MOTIVATION Pangenome graphs offer a comprehensive way of capturing genomic variability across multiple genomes. However, current construction methods often introduce biases, excluding complex sequences or relying on references. The PanGenome Graph Builder (PGGB) addresses these issues. To date, though, there is no state-of-the-art pipeline allowing for easy deployment, efficient and dynamic use of available resources, and scalable usage at the same time. RESULTS To overcome these limitations, we present nf-core/pangenome, a reference-unbiased approach implemented in Nextflow following nf-core's best practices. Leveraging biocontainers ensures portability and seamless deployment in High-Performance Computing (HPC) environments. Unlike PGGB, nf-core/pangenome distributes alignments across cluster nodes, enabling scalability. Demonstrating its efficiency, we constructed pangenome graphs for 1000 human chromosome 19 haplotypes and 2146 Escherichia coli sequences, achieving a two to threefold speedup compared to PGGB without increasing greenhouse gas emissions. AVAILABILITY AND IMPLEMENTATION nf-core/pangenome is released under the MIT open-source license, available on GitHub and Zenodo, with documentation accessible at https://nf-co.re/pangenome/docs/usage.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, 72076, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen, 72076, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, 72076, Germany
| | - Michael L Heuer
- University of California, Berkeley, Berkeley, CA 94720, United States
| | - Friederike Hanssen
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, 72076, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen, 72076, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, 72076, Germany
| | - Lukas Heumos
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, 85764, Germany
- Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 81377, Germany
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Human Technopole, Milan 20157, Italy
| | - Peter Heringer
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, 72076, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen, 72076, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, 72076, Germany
| | - Philipp Ehmele
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, 85764, Germany
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, 72076, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen, 72076, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
12
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
13
|
Henglin M, Ghareghani M, Harvey WT, Porubsky D, Koren S, Eichler EE, Ebert P, Marschall T. Graphasing: phasing diploid genome assembly graphs with single-cell strand sequencing. Genome Biol 2024; 25:265. [PMID: 39390579 PMCID: PMC11466045 DOI: 10.1186/s13059-024-03409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Haplotype information is crucial for biomedical and population genetics research. However, current strategies to produce de novo haplotype-resolved assemblies often require either difficult-to-acquire parental data or an intermediate haplotype-collapsed assembly. Here, we present Graphasing, a workflow which synthesizes the global phase signal of Strand-seq with assembly graph topology to produce chromosome-scale de novo haplotypes for diploid genomes. Graphasing readily integrates with any assembly workflow that both outputs an assembly graph and has a haplotype assembly mode. Graphasing performs comparably to trio phasing in contiguity, phasing accuracy, and assembly quality, outperforms Hi-C in phasing accuracy, and generates human assemblies with over 18 chromosome-spanning haplotypes.
Collapse
Affiliation(s)
- Mir Henglin
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maryam Ghareghani
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Yoo D, Rhie A, Hebbar P, Antonacci F, Logsdon GA, Solar SJ, Antipov D, Pickett BD, Safonova Y, Montinaro F, Luo Y, Malukiewicz J, Storer JM, Lin J, Sequeira AN, Mangan RJ, Hickey G, Anez GM, Balachandran P, Bankevich A, Beck CR, Biddanda A, Borchers M, Bouffard GG, Brannan E, Brooks SY, Carbone L, Carrel L, Chan AP, Crawford J, Diekhans M, Engelbrecht E, Feschotte C, Formenti G, Garcia GH, de Gennaro L, Gilbert D, Green RE, Guarracino A, Gupta I, Haddad D, Han J, Harris RS, Hartley GA, Harvey WT, Hiller M, Hoekzema K, Houck ML, Jeong H, Kamali K, Kellis M, Kille B, Lee C, Lee Y, Lees W, Lewis AP, Li Q, Loftus M, Loh YHE, Loucks H, Ma J, Mao Y, Martinez JFI, Masterson P, McCoy RC, McGrath B, McKinney S, Meyer BS, Miga KH, Mohanty SK, Munson KM, Pal K, Pennell M, Pevzner PA, Porubsky D, Potapova T, Ringeling FR, Roha JL, Ryder OA, Sacco S, Saha S, Sasaki T, Schatz MC, Schork NJ, Shanks C, Smeds L, Son DR, Steiner C, Sweeten AP, Tassia MG, Thibaud-Nissen F, Torres-González E, Trivedi M, Wei W, Wertz J, Yang M, Zhang P, Zhang S, Zhang Y, Zhang Z, Zhao SA, Zhu Y, Jarvis ED, Gerton JL, Rivas-González I, Paten B, Szpiech ZA, Huber CD, Lenz TL, Konkel MK, Yi SV, Canzar S, Watson CT, Sudmant PH, Molloy E, Garrison E, Lowe CB, Ventura M, O’Neill RJ, Koren S, Makova KD, Phillippy AM, Eichler EE. Complete sequencing of ape genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605654. [PMID: 39131277 PMCID: PMC11312596 DOI: 10.1101/2024.07.31.605654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
We present haplotype-resolved reference genomes and comparative analyses of six ape species, namely: chimpanzee, bonobo, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. We achieve chromosome-level contiguity with unparalleled sequence accuracy (<1 error in 500,000 base pairs), completely sequencing 215 gapless chromosomes telomere-to-telomere. We resolve challenging regions, such as the major histocompatibility complex and immunoglobulin loci, providing more in-depth evolutionary insights. Comparative analyses, including human, allow us to investigate the evolution and diversity of regions previously uncharacterized or incompletely studied without bias from mapping to the human reference. This includes newly minted gene families within lineage-specific segmental duplications, centromeric DNA, acrocentric chromosomes, and subterminal heterochromatin. This resource should serve as a definitive baseline for all future evolutionary studies of humans and our closest living ape relatives.
Collapse
Affiliation(s)
- DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prajna Hebbar
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Francesca Antonacci
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - Glennis A. Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19103, USA
| | - Steven J. Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Antipov
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon D. Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yana Safonova
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Francesco Montinaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yanting Luo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joanna Malukiewicz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Abigail N. Sequeira
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Riley J. Mangan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Genetics Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | | | | | - Anton Bankevich
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Christine R. Beck
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Arjun Biddanda
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Borchers
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gerard G. Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emry Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shelise Y. Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucia Carbone
- Department of Medicine, KCVI, Oregon Health Sciences University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Laura Carrel
- PSU Medical School, Penn State University School of Medicine, Hershey, PA, USA
| | - Agnes P. Chan
- The Translational Genomics Research Institute, a part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Juyun Crawford
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10021, USA
| | - Gage H. Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - David Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ishaan Gupta
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Junmin Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Robert S. Harris
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Research Institute, Goethe University, Frankfurt, Germany
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marlys L. Houck
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Kaivan Kamali
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bryce Kille
- Department of Computer Science, Rice University, Houston, TX 77005, USA
| | - Chul Lee
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Youngho Lee
- Laboratory of bioinformatics and population genetics, Interdisciplinary program in bioinformatics, Seoul National University, Republic of Korea
| | - William Lees
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mark Loftus
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Yong Hwee Eddie Loh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Hailey Loucks
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China
- Shanghai Jiao Tong University Chongqing Research Institute, Chongqing, China
| | - Juan F. I. Martinez
- Computer Science and Engineering Department, Huck Institutes of Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rajiv C. McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Barbara McGrath
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Britta S. Meyer
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Saswat K. Mohanty
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Karol Pal
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Pavel A. Pevzner
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Francisca R. Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Joana L. Roha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Samuel Sacco
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nicholas J. Schork
- The Translational Genomics Research Institute, a part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Cole Shanks
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Linnéa Smeds
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Dongmin R. Son
- Department of Ecology, Evolution and Marine Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cynthia Steiner
- San Diego Zoo Wildlife Alliance, Escondido, CA, 92027-7000, USA
| | - Alexander P. Sweeten
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G. Tassia
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Mihir Trivedi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Wenjie Wei
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- National Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Julie Wertz
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Panpan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, PA, USA
| | - Zhenmiao Zhang
- Department of Computer Science and Engineering, University of California San Diego, CA, USA
| | - Sarah A. Zhao
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yixin Zhu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Erich D. Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Iker Rivas-González
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Zachary A. Szpiech
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Christian D. Huber
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Miriam K. Konkel
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Soojin V. Yi
- Department of Ecology, Evolution and Marine Biology, Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Peter H. Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, USA
| | - Erin Molloy
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Craig B. Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, 70124, Italy
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Departments of Molecular and Cell Biology, UConn Storrs, CT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Zhou L, Wu S, Chen Y, Huang R, Cheng B, Mao Q, Liu T, Liu Y, Zhao K, Pan H, Yu C, Gao X, Luo L, Zhang Q. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nat Commun 2024; 15:8469. [PMID: 39349447 PMCID: PMC11443146 DOI: 10.1038/s41467-024-52782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Rose is an important ornamental crop cultivated globally for perfume production. However, our understanding of the mechanisms underlying scent production and molecular breeding for fragrance is hindered by the lack of a reference genome for tea roses. We present the first complete telomere-to-telomere (T2T) genome of Rosa gigantea, with high quality (QV > 60), including detailed characterization of the structural features of repetitive regions. The expansion of genes associated with phenylpropanoid biosynthesis may account for the unique tea scent. We uncover the release rhythm of aromatic volatile organic compounds and their gene regulatory networks through comparative genomics and time-ordered gene co-expression networks. Analyzes of eugenol homologs demonstrate how plants attract pollinators using specialized phenylpropanoids in specific tissues. This study highlights the conservation and utilization of genetic diversity from wild endangered species through multi-omics approaches, providing a scientific foundation for enhancing rose fragrance via de novo domestication.
