1
|
Martino N, Yan H, Abbott G, Fahlberg M, Forward S, Kim KH, Wu Y, Zhu H, Kwok SJJ, Yun SH. Large-scale combinatorial optical barcoding of cells with laser particles. LIGHT, SCIENCE & APPLICATIONS 2025; 14:148. [PMID: 40169572 PMCID: PMC11962087 DOI: 10.1038/s41377-025-01809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025]
Abstract
The identification of individual cells is crucial for advancements in single-cell analysis. Optically readable barcodes provide a means to distinguish and track cells through repeated, non-destructive measurements. Traditional fluorophore-based methods are limited by the finite number of unique barcodes they can produce. Laser particles (LPs), which emit narrowband peaks over a wide spectral range, have emerged as a promising technology for single-cell barcoding. Here, we demonstrate the use of multiple LPs to generate combinatorial barcodes, enabling the identification of a vast number of live cells. We introduce a theoretical framework for estimating the number of LPs required for unique barcodes and the expected identification error rate. Additionally, we present an improved LP-tagging method that is highly effective across a variety of cell types and evaluate its biocompatibility. Our experimental results show successful barcoding of several million cells, closely matching our theoretical predictions. This research marks a significant step forward in the scalability of LP technology for single-cell tracking and analysis.
Collapse
Affiliation(s)
- Nicola Martino
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hao Yan
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | | | | | | | - Kwon-Hyeon Kim
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Yue Wu
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Han Zhu
- LASE Innovation Inc., Waltham, MA, 02451, USA
| | | | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Zhang Y, Zhang W, Qiu Y, Cui K, Li X, Hao W, Luo A, Xiao Z. Molecular Engineering of a SICTERS Small Molecule with Superior In Vivo Raman Imaging and Photothermal Performance. J Am Chem Soc 2025; 147:10247-10259. [PMID: 40073295 DOI: 10.1021/jacs.4c16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a de novo substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking. The mechanistic studies confirm that BTT maintains the planar structure with polycyclic distorted vibrations required for SICTERS. TPA enhances the donor-acceptor interaction, yielding a Raman sensitivity of BTT higher than previously reported SICTERS molecules; it also acts as a molecular rotor, increasing the photothermal conversion efficiency to 67.44%, which is superior to most of the existing SERS-based photothermal materials. In the tumor model of mouse orthotopic colon cancer, BTT-TPA NPs demonstrate a great Raman imaging-guided photothermal therapy effect in eliminating primary and metastatic tumors, remarkably decreasing the recurrence rate. This work puts forward substrate-free SICTERS small molecules toward Raman-based theranostic applications in vivo.
Collapse
Affiliation(s)
- Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenxian Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyi Li
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Hao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aoxiang Luo
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Jiang Y, Khoury EE, Pezacki AT, Qian N, Oi M, Torrente L, Miller S, Ralle M, DeNicola GM, Min W, Chang CJ. An Activity-Based Sensing Approach to Multiplex Mapping of Labile Copper Pools by Stimulated Raman Scattering. J Am Chem Soc 2024; 146:33324-33337. [PMID: 39586074 PMCID: PMC11844218 DOI: 10.1021/jacs.4c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Molecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode. We illustrate this concept with two copper Raman probes (CRPs), CRP2181 and CRP2153.2, that react selectively with loosely bound Cu(I/II) and Cu(II) ions, respectively, termed the labile copper pool, through copper-directed acyl imidazole (CDAI) chemistry. These reagents label proximal proteins in a copper-dependent manner using a dye scaffold bearing a 13C≡N or 13C≡15N isotopic SRS tag with nearly identical physiochemical properties in terms of shape and size. SRS imaging with the CRP reagents enables duplex monitoring of changes in intracellular labile Cu(I) and Cu(II) pools upon exogenous copper supplementation or copper depletion or genetic perturbations to copper transport proteins. Moreover, CRP imaging reveals reciprocal increases in labile Cu(II) pools upon decreases in activity of the antioxidant response nuclear factor-erythroid 2-related factor 2 (NRF2) in cellular models of lung adenocarcinoma. By showcasing the use of narrow-bandwidth ABS probes for multiplex imaging of copper pools in different oxidation states and identifying alterations in labile metal nutrient pools in cancer, this work establishes a foundation for broader SRS applications in analyte-responsive imaging in biological systems.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Aidan T. Pezacki
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Miku Oi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Sophia Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97201, USA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Christopher J. Chang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Tipping WJ, Faulds K, Graham D. Advances in Super-resolution Stimulated Raman Scattering Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:733-743. [PMID: 39610463 PMCID: PMC11600147 DOI: 10.1021/cbmi.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/30/2024]
Abstract
Super-resolution optical imaging overcomes the diffraction limit in light microscopy to enable the visualization of previously invisible molecular details within a sample. The realization of super-resolution imaging based on stimulated Raman scattering (SRS) microscopy represents a recent area of fruitful development that has been used to visualize cellular structures in three dimensions, with multiple spectroscopic colors at the nanometer scale. Several fundamental approaches to achieving super-resolution SRS imaging have been reported, including optical engineering strategies, expansion microscopy, deconvolution image analysis, and photoswitchable SRS reporters as methods to break the diffraction limit. These approaches have enabled the visualization of biological structures, cellular interactions, and dynamics with unprecedented detail. In this Perspective, an overview of the current strategies and capabilities for achieving super-resolution SRS imaging will be highlighted together with an outlook on potential directions of this rapidly evolving field.
Collapse
Affiliation(s)
- William J. Tipping
- Pure
and Applied Chemistry, University of Strathclyde,
Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, United
Kingdom
| | - Karen Faulds
- Pure
and Applied Chemistry, University of Strathclyde,
Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, United
Kingdom
| | - Duncan Graham
- Pure
and Applied Chemistry, University of Strathclyde,
Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, United
Kingdom
| |
Collapse
|
6
|
Kang J, Schroeder ME, Lee Y, Kapoor C, Yu E, Tarr TB, Titterton K, Zeng M, Park D, Niederst E, Wei D, Feng G, Boyden ES. Multiplexed expansion revealing for imaging multiprotein nanostructures in healthy and diseased brain. Nat Commun 2024; 15:9722. [PMID: 39521775 PMCID: PMC11550395 DOI: 10.1038/s41467-024-53729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Proteins work together in nanostructures in many physiological contexts and disease states. We recently developed expansion revealing (ExR), which expands proteins away from each other, in order to support better labeling with antibody tags and nanoscale imaging on conventional microscopes. Here, we report multiplexed expansion revealing (multiExR), which enables high-fidelity antibody visualization of >20 proteins in the same specimen, over serial rounds of staining and imaging. Across all datasets examined, multiExR exhibits a median round-to-round registration error of 39 nm, with a median registration error of 25 nm when the most stringent form of the protocol is used. We precisely map 23 proteins in the brain of 5xFAD Alzheimer's model mice, and find reductions in synaptic protein cluster volume, and co-localization of specific AMPA receptor subunits with amyloid-beta nanoclusters. We visualize 20 synaptic proteins in specimens of mouse primary somatosensory cortex. multiExR may be of broad use in analyzing how different kinds of protein are organized amidst normal and pathological processes in biology.
