1
|
Marcella S, Braile M, Grimaldi AM, Soricelli A, Smaldone G. Exploring thymic stromal lymphopoietin in the breast cancer microenvironment: A preliminary study. Oncol Lett 2025; 29:182. [PMID: 40007626 PMCID: PMC11851057 DOI: 10.3892/ol.2025.14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 02/27/2025] Open
Abstract
Cancer participates in the immune response by releasing several factors, such as cytokines and chemokines, which can alter the ability of the immune system to identify and eradicate cancer. Notably, the role of thymic stromal lymphopoietin (TSLP) in breast cancer (BC) is currently controversial and unclear. The present study characterized the role of TSLP in BC and its interaction with peripheral blood mononuclear cells, focusing on the CD14+CD16+ monocyte population via the secretome released by BC cells. The UALCAN and Gene Expression Profiling Interactive Analysis tools were employed to define TSLP expression in BC, and its levels in different BC subtype cell lines were validated using reverse transcription-quantitative PCR and ELISA. In addition, TIMER 2.0 was used to determine the abundance of immune cell infiltration in BC. Subsequently, the effects of BC conditioned medium (CM) and TSLP were investigated on CD14+CD16+ monocytes via flow cytometry. A Cellular Reactive Oxygen Species (ROS) Assay Kit, Fluo-4 AM assay and ATPlite assay were used to explore the effects of TSLP on monocyte cellular metabolism. The results showed that a reduction in TSLP expression was associated with an unfavorable prognosis in BC. Furthermore, a higher expression of TSLP in CM from a non-tumoral cell line increased the percentage of CD14+CD16+ monocytes. Finally, it was revealed that TSLP decreased intracellular ATP levels, while increasing intracellular calcium levels and producing ROS in THP-1 cells. Therefore, TSLP may be considered a novel biomarker in the BC microenvironment, where it could regulate cellular metabolism through the expansion of CD14+CD16+ monocytes.
Collapse
|
2
|
Wu J, Li Z, Zhou W, Hu Z, Gao K, Yang J, Zhang W. Identification and validation of a novel signature based on immune‑related genes from epithelial cells to predict prognosis and treatment response in patients with lung squamous cell cancer by integrated analysis of single‑cell and bulk RNA sequencing. Oncol Lett 2025; 29:158. [PMID: 39911151 PMCID: PMC11795163 DOI: 10.3892/ol.2025.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025] Open
Abstract
Epithelial cells are associated with tumor immunity through interstitial transformation, yet the role of epithelial immune-related genes (EIGs) in this process remains unclear. Comprehending the mechanisms behind EIGs within lung squamous cell carcinoma (LUSC) may offer an explanation to these issues. The present study aimed to explore the biological role of EIGs in patients with LUSC. Based on data from the Gene Expression Omnibus and The Cancer Genome Atlas databases, a survival model and nomogram was established. This model and nomogram were used to study the mechanism of EIGs in LUSC and its medical significance by enrichment analysis, tumor microenvironment, immune cell infiltration and immune function correlation analysis. Finally, reverse transcription-quantitative PCR (RT-qPCR) and external dataset were used to assess the expression of the EIGs. The survival model was used to develop 4 EIGs as predictors for patient outcomes. Survival curves revealed that higher risk patients had more negative outcomes. This model and the nomogram developed based entirely on this model had an accurate prognosis predictive LUSC. The enrichment analysis indicated that pathways related to antigen processing and presentation, as well as Epstein-Barr virus infection, were prevalent in the high-risk populations. The research on immune infiltration demonstrated a notable rise in activated dendritic cells and neutrophils in the high-risk group. Furthermore, the results revealed that the high-risk populations are particularly susceptible to the effects of afureserpine, gefitinib and savolitinib. Finally, the outcomes of RT-qPCR were consistent with those of the bioinformatics analysis. In conclusion, the risk evaluation model and nomogram are effective in forecasting the prognosis and guiding drug selection for patients with LUSC. A worse prognosis in patients with high risk may be associated with certain viral infections and antigen processing and presentation.
Collapse
Affiliation(s)
- Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhifeng Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Kun Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jin Yang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
3
|
Akenroye A, Boyce JA, Kita H. Targeting alarmins in asthma: From bench to clinic. J Allergy Clin Immunol 2025:S0091-6749(25)00068-5. [PMID: 39855362 DOI: 10.1016/j.jaci.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Over the past 2 decades, mechanistic studies of allergic and type 2 (T2)-mediated airway inflammation have led to multiple approved therapies for the treatment of moderate-to-severe asthma. The approval and availability of these monoclonal antibodies targeting IgE, a T2 cytokine (IL-5) and/or cytokine receptors (IL-5Rα, IL-4Rα) has been central to the progresses made in the management of moderate-to-severe asthma over this period. However, there are persistent gaps in clinician's ability to provide precise care, given that many patients with T2-high asthma do not respond to IgE- or T2 cytokine-targeting therapies and that patients with T2-low asthma have few therapeutic options. The new frontier of precision medicine in asthma, as well as in other allergic diseases, includes the targeting of epithelium-derived cytokines known as alarmins, including thymic stromal lymphopoietin, IL-25, IL-33, and their receptors. The effects of these alarmins, which can act upstream of immune cells, involve both the innate and adaptive systems and hold potential for the treatment of both T2-high and -low disease. Tezepelumab, an anti-thymic stromal lymphopoietin antibody, has already been approved for the treatment of severe asthma. In this review, we discuss our current understanding of alarmin biology with a primary focus on allergic airway diseases. We link the mechanistic corollaries to the clinical implications and advances in drug development targeting alarmins, with a particular focus on currently approved treatments, those under study, and future potential targets in alarmin signaling pathways.