Collapse
Affiliation(s)
- Lijun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sihui Wu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yunyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Runhuan Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Bixuan Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tinghan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuchen Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China.
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
16
|
Benn P, Merrion K. Chromosome segregation of human nonhomologous Robertsonian translocations: insights from preimplantation genetic testing. Eur J Hum Genet 2024:10.1038/s41431-024-01693-w. [PMID: 39341985 DOI: 10.1038/s41431-024-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Robertsonian translocations (robs) are associated with a high risk for unbalanced segregations. Preimplantation Genetic Testing (PGT) offers an early opportunity to evaluate segregation patterns and selection against chromosome imbalances. The objective of this study was to evaluate the chromosome complements in blastocysts for male and female rob carriers and provide information useful in PGT counseling for rob carriers. PGT results were reviewed for 296 couples where a balanced and nonhomologous rob was present in one member of the couple. All embryos had day 5/6 trophectoderm biopsy and SNP-based PGT. The study included 2235 blastocysts, of which 2151 (96.2%) had results. Significantly fewer blastocysts were available for female rob carriers (mean 4.60/IVF cycle) compared to males (5.49/cycle). Male carriers were more likely to have blastocysts with a normal/balanced chromosome complement; 84.8% versus 62.8% (P < 0.00001). Male carriers had fewer blastocysts with monosomy (60/152, 39.5%) compared to female carriers (218/396, 55.1%) (P = 0.001). Twenty-one (1%) blastocysts showed 3:0 segregation; these were mostly double trisomies and derived from female carriers. Differences between chromosome complements for male versus female carriers suggest that selection against unbalanced forms may occur during spermatogenesis. Six blastocyst samples showed an unexpected ("noncanonical") combination of trisomy and monosomy. One case of uniparental disomy was identified. For female carriers, there was no association between unbalanced segregation and parental age but for male carriers, there was an inverse association. PGT is a highly beneficial option for rob carriers and patients can be counseled using our estimates for the chance of at least one normal/balanced embryo.
Collapse
Affiliation(s)
- Peter Benn
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | | |
Collapse
|
17
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Porubsky D, Guitart X, Yoo D, Dishuck PC, Harvey WT, Eichler EE. SVbyEye: A visual tool to characterize structural variation among whole-genome assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612418. [PMID: 39345373 PMCID: PMC11429710 DOI: 10.1101/2024.09.11.612418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Motivation We are now in the era of being able to routinely generate highly contiguous (near telomere-to-telomere) genome assemblies of human and nonhuman species. Complex structural variation and regions of rapid evolutionary turnover are being discovered for the first time. Thus, efficient and informative visualization tools are needed to evaluate and directly observe structural differences between two or more genomes. Results We developed SVbyEye, an open-source R package to visualize and annotate sequence-to-sequence alignments along with various functionalities to process alignments in PAF format. The tool facilitates the characterization of complex structural variants in the context of sequence homology helping resolve the mechanisms underlying their formation. Availability and implementation SVbyEye is available at https://github.com/daewoooo/SVbyEye.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. CELL GENOMICS 2024; 4:100629. [PMID: 39111318 PMCID: PMC11480859 DOI: 10.1016/j.xgen.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 09/14/2024]
Abstract
With hundreds of copies of rDNA, it is unknown whether they possess sequence variations that form different types of ribosomes. Here, we developed an algorithm for long-read variant calling, termed RGA, which revealed that variations in human rDNA loci are predominantly insertion-deletion (indel) variants. We developed full-length rRNA sequencing (RIBO-RT) and in situ sequencing (SWITCH-seq), which showed that translating ribosomes possess variation in rRNA. Over 1,000 variants are lowly expressed. However, tens of variants are abundant and form distinct rRNA subtypes with different structures near indels as revealed by long-read rRNA structure probing coupled to dimethyl sulfate sequencing. rRNA subtypes show differential expression in endoderm/ectoderm-derived tissues, and in cancer, low-abundance rRNA variants can become highly expressed. Together, this study identifies the diversity of ribosomes at the level of rRNA variants, their chromosomal location, and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
Affiliation(s)
- Daphna Rothschild
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Xin Sui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Said I, Barbash DA, Clark AG. The Structure of Simple Satellite Variation in the Human Genome and Its Correlation With Centromere Ancestry. Genome Biol Evol 2024; 16:evae153. [PMID: 39018452 PMCID: PMC11305138 DOI: 10.1093/gbe/evae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
Although repetitive DNA forms much of the human genome, its study is challenging due to limitations in assembly and alignment of repetitive short-reads. We have deployed k-Seek, software that detects tandem repeats embedded in single reads, on 2,504 human genomes from the 1,000 Genomes Project to quantify the variation and abundance of simple satellites (repeat units <20 bp). We find that the ancestral monomer of Human Satellite 3 makes up the largest portion of simple satellite content in humans (mean of ∼8 Mb). We discovered ∼50,000 rare tandem repeats that are not detected in the T2T-CHM13v2.0 assembly, including undescribed variants of telomericand pericentromeric repeats. We find broad homogeneity of the most abundant repeats across populations, except for AG-rich repeats which are more abundant in African individuals. We also find cliques of highly similar AG- and AT-rich satellites that are interspersed and form higher-order structures that covary in copy number across individuals, likely through concerted amplification via unequal exchange. Finally, we use pericentromeric polymorphisms to estimate centromeric genetic relatedness between individuals and find a strong predictive relationship between centromeric lineages and pericentromeric simple satellite abundances. In particular, ancestral monomers of Human Satellite 2 and Human Satellite 3 abundances correlate with clusters of centromeric ancestry on chromosome 16 and chromosome 9, with some clusters structured by population. These results provide new descriptions of the population dynamics that underlie the evolution of simple satellites in humans.