Collapse
Affiliation(s)
- Jinyoung Kang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
| | - Margaret E Schroeder
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Youngmi Lee
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Chaitanya Kapoor
- Department of Electrical and Electronics Engineering, BITS Pilani, Rajasthan, India
| | - Eunah Yu
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Tyler B Tarr
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kat Titterton
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Menglong Zeng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Demian Park
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Emily Niederst
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Donglai Wei
- Department of Computer Science, Boston College, Chestnut Hill, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Yang Tan Collective, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Gao X, Huang X, Chen Z, Yang L, Zhou Y, Hou Z, Yang J, Qi S, Liu Z, Zhang Z, Liu Q, Luo Q, Fu L. Supercontinuum-tailoring multicolor imaging reveals spatiotemporal dynamics of heterogeneous tumor evolution. Nat Commun 2024; 15:9313. [PMID: 39472437 PMCID: PMC11522295 DOI: 10.1038/s41467-024-53697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Tumor heterogeneity and tumor evolution contribute to cancer treatment failure. To understand how selective pressures drive heterogeneous tumor evolution, it would be useful to image multiple important components and tumor subclones in vivo. We propose a supercontinuum-tailoring two-photon microscope (SCT-TPM) and realize simultaneous observation of nine fluorophores with a single light beam, breaking through the 'color barrier' of intravital two-photon fluorescence imaging. It achieves excitation multiplexing only by modulating the phase of fiber supercontinuum (SC), allowing to capture rapid events of multiple targets with maintaining precise spatial alignment. We employ SCT-TPM to visualize the spatiotemporal dynamics of heterogeneous tumor evolution under host immune surveillance, particularly the behaviors and interactions of six tumor subclones, immune cells and vascular network, and thus infer the trajectories of tumor progression and clonal competition. SCT-TPM opens up the possibility of tumor lineage tracking and mechanism exploration in living biological systems.
Collapse
Affiliation(s)
- Xiujuan Gao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyuan Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongyun Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liu Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifu Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxuan Hou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Liu
- School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
- State Key Laboratory of Digital Medical Engineering, Sanya, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
- State Key Laboratory of Digital Medical Engineering, Sanya, Hainan, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Sanya, Hainan, China.
- State Key Laboratory of Digital Medical Engineering, Sanya, Hainan, China.
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Engineering, Hainan University, Sanya, Hainan, China.
- State Key Laboratory of Digital Medical Engineering, Sanya, Hainan, China.
- School of Physics and Optoelectronics Engineering, Hainan University, Haikou, Hainan, China.
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Rosen GA, Kirsch D, Nicks R, Kelley H, Mathias R, Cormier KA, Kubilus CA, Dec B, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. SHARD: an improved method for staining and visualizing multiplex immunofluorescence in optically cleared postmortem human brain tissue. Front Neurosci 2024; 18:1474617. [PMID: 39445075 PMCID: PMC11496292 DOI: 10.3389/fnins.2024.1474617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Postmortem human brain tissue is a critical resource for studying neurodegenerative disease, providing critical insights into cellular morphology, pathology, and network connectivity. To improve standard microscopy and enable high-resolution, three-dimensional (3D) images of tissues at the subcellular level, tissue-clearing methods have been developed. These 3D images allow for the analysis of large regions of interest and can be used to study structural and spatial changes that occur during neurodegeneration. Additionally, 3D imaging facilitates the visualization of whole-cell morphology, especially in cells with long processes that would otherwise be truncated in single-plane images. Human brain tissue is especially challenging for tissue clearing due to the abundance of lipids in myelin and the need for optimal fixation and low postmortem intervals. Formaldehyde-based fixatives, commonly used in preserving tissue, hinder antibody binding by crosslinking important antibody epitopes, and fluorescent microscopy requires the incorporation of fluorescent labels through passive diffusion or electrophoresis. Recent studies have focused on optimally fixed human brain tissue with short postmortem intervals, limiting the general applicability of these methods. To address these challenges, we developed SHARD (SHIELD, antigen retrieval, and delipidation), a simple and widely applicable method for clearing and labeling human brain tissue, which can be applied to long-term banked human brain tissue preserved in formaldehyde. SHARD is a novel addition to the SHIELD tissue clarification method, combining antigen retrieval, tissue clearing, and staining of 200-μm sections from long-term banked human brain tissue. The SHARD method is effective for postmortem intervals (PMIs) ranging from 10 to 72 h in multiple neurodegenerative diseases and control samples. In this study, we demonstrate that the SHARD method significantly enhances the immunostaining of glial fibrillary acidic protein (GFAP), an astrocytic cytoskeletal marker. Overall, the combination of antigen retrieval and tissue delipidation holds great potential for achieving detailed 3D immunostaining in long-term formaldehyde-fixed postmortem human brain tissue, opening new avenues for research and discovery.
Collapse
Affiliation(s)
- Grace A. Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Hunter Kelley
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kerry A. Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Caroline A. Kubilus
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bryan Dec
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Thor D. Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| | - Victor E. Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Michael L. Alosco
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- Department of Neurology, Boston Medical Center, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ann C. McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, United States
| | - Bertrand R. Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, Boston, MA, United States
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, United States
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, MA, United States
| |
Collapse
|
9
|
Wang J, Lu Y, Zhang R, Cai Z, Fan Z, Xu Y, Liu Z, Zhang Z. Modulating and Imaging Macrophage Reprogramming for Cancer Immunotherapy. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:401-414. [PMID: 39583310 PMCID: PMC11584841 DOI: 10.1007/s43657-023-00154-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 11/26/2024]
Abstract
Cancer immunotherapy has made great progress in effectively attacking or eliminating cancer. However, the challenges posed by the low reactivity of some solid tumors still remain. Macrophages, as a key component of the tumor microenvironment (TME), play an important role in determining the progression of solid tumors due to their plasticity and heterogeneity. Targeting and reprogramming macrophages in TME to desired phenotypes offers an innovative and promising approach for cancer immunotherapy. Meanwhile, the rapid development of in vivo molecular imaging techniques provides us with powerful tools to study macrophages. In this review, we summarize the current progress in macrophage reprogramming from conceptual roadmaps to therapeutic approaches, including monoclonal antibody drugs, small molecule drugs, gene therapy, and chimeric antigen receptor-engineered macrophages (CAR-M). More importantly, we highlight the significance of molecular imaging in observing and understanding the process of macrophage reprogramming during cancer immunotherapy. Finally, we introduce the therapeutic applications of imaging and reprogramming macrophages in three solid tumors. In the future, the integration of molecular imaging into the development of novel macrophage reprogramming strategies holds great promise for precise clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Ren Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Zhenzhen Cai
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhan Fan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yilun Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zheng Liu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| |
Collapse
|
10
|
Li Y, Sun Y, Shi L. Viewing 3D spatial biology with highly-multiplexed Raman imaging: from spectroscopy to biotechnology. Chem Commun (Camb) 2024. [PMID: 39041798 DOI: 10.1039/d4cc02319f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Understansding complex biological systems requires the simultaneous characterization of a large number of interacting components in their native 3D environment with high spatial resolution. Highly-multiplexed Raman imaging is an emerging general strategy for detecting biomarkers with scalable multiplexity and ultra-sensitivity based on a series of stimulated Raman scattering (SRS) techniques. Here we review recent advances in highly-multiplexed Raman imaging and how they contribute to the technological revolution in 3D spatial biology, focusing on the developmental pathway from spectroscopy study to biotechnology invention. We envision highly-multiplexed Raman imaging is taking off, which will greatly facilitate our understanding in biological and medical research fields.