Collapse
Affiliation(s)
- Ayobami Akenroye
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| | - Joshua A Boyce
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, the Department of Medicine, and the Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn
| |
Collapse
|
4
|
Qin J, Wang G, Han D. Long-term safety of tezepelumab in patients with asthma: a systematic review and meta-analysis of randomized controlled trials. J Asthma 2025; 62:4-13. [PMID: 39067012 DOI: 10.1080/02770903.2024.2385973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Tezepelumab has demonstrated its effectiveness in patients with asthma, but its safety, especially for long-term use, needs to be further explored. This systematic review and meta-analysis aimed to determine the safety of long-term use of tezepelumab in patients with asthma. DATA SOURCES A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. STUDY SELECTIONS Randomized controlled trials (RCTs) on treatment of asthma with tezepelumab, compared with placebo, were reviewed. Studies were pooled to weighted mean differences (WMDs) and risk ratios (RRs), with 95% confidence intervals (CIs). RESULTS Seven RCTs (enrolling 2050 participants) met the inclusion criteria. Serious adverse event (RR 0.74, 95% CI 0.57 to 0.95), upper respiratory tract infection (RR 0.73, 95% CI 0.55 to 0.96), and asthma (RR 0.61, 95% CI 0.48 to 0.76) were more frequent in the placebo groups. There was no statistically significant difference in the proportion of patients with at least one adverse event (AE), AEs leading to discontinuation of study treatment, all-cause death, influenza, bronchitis, nasopharyngitis, headache, and hypertension between the two groups. CONCLUSION Long-term (12-52 wk) use of tezepelumab in patients with asthma does not increase the incidence of adverse events.
Collapse
Affiliation(s)
- Jinlv Qin
- Radioimmunoassay Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Dong Han
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Shi L, Yu M, Jin Y, Chen P, Mu G, Tam SH, Cho M, Tornetta M, Han C, Fung MC, Chiu ML, Zhang D. A novel monoclonal antibody against human thymic stromal lymphopoietin for the treatment of TSLP-mediated diseases. Front Immunol 2024; 15:1442588. [PMID: 39726595 PMCID: PMC11670205 DOI: 10.3389/fimmu.2024.1442588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Thymic stromal lymphopoietin (TSLP) is a master regulator of allergic inflammation against pathogens at barrier surfaces of the lung, skin, and gut. However, aberrant TSLP activity is implicated in various allergic, chronic inflammation and autoimmune diseases and cancers. Biologics drugs neutralizing excess TSLP activity represented by tezepelumab have been approved for severe asthma and are being evaluated for the treatments of other TSLP-mediated diseases. Methods and results In this study, we discovered and characterized a novel humanized anti-TSLP antibody TAVO101 with high binding affinity to human TSLP, which blocks TSLP binding to its receptor complexes on cell surface. TAVO101 showed potent neutralization of TSLP activities in the TSLP-driven STAT5 reporter assay and cell proliferation assay. Results from ex vivo studies showed that TAVO101 neutralized TSLP-mediated CCL17 release from primary human CD1c+ dendritic cells and proliferation of activated CD4+ T cells. In addition, TAVO101 showed strong efficacy in both TSLP/OVA-induced asthma and imiquimod induced psoriasis models in hTSLP/hTSLPR double knock-in mice. We further conducted Fc engineering to optimize TAVO101 antibody with reduced affinity to Fcγ receptors and C1q protein but with increased affinity to FcRn receptor for half-life extension. Discussion By recognizing a different epitope, similarly potent neutralization of TSLP activities, and longer circulating half-life than tezepelumab, novel anti-TSLP antibody TAVO101 offers a potential best-in class therapeutics for various TSLP-mediated diseases.