Collapse
Affiliation(s)
- Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Porubsky D, Dashnow H, Sasani TA, Logsdon GA, Hallast P, Noyes MD, Kronenberg ZN, Mokveld T, Koundinya N, Nolan C, Steely CJ, Guarracino A, Dolzhenko E, Harvey WT, Rowell WJ, Grigorev K, Nicholas TJ, Oshima KK, Lin J, Ebert P, Watkins WS, Leung TY, Hanlon VCT, McGee S, Pedersen BS, Goldberg ME, Happ HC, Jeong H, Munson KM, Hoekzema K, Chan DD, Wang Y, Knuth J, Garcia GH, Fanslow C, Lambert C, Lee C, Smith JD, Levy S, Mason CE, Garrison E, Lansdorp PM, Neklason DW, Jorde LB, Quinlan AR, Eberle MA, Eichler EE. A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606142. [PMID: 39149261 PMCID: PMC11326147 DOI: 10.1101/2024.08.05.606142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Using five complementary short- and long-read sequencing technologies, we phased and assembled >95% of each diploid human genome in a four-generation, 28-member family (CEPH 1463) allowing us to systematically assess de novo mutations (DNMs) and recombination. From this family, we estimate an average of 192 DNMs per generation, including 75.5 de novo single-nucleotide variants (SNVs), 7.4 non-tandem repeat indels, 79.6 de novo indels or structural variants (SVs) originating from tandem repeats, 7.7 centromeric de novo SVs and SNVs, and 12.4 de novo Y chromosome events per generation. STRs and VNTRs are the most mutable with 32 loci exhibiting recurrent mutation through the generations. We accurately assemble 288 centromeres and six Y chromosomes across the generations, documenting de novo SVs, and demonstrate that the DNM rate varies by an order of magnitude depending on repeat content, length, and sequence identity. We show a strong paternal bias (75-81%) for all forms of germline DNM, yet we estimate that 17% of de novo SNVs are postzygotic in origin with no paternal bias. We place all this variation in the context of a high-resolution recombination map (~3.5 kbp breakpoint resolution). We observe a strong maternal recombination bias (1.36 maternal:paternal ratio) with a consistent reduction in the number of crossovers with increasing paternal (r=0.85) and maternal (r=0.65) age. However, we observe no correlation between meiotic crossover locations and de novo SVs, arguing against non-allelic homologous recombination as a predominant mechanism. The use of multiple orthogonal technologies, near-telomere-to-telomere phased genome assemblies, and a multi-generation family to assess transmission has created the most comprehensive, publicly available "truth set" of all classes of genomic variants. The resource can be used to test and benchmark new algorithms and technologies to understand the most fundamental processes underlying human genetic variation.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Sasani
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Present address: Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Michelle D Noyes
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Nidhi Koundinya
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Cody J Steely
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrea Guarracino
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William J Rowell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kirill Grigorev
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas J Nicholas
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Keisuke K Oshima
- Present address: Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiadong Lin
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Ebert
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - W Scott Watkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Tiffany Y Leung
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Sean McGee
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Michael E Goldberg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hannah C Happ
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Present address: Altos Labs, San Diego, CA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel D Chan
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Yanni Wang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Erik Garrison
- Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Deborah W Neklason
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
L Rocha J, Lou RN, Sudmant PH. Structural variation in humans and our primate kin in the era of telomere-to-telomere genomes and pangenomics. Curr Opin Genet Dev 2024; 87:102233. [PMID: 39042999 PMCID: PMC11695101 DOI: 10.1016/j.gde.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Structural variants (SVs) account for the majority of base pair differences both within and between primate species. However, our understanding of inter- and intra-species SV has been historically hampered by the quality of draft primate genomes and the absence of genome resources for key taxa. Recently, advances in long-read sequencing and genome assembly have begun to radically reshape our understanding of SVs. Two landmark achievements include the publication of a human telomere-to-telomere (T2T) genome as well as the development of the first human pangenome reference. In this review, we first look back to the major works laying the foundation for these projects. We then examine the ways in which T2T genome assemblies and pangenomes are transforming our understanding of and approach to primate SV. Finally, we discuss what the future of primate SV research may look like in the era of T2T genomes and pangenomics.
Collapse
Affiliation(s)
- Joana L Rocha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@joanocha
| | - Runyang N Lou
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@NicolasLou10
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, USA.
| |
Collapse
|
23
|
Taylor DJ, Eizenga JM, Li Q, Das A, Jenike KM, Kenny EE, Miga KH, Monlong J, McCoy RC, Paten B, Schatz MC. Beyond the Human Genome Project: The Age of Complete Human Genome Sequences and Pangenome References. Annu Rev Genomics Hum Genet 2024; 25:77-104. [PMID: 38663087 PMCID: PMC11451085 DOI: 10.1146/annurev-genom-021623-081639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The Human Genome Project was an enormous accomplishment, providing a foundation for countless explorations into the genetics and genomics of the human species. Yet for many years, the human genome reference sequence remained incomplete and lacked representation of human genetic diversity. Recently, two major advances have emerged to address these shortcomings: complete gap-free human genome sequences, such as the one developed by the Telomere-to-Telomere Consortium, and high-quality pangenomes, such as the one developed by the Human Pangenome Reference Consortium. Facilitated by advances in long-read DNA sequencing and genome assembly algorithms, complete human genome sequences resolve regions that have been historically difficult to sequence, including centromeres, telomeres, and segmental duplications. In parallel, pangenomes capture the extensive genetic diversity across populations worldwide. Together, these advances usher in a new era of genomics research, enhancing the accuracy of genomic analysis, paving the path for precision medicine, and contributing to deeper insights into human biology.
Collapse
Affiliation(s)
- Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| | - Jordan M Eizenga
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Arun Das
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA;
| | - Karen H Miga
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Jean Monlong
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France;
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
- Genomics Institute, University of California, Santa Cruz, California, USA; , ,
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA; ,
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; , ,
| |
Collapse
|
24
|
Xiao M, Wei R, Yu J, Gao C, Yang F, Zhang L. CpG Island Definition and Methylation Mapping of the T2T-YAO Genome. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae009. [PMID: 39142816 DOI: 10.1093/gpbjnl/qzae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 08/16/2024]
Abstract
Precisely defining and mapping all cytosine (C) positions and their clusters, known as CpG islands (CGIs), as well as their methylation status, are pivotal for genome-wide epigenetic studies, especially when population-centric reference genomes are ready for timely application. Here, we first align the two high-quality reference genomes, T2T-YAO and T2T-CHM13, from different ethnic backgrounds in a base-by-base fashion and compute their genome-wide density-defined and position-defined CGIs. Second, by mapping some representative genome-wide methylation data from selected organs onto the two genomes, we find that there are about 4.7%-5.8% sequence divergency of variable categories depending on quality cutoffs. Genes among the divergent sequences are mostly associated with neurological functions. Moreover, CGIs associated with the divergent sequences are significantly different with respect to CpG density and observed CpG/expected CpG (O/E) ratio between the two genomes. Finally, we find that the T2T-YAO genome not only has a greater CpG coverage than that of the T2T-CHM13 genome when whole-genome bisulfite sequencing (WGBS) data from the European and American populations are mapped to each reference, but also shows more hyper-methylated CpG sites as compared to the T2T-CHM13 genome. Our study suggests that future genome-wide epigenetic studies of the Chinese populations rely on both acquisition of high-quality methylation data and subsequent precision CGI mapping based on the Chinese T2T reference.