Collapse
Affiliation(s)
- Yingying Li
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yuchen Sun
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Ertürk A. Deep 3D histology powered by tissue clearing, omics and AI. Nat Methods 2024; 21:1153-1165. [PMID: 38997593 DOI: 10.1038/s41592-024-02327-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/28/2024] [Indexed: 07/14/2024]
Abstract
To comprehensively understand tissue and organism physiology and pathophysiology, it is essential to create complete three-dimensional (3D) cellular maps. These maps require structural data, such as the 3D configuration and positioning of tissues and cells, and molecular data on the constitution of each cell, spanning from the DNA sequence to protein expression. While single-cell transcriptomics is illuminating the cellular and molecular diversity across species and tissues, the 3D spatial context of these molecular data is often overlooked. Here, I discuss emerging 3D tissue histology techniques that add the missing third spatial dimension to biomedical research. Through innovations in tissue-clearing chemistry, labeling and volumetric imaging that enhance 3D reconstructions and their synergy with molecular techniques, these technologies will provide detailed blueprints of entire organs or organisms at the cellular level. Machine learning, especially deep learning, will be essential for extracting meaningful insights from the vast data. Further development of integrated structural, molecular and computational methods will unlock the full potential of next-generation 3D histology.
Collapse
Affiliation(s)
- Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University, Munich, Germany.
- School of Medicine, Koç University, İstanbul, Turkey.
- Deep Piction GmbH, Munich, Germany.
| |
Collapse
|
12
|
Ma L, Luo K, Liu Z, Ji M. Stain-Free Histopathology with Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:7907-7925. [PMID: 38713830 DOI: 10.1021/acs.analchem.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Affiliation(s)
- Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Kuan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Radtke AJ, Roschewski M. The follicular lymphoma tumor microenvironment at single-cell and spatial resolution. Blood 2024; 143:1069-1079. [PMID: 38194685 PMCID: PMC11103101 DOI: 10.1182/blood.2023020999] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Follicular lymphoma (FL) is a generally incurable malignancy that originates from developmentally blocked germinal center B cells residing, primarily, within lymph nodes (LNs). During the long natural history of FL, malignant B cells often disseminate to multiple LNs and can affect virtually any organ. Nonmalignant LNs are highly organized structures distributed throughout the body, in which they perform functions critical for host defense. In FL, the malignant B cells "re-educate" the lymphoid environment by altering the phenotype, distribution, and abundance of other cells such as T cells, macrophages, and subsets of stromal cells. Consequently, dramatic anatomical changes occur and include alterations in the number, shape, and size of neoplastic follicles with an accompanying attenuation of the T-cell zone. Ongoing and dynamic interactions between FL B cells and the tumor microenvironment (TME) result in significant clinical heterogeneity observed both within and across patients. Over time, FL evolves into pathological variants associated with distinct outcomes, ranging from an indolent disease to more aggressive clinical courses with early death. Given the importance of both cell-intrinsic and -extrinsic factors in shaping disease progression and patient survival, comprehensive examination of FL tumors is critical. Here, we describe the cellular composition and architecture of normal and malignant human LNs and provide a broad overview of emerging technologies for deconstructing the FL TME at single-cell and spatial resolution. We additionally discuss the importance of capturing samples at landmark time points as well as longitudinally for clinical decision-making.
Collapse
Affiliation(s)
- Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Chen J, Cheng L, Yang Y, Liu Y, Su C, He Y, You M, Lin Z, Hong G. Background-Free SERS Nanosensor for Endogenous Hydrogen Sulfide Detection Based on Prussian Blue-Coated Gold Nanobipyramids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38491944 DOI: 10.1021/acsami.3c17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has great potential in biological analysis due to its specificity, sensitivity, and non-invasive nature. However, effectively extracting Raman information and avoiding spectral overlapping from biological background interference remain major challenges. In this study, we developed a background-free SERS nanosensor consisting of gold nanobipyramids (Au NBPs) core-Prussian blue (PB) shell (Au NBPs@PB), for endogenous H2S detection. The PB shell degraded quickly upon contact with endogenous H2S, generating a unique Raman signal response in the Raman silent region (1800-2800 cm-1). By taking advantage of the high SERS-activity of Au NBPs and H2S-triggered spectral changes of PB, these SERS nanosensors effectively minimize potential biological interferences. The nanosensor exhibits a detection range of 2.0 μM to 250 μM and a limit of detection (LOD) of 0.34 μM, with good reproducibility and minimal interference. We successfully applied this background-free SERS platform to monitor endogenous H2S concentrations in human serum samples with satisfied results.
Collapse
Affiliation(s)
- Jiaming Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yating Liu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yinghao He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Mingming You
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
15
|
Humenick A, Johnson M, Chen B, Wee M, Wattchow D, Costa M, Dinning P, Brookes S. Antibody elution with 2-me/SDS solution: Uses for multi-layer immunohistochemical analysis of wholemount preparations of human colonic myenteric plexus. Heliyon 2024; 10:e26522. [PMID: 38434276 PMCID: PMC10904250 DOI: 10.1016/j.heliyon.2024.e26522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Indirect immunofluorescence is usually restricted to 3-5 markers per preparation, limiting analysis of coexistence. A solution containing 2-mercaptoethanol and sodium dodecyl sulfate (2-ME/SDS) can elute indirect immunofluorescence labelling (i.e. primary antisera followed by fluorophore-conjugated secondary antisera) and has been used for sequential staining of sections. The aim of this study was to test whether 2-ME/SDS is effective for eluting indirect immunofluorescent staining (with primary antisera visualised by fluorophore-coupled secondary antisera) in wholemount preparations. We also analysed how 2-ME/SDS may work and used this understanding to devise additional uses for immunofluorescence in the nervous system. 2-ME/SDS appears to denature unfixed proteins (including antisera used as reagents) but has much less effect on antigenicity of formaldehyde-fixed epitopes. Moieties linked by strong biotin-streptavidin bonds are highly resistant to elution by 2-ME/SDS. Two primary antisera raised in the same species can be applied without spurious cross-reactivity, if a specific order of labelling is followed. The first primary antiserum is followed by a biotinylated secondary, then a tertiary of fluorophore-conjugated streptavidin. The preparation is then exposed to 2-ME/SDS, which has minimal impact on labelling by the first primary/secondary/tertiary combination. However, when this is followed by a second primary antiserum (raised in the same species), followed by a fluorophore-conjugated secondary antiserum, the intervening 2-ME/SDS exposure prevents cross-reactivity between primary and secondary antisera of the two layers. A third property of 2-ME/SDS is that it reduces lipofuscin autofluorescence, although it also raises background fluorescence and strongly enhances autofluorescence of erythrocytes. In summary, 2-ME/SDS is easy to use, cost-effective and does not require modified primary antisera. It can be used as the basis of a multi-layer immunohistochemistry protocol and allows 2 primary antisera raised in the same species to be used together.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M.E. Johnson
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - B.N. Chen
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - M. Wee
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - D.A. Wattchow
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - M. Costa
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - P.G. Dinning
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - S.J.H. Brookes
- Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| |
Collapse
|
16
|
de Souza N, Zhao S, Bodenmiller B. Multiplex protein imaging in tumour biology. Nat Rev Cancer 2024; 24:171-191. [PMID: 38316945 DOI: 10.1038/s41568-023-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40-50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.