Collapse
Affiliation(s)
- Lihua Shi
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mingcan Yu
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Ying Jin
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Peng Chen
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Guangmao Mu
- Tavotek Biotherapeutics, Inc., Suzhou, Jiangsu, China
| | - Susan H. Tam
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Minseon Cho
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mark Tornetta
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Chao Han
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Man-Cheong Fung
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Mark L. Chiu
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| | - Di Zhang
- Tavotek Biotherapeutics, Inc., Lower Gwynedd Township, PA, United States
| |
Collapse
|
6
|
Wang X, Zheng Q, Zha L, Zhang L, Huang M, Zhang S, Zhang X, Li Q, Chen X, Xia N, Zhang M, Lv B, Jiao J, Lu Y, Gu M, Yang F, Li J, Li N, Cheng X, Zhou Z, Tang T. Thymic stromal lymphopoietin modulates T cell response and improves cardiac repair post-myocardial infarction. Front Immunol 2024; 15:1467095. [PMID: 39703503 PMCID: PMC11655303 DOI: 10.3389/fimmu.2024.1467095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Background The inflammatory response is associated with cardiac repair and ventricular remodeling after myocardial infarction (MI). The key inflammation regulatory factor thymic stromal lymphopoietin (TSLP) plays a critical role in various diseases. However, its role in cardiac repair after MI remains uncertain. In this study, we elucidated the biological function and mechanism of action of TSLP in cardiac repair and ventricular remodeling following MI. Method and Result Wild-type and TSLP receptor (TSLPR)-knockout (Crlf2-/-) mice underwent MI induction via ligation of the left anterior descending artery. TSLP expression was upregulated in the infarcted heart, with a peak observed on day 7 post-MI. TSLP expression was enriched in the cardiomyocytes of infarcted hearts and the highest expression of TSLPR was observed in dendritic cells. Crlf2-/- mice exhibited reduced survival and worsened cardiac function, increased interstitial fibrosis and cardiomyocyte cross-sectional area, and reduced CD31+ staining, with no change in the proportion of apoptotic cardiomyocytes within the border zone. Mechanistically, reduced Treg cell counts but increased myeloid cell infiltration and an increased ratio of Ly6Chigh/Ly6Clow monocyte were observed in the ani hearts of Crlf2-/- mice. Further, TSLP regulated CD4+ T cell activation and proliferation at baseline and after MI, with a greater impact on Treg cells than on conventional T cells. RNA-seq analysis revealed significant downregulation of genes involved in T cell activation and TCR signaling in the infarcted heart of Crlf2-/- mice compared with their WT counterparts. Conclusion Collectively, our data indicate a critical role for TSLP in facilitating cardiac repair and conferring protection against MI, primarily through regulating CD4+ T cell responses, which may provide a potential novel therapeutic approach for managing heart failure after MI.
Collapse
Affiliation(s)
- Xuhong Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingxue Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingkai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuzhe Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinlin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinglin Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muyang Gu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nana Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
8
|
Moreno-Lorenzana D, Juárez-Velázquez R, Reyes-León A, Martínez-Anaya D, Juárez-Villegas L, Zapata Tarrés M, López Santiago N, Pérez-Vera P. CRLF2 and IKZF1 abnormalities in childhood hematological malignancies other than B-cell Acute Lymphoblastic Leukemia. Leuk Lymphoma 2024; 65:1853-1863. [PMID: 39034479 DOI: 10.1080/10428194.2024.2378817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Rearrangements and overexpression of CRLF2 are hallmarks of poor outcomes in BCR::ABL1-like B-ALL, and CRLF2 overexpression is a high-risk marker in T-ALL. However, CRLF2 alterations in pediatric hematologic malignancies other than B-ALL have not been reported. In this study, we analyzed the CRLF2 overexpression, rearrangements (P2RY8::CRLF2 and IGH::CRLF2), activation (pSTAT5 and pERK), and the expression of dominant-negative IKZF1 isoforms (Ik6 and Ik8), implied in CRLF2 dysregulation, in 16 pediatric patients (AML, n = 9; T-ALL, n = 3; LBL, n = 2; HL, n = 1; cytopenia, n = 1). A high frequency of CRLF2 rearrangements and overexpression was found in the 16 patients: 28.6% (4/14) showed CRLF2 overexpression, 93.8% (15/16) were positive for CRLF2 total protein (cell-surface and/or cytoplasmic), while 62.5% (10/16) were positive for P2RY8::CRLF2 and 12.6% (2/16) for IGH::CRLF2. In addition, 43.8% (7/16) expressed Ik6 and Ik8 isoforms. However, only a few patients were positive for the surrogate markers pSTAT5 (14.3%; 2/14) and pERK (21.4%; 3/14).