Collapse
Affiliation(s)
- Ming Xiao
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Rui Wei
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chujie Gao
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Fengyi Yang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
25
|
Heumos S, Guarracino A, Schmelzle JNM, Li J, Zhang Z, Hagmann J, Nahnsen S, Prins P, Garrison E. Pangenome graph layout by Path-Guided Stochastic Gradient Descent. Bioinformatics 2024; 40:btae363. [PMID: 38960860 PMCID: PMC11227364 DOI: 10.1093/bioinformatics/btae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/20/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024] Open
Abstract
MOTIVATION The increasing availability of complete genomes demands for models to study genomic variability within entire populations. Pangenome graphs capture the full genomic similarity and diversity between multiple genomes. In order to understand them, we need to see them. For visualization, we need a human-readable graph layout: a graph embedding in low (e.g. two) dimensional depictions. Due to a pangenome graph's potential excessive size, this is a significant challenge. RESULTS In response, we introduce a novel graph layout algorithm: the Path-Guided Stochastic Gradient Descent (PG-SGD). PG-SGD uses the genomes, represented in the pangenome graph as paths, as an embedded positional system to sample genomic distances between pairs of nodes. This avoids the quadratic cost seen in previous versions of graph drawing by SGD. We show that our implementation efficiently computes the low-dimensional layouts of gigabase-scale pangenome graphs, unveiling their biological features. AVAILABILITY AND IMPLEMENTATION We integrated PG-SGD in ODGI which is released as free software under the MIT open source license. Source code is available at https://github.com/pangenome/odgi.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Genomics Research Centre, Human Technopole, 20157 Milan, Italy
| | - Jan-Niklas M Schmelzle
- Department of Computer Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, 80333 Munich, Germany
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Jiajie Li
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Zhiru Zhang
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, United States
| | | | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| |
Collapse
|
26
|
Schuy J, Sæther KB, Lisfeld J, Ek M, Grochowski CM, Lun MY, Hastie A, Rudolph S, Fuchs S, Neveling K, Hempel M, Hoischen A, Pettersson M, Carvalho CM, Eisfeldt J, Lindstrand A. A combination of long- and short-read genomics reveals frequent p-arm breakpoints within chromosome 21 complex genomic rearrangements. GENETICS IN MEDICINE OPEN 2024; 2:101863. [PMID: 39669604 PMCID: PMC11613786 DOI: 10.1016/j.gimo.2024.101863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 12/14/2024]
Abstract
Purpose Although chromosome 21 is the smallest human chromosome, it is highly relevant in the pathogenicity of both cancer and congenital diseases, including Alzheimer disease and trisomy 21 (Down syndrome). In addition, cases with rare structural variants (SVs) of chromosome 21 have been reported. These events vary in size and include large chromosomal events, such as ring chromosomes and small partial aneuploidies. The p-arm of the acrocentric chromosome 21 was devoid of reference genomic sequence in GRCh37 and GRCh38, which hampered our ability to solve genomic rearrangements and find the mechanism of formation of disease-causing SVs. We hypothesize that conserved satellite structures and segmental duplications located on the p-arm play an important role in the formation of complex SVs involving chromosome 21. Methods Three cases with complex chromosome 21 rearrangements were studied with a combination of short-read and long-read genome sequencing, as well as optical genome mapping. The data were aligned to the T2T-CHM13 assembly. Results We were able to resolve all 3 complex chromosome 21 rearrangements in which 15, 8, and 26 breakpoints were identified, respectively. By comparing the identified SV breakpoints, we were able to pinpoint a region between 21p13 and 21p12 that appears to be frequently involved in chromosome 21 rearrangements. Importantly, we observed acrocentric satellite DNA at several breakpoint junctions suggesting an important role for those elements in the formation of complex SVs. Conclusion Taken together, our results provide further insights into the architecture and underlying mechanisms of complex rearrangements on acrocentric chromosomes.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bilgrav Sæther
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Ek
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, WA
| | | | - Susanne Rudolph
- Gemeinschaftspraxis für Humangenetik und Genetische Labore, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Henglin M, Ghareghani M, Harvey W, Porubsky D, Koren S, Eichler EE, Ebert P, Marschall T. Phasing Diploid Genome Assembly Graphs with Single-Cell Strand Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580432. [PMID: 38529499 PMCID: PMC10962706 DOI: 10.1101/2024.02.15.580432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Haplotype information is crucial for biomedical and population genetics research. However, current strategies to produce de-novo haplotype-resolved assemblies often require either difficult-to-acquire parental data or an intermediate haplotype-collapsed assembly. Here, we present Graphasing, a workflow which synthesizes the global phase signal of Strand-seq with assembly graph topology to produce chromosome-scale de-novo haplotypes for diploid genomes. Graphasing readily integrates with any assembly workflow that both outputs an assembly graph and has a haplotype assembly mode. Graphasing performs comparably to trio-phasing in contiguity, phasing accuracy, and assembly quality, outperforms Hi-C in phasing accuracy, and generates human assemblies with over 18 chromosome-spanning haplotypes.
Collapse
Affiliation(s)
- Mir Henglin
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Germany
| | - Maryam Ghareghani
- Department of Mathematics and Computer Science, Freie Universität Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - William Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Germany
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
28
|
Schmidt TT, Tyer C, Rughani P, Haggblom C, Jones JR, Dai X, Frazer KA, Gage FH, Juul S, Hickey S, Karlseder J. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat Commun 2024; 15:5149. [PMID: 38890299 PMCID: PMC11189484 DOI: 10.1038/s41467-024-48917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.
Collapse
Affiliation(s)
| | - Carly Tyer
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | | | - Candy Haggblom
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jeffrey R Jones
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Kelly A Frazer
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093-0761, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sissel Juul
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Scott Hickey
- Oxford Nanopore Technologies, Inc., New York, NY, USA.
| | - Jan Karlseder
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, Kordosky J, Garcia GH, Yilmaz F, Hallast P, Lee C, Pastinen T, Eichler EE. Structural polymorphism and diversity of human segmental duplications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597452. [PMID: 38895457 PMCID: PMC11185583 DOI: 10.1101/2024.06.04.597452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Segmental duplications (SDs) contribute significantly to human disease, evolution, and diversity yet have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies where the majority of SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms, we identify 173.2 Mbp of duplicated sequence (47.4 Mbp not present in the telomere-to-telomere reference) distinguishing fixed from structurally polymorphic events. We find that intrachromosomal SDs are among the most variable with rare events mapping near their progenitor sequences. African genomes harbor significantly more intrachromosomal SDs and are more likely to have recently duplicated gene families with higher copy number when compared to non-African samples. A comparison to a resource of 563 million full-length Iso-Seq reads identifies 201 novel, potentially protein-coding genes corresponding to these copy number polymorphic SDs.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Altos Labs, San Diego, CA, USA
| | - Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Kordosky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H. Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Tomi Pastinen
- Children’s Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Makova KD, Pickett BD, Harris RS, Hartley GA, Cechova M, Pal K, Nurk S, Yoo D, Li Q, Hebbar P, McGrath BC, Antonacci F, Aubel M, Biddanda A, Borchers M, Bornberg-Bauer E, Bouffard GG, Brooks SY, Carbone L, Carrel L, Carroll A, Chang PC, Chin CS, Cook DE, Craig SJC, de Gennaro L, Diekhans M, Dutra A, Garcia GH, Grady PGS, Green RE, Haddad D, Hallast P, Harvey WT, Hickey G, Hillis DA, Hoyt SJ, Jeong H, Kamali K, Pond SLK, LaPolice TM, Lee C, Lewis AP, Loh YHE, Masterson P, McGarvey KM, McCoy RC, Medvedev P, Miga KH, Munson KM, Pak E, Paten B, Pinto BJ, Potapova T, Rhie A, Rocha JL, Ryabov F, Ryder OA, Sacco S, Shafin K, Shepelev VA, Slon V, Solar SJ, Storer JM, Sudmant PH, Sweetalana, Sweeten A, Tassia MG, Thibaud-Nissen F, Ventura M, Wilson MA, Young AC, Zeng H, Zhang X, Szpiech ZA, Huber CD, Gerton JL, Yi SV, Schatz MC, Alexandrov IA, Koren S, O'Neill RJ, Eichler EE, Phillippy AM. The complete sequence and comparative analysis of ape sex chromosomes. Nature 2024; 630:401-411. [PMID: 38811727 PMCID: PMC11168930 DOI: 10.1038/s41586-024-07473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.
Collapse
Affiliation(s)
| | - Brandon D Pickett
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Monika Cechova
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - Karol Pal
- Penn State University, University Park, PA, USA
| | - Sergey Nurk
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - DongAhn Yoo
- University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Johns Hopkins University, Baltimore, MD, USA
| | - Prajna Hebbar
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | | | | - Erich Bornberg-Bauer
- University of Münster, Münster, Germany
- MPI for Developmental Biology, Tübingen, Germany
| | - Gerard G Bouffard
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucia Carbone
- Oregon Health and Science University, Portland, OR, USA
- Oregon National Primate Research Center, Hillsboro, OR, USA
| | - Laura Carrel
- Penn State University School of Medicine, Hershey, PA, USA
| | | | | | - Chen-Shan Chin
- Foundation of Biological Data Sciences, Belmont, CA, USA
| | | | | | | | - Mark Diekhans
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - Amalia Dutra
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gage H Garcia
- University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Glenn Hickey
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - David A Hillis
- University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Hyeonsoo Jeong
- University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Yong-Hwee E Loh
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M McGarvey
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Karen H Miga
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Evgenia Pak
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benedict Paten
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Arang Rhie
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joana L Rocha
- University of California Berkeley, Berkeley, CA, USA
| | - Fedor Ryabov
- Masters Program in National Research, University Higher School of Economics, Moscow, Russia
| | | | - Samuel Sacco
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | - Steven J Solar
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Sweetalana
- Penn State University, University Park, PA, USA
| | - Alex Sweeten
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mario Ventura
- Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | - Alice C Young
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Xinru Zhang
- Penn State University, University Park, PA, USA
| | | | | | | | - Soojin V Yi
- University of California Santa Barbara, Santa Barbara, CA, USA
| | | | | | - Sergey Koren
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Evan E Eichler
- University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Logsdon GA, Rozanski AN, Ryabov F, Potapova T, Shepelev VA, Catacchio CR, Porubsky D, Mao Y, Yoo D, Rautiainen M, Koren S, Nurk S, Lucas JK, Hoekzema K, Munson KM, Gerton JL, Phillippy AM, Ventura M, Alexandrov IA, Eichler EE. The variation and evolution of complete human centromeres. Nature 2024; 629:136-145. [PMID: 38570684 PMCID: PMC11062924 DOI: 10.1038/s41586-024-07278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison N Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Claudia R Catacchio
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies, Oxford, United Kingdom
| | - Julian K Lucas
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ivan A Alexandrov
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Villani F, Guarracino A, Ward RR, Green T, Emms M, Pravenec M, Prins P, Garrison E, Williams RW, Chen H, Colonna V. Pangenome reconstruction in rats enhances genotype-phenotype mapping and novel variant discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575041. [PMID: 38260597 PMCID: PMC10802574 DOI: 10.1101/2024.01.10.575041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The HXB/BXH family of recombinant inbred rat strains is a unique genetic resource that has been extensively phenotyped over 25 years, resulting in a vast dataset of quantitative molecular and physiological phenotypes. We built a pangenome graph from 10x Genomics Linked-Read data for 31 recombinant inbred rats to study genetic variation and association mapping. The pangenome includes 0.2Gb of sequence that is not present the reference mRatBN7.2, confirming the capture of substantial additional variation. We validated variants in challenging regions, including complex structural variants resolving into multiple haplotypes. Phenome-wide association analysis of validated SNPs uncovered variants associated with glucose/insulin levels and hippocampal gene expression. We propose an interaction between Pirl1l1, chromogranin expression, TNF-α levels, and insulin regulation. This study demonstrates the utility of linked-read pangenomes for comprehensive variant detection and mapping phenotypic diversity in a widely used rat genetic reference panel.