Collapse
Affiliation(s)
- Natalie de Souza
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Shan Zhao
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Bernd Bodenmiller
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland.
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland.
| |
Collapse
|
17
|
Wei M, Qian N, Gao X, Lang X, Song D, Min W. Single-particle imaging of nanomedicine entering the brain. Proc Natl Acad Sci U S A 2024; 121:e2309811121. [PMID: 38252832 PMCID: PMC10835139 DOI: 10.1073/pnas.2309811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Nanomedicine has emerged as a revolutionary strategy of drug delivery. However, fundamentals of the nano-neuro interaction are elusive. In particular, whether nanocarriers can cross the blood-brain barrier (BBB) and release the drug cargo inside the brain, a basic process depicted in numerous books and reviews, remains controversial. Here, we develop an optical method, based on stimulated Raman scattering, for imaging nanocarriers in tissues. Our method achieves a suite of capabilities-single-particle sensitivity, chemical specificity, and particle counting capability. With this method, we visualize individual intact nanocarriers crossing the BBB of mouse brains and quantify the absolute number by particle counting. The fate of nanocarriers after crossing the BBB shows remarkable heterogeneity across multiple scales. With a mouse model of aging, we find that blood-brain transport of nanocarriers decreases with age substantially. This technology would facilitate development of effective therapeutics for brain diseases and clinical translation of nanocarrier-based treatment in general.
Collapse
Affiliation(s)
- Mian Wei
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Donghui Song
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
- Kavli Institute for Brain Science, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| |
Collapse
|
18
|
He H, Cao M, Gao Y, Zheng P, Yan S, Zhong JH, Wang L, Jin D, Ren B. Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy. Nat Commun 2024; 15:754. [PMID: 38272927 PMCID: PMC10810791 DOI: 10.1038/s41467-024-44864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The low scattering efficiency of Raman scattering makes it challenging to simultaneously achieve good signal-to-noise ratio (SNR), high imaging speed, and adequate spatial and spectral resolutions. Here, we report a noise learning (NL) approach that estimates the intrinsic noise distribution of each instrument by statistically learning the noise in the pixel-spatial frequency domain. The estimated noise is then removed from the noisy spectra. This enhances the SNR by ca. 10 folds, and suppresses the mean-square error by almost 150 folds. NL allows us to improve the positioning accuracy and spatial resolution and largely eliminates the impact of thermal drift on tip-enhanced Raman spectroscopic nanoimaging. NL is also applicable to enhance SNR in fluorescence and photoluminescence imaging. Our method manages the ground truth spectra and the instrumental noise simultaneously within the training dataset, which bypasses the tedious labelling of huge dataset required in conventional deep learning, potentially shifting deep learning from sample-dependent to instrument-dependent.
Collapse
Affiliation(s)
- Hao He
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Maofeng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yun Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jin-Hui Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China.
| | - Dayong Jin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute for Biomedical Materials & Devices (IBMD), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Tan Kah Kee Innovation Laboratory, Xiamen, 361104, China.
| |
Collapse
|
19
|
Zhou L, Feng RR, Zhang W, Gai F. Triple-Bond Vibrations: Emerging Applications in Energy and Biological Sciences. J Phys Chem Lett 2024; 15:187-200. [PMID: 38156972 DOI: 10.1021/acs.jpclett.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Triple bonds, such as that formed between two carbon atoms (i.e., C≡C) or that formed between one carbon atom and one nitrogen atom (i.e., C≡N), afford unique chemical bonding and hence vibrational characteristics. As such, they are not only frequently used to construct molecules with tailored chemical and/or physical properties but also employed as vibrational probes to provide site-specific chemical and/or physical information at the molecular level. Herein, we offer our perspective on the emerging applications of various triple-bond vibrations in energy and biological sciences with a focus on C≡C and C≡N triple bonds.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Li Z, Lu Y, Yang L. Imaging and spatial omics of kidney injury: significance, challenges, advances and perspectives. MEDICAL REVIEW (2021) 2023; 3:514-520. [PMID: 38282803 PMCID: PMC10808090 DOI: 10.1515/mr-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
The kidneys are susceptible to a range of insults that can cause damage to them. Early diagnosis, timely prevention, and proper treatment are crucial for improving the outcome of kidney injury. However, the complexity of renal structure and function makes it difficult to reach the demand of early detection and comprehensive evaluation of kidney injury. No successful drug therapy caused by the elaborate pathogenesis mechanism network of kidney injury calls for a systematical interpretation in mechanism researches. Recent advances in renal imaging and omics studies have provided novel views and deeper insights into kidney injury, but also raise challenges in reaching a comprehensive cellular and molecular atlas of kidney injury. Progresses in imaging and omics of kidney injury are being made in various directions, with the initiative of construction a high-resolution structural atlas of kidney, dynamic and non-invasive evaluation of renal function, and systematic establishment of spatially resolved molecular atlas by transcriptomics and metabolomics. With the limitations of a single modality, novel multimodal integration technologies of imaging and omics are being attempted to achieve a systematic description of nephropathy mechanisms. Further extensive efforts in renal multimodal imaging and omics studies are extremely required to deepen our understanding on kidney injury in the context of diagnostic, mechanistic and therapeutic perspectives.
Collapse
Affiliation(s)
- Zehua Li
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing, China
| | - Yao Lu
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing, China
| | - Li Yang
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
22
|
Yin M, Zhao L, Liu S, Tian S, Meng F, Luo L. Conjugation Length-Dependent Raman Scattering Intensity of Conjugated Polymers. Macromol Rapid Commun 2023; 44:e2300412. [PMID: 37713720 DOI: 10.1002/marc.202300412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Polydiacetylenes, as a class of conjugated polymers with alternating conjugated C═C and C≡C bonds, have emerged as a promising probe material for biomedical Raman imaging, given their ultrastrong Raman scattering intensity. However, the relationship between the structure, especially the molecular length of polydiacetylenes, and their Raman scattering intensity remains unclear. In this work, a series of water-soluble polydiacetylenes, namely poly(deca-4,6-diynedioic acid) (PDDA) with different molecular weights (MWs), is prepared through controlled polymerization and degradation. The ultraviolet-visible (UV-vis) absorption spectroscopic and Raman spectroscopic studies on these polymers reveal that the Raman scattering intensity of PDDA increases nonlinearly with the MW. The MW-Raman scattering intensity relationship in the polymerization process is completely different from that in the degradation process. In contrast, the Raman scattering intensity increases more linearly with the maximal absorbance of the polymer, and the relationship between the Raman scattering intensity and the maximal absorbance of PDDA in the polymerization process is consistent with that in the degradation process. The Raman scattering intensity of PDDA hence exhibits a better dependence on the effective conjugation length of the polymer, which should guide the future design of conjugated polymers for Raman imaging applications.