Collapse
Affiliation(s)
- Dafné Moreno-Lorenzana
- CONAHCYT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Rocío Juárez-Velázquez
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Adriana Reyes-León
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Daniel Martínez-Anaya
- CONAHCYT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Luis Juárez-Villegas
- Servicio de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Martha Zapata Tarrés
- Coordinación de Investigación, Fundación IMSS, A.C., Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Patricia Pérez-Vera
- Laboratorio de Genética y Cáncer, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Mexico City, Mexico
| |
Collapse
|
9
|
Xing Z, Liu S, He X. Critical and diverse role of alarmin cytokines in parasitic infections. Front Cell Infect Microbiol 2024; 14:1418500. [PMID: 39559705 PMCID: PMC11570582 DOI: 10.3389/fcimb.2024.1418500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Alarmin cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) function as danger signals to trigger host immunity in response to tissue injury caused by pathogenic factors such as parasitic infections. Parasitic diseases also provide an excellent context to study their functions and mechanisms. Numerous studies have indicated that alarmin cytokine released by non-immune cells such as epithelial and stromal cells induce the hosts to initiate a type 2 immunity that drives parasite expulsion but also host pathology such as tissue injury and fibrosis. By contrast, alarmin cytokines especially IL-33 derived from immune cells such as dendritic cells may elicit an immuno-suppressive milieu that promotes host tolerance to parasites. Additionally, the role of alarmin cytokines in parasite infections is reported to depend on species of parasites, cellular source of alarmin cytokines, and immune microenvironment, all of which is relevant to the parasitic sites or organs. This narrative review aims to provide information on the crucial and diverse role of alarmin cytokines in parasitic infections involved in different organs including intestine, lung, liver and brain.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing He
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Lombardi C, Marcello C, Bosi A, Francesco M. Positioning tezepelumab for patients with severe asthma: from evidence to unmet needs. J Int Med Res 2024; 52:3000605241297532. [PMID: 39552062 PMCID: PMC11571243 DOI: 10.1177/03000605241297532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Several endotypes of severe asthma with predominantly type 2 inflammation can be distinguished by the immune pathways driving the inflammatory processes. However, in the absence of type 2 inflammation, asthma is less clearly defined and is generally associated with poor responses to conventional anti-asthmatic therapies. Studies have shown that disruption of the epithelial barrier triggers inflammatory responses and increases epithelial permeability. A key aspect of this process is that epithelial cells release alarmin cytokines, including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), in response to allergens and infections. Among these cytokines, TSLP has been identified as a potential therapeutic target for severe asthma, leading to the development of a new biologic, tezepelumab (TZP). By blocking TSLP, TZP may produce wide-ranging effects. Based on positive clinical trial results, TZP appears to offer a promising, safe, and effective treatment approach. This narrative review examines the evidence for treating severe asthma with TZP, analyses clinical trial findings, and provides clinicians with practical insights into identifying patients who may respond best to this novel biologic therapy.
Collapse
Affiliation(s)
- Carlo Lombardi
- Departmental Unit of Allergology, Clinical Immunology & Pneumology, Istituto Ospedaliero Fondazione Poliambulanza, Brescia, Italy
| | | | - Annamaria Bosi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Menzella Francesco
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| |
Collapse
|
11
|
Lu YY, Lin CY, Lu CC, Tsai HP, Wang WT, Zhang ZH, Wu CH. Bleomycin triggers chronic mechanical nociception by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals. Brain Res Bull 2024; 217:111081. [PMID: 39277019 DOI: 10.1016/j.brainresbull.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Chronic pain is a universal public health problem with nearly one third of global human involved, which causes significant distressing personal burden. After painful stimulus, neurobiological changes occur not only in peripheral nervous system but also in central nervous system where somatosensory cortex is important for nociception. Being an ion channel, transient receptor potential vanilloid 1 (TRPV1) act as an inflammatory detector in the brain. Thymic stromal lymphopoietin (TSLP) is a potent neuroinflammation mediator after nerve injury. Bleomycin is applied to treat dermatologic diseases, and its administration elicits local painful sensation. However, whether bleomycin administration can cause chronic pain remains unknown. In the present study, we aimed to investigate how mice develop chronic pain after receiving repeated bleomycin administration. In addition, the relevant neurobiological brain changes after noxious stimuli were clarified. C57BL/6 mice aged five- to six-weeks were randomly classified into two group, PBS (normal) group and bleomycin group which bleomycin was intradermally administered to back five times a week over a three-week period. Calibrated forceps testing was used to measure mouse pain threshold. Western blots were used to assess neuroinflammatory response; immunofluorescence assay was used to measure the status of neuron apoptosis, glial reaction, and neuro-glial communication. Bleomycin administration induced mechanical nociception and activated both TRPV1 and TSLP/TSLPR/pSTAT5 signals in mouse somatosensory cortex. Through these pathways, bleomycin not only activates glial reaction but also causes neuronal apoptosis. TRPV1 and TSLP/TSLPR/pSTAT5 signaling had co-labeled each other by immunofluorescence assay. Taken together, our study provides a new chronic pain model by repeated intradermal bleomycin injection by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chia-Yang Lin
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chun-Ching Lu
- Department of Orthopaedics and Traumatology, National Yang Ming Chiao Tung University Hospital, Yilan 260006, Taiwan; Department of Orthopaedics, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112201, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wei-Ting Wang
- National Defense Medical Center, Department of Radiology, Tri-Service General Hospital, Taipei City 114202, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei 050700, PR China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
12
|
Dainese-Marque O, Garcia V, Andrieu-Abadie N, Riond J. Contribution of Keratinocytes in Skin Cancer Initiation and Progression. Int J Mol Sci 2024; 25:8813. [PMID: 39201498 PMCID: PMC11354502 DOI: 10.3390/ijms25168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Keratinocytes are major cellular components of the skin and are strongly involved in its homeostasis. Oncogenic events, starting mainly from excessive sun exposure, lead to the dysregulation of their proliferation and differentiation programs and promote the initiation and progression of non-melanoma skin cancers (NMSCs). Primary melanomas, which originate from melanocytes, initiate and develop in close interaction with keratinocytes, whose role in melanoma initiation, progression, and immune escape is currently being explored. Recent studies highlighted, in particular, unexpected modes of communication between melanocytic cells and keratinocytes, which may be of interest as sources of new biomarkers in melanomagenesis or potential therapeutic targets. This review aims at reporting the various contributions of keratinocytes in skin basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and melanoma, with a greater focus on the latter in order to highlight some recent breakthrough findings. The readers are referred to recent reviews when contextual information is needed.