Collapse
Affiliation(s)
- Flavia Villani
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rachel R Ward
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center
| | - Tomomi Green
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center
| | - Madeleine Emms
- Institute of Genetics and Biophysics, National Research Council, Naples, 80111, Italy
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Pjotr Prins
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert W. Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center
| | - Vincenza Colonna
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Genetics and Biophysics, National Research Council, Naples, 80111, Italy
| |
Collapse
|
33
|
Choudalakis M, Bashtrykov P, Jeltsch A. RepEnTools: an automated repeat enrichment analysis package for ChIP-seq data reveals hUHRF1 Tandem-Tudor domain enrichment in young repeats. Mob DNA 2024; 15:6. [PMID: 38570859 PMCID: PMC10988844 DOI: 10.1186/s13100-024-00315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Repeat elements (REs) play important roles for cell function in health and disease. However, RE enrichment analysis in short-read high-throughput sequencing (HTS) data, such as ChIP-seq, is a challenging task. RESULTS Here, we present RepEnTools, a software package for genome-wide RE enrichment analysis of ChIP-seq and similar chromatin pulldown experiments. Our analysis package bundles together various software with carefully chosen and validated settings to provide a complete solution for RE analysis, starting from raw input files to tabular and graphical outputs. RepEnTools implementations are easily accessible even with minimal IT skills (Galaxy/UNIX). To demonstrate the performance of RepEnTools, we analysed chromatin pulldown data by the human UHRF1 TTD protein domain and discovered enrichment of TTD binding on young primate and hominid specific polymorphic repeats (SVA, L1PA1/L1HS) overlapping known enhancers and decorated with H3K4me1-K9me2/3 modifications. We corroborated these new bioinformatic findings with experimental data by qPCR assays using newly developed primate and hominid specific qPCR assays which complement similar research tools. Finally, we analysed mouse UHRF1 ChIP-seq data with RepEnTools and showed that the endogenous mUHRF1 protein colocalizes with H3K4me1-H3K9me3 on promoters of REs which were silenced by UHRF1. These new data suggest a functional role for UHRF1 in silencing of REs that is mediated by TTD binding to the H3K4me1-K9me3 double mark and conserved in two mammalian species. CONCLUSIONS RepEnTools improves the previously available programmes for RE enrichment analysis in chromatin pulldown studies by leveraging new tools, enhancing accessibility and adding some key functions. RepEnTools can analyse RE enrichment rapidly, efficiently, and accurately, providing the community with an up-to-date, reliable and accessible tool for this important type of analysis.
Collapse
Affiliation(s)
- Michel Choudalakis
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
34
|
Hickey G, Monlong J, Ebler J, Novak AM, Eizenga JM, Gao Y, Marschall T, Li H, Paten B, Abel HJ, Antonacci-Fulton LL, Asri M, Baid G, Baker CA, Belyaeva A, Billis K, Bourque G, Buonaiuto S, Carroll A, Chaisson MJP, Chang PC, Chang XH, Cheng H, Chu J, Cody S, Colonna V, Cook DE, Cook-Deegan RM, Cornejo OE, Diekhans M, Doerr D, Ebert P, Ebler J, Eichler EE, Eizenga JM, Fairley S, Fedrigo O, Felsenfeld AL, Feng X, Fischer C, Flicek P, Formenti G, Frankish A, Fulton RS, Gao Y, Garg S, Garrison E, Garrison NA, Giron CG, Green RE, Groza C, Guarracino A, Haggerty L, Hall IM, Harvey WT, Haukness M, Haussler D, Heumos S, Hickey G, Hoekzema K, Hourlier T, Howe K, Jain M, Jarvis ED, Ji HP, Kenny EE, Koenig BA, Kolesnikov A, Korbel JO, Kordosky J, Koren S, Lee H, Lewis AP, Li H, Liao WW, Lu S, Lu TY, Lucas JK, Magalhães H, Marco-Sola S, Marijon P, Markello C, Marschall T, Martin FJ, McCartney A, McDaniel J, Miga KH, Mitchell MW, Monlong J, Mountcastle J, Munson KM, Mwaniki MN, Nattestad M, Novak AM, Nurk S, Olsen HE, Olson ND, Paten B, Pesout T, Phillippy AM, Popejoy AB, Porubsky D, Prins P, Puiu D, Rautiainen M, Regier AA, Rhie A, Sacco S, Sanders AD, Schneider VA, Schultz BI, Shafin K, Sibbesen JA, Sirén J, Smith MW, Sofia HJ, Tayoun ANA, Thibaud-Nissen F, Tomlinson C, Tricomi FF, Villani F, Vollger MR, Wagner J, Walenz B, Wang T, Wood JMD, Zimin AV, Zook JM. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat Biotechnol 2024; 42:663-673. [PMID: 37165083 PMCID: PMC10638906 DOI: 10.1038/s41587-023-01793-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Pangenome references address biases of reference genomes by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but advances in long-read sequencing are leading to widely available, high-quality phased assemblies. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph's ability to represent variation at different scales. Here we present the Minigraph-Cactus pangenome pipeline, which creates pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium. The method builds graphs containing all forms of genetic variation while allowing use of current mapping and genotyping tools. We measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods. We also demonstrate construction of a Drosophila melanogaster pangenome.
Collapse
Affiliation(s)
- Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- These authors contributed equally: Glenn Hickey, Jean Monlong
| | - Jean Monlong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- These authors contributed equally: Glenn Hickey, Jean Monlong
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adam M. Novak
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jordan M. Eizenga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Haley J. Abel
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Carl A. Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Canadian Center for Computational Genomics, McGill University, Montreal, QC, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Silvia Buonaiuto
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | | | - Mark J. P. Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | - Xian H. Chang
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Haoyu Cheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Justin Chu
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah Cody
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Robert M. Cook-Deegan
- Arizona State University, Barrett and O’Connor Washington Center, Washington, DC, USA
| | - Omar E. Cornejo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Daniel Doerr
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Ebert
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Core Unit Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Ebler
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jordan M. Eizenga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Susan Fairley
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Adam L. Felsenfeld
- National Institutes of Health (NIH)–National Human Genome Research Institute, Bethesda, MD, USA
| | - Xiaowen Feng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Christian Fischer
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shilpa Garg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nanibaa’ A. Garrison
- Institute for Society and Genetics, College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlos Garcia Giron
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Dovetail Genomics, Scotts Valley, CA, USA
| | - Cristian Groza
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ira M. Hall
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Genomic Health, Yale University School of Medicine, New Haven, CT, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- These authors contributed equally: Glenn Hickey, Jean Monlong
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Miten Jain
- Northeastern University, Boston, MA, USA
| | - Erich D. Jarvis
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara A. Koenig
- Program in Bioethics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jan O. Korbel
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jennifer Kordosky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Wen-Wei Liao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Genomic Health, Yale University School of Medicine, New Haven, CT, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuangjia Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Tsung-Yu Lu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Julian K. Lucas
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Hugo Magalhães
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Santiago Marco-Sola
- Computer Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pierre Marijon
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Charles Markello
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Tobias Marschall
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ann McCartney
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer McDaniel
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Jean Monlong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- These authors contributed equally: Glenn Hickey, Jean Monlong
| | | | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Adam M. Novak
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hugh E. Olsen
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nathan D. Olson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Trevor Pesout
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice B. Popejoy
- Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison A. Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ashley D. Sanders
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Baergen I. Schultz
- National Institutes of Health (NIH)–National Human Genome Research Institute, Bethesda, MD, USA
| | | | - Jonas A. Sibbesen
- Center for Health Data Science, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Sirén
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Michael W. Smith
- National Institutes of Health (NIH)–National Human Genome Research Institute, Bethesda, MD, USA
| | - Heidi J. Sofia
- National Institutes of Health (NIH)–National Human Genome Research Institute, Bethesda, MD, USA
| | - Ahmad N. Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children’s Specialty Hospital, Dubai, UAE
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca Floriana Tricomi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Brian Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ting Wang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Aleksey V. Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Justin M. Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
35
|
Gerton JL. A working model for the formation of Robertsonian chromosomes. J Cell Sci 2024; 137:jcs261912. [PMID: 38606789 PMCID: PMC11057876 DOI: 10.1242/jcs.261912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.