Collapse
Affiliation(s)
- Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sujuan Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
23
|
Ma C, Xia D, Huang S, Du Q, Liu J, Zhang B, Zhu Q, Bi G, Wang H, Xu RX. High precision vibration sectioning for 3D imaging of the whole central nervous system. J Neurosci Methods 2023; 399:109966. [PMID: 37666283 DOI: 10.1016/j.jneumeth.2023.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Imaging and reconstruction of the morphology of neurons within the entire central nervous system (CNS) is important for deciphering the neural circuitry and related brain functions. With combination of tissue clearing and light sheet microscopy, previous studies have imaged the mouse CNS at cellular resolution, while remaining single axons unresolvable due to the tradeoff between sample size and imaging resolution. This could be improved by sectioning the sample into thick slices and imaged with high resolution light sheet microscopy as described in our previous study. However, the achievable quality for 3D imaging of serial thick slices is often hindered by surface undulation and other artifacts introduced by sectioning and handling limitations. NEW METHODS In order to improve the imaging quality for mouse CNS, we develop a high-performance vibratome system for sample sectioning and handling automation. The sectioning mechanism of the system was modeled theoretically and verified experimentally. The effects of process parameters and sample properties on sectioning accuracy were studied to optimize the sectioning outcome. The resultant imaging outcome was demonstrated on mouse samples. RESULTS Our theoretical model of vibratome effectively depicts the relationship between the sample surface undulation errors and the sectioning parameters. With the guidance of the theoretical model, the vibratome is able to achieve a local surface undulation error of ±0.5 µm and a surface arithmetic mean deviation (Sa) of 220 nm for 300-μm-thick tissue slices. Imaging results of mouse CNS show the continuous sectioning capability of the vibratome. COMPARISON WITH EXISTING METHOD Our automatic sectioning and handling system is able to process serial thick slices for 3D imaging of the whole CNS at a single-axon resolution, superior to the commercially available vibratome devices. CONCLUSION Our automatic sectioning and handling system can be optimized to prepare thick sample slices with minimal surface undulation and manual manipulation in support of 3D brain mapping with high-throughput and high-accuracy.
Collapse
Affiliation(s)
- Canzhen Ma
- School of Engineering Science, University of Science and Technology of China, Hefei 230027, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; School of Biomedical Engineering, University of Science and Technology of China, Suzhou 215123, China
| | - Debin Xia
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei 230027, China
| | - Shichang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qing Du
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Jiajun Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei 230027, China
| | - Bo Zhang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei 230027, China
| | - Qingyuan Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guoqiang Bi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hao Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei 230027, China.
| | - Ronald X Xu
- School of Engineering Science, University of Science and Technology of China, Hefei 230027, China; School of Biomedical Engineering, University of Science and Technology of China, Suzhou 215123, China.
| |
Collapse
|
24
|
Liang C, Sun K, Chen M, Xu P. Crystal-Phase Engineering of Two-Dimensional Transition-Metal Dichalcogenides for Surface-Enhanced Raman Scattering: A Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11946-11953. [PMID: 37590920 DOI: 10.1021/acs.langmuir.3c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising materials for surface-enhanced Raman scattering (SERS) due to their unique electronic, optical, and mechanical properties. In this Perspective, we briefly introduce the fundamental properties, crystal-phase configurations, and phase transition strategies of TMDs materials. We then discuss the importance of the crystal phase in determining the SERS effect of TMDs, highlighting recent advances in phase-engineering approaches to affording remarkable SERS performance. By considering the current challenges and future directions for improving the crystal-phase engineering of TMDs in SERS, we also offer new insights into the design and synthesis of more promising TMD-based SERS substrates.
Collapse
Affiliation(s)
- Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Kexin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
25
|
Rosen G, Kirsch D, Horowitz S, Cherry JD, Nicks R, Kelley H, Uretsky M, Dell'Aquila K, Mathias R, Cormier KA, Kubilus CA, Mez J, Tripodis Y, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. Three dimensional evaluation of cerebrovascular density and branching in chronic traumatic encephalopathy. Acta Neuropathol Commun 2023; 11:123. [PMID: 37491342 PMCID: PMC10369801 DOI: 10.1186/s40478-023-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts (RHI) and characterized by perivascular accumulations of hyperphosphorylated tau protein (p-tau) at the depths of the cortical sulci. Studies of living athletes exposed to RHI, including concussive and nonconcussive impacts, have shown increased blood-brain barrier permeability, reduced cerebral blood flow, and alterations in vasoreactivity. Blood-brain barrier abnormalities have also been reported in individuals neuropathologically diagnosed with CTE. To further investigate the three-dimensional microvascular changes in individuals diagnosed with CTE and controls, we used SHIELD tissue processing and passive delipidation to optically clear and label blocks of postmortem human dorsolateral frontal cortex. We used fluorescent confocal microscopy to quantitate vascular branch density and fraction volume. We compared the findings in 41 male brain donors, age at death 31-89 years, mean age 64 years, including 12 donors with low CTE (McKee stage I-II), 13 with high CTE (McKee stage III-IV) to 16 age- and sex-matched non-CTE controls (7 with RHI exposure and 9 with no RHI exposure). The density of vessel branches in the gray matter sulcus was significantly greater in CTE cases than in controls. The ratios of sulcus versus gyrus vessel branch density and fraction volume were also greater in CTE than in controls and significantly above one for the CTE group. Hyperphosphorylated tau pathology density correlated with gray matter sulcus fraction volume. These findings point towards increased vascular coverage and branching in the dorsolateral frontal cortex (DLF) sulci in CTE, that correlates with p-tau pathology.
Collapse
Affiliation(s)
- Grace Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Sarah Horowitz
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Hunter Kelley
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Kevin Dell'Aquila
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Kerry A Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Caroline A Kubilus
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Thor D Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Ann C McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA.
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA.
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA.