Collapse
Affiliation(s)
| | | | - Nathalie Andrieu-Abadie
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| |
Collapse
|
13
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Alarmins in cutaneous malignant melanoma: An updated overview of emerging evidence on their pathogenetic, diagnostic, prognostic, and therapeutic role. J Dermatol 2024; 51:927-938. [PMID: 38775220 PMCID: PMC11483971 DOI: 10.1111/1346-8138.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Malignant cutaneous melanoma is the leading cause of death for skin cancer to date, with globally increasing incidence rates. In this epidemiological scenario, international scientific research is exerting efforts to identify new clinical strategies aimed at the prognostic amelioration of the disease. Very promising and groundbreaking in this context is the scientific interest related to alarmins and their pioneering utility in the setting of the pathogenetic understanding, diagnosis, prognosis, and therapy for malignant cutaneous melanoma. However, the scientific investigations on this matter should not overlook their still well-presented dual and contradictory role. The aim of our critical analysis is to provide an up-to-date overview of the emerging evidence concerning the dichotomous role of alarmins in the aforementioned clinical settings. Our literature revision was based on the extensive body of both preclinical and clinical findings published on the PubMed database over the past 5 years. In addition to this, we offer a special focus on potentially revolutionary new therapeutic frontiers, which, on the strength of their earliest successes in other clinical areas, could inaugurate a new era of personalized and precision medicine in the field of dermato-oncology.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.)University of PalermoPalermoItaly
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR)MessinaItaly
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| |
Collapse
|
14
|
Bertuccio FR, Baio N, Montini S, Ferroni V, Chino V, Pisanu L, Russo M, Giana I, Cascina A, Conio V, Grosso A, Gini E, Albicini F, Corsico AG, Stella GM. Potential New Inflammatory Markers in Bronchiectasis: A Literature Review. Curr Issues Mol Biol 2024; 46:6675-6689. [PMID: 39057040 PMCID: PMC11275576 DOI: 10.3390/cimb46070398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Specific molecular and inflammatory endotypes have been identified for chronic respiratory disorders, including asthma and COPD (chronic obstructive pulmonary disease). These endotypes correspond with clinical aspects of disease, enabling targeted medicines to address certain pathophysiologic pathways, often referred to as "precision medicine". With respect to bronchiectasis, many comorbidities and underlying causes have been identified. Inflammatory endotypes have also been widely studied and reported. Additionally, several genes have been shown to affect disease progression. However, the lack of a clear classification has also hampered our understanding of the disease's natural course. The aim of this review is, thus, to summarize the current knowledge on biomarkers and actionable targets of this complex pathologic condition and to point out unmet needs, which are required in the design of effective diagnostic and therapeutic trials.
Collapse
Affiliation(s)
- Francesco Rocco Bertuccio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Nicola Baio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Simone Montini
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Valentina Ferroni
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Vittorio Chino
- Ospedale Pederzoli, Peschiera del Garda, 37121 Verona, Italy;
| | - Lucrezia Pisanu
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Marianna Russo
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Ilaria Giana
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Alessandro Cascina
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Valentina Conio
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Amelia Grosso
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Erica Gini
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Federica Albicini
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Angelo Guido Corsico
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| | - Giulia Maria Stella
- Unit of Respiratory Disease, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy; (F.R.B.); (N.B.); (S.M.); (V.F.); (L.P.); (M.R.); (I.G.); (A.C.); (V.C.); (A.G.C.)