Collapse
|
36
|
Porubsky D, Eichler EE. A 25-year odyssey of genomic technology advances and structural variant discovery. Cell 2024; 187:1024-1037. [PMID: 38290514 PMCID: PMC10932897 DOI: 10.1016/j.cell.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
This perspective focuses on advances in genome technology over the last 25 years and their impact on germline variant discovery within the field of human genetics. The field has witnessed tremendous technological advances from microarrays to short-read sequencing and now long-read sequencing. Each technology has provided genome-wide access to different classes of human genetic variation. We are now on the verge of comprehensive variant detection of all forms of variation for the first time with a single assay. We predict that this transition will further transform our understanding of human health and biology and, more importantly, provide novel insights into the dynamic mutational processes shaping our genomes.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Abondio P, Bruno F, Passarino G, Montesanto A, Luiselli D. Pangenomics: A new era in the field of neurodegenerative diseases. Ageing Res Rev 2024; 94:102180. [PMID: 38163518 DOI: 10.1016/j.arr.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
A pangenome is composed of all the genetic variability of a group of individuals, and its application to the study of neurodegenerative diseases may provide valuable insights into the underlying aspects of genetic heterogenetiy for these complex ailments, including gene expression, epigenetics, and translation mechanisms. Furthermore, a reference pangenome allows for the identification of previously undetected structural commonalities and differences among individuals, which may help in the diagnosis of a disease, support the prediction of what will happen over time (prognosis) and aid in developing novel treatments in the perspective of personalized medicine. Therefore, in the present review, the application of the pangenome concept to the study of neurodegenerative diseases will be discussed and analyzed for its potential to enable an improvement in diagnosis and prognosis for these illnesses, leading to the development of tailored treatments for individual patients from the knowledge of the genomic composition of a whole population.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Francesco Bruno
- Academy of Cognitive Behavioral Sciences of Calabria (ASCoC), Lamezia Terme, Italy; Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
38
|
Fernandez-Luna L, Aguilar-Perez C, Grochowski CM, Mehaffey M, Carvalho CMB, Gonzaga-Jauregui C. Genome-wide maps of highly-similar intrachromosomal repeats that mediate ectopic recombination in three human genome assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577884. [PMID: 38352399 PMCID: PMC10862806 DOI: 10.1101/2024.01.29.577884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Repeated sequences spread throughout the genome play important roles in shaping the structure of chromosomes and facilitating the generation of new genomic variation. Through a variety of mechanisms, repeats are involved in generating structural rearrangements such as deletions, duplications, inversions, and translocations, which can have the potential to impact human health. Despite their significance, repetitive regions including tandem repeats, transposable elements, segmental duplications, and low-copy repeats remain a challenge to characterize due to technological limitations inherent to many sequencing methodologies. We performed genome-wide analyses and comparisons of direct and inverted repeated sequences in the latest available human genome reference assemblies including GRCh37 and GRCh38 and the most recent telomere-to-telomere alternate assembly (T2T-CHM13). Overall, the composition and distribution of direct and inverted repeats identified remains similar among the three assemblies but we observed an increase in the number of repeated sequences detected in the T2T-CHM13 assembly versus the reference assemblies. As expected, there is an enrichment of repetitive regions in the short arms of acrocentric chromosomes, which had been previously unresolved in the human genome reference assemblies. We cross-referenced the identified repeats with protein-coding genes across the genome to identify those at risk for being involved in genomic disorders. We observed that certain gene categories, such as olfactory receptors and immune response genes, are enriched among those impacted by repeated sequences likely contributing to human diversity and adaptation. Through this analysis, we have produced a catalogue of direct and inversely oriented repeated sequences across the currently three most widely used human genome assemblies. Bioinformatic analyses of these repeats and their contribution to genome architecture can reveal regions that are most susceptible to genomic instability. Understanding how the architectural genomic features of repeat pairs such as their homology, size and distance can lead to complex genomic rearrangement formation can provide further insights into the molecular mechanisms leading to genomic disorders and genome evolution. Author summary This study focused on the characterization of intrachromosomal repeated sequences in the human genome that can play important roles in shaping chromosome structure and generating new genomic variation in three human genome assemblies. We observed an increase in the number of repeated sequence pairs detected in the most recent telomere-to-telomere alternate assembly (T2T-CHM13) compared to the reference assemblies (GRCh37 and GRCh38). We observed an enrichment of repeats in the T2T-CHM13 acrocentric chromosomes, which had been previously unresolved. Importantly, our study provides a catalogue of direct and inverted repeated sequences across three commonly used human genome assemblies, which can aid in the understanding of genomic architecture instability, evolution, and disorders. Our analyses provide insights into repetitive regions in the human genome that may contribute to complex genomic rearrangements.
Collapse
|
39
|
Groza C, Schwendinger-Schreck C, Cheung WA, Farrow EG, Thiffault I, Lake J, Rizzo WB, Evrony G, Curran T, Bourque G, Pastinen T. Pangenome graphs improve the analysis of structural variants in rare genetic diseases. Nat Commun 2024; 15:657. [PMID: 38253606 PMCID: PMC10803329 DOI: 10.1038/s41467-024-44980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Rare DNA alterations that cause heritable diseases are only partially resolvable by clinical next-generation sequencing due to the difficulty of detecting structural variation (SV) in all genomic contexts. Long-read, high fidelity genome sequencing (HiFi-GS) detects SVs with increased sensitivity and enables assembling personal and graph genomes. We leverage standard reference genomes, public assemblies (n = 94) and a large collection of HiFi-GS data from a rare disease program (Genomic Answers for Kids, GA4K, n = 574 assemblies) to build a graph genome representing a unified SV callset in GA4K, identify common variation and prioritize SVs that are more likely to cause genetic disease (MAF < 0.01). Using graphs, we obtain a higher level of reproducibility than the standard reference approach. We observe over 200,000 SV alleles unique to GA4K, including nearly 1000 rare variants that impact coding sequence. With improved specificity for rare SVs, we isolate 30 candidate SVs in phenotypically prioritized genes, including known disease SVs. We isolate a novel diagnostic SV in KMT2E, demonstrating use of personal assemblies coupled with pangenome graphs for rare disease genomics. The community may interrogate our pangenome with additional assemblies to discover new SVs within the allele frequency spectrum relevant to genetic diseases.
Collapse
Affiliation(s)
- Cristian Groza
- Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | | | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA
| | - Emily G Farrow
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA
| | | | - William B Rizzo
- Child Health Research Institute, Department of Pediatrics, Nebraska Medical Center, Omaha, NE, USA
| | - Gilad Evrony
- Center for Human Genetics and Genomics, Department of Pediatrics, Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tom Curran
- Children's Mercy Research Institute, Kansas City, MO, USA
| | - Guillaume Bourque
- Canadian Center for Computational Genomics, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada.