| |
Collapse
|
26
|
Du J, Tao X, Begušić T, Wei L. Computational Design of Molecular Probes for Electronic Preresonance Raman Scattering Microscopy. J Phys Chem B 2023; 127:4979-4988. [PMID: 37226966 PMCID: PMC10676804 DOI: 10.1021/acs.jpcb.3c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently developed electronic preresonance stimulated Raman scattering (epr-SRS) microscopy, in which the Raman signal of a dye is significantly boosted by setting the incident laser frequency near the electronic excitation energy, has pushed the sensitivity of SRS microscopy close to that offered by confocal fluorescence microscopy. Prominently, the maintained narrow line-width of epr-SRS also offers high multiplexity that breaks the "color barrier" in optical microscopy. However, detailed understanding of the fundamental mechanism in these epr-SRS dyes still remains elusive. Here, we combine experiments with theoretical modeling to investigate the structure-function relationship, aiming to facilitate the design of new probes and expanding epr-SRS palettes. Our ab initio approach employing the displaced harmonic oscillator (DHO) model provides a consistent agreement between simulated and experimental SRS intensities of various triple-bond bearing epr-SRS probes with distinct scaffolds. We further review two popular approximate expressions for epr-SRS, namely the short-time and Albrecht A-term equations, and compare them to the DHO model. Overall, the theory allows us to illustrate how the observed intensity differences between molecular scaffolds stem from the coupling strength between the electronic excitation and the targeted vibrational mode, leading to a general design strategy for highly sensitive next-generation vibrational imaging probes.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xuecheng Tao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tomislav Begušić
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
27
|
Anwar A, Mur M, Humar M. Microcavity- and Microlaser-Based Optical Barcoding: A Review of Encoding Techniques and Applications. ACS PHOTONICS 2023; 10:1202-1224. [PMID: 37215324 PMCID: PMC10197175 DOI: 10.1021/acsphotonics.2c01611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 05/24/2023]
Abstract
Optical microbarcodes have recently received a great deal of interest because of their suitability for a wide range of applications, such as multiplexed assays, cell tagging and tracking, anticounterfeiting, and product labeling. Spectral barcodes are especially promising because they are robust and have a simple readout. In addition, microcavity- and microlaser-based barcodes have very narrow spectra and therefore have the potential to generate millions of unique barcodes. This review begins with a discussion of the different types of barcodes and then focuses specifically on microcavity-based barcodes. While almost any kind of optical microcavity can be used for barcoding, currently whispering-gallery microcavities (in the form of spheres and disks), nanowire lasers, Fabry-Pérot lasers, random lasers, and distributed feedback lasers are the most frequently employed for this purpose. In microcavity-based barcodes, the information is encoded in various ways in the properties of the emitted light, most frequently in the spectrum. The barcode is dependent on the properties of the microcavity, such as the size, shape, and the gain materials. Various applications of these barcodes, including cell tracking, anticounterfeiting, and product labeling are described. Finally, the future prospects for microcavity- and microlaser-based barcodes are discussed.
Collapse
Affiliation(s)
- Abdur
Rehman Anwar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Maruša Mur
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Matjaž Humar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- CENN
Nanocenter, Jamova 39, SI-1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska
19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Wang H, Lee D, Wei L. Toward the Next Frontiers of Vibrational Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:3-17. [PMID: 37122829 PMCID: PMC10131268 DOI: 10.1021/cbmi.3c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
Chemical imaging based on vibrational contrasts can extract molecular information entangled in complex biological systems. To this end, nonlinear Raman scattering microscopy, mid-infrared photothermal (MIP) microscopy, and atomic force microscopy (AFM)-based force-detected photothermal microscopies are emerging with better chemical sensitivity, molecular specificity, and spatial resolution than conventional vibrational methods. Their utilization in bioimaging applications has provided biological knowledge in unprecedented detail. This Perspective outlines key methodological developments, bioimaging applications, and recent technical innovations of the three techniques. Representative biological demonstrations are also highlighted to exemplify the unique advantages of obtaining vibrational contrasts. With years of effort, these three methods compose an expanding vibrational bioimaging toolbox to tackle specific bioimaging needs, benefiting many biological investigations with rich information in both label-free and labeling manners. Each technique will be discussed and compared in the outlook, leading to possible future directions to accommodate growing needs in vibrational bioimaging.
Collapse
Affiliation(s)
- Haomin Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Dongkwan Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
29
|
LaLone V, Aizenshtadt A, Goertz J, Skottvoll FS, Mota MB, You J, Zhao X, Berg HE, Stokowiec J, Yu M, Schwendeman A, Scholz H, Wilson SR, Krauss S, Stevens MM. Quantitative chemometric phenotyping of three-dimensional liver organoids by Raman spectral imaging. CELL REPORTS METHODS 2023; 3:100440. [PMID: 37159662 PMCID: PMC10162950 DOI: 10.1016/j.crmeth.2023.100440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 05/11/2023]
Abstract
Confocal Raman spectral imaging (RSI) enables high-content, label-free visualization of a wide range of molecules in biological specimens without sample preparation. However, reliable quantification of the deconvoluted spectra is needed. Here we develop an integrated bioanalytical methodology, qRamanomics, to qualify RSI as a tissue phantom calibrated tool for quantitative spatial chemotyping of major classes of biomolecules. Next, we apply qRamanomics to fixed 3D liver organoids generated from stem-cell-derived or primary hepatocytes to assess specimen variation and maturity. We then demonstrate the utility of qRamanomics for identifying biomolecular response signatures from a panel of liver-altering drugs, probing drug-induced compositional changes in 3D organoids followed by in situ monitoring of drug metabolism and accumulation. Quantitative chemometric phenotyping constitutes an important step in developing quantitative label-free interrogation of 3D biological specimens.
Collapse
Affiliation(s)
- Vernon LaLone
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
- Hybrid Technology Hub-Centre of Excellence, Imperial College London, London SW7 2AZ, UK
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317 Oslo, Norway
| | - John Goertz
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Frøydis Sved Skottvoll
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317 Oslo, Norway
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Marco Barbero Mota
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Junji You
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Xiaoyu Zhao
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Henriette Engen Berg
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Justyna Stokowiec
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317 Oslo, Norway
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317 Oslo, Norway
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317 Oslo, Norway
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1112, Blindern, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424 Oslo, Norway
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
- Hybrid Technology Hub-Centre of Excellence, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
30
|
Jia H, Yue S. Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology. J Phys Chem B 2023; 127:2381-2394. [PMID: 36897936 PMCID: PMC10042165 DOI: 10.1021/acs.jpcb.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Indexed: 03/11/2023]
Abstract
A lipid droplet (LD) is a dynamic organelle closely associated with cellular functions and energy homeostasis. Dysregulated LD biology underlies an increasing number of human diseases, including metabolic disease, cancer, and neurodegenerative disorder. Commonly used lipid staining and analytical tools have difficulty providing the information regarding LD distribution and composition at the same time. To address this problem, stimulated Raman scattering (SRS) microscopy uses the intrinsic chemical contrast of biomolecules to achieve both direct visualization of LD dynamics and quantitative analysis of LD composition with high molecular selectivity at the subcellular level. Recent developments of Raman tags have further enhanced sensitivity and specificity of SRS imaging without perturbing molecular activity. With these advantages, SRS microscopy has offered great promise for deciphering LD metabolism in single live cells. This article overviews and discusses the latest applications of SRS microscopy as an emerging platform to dissect LD biology in health and disease.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
31
|
Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 2023; 41:404-420. [PMID: 36800999 DOI: 10.1016/j.ccell.2023.01.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
The tumor microenvironment (TME) is composed of many different cellular and acellular components that together drive tumor growth, invasion, metastasis, and response to therapies. Increasing realization of the significance of the TME in cancer biology has shifted cancer research from a cancer-centric model to one that considers the TME as a whole. Recent technological advancements in spatial profiling methodologies provide a systematic view and illuminate the physical localization of the components of the TME. In this review, we provide an overview of major spatial profiling technologies. We present the types of information that can be extracted from these data and describe their applications, findings and challenges in cancer research. Finally, we provide a future perspective of how spatial profiling could be integrated into cancer research to improve patient diagnosis, prognosis, stratification to treatment and development of novel therapeutics.