- Department of Internal Medicine and Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.G.); (E.G.); (F.A.)
| |
Collapse
|
15
|
Olivieri B, Günaydın FE, Corren J, Senna G, Durham SR. The combination of allergen immunotherapy and biologics for inhalant allergies: Exploring the synergy. Ann Allergy Asthma Immunol 2024:S1081-1206(24)00365-X. [PMID: 38897405 DOI: 10.1016/j.anai.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The development of monoclonal antibodies that selectively target IgE and type 2 immunity has opened new possibilities in the treatment of allergies. Although they have been used mainly as single therapies found to have efficacy in the management of asthma and other T2-mediated diseases, there is a growing interest in using these monoclonal antibodies in combination with allergen immunotherapy (AIT). AIT has transformed the treatment of allergic diseases by aiming to modify the underlying immune response to allergens rather than just providing temporary symptom relief. Despite the proven efficacy and safety of AIT, unmet needs call for further research and innovation. Combination strategies involving biologics and AIT exhibit potential in improving short-term efficacy, reducing adverse events, and increasing immunologic tolerance. Anti-IgE emerges as the most promising therapeutic strategy, not only enhancing AIT's safety and tolerability but also providing additional evidence of efficacy compared with AIT alone. Anti-interleukin-4 receptor offers a reduction in adverse effects and an improved immunologic profile when combined with AIT; however, its impact on short-term efficacy seems limited. The combination of cat dander subcutaneous immunotherapy with anti-thymic stromal lymphopoietin was synergistic with enhanced efficacy and altered immune responses that persisted for 1 year after discontinuation compared with AIT alone. Long-term studies are needed to evaluate the sustained benefits and safety profiles of combination strategies.
Collapse
Affiliation(s)
- Bianca Olivieri
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy
| | - Fatma Esra Günaydın
- Department of Immunology and Allergy Diseases, Ordu University Education and Training Hospital, Ordu, Turkey
| | - Jonathan Corren
- Division of Allergy and Clinical Immunology, Department of Medicine and Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gianenrico Senna
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Stephen R Durham
- Allergy and Clinical Immunology, Section Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
16
|
Xu J, Zhai J, Zhao J. Pathogenic roles of follicular helper T cells in IgG4-related disease and implications for potential therapy. Front Immunol 2024; 15:1413860. [PMID: 38911857 PMCID: PMC11190345 DOI: 10.3389/fimmu.2024.1413860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a recently described autoimmune disorder characterized by elevated serum IgG4 levels and tissue infiltration of IgG4+ plasma cells in multiple organ systems. Recent advancements have significantly enhanced our understanding of the pathological mechanism underlying this immune-mediated disease. T cell immunity plays a crucial role in the pathogenesis of IgG4-RD, and follicular helper T cells (Tfh) are particularly important in germinal center (GC) formation, plasmablast differentiation, and IgG4 class-switching. Apart from serum IgG4 concentrations, the expansion of circulating Tfh2 cells and plasmablasts may also serve as novel biomarkers for disease diagnosis and activity monitoring in IgG4-RD. Further exploration into the pathogenic roles of Tfh in IgG4-RD could potentially lead to identifying new therapeutic targets that offer more effective alternatives for treating this condition. In this review, we will focus on the current knowledge regarding the pathogenic roles Tfh cells play in IgG4-RD and outline potential therapeutic targets for future clinical intervention.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Jiayu Zhai
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Bagnasco D, De Ferrari L, Bondi B, Candeliere MG, Mincarini M, Riccio AM, Braido F. Thymic Stromal Lymphopoietin and Tezepelumab in Airway Diseases: From Physiological Role to Target Therapy. Int J Mol Sci 2024; 25:5972. [PMID: 38892164 PMCID: PMC11172531 DOI: 10.3390/ijms25115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP), is a protein belonging to a class of epithelial cytokines commonly called alarmins, which also includes IL-25 and IL-33. Functionally, TSLP is a key player in the immune response to environmental insults, initiating a number of downstream inflammatory pathways. TSLP performs its role by binding to a high-affinity heteromeric complex composed of the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα. In recent years, the important role of proinflammatory cytokines in the etiopathogenesis of various chronic diseases such as asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), chronic obstructive pulmonary diseases (COPDs), and chronic spontaneous urticaria has been studied. Although alarmins have been found to be mainly implicated in the mechanisms of type 2 inflammation, studies on monoclonal antibodies against TSLP demonstrate partial efficacy even in patients whose inflammation is not definable as T2 and the so-called low T2. Tezepelumab is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. Several clinical trials are evaluating the safety and efficacy of Tezepelumab in various inflammatory disorders. In this review, we will highlight major recent advances in understanding the functional role of TSLP, its involvement in Th2-related diseases, and its suitability as a target for biological therapies.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Benedetta Bondi
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Maria Giulia Candeliere
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Marcello Mincarini
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Fulvio Braido
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
18
|
Lu HF, Zhou YC, Luo DD, Yang DH, Wang XJ, Cheng BH, Zeng XH. ILC2s: Unraveling the innate immune orchestrators in allergic inflammation. Int Immunopharmacol 2024; 131:111899. [PMID: 38513576 DOI: 10.1016/j.intimp.2024.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen 518172, China
| | - Dan-Dan Luo
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| |
Collapse
|
19
|