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital and Research Institute, KC, MO, USA.
| |
Collapse
|
40
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
41
|
Makova KD, Pickett BD, Harris RS, Hartley GA, Cechova M, Pal K, Nurk S, Yoo D, Li Q, Hebbar P, McGrath BC, Antonacci F, Aubel M, Biddanda A, Borchers M, Bomberg E, Bouffard GG, Brooks SY, Carbone L, Carrel L, Carroll A, Chang PC, Chin CS, Cook DE, Craig SJ, de Gennaro L, Diekhans M, Dutra A, Garcia GH, Grady PG, Green RE, Haddad D, Hallast P, Harvey WT, Hickey G, Hillis DA, Hoyt SJ, Jeong H, Kamali K, Kosakovsky Pond SL, LaPolice TM, Lee C, Lewis AP, Loh YHE, Masterson P, McCoy RC, Medvedev P, Miga KH, Munson KM, Pak E, Paten B, Pinto BJ, Potapova T, Rhie A, Rocha JL, Ryabov F, Ryder OA, Sacco S, Shafin K, Shepelev VA, Slon V, Solar SJ, Storer JM, Sudmant PH, Sweetalana, Sweeten A, Tassia MG, Thibaud-Nissen F, Ventura M, Wilson MA, Young AC, Zeng H, Zhang X, Szpiech ZA, Huber CD, Gerton JL, Yi SV, Schatz MC, Alexandrov IA, Koren S, O’Neill RJ, Eichler E, Phillippy AM. The Complete Sequence and Comparative Analysis of Ape Sex Chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569198. [PMID: 38077089 PMCID: PMC10705393 DOI: 10.1101/2023.11.30.569198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Apes possess two sex chromosomes-the male-specific Y and the X shared by males and females. The Y chromosome is crucial for male reproduction, with deletions linked to infertility. The X chromosome carries genes vital for reproduction and cognition. Variation in mating patterns and brain function among great apes suggests corresponding differences in their sex chromosome structure and evolution. However, due to their highly repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the state-of-the-art experimental and computational methods developed for the telomere-to-telomere (T2T) human genome, we produced gapless, complete assemblies of the X and Y chromosomes for five great apes (chimpanzee, bonobo, gorilla, Bornean and Sumatran orangutans) and a lesser ape, the siamang gibbon. These assemblies completely resolved ampliconic, palindromic, and satellite sequences, including the entire centromeres, allowing us to untangle the intricacies of ape sex chromosome evolution. We found that, compared to the X, ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements. This divergence on the Y arises from the accumulation of lineage-specific ampliconic regions and palindromes (which are shared more broadly among species on the X) and from the abundance of transposable elements and satellites (which have a lower representation on the X). Our analysis of Y chromosome genes revealed lineage-specific expansions of multi-copy gene families and signatures of purifying selection. In summary, the Y exhibits dynamic evolution, while the X is more stable. Finally, mapping short-read sequencing data from >100 great ape individuals revealed the patterns of diversity and selection on their sex chromosomes, demonstrating the utility of these reference assemblies for studies of great ape evolution. These complete sex chromosome assemblies are expected to further inform conservation genetics of nonhuman apes, all of which are endangered species.
Collapse
Affiliation(s)
| | - Brandon D. Pickett
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Monika Cechova
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - Karol Pal
- Penn State University, University Park, PA, USA
| | - Sergey Nurk
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - DongAhn Yoo
- University of Washington School of Medicine, Seattle, WA, USA
| | - Qiuhui Li
- Johns Hopkins University, Baltimore, MD, USA
| | - Prajna Hebbar
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | | | | - Erich Bomberg
- University of Münster, Münster, Germany
- MPI for Developmental Biology, Tübingen, Germany
| | - Gerard G. Bouffard
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y. Brooks
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucia Carbone
- Oregon Health & Science University, Portland, OR, USA
- Oregon National Primate Research Center, Hillsboro, OR, USA
| | - Laura Carrel
- Penn State University School of Medicine, Hershey, PA, USA
| | | | | | - Chen-Shan Chin
- Foundation of Biological Data Sciences, Belmont, CA, USA
| | | | | | | | - Mark Diekhans
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - Amalia Dutra
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gage H. Garcia
- University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Diana Haddad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Glenn Hickey
- University of California Santa Cruz, Santa Cruz, CA, USA
| | - David A. Hillis
- University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Hyeonsoo Jeong
- University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | | - Patrick Masterson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Karen H. Miga
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Evgenia Pak
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benedict Paten
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Arang Rhie
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | | | - Samuel Sacco
- University of California Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | - Steven J. Solar
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Sweetalana
- Penn State University, University Park, PA, USA
| | - Alex Sweeten
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Alice C. Young
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Xinru Zhang
- Penn State University, University Park, PA, USA
| | | | | | | | - Soojin V. Yi
- University of California Santa Barbara, Santa Barbara, CA, USA
| | | | | | - Sergey Koren
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Evan Eichler
- University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam M. Phillippy
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
He Y, Chu Y, Guo S, Hu J, Li R, Zheng Y, Ma X, Du Z, Zhao L, Yu W, Xue J, Bian W, Yang F, Chen X, Zhang P, Wu R, Ma Y, Shao C, Chen J, Wang J, Li J, Wu J, Hu X, Long Q, Jiang M, Ye H, Song S, Li G, Wei Y, Xu Y, Ma Y, Chen Y, Wang K, Bao J, Xi W, Wang F, Ni W, Zhang M, Yu Y, Li S, Kang Y, Gao Z. T2T-YAO: A Telomere-to-telomere Assembled Diploid Reference Genome for Han Chinese. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1085-1100. [PMID: 37595788 PMCID: PMC11082261 DOI: 10.1016/j.gpb.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Since its initial release in 2001, the human reference genome has undergone continuous improvement in quality, and the recently released telomere-to-telomere (T2T) version - T2T-CHM13 - reaches its highest level of continuity and accuracy after 20 years of effort by working on a simplified, nearly homozygous genome of a hydatidiform mole cell line. Here, to provide an authentic complete diploid human genome reference for the Han Chinese, the largest population in the world, we assembled the genome of a male Han Chinese individual, T2T-YAO, which includes T2T assemblies of all the 22 + X + M and 22 + Y chromosomes in both haploids. The quality of T2T-YAO is much better than those of all currently available diploid assemblies, and its haploid version, T2T-YAO-hp, generated by selecting the better assembly for each autosome, reaches the top quality of fewer than one error per 29.5 Mb, even higher than that of T2T-CHM13. Derived from an individual living in the aboriginal region of the Han population, T2T-YAO shows clear ancestry and potential genetic continuity from the ancient ancestors. Each haplotype of T2T-YAO possesses ∼ 330-Mb exclusive sequences, ∼ 3100 unique genes, and tens of thousands of nucleotide and structural variations as compared with CHM13, highlighting the necessity of a population-stratified reference genome. The construction of T2T-YAO, an accurate and authentic representative of the Chinese population, would enable precise delineation of genomic variations and advance our understandings in the hereditability of diseases and phenotypes, especially within the context of the unique variations of the Chinese population.
Collapse
Affiliation(s)
- Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shuming Guo
- Linfen Clinical Medicine Research Center, Linfen 041000, China; Institute of Chest and Lung Diseases, Shanxi Medical University, Taiyuan 030001, China
| | - Jiang Hu
- GrandOmics Biosciences Co., Ltd, Wuhan 430076, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Zhenglin Du
- Institute of PSI Genomics, Wenzhou 325024, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wenjie Bian
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Feifei Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Pingan Zhang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Rihan Wu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yifan Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Xiaoyi Hu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Mingzheng Jiang
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Guangyao Li
- Linfen Clinical Medicine Research Center, Linfen 041000, China
| | - Yue Wei
- Linfen Clinical Medicine Research Center, Linfen 041000, China
| | - Yu Xu
- Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yanliang Ma
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yanwen Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Keqiang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Jing Bao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Fang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Wentao Ni
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Moqin Zhang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yan Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Shengnan Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100490, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China; Institute of Chest and Lung Diseases, Shanxi Medical University, Taiyuan 030001, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China.
| |
Collapse
|
43
|
Miga KH, Eichler EE. Envisioning a new era: Complete genetic information from routine, telomere-to-telomere genomes. Am J Hum Genet 2023; 110:1832-1840. [PMID: 37922882 PMCID: PMC10645551 DOI: 10.1016/j.ajhg.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Advances in long-read sequencing and assembly now mean that individual labs can generate phased genomes that are more accurate and more contiguous than the original human reference genome. With declining costs and increasing democratization of technology, we suggest that complete genome assemblies, where both parental haplotypes are phased telomere to telomere, will become standard in human genetics. Soon, even in clinical settings where rigorous sample-handling standards must be met, affected individuals could have reference-grade genomes fully sequenced and assembled in just a few hours given advances in technology, computational processing, and annotation. Complete genetic variant discovery will transform how we map, catalog, and associate variation with human disease and fundamentally change our understanding of the genetic diversity of all humans.