Collapse
Affiliation(s)
- Ofer Elhanani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Uri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
32
|
Jang H, Li Y, Fung AA, Bagheri P, Hoang K, Skowronska-Krawczyk D, Chen X, Wu JY, Bintu B, Shi L. Super-resolution SRS microscopy with A-PoD. Nat Methods 2023; 20:448-458. [PMID: 36797410 PMCID: PMC10246886 DOI: 10.1038/s41592-023-01779-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of the imaging objective and the scattering cross-section of molecules. To achieve super-resolved SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially correlated multiphoton fluorescence imaging and deuterium oxide (D2O)-probed SRS (DO-SRS) imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to reveal metabolic changes in brain samples from Drosophila on different diets. This new approach allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic dynamics in organelles.
Collapse
Affiliation(s)
- Hongje Jang
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yajuan Li
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pegah Bagheri
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Khang Hoang
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Xiaoping Chen
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Jane Y Wu
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Bogdan Bintu
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lingyan Shi
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Dunn L, Luo H, Subedi NR, Kasu R, McDonald AG, Christodoulides DN, Vasdekis AE. Video-rate Raman-based metabolic imaging by Airy light-sheet illumination and photon-sparse detection. Proc Natl Acad Sci U S A 2023; 120:e2210037120. [PMID: 36812197 PMCID: PMC9992822 DOI: 10.1073/pnas.2210037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 02/24/2023] Open
Abstract
Despite its massive potential, Raman imaging represents just a modest fraction of all research and clinical microscopy to date. This is due to the ultralow Raman scattering cross-sections of most biomolecules that impose low-light or photon-sparse conditions. Bioimaging under such conditions is suboptimal, as it either results in ultralow frame rates or requires increased levels of irradiance. Here, we overcome this tradeoff by introducing Raman imaging that operates at both video rates and 1,000-fold lower irradiance than state-of-the-art methods. To accomplish this, we deployed a judicially designed Airy light-sheet microscope to efficiently image large specimen regions. Further, we implemented subphoton per pixel image acquisition and reconstruction to confront issues arising from photon sparsity at just millisecond integrations. We demonstrate the versatility of our approach by imaging a variety of samples, including the three-dimensional (3D) metabolic activity of single microbial cells and the underlying cell-to-cell variability. To image such small-scale targets, we again harnessed photon sparsity to increase magnification without a field-of-view penalty, thus, overcoming another key limitation in modern light-sheet microscopy.
Collapse
Affiliation(s)
- Lochlann Dunn
- Department of Physics, University of Idaho, Moscow, ID83844-0903
| | - Haokun Luo
- The College of Optics and Photonics, University of Central Florida, Orlando, FL32816-2700
| | - Nava R. Subedi
- Department of Physics, University of Idaho, Moscow, ID83844-0903
| | | | - Armando G. McDonald
- Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, ID83844-1132
| | | | | |
Collapse
|
34
|
Wang F, Sun N, Li Q, Yang J, Yang X, Liu D. Self-Referenced Synthetic Urinary Biomarker for Quantitative Monitoring of Cancer Development. J Am Chem Soc 2023; 145:919-928. [PMID: 36524698 DOI: 10.1021/jacs.2c09538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Urinary monitoring of diseases has gained considerable attention due to its simple and non-invasive sampling. However, urinalysis remains limited by the dearth of reliable urinary biomarkers and the intrinsically enormous heterogeneity of urine samples. Herein, we report, to our knowledge, the first renal-clearable Raman probe encoded by an internal standard (IS)-conjugated reporter that acts as a quantifiable urinary biomarker for reliable monitoring of cancer development, simultaneously eliminating the impact of sample heterogeneity. Upon delivery of the probes into tumor microenvironments, the endogenously overexpressed β-glucuronidase (GUSB) can cleave the target-responsive residues of the probes to produce IS-retained gold nanoclusters, which were excreted into host urine and analyzed by Au growth-based surface-enhanced Raman spectroscopy. As a result, the in vivo GUSB activity was transformed into in vitro quantitative urinary signals. Based on this IS-encoded synthetic biomarker, both the cancer progression and therapy efficacy were quantitatively monitored, potentiating clinical implications.
Collapse
Affiliation(s)
- Fengchao Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Sun
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Yang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, the 2nd Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Kawatani M, Spratt SJ, Fujioka H, Shou J, Misawa Y, Kojima R, Urano Y, Ozeki Y, Kamiya M. 9-Cyano-10-telluriumpyronin Derivatives as Red-light-activatable Raman Probes. Chem Asian J 2023; 18:e202201086. [PMID: 36461627 PMCID: PMC10107100 DOI: 10.1002/asia.202201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Photoactivatable fluorescence probes can track the dynamics of specific cells or biomolecules with high spatiotemporal resolution, but their broad absorption and emission peaks limit the number of wavelength windows that can be employed simultaneously. In contrast, the narrower peak width of Raman signals offers more scope for simultaneous discrimination of multiple targets, and therefore a palette of photoactivatable Raman probes would enable more comprehensive investigation of biological phenomena. Herein we report 9-cyano-10-telluriumpyronin (9CN-TeP) derivatives as photoactivatable Raman probes whose stimulated Raman scattering (SRS) intensity is enhanced by photooxidation of the tellurium atom. Modification to increase the stability of the oxidation product led to a julolidine-like derivative, 9CN-diMeJTeP, which is photo-oxidized at the tellurium atom by red light irradiation to afford a sufficiently stable oxidation product with strong electronic pre-resonance, resulting in a bathochromic shift of the absorption spectrum and increased SRS intensity.