Infante Cruz A, Coronel JV, Saibene Vélez P, Remes Lenicov F, Iturrizaga J, Abelleyro M, Rosato M, Shiromizu CM, Candolfi M, Vermeulen M, Jancic C, Yasuda E, Berner S, Villaverde MS, Salamone GV. Relevance of Thymic Stromal Lymphopoietin on the Pathogenesis of Glioblastoma: Role of the Neutrophil. Cell Mol Neurobiol 2024; 44:31. [PMID: 38557942 PMCID: PMC10984908 DOI: 10.1007/s10571-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma multiforme (GBM) is the most predominant and malignant primary brain tumor in adults. Thymic stromal lymphopoietin (TSLP), a cytokine primarily generated by activated epithelial cells, has recently garnered attention in cancer research. This study was aimed to elucidate the significance of TSLP in GBM cells and its interplay with the immune system, particularly focused on granulocyte neutrophils. Our results demonstrate that the tumor produces TSLP when stimulated with epidermal growth factor (EGF) in both the U251 cell line and the GBM biopsy (GBM-b). The relevance of the TSLP function was evaluated using a 3D spheroid model. Spheroids exhibited increased diameter, volume, and proliferation. In addition, TSLP promoted the generation of satellites surrounding the main spheroids and inhibited apoptosis in U251 treated with temozolomide (TMZ). Additionally, the co-culture of polymorphonuclear (PMN) cells from healthy donors with the U251 cell line in the presence of TSLP showed a reduction in apoptosis and an increase in IL-8 production. TSLP directly inhibited apoptosis in PMN from GBM patients (PMN-p). Interestingly, the vascular endothelial growth factor (VEGF) production was elevated in PMN-p compared with PMN from healthy donors. Under these conditions, TSLP also increased VEGF production, in PMN from healthy donors. Moreover, TSLP upregulated programed death-ligand 1 (PDL-1) expression in PMN cultured with U251. On the other hand, according to our results, the analysis of RNA-seq datasets from Illumina HiSeq 2000 sequencing platform performed with TIMER2.0 webserver demonstrated that the combination of TSLP with neutrophils decreases the survival of the patient. In conclusion, our results position TSLP as a possible new growth factor in GBM and indicate its modulation of the tumor microenvironment, particularly through its interaction with PMN.
Collapse
Affiliation(s)
- Alejandra Infante Cruz
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Juan Valentin Coronel
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Paula Saibene Vélez
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires - CONICET, Paraguay 2155, Buenos Aires, Argentina
| | - Juan Iturrizaga
- División Neurocirugía, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, Buenos Aires, Argentina
| | - Martín Abelleyro
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Yasuda
- Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Berner
- Servicio de Neurocirugía de la Clínica y Maternidad Santa Isabel, Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Unidad de Transferencia Genética, Área Investigación, Instituto de Oncología Ángel H. Roffo, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Verónica Salamone
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Liu X, Han J, Wang Q, Wang P, Li L, Du K, Jiang F, Zhang P, Liu H, Huang J. Development of a novel humanized anti-TSLP monoclonal antibody HZ-1127 with anti-allergic diseases and cancer potential. Antib Ther 2024; 7:123-130. [PMID: 38566968 PMCID: PMC10983073 DOI: 10.1093/abt/tbae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a member of the IL-2 cytokine family and has been widely recognized as a master regulator of type 2 inflammatory responses at barrier surfaces. Recent studies found dysregulation of the TSLP-TSLP receptor (TSLPR) pathway is associated with the pathogenesis of not only allergic diseases but also a wide variety of cancers including both solid tumors and hematological tumors. Thus, the blockade of TSLP represents an attractive therapeutic strategy for allergic diseases and cancer. In this study, we report the development of a novel humanized anti-TSLP monoclonal antibody (mAb) HZ-1127. Binding affinity, specificity, and ability of HZ-1127 in inhibiting TSLP were tested. HZ-1127 selectively binds to the TSLP cytokine with high affinity and specificity. Furthermore, HZ-1127 dramatically inhibits TSLP-dependent STAT5 activation and is more potent than Tezepelumab, which is an FDA-approved humanized mAb against TSLP for severe asthma treatment in inhibiting TSLP-induced CCL17 and CCL22 chemokines secretion in human peripheral blood mononuclear cells. Our pre-clinical study demonstrates that HZ-1127 may serve as a potential therapeutic agent for allergic diseases and cancer.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3500 N Broad St, Philadelphia, PA 19140, USA
| | - Jianzhong Han
- Department of Research, Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
| | - Qian Wang
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Peng Wang
- Department of Research, Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
| | - Li Li
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Kehe Du
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Fengchao Jiang
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Pei Zhang
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Hongjun Liu
- Department of Research, IPHASE Therapeutic Ltd., 422 Industrial Dr. North Wales, PA 19454, USA
| | - Jian Huang
- Department of Research, Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA
- Department of Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad St, Philadelphia, PA 19140, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 303 Cooper St, Camden, NJ 08102, USA
| |
Collapse
|
21
|
Menzella F, Munari S, Corsi L, Tonin S, Cestaro W, Ballarin A, Floriani A, Dartora C, Senna G. Tezepelumab: patient selection and place in therapy in severe asthma. J Int Med Res 2024; 52:3000605241246740. [PMID: 38676539 PMCID: PMC11056094 DOI: 10.1177/03000605241246740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Asthma is a disease characterised by heterogeneous and multifaceted airway inflammation. Despite the availability of effective treatments, a substantial percentage of patients with the type 2 (T2)-high, but mainly the T2-low, phenotype complain of persistent symptoms, airflow limitation, and poor response to treatments. Currently available biologicals target T2 cytokines, but no monoclonal antibodies or other specific therapeutic options are available for non-T2 asthma. However, targeted therapy against alarmins is radically changing this perspective. The development of alarmin-targeted therapies, of which tezepelumab (TZP) is the first example, may offer broad action on inflammatory pathways as well as an enhanced therapeutic effect on epithelial dysfunction. In this regard, TZP demonstrated positive results not only in patients with severe T2 asthma but also those with non-allergic, non-eosinophilic disease. Therefore, it is necessary to identify clinical features of patients who can benefit from an upstream targeted therapy such as anti-thymic stromal lymphopoietin. The aims of this narrative review are to understand the role of alarmins in asthma pathogenesis and epithelial dysfunction, examine the rationale underlying the indication of TZP treatment in severe asthma, summarise the results of clinical studies, and recognise the specific characteristics of patients potentially eligible for TZP treatment.