Collapse
Affiliation(s)
- Karen H Miga
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
44
|
Heumos S, Guarracino A, Schmelzle JNM, Li J, Zhang Z, Hagmann J, Nahnsen S, Prins P, Garrison E. Pangenome graph layout by Path-Guided Stochastic Gradient Descent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558964. [PMID: 37790531 PMCID: PMC10542513 DOI: 10.1101/2023.09.22.558964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Motivation The increasing availability of complete genomes demands for models to study genomic variability within entire populations. Pangenome graphs capture the full genomic similarity and diversity between multiple genomes. In order to understand them, we need to see them. For visualization, we need a human readable graph layout: A graph embedding in low (e.g. two) dimensional depictions. Due to a pangenome graph's potential excessive size, this is a significant challenge. Results In response, we introduce a novel graph layout algorithm: the Path-Guided Stochastic Gradient Descent (PG-SGD). PG-SGD uses the genomes, represented in the pangenome graph as paths, as an embedded positional system to sample genomic distances between pairs of nodes. This avoids the quadratic cost seen in previous versions of graph drawing by Stochastic Gradient Descent (SGD). We show that our implementation efficiently computes the low dimensional layouts of gigabase-scale pangenome graphs, unveiling their biological features. Availability We integrated PG-SGD in ODGI which is released as free software under the MIT open source license. Source code is available at https://github.com/pangenome/odgi.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen 72076, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen 72076, Germany
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Genomics Research Centre, Human Technopole, Milan 20157, Italy
| | - Jan-Niklas M. Schmelzle
- Department of Computer Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Munich 80333, Germany
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jiajie Li
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhiru Zhang
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jörg Hagmann
- Computomics GmbH, Eisenbahnstr. 1, 72072 Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen 72076, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen 72076, Germany
- M3 Research Center, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
45
|
Majidian S, Agustinho DP, Chin CS, Sedlazeck FJ, Mahmoud M. Genomic variant benchmark: if you cannot measure it, you cannot improve it. Genome Biol 2023; 24:221. [PMID: 37798733 PMCID: PMC10552390 DOI: 10.1186/s13059-023-03061-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Genomic benchmark datasets are essential to driving the field of genomics and bioinformatics. They provide a snapshot of the performances of sequencing technologies and analytical methods and highlight future challenges. However, they depend on sequencing technology, reference genome, and available benchmarking methods. Thus, creating a genomic benchmark dataset is laborious and highly challenging, often involving multiple sequencing technologies, different variant calling tools, and laborious manual curation. In this review, we discuss the available benchmark datasets and their utility. Additionally, we focus on the most recent benchmark of genes with medical relevance and challenging genomic complexity.
Collapse
Affiliation(s)
- Sina Majidian
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | | | | | - Fritz J Sedlazeck
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, 77030, USA.
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Medhat Mahmoud
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
46
|
Chrisman B, He C, Jung JY, Stockham N, Paskov K, Washington P, Petereit J, Wall DP. Localizing unmapped sequences with families to validate the Telomere-to-Telomere assembly and identify new hotspots for genetic diversity. Genome Res 2023; 33:1734-1746. [PMID: 37879860 PMCID: PMC10691534 DOI: 10.1101/gr.277175.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/25/2023] [Indexed: 10/27/2023]
Abstract
Although it is ubiquitous in genomics, the current human reference genome (GRCh38) is incomplete: It is missing large sections of heterochromatic sequence, and as a singular, linear reference genome, it does not represent the full spectrum of human genetic diversity. To characterize gaps in GRCh38 and human genetic diversity, we developed an algorithm for sequence location approximation using nuclear families (ASLAN) to identify the region of origin of reads that do not align to GRCh38. Using unmapped reads and variant calls from whole-genome sequences (WGSs), ASLAN uses a maximum likelihood model to identify the most likely region of the genome that a subsequence belongs to given the distribution of the subsequence in the unmapped reads and phasings of families. Validating ASLAN on synthetic data and on reads from the alternative haplotypes in the decoy genome, ASLAN localizes >90% of 100-bp sequences with >92% accuracy and ∼1 Mb of resolution. We then ran ASLAN on 100-mers from unmapped reads from WGS from more than 700 families, and compared ASLAN localizations to alignment of the 100-mers to the recently released T2T-CHM13 assembly. We found that many unmapped reads in GRCh38 originate from telomeres and centromeres that are gaps in GRCh38. ASLAN localizations are in high concordance with T2T-CHM13 alignments, except in the centromeres of the acrocentric chromosomes. Comparing ASLAN localizations and T2T-CHM13 alignments, we identified sequences missing from T2T-CHM13 or sequences with high divergence from their aligned region in T2T-CHM13, highlighting new hotspots for genetic diversity.
Collapse
Affiliation(s)
- Brianna Chrisman
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
- Nevada Bioinformatics Center, University of Nevada, Reno, Nevada 89557, USA
| | - Chloe He
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Jae-Yoon Jung
- Department of Pediatrics (Systems Medicine), Stanford University, Stanford, California 94305, USA
| | - Nate Stockham
- Department of Neuroscience, Stanford University, Stanford, California 94305, USA
| | - Kelley Paskov
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Peter Washington
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, Nevada 89557, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
- Department of Pediatrics (Systems Medicine), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
47
|
de Moraes RLR, de Menezes Cavalcante Sassi F, Vidal JAD, Goes CAG, dos Santos RZ, Stornioli JHF, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Chromosomal Rearrangements and Satellite DNAs: Extensive Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in the Genus Pyrrhulina (Teleostei; Characiformes). Int J Mol Sci 2023; 24:13654. [PMID: 37686460 PMCID: PMC10563077 DOI: 10.3390/ijms241713654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Francisco de Menezes Cavalcante Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Jhon Alex Dziechciarz Vidal
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Fábio Porto-Foresti
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
48
|
Attwaters M. A diverse and inclusive human pangenome. Nat Rev Genet 2023; 24:585. [PMID: 37433982 DOI: 10.1038/s41576-023-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
|
49
|
Yang Z, Guarracino A, Biggs PJ, Black MA, Ismail N, Wold JR, Merriman TR, Prins P, Garrison E, de Ligt J. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of Neisseria meningitidis leveraging Oxford Nanopore long reads. Front Genet 2023; 14:1225248. [PMID: 37636268 PMCID: PMC10448961 DOI: 10.3389/fgene.2023.1225248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Whole genome sequencing has revolutionized infectious disease surveillance for tracking and monitoring the spread and evolution of pathogens. However, using a linear reference genome for genomic analyses may introduce biases, especially when studies are conducted on highly variable bacterial genomes of the same species. Pangenome graphs provide an efficient model for representing and analyzing multiple genomes and their variants as a graph structure that includes all types of variations. In this study, we present a practical bioinformatics pipeline that employs the PanGenome Graph Builder and the Variation Graph toolkit to build pangenomes from assembled genomes, align whole genome sequencing data and call variants against a graph reference. The pangenome graph enables the identification of structural variants, rearrangements, and small variants (e.g., single nucleotide polymorphisms and insertions/deletions) simultaneously. We demonstrate that using a pangenome graph, instead of a single linear reference genome, improves mapping rates and variant calling for both simulated and real datasets of the pathogen Neisseria meningitidis. Overall, pangenome graphs offer a promising approach for comparative genomics and comprehensive genetic variation analysis in infectious disease. Moreover, this innovative pipeline, leveraging pangenome graphs, can bridge variant analysis, genome assembly, population genetics, and evolutionary biology, expanding the reach of genomic understanding and applications.
Collapse
Affiliation(s)
- Zuyu Yang
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Patrick J. Biggs
- Molecular Biosciences Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nuzla Ismail
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jana Renee Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tony R. Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joep de Ligt
- Institute of Environmental Science and Research, Porirua, New Zealand
| |
Collapse
|
50
|
Wang B, Dang N, Yang X, Xu S, Ye K. The human pangenome reference: the beginning of a new era for genomics. Sci Bull (Beijing) 2023; 68:1484-1487. [PMID: 37353434 DOI: 10.1016/j.scib.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningxin Dang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200032, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|