Collapse
Affiliation(s)
- Minoru Kawatani
- Department of Life Science and TechnologyTokyo Institute of TechnologyKanagawa226-8501Japan
- Graduate School of MedicineThe University of TokyoTokyo113-0033Japan
| | - Spencer J. Spratt
- Department of Electrical Engineering and Information SystemsThe University of TokyoTokyo113-8656Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyo113-0033Japan
| | - Jingwen Shou
- Department of Electrical Engineering and Information SystemsThe University of TokyoTokyo113-8656Japan
| | - Yoshihiro Misawa
- Department of Life Science and TechnologyTokyo Institute of TechnologyKanagawa226-8501Japan
- Graduate School of MedicineThe University of TokyoTokyo113-0033Japan
| | - Ryosuke Kojima
- Graduate School of MedicineThe University of TokyoTokyo113-0033Japan
| | - Yasuteru Urano
- Graduate School of MedicineThe University of TokyoTokyo113-0033Japan
- Graduate School of Pharmaceutical SciencesThe University of TokyoTokyo113-0033Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information SystemsThe University of TokyoTokyo113-8656Japan
| | - Mako Kamiya
- Department of Life Science and TechnologyTokyo Institute of TechnologyKanagawa226-8501Japan
- Graduate School of MedicineThe University of TokyoTokyo113-0033Japan
- Living Systems Materialogy (LiSM) Research GroupInternational Research Frontiers Initiative (IRFI)Tokyo Institute of TechnologyKanagawa226-8501Japan
| |
Collapse
|
36
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
37
|
Abstract
As an emerging optical imaging modality, stimulated Raman scattering (SRS) microscopy provides invaluable opportunities for chemical biology studies using its rich chemical information. Through rapid progress over the past decade, the development of Raman probes harnessing the chemical biology toolbox has proven to play a key role in advancing SRS microscopy and expanding biological applications. In this perspective, we first discuss the development of biorthogonal SRS imaging using small tagging of triple bonds or isotopes and highlight their unique advantages for metabolic pathway analysis and microbiology investigations. Potential opportunities for chemical biology studies integrating small tagging with SRS imaging are also proposed. We next summarize the current designs of highly sensitive and super-multiplexed SRS probes, as well as provide future directions and considerations for next-generation functional probe design. These rationally designed SRS probes are envisioned to bridge the gap between SRS microscopy and chemical biology research and should benefit their mutual development.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
38
|
Shi L, Klimas A, Gallagher B, Cheng Z, Fu F, Wijesekara P, Miao Y, Ren X, Zhao Y, Min W. Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200315. [PMID: 35521971 PMCID: PMC9284179 DOI: 10.1002/advs.202200315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Indexed: 05/16/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy is an emerging technology that provides high chemical specificity for endogenous biomolecules and can circumvent common constraints of fluorescence microscopy including limited capabilities to probe small biomolecules and difficulty resolving many colors simultaneously. However, the resolution of SRS microscopy remains governed by the diffraction limit. To overcome this, a new technique called molecule anchorable gel-enabled nanoscale Imaging of Fluorescence and stimulated Raman scattering microscopy (MAGNIFIERS) that integrates SRS microscopy with expansion microscopy (ExM) is described. MAGNIFIERS offers chemical-specific nanoscale imaging with sub-50 nm resolution and has scalable multiplexity when combined with multiplex Raman probes and fluorescent labels. MAGNIFIERS is used to visualize nanoscale features in a label-free manner with CH vibration of proteins, lipids, and DNA in a broad range of biological specimens, from mouse brain, liver, and kidney to human lung organoid. In addition, MAGNIFIERS is applied to track nanoscale features of protein synthesis in protein aggregates using metabolic labeling of small metabolites. Finally, MAGNIFIERS is used to demonstrate 8-color nanoscale imaging in an expanded mouse brain section. Overall, MAGNIFIERS is a valuable platform for super-resolution label-free chemical imaging, high-resolution metabolic imaging, and highly multiplexed nanoscale imaging, thus bringing SRS to nanoscopy.
Collapse
Affiliation(s)
- Lixue Shi
- Department of ChemistryColumbia UniversityNew YorkNY10027USA
| | - Aleksandra Klimas
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPA15143USA
| | - Brendan Gallagher
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPA15143USA
| | - Zhangyu Cheng
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPA15143USA
| | - Feifei Fu
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPA15143USA
| | - Piyumi Wijesekara
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15143USA
| | - Yupeng Miao
- Department of ChemistryColumbia UniversityNew YorkNY10027USA
| | - Xi Ren
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15143USA
| | - Yongxin Zhao
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPA15143USA
| | - Wei Min
- Department of ChemistryColumbia UniversityNew YorkNY10027USA
- Kavli Institute for Brain ScienceColumbia UniversityNew YorkNY10027USA
| |
Collapse
|
39
|
Enninful A, Baysoy A, Fan R. Unmixing for ultra-high-plex fluorescence imaging. Nat Commun 2022; 13:3473. [PMID: 35710800 PMCID: PMC9203536 DOI: 10.1038/s41467-022-31110-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA. .,Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA. .,Yale Cancer Center and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA. .,Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
40
|
Qian N, Min W. Super-multiplexed vibrational probes: Being colorful makes a difference. Curr Opin Chem Biol 2022; 67:102115. [PMID: 35077919 PMCID: PMC8940683 DOI: 10.1016/j.cbpa.2021.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Biological systems with intrinsic complexity require multiplexing techniques to comprehensively describe the phenotype, interaction, and heterogeneity. Recent years have witnessed the development of super-multiplexed vibrational microscopy, overcoming the 'color barrier' of fluorescence-based optical techniques. Here, we will review the recent progress in the design and applications of super-multiplexed vibrational probes. We hope to illustrate how rainbow-like vibrational colors can be generated from systematic studies on structure-spectroscopy relationships and how being colorful makes a difference to various biomedical applications.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
41
|
Reddy R, Yang L, Liu J, Liu Z, Wang J. Spatial Multiplex In Situ Tagging (MIST) Technology for Rapid, Highly Multiplexed Detection of Protein Distribution on Brain Tissue. Anal Chem 2022; 94:3922-3929. [PMID: 35213145 PMCID: PMC10382236 DOI: 10.1021/acs.analchem.1c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly multiplexed analysis of biospecimens significantly advances the understanding of biological basics of diseases, but these techniques are limited by the number of multiplexity and the speed of processing. Here, we present a rapid multiplex method for quantitative detection of protein markers on brain sections with the cellular resolution. This spatial multiplex in situ tagging (MIST) technology is built upon a MIST microarray that contains millions of small microbeads carrying barcoded oligonucleotides. Using antibodies tagged with UV cleavable oligonucleotides, the distribution of protein markers on a tissue slice could be "printed" on the MIST microarray with high fidelity. The performance of this technology in detection sensitivity, resolution, and signal-to-noise level has been fully characterized by detecting brain cell markers. We showcase the codetection of 31 proteins simultaneously within 2 h, which is about 10 times faster than the other immunofluorescence-based approaches of similar multiplexity. A full set of computational toolkits was developed to segment the small regions and identify the regional differences across the entire mouse brain. This technique enables us to rapidly and conveniently detect dozens of biomarkers on a tissue specimen, and it can find broad applications in clinical pathology and disease mechanistic studies.
Collapse
Affiliation(s)
- Revanth Reddy
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Jesse Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Zhuojie Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
42
|
Germain RN, Radtke AJ, Thakur N, Schrom EC, Hor JL, Ichise H, Arroyo-Mejias AJ, Chu CJ, Grant S. Understanding immunity in a tissue-centric context: Combining novel imaging methods and mathematics to extract new insights into function and dysfunction. Immunol Rev 2021; 306:8-24. [PMID: 34918351 DOI: 10.1111/imr.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
A central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time-efficient interactions upon pathogen sensing. Such pre-organization also provides an effective barrier to movement of pathogens from parenchymal tissues into the blood circulation. Various molecular mechanisms maintain effective intercellular communication among otherwise rapidly moving cells. These and related discoveries have benefited from recent increases in the number of parameters that can be measured simultaneously in a single tissue section and the extension of such multiplex analyses to 3D tissue volumes. The application of new computational methods to such imaging data has provided a quantitative, in vivo context for cell trafficking and signaling pathways traditionally explored in vitro or with dissociated cell preparations. Here, we summarize our efforts to devise and employ diverse imaging tools to probe immune system organization and function, concluding with a commentary on future developments, which we believe will reveal even more about how the immune system operates in health and disease.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Nishant Thakur
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Edward C Schrom
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Jyh Liang Hor
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Hiroshi Ichise
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Armando J Arroyo-Mejias
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Colin J Chu
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Spencer Grant
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|