Collapse
Affiliation(s)
- Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Sara Munari
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Silvia Tonin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Walter Cestaro
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Andrea Ballarin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Ariel Floriani
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Cristina Dartora
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona & AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
22
|
Lv M, Xu Y, Chen P, Li J, Qin Z, Huang B, Liu Y, Tao X, Xiang J, Wang Y, Feng Y, Zheng W, Zhang Z, Li L, Liao H. TSLP enhances progestin response in endometrial cancer via androgen receptor signal pathway. Br J Cancer 2024; 130:585-596. [PMID: 38172534 PMCID: PMC10876595 DOI: 10.1038/s41416-023-02545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The enriched proteins within in vitro fertilisation (IVF)-generated human embryonic microenvironment could reverse progestin resistance in endometrial cancer (EC). METHODS The expression of thymic stromal lymphopoietin (TSLP) in EC was evaluated by immunoblot and IHC analysis. Transcriptome sequencing screened out the downstream pathway regulated by TSLP. The role of TSLP, androgen receptor (AR) and KANK1 in regulating the sensitivity of EC to progestin was verified through a series of in vitro and in vivo experiments. RESULTS TSLP facilitates the formation of a BMP4/BMP7 heterodimer, resulting in activation of Smad5, augmenting AR signalling. AR in turn sensitises EC cells to progestin via KANK1. Downregulation of TSLP, loss of AR and KANK1 in EC patients are associated with tumour malignant progress. Moreover, exogenous TSLP could rescue the anti-tumour effect of progestin on mouse in vivo xenograft tumour. CONCLUSIONS Our findings suggest that TSLP enhances the sensitivity of EC to progestin through the BMP4/Smad5/AR/KANK1 axis, and provide a link between embryo development and cancer progress, paving the way for the establishment of novel strategy overcoming progestin resistance using embryo original factors.
Collapse
Affiliation(s)
- Mu Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yuan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Peiqin Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Jingjie Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Zuoshu Qin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Baozhu Huang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, China
| | - Jun Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yanqiu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, 200137, Shanghai, China.
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 200040, Shanghai, China.
| |
Collapse
|
23
|
Kim HY, Jeong D, Kim JH, Chung DH. Innate Type-2 Cytokines: From Immune Regulation to Therapeutic Targets. Immune Netw 2024; 24:e6. [PMID: 38455467 PMCID: PMC10917574 DOI: 10.4110/in.2024.24.e6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.
Collapse
Affiliation(s)
- Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
24
|
He B, Guo W, Shi R, Hoffman RD, Luo Q, Hu YJ, Gao J. Ruyong formula improves thymus function of CUMS-stimulated breast cancer mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117164. [PMID: 37717843 DOI: 10.1016/j.jep.2023.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruyong Formula (RYF) is a famous Chinese herbal formula composed of 10 traditional Chinese herbs. It has been used as a therapeutic agent for breast cancer patients with depressive symptoms in China. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY This study aimed to explore the mechanism of RYF on the changes of thymus immune function in breast cancer body under mood disorders such as depression/anxiety. MATERIALS AND METHODS The chronic unpredictable mild stress (CUMS) was used to stimulate 4T1 breast cancer mice. The behavioral changes, 5-hydroxytryptamine (5-HT) level in brain, cytokeratin 5 (CK5) and 8 (CK8) expression in thymus, the proportion of T cell subsets, the thymic output, phenotypic changes of thymus epithelial cells (TECs), the expression levels of immune-related factors and downstream proteins of TSLP were analyzed after RYF treatment. RESULTS In CUMS stimulated group, the level of 5-HT in brain was significantly increased after RYF treatment. The output function of the thymus was improved, and the number of TECs in the medulla (CK5+), the proportion of CD3+CD4-CD8- (Double negative) and CD3+CD4+CD8+ (Double positive) T cells were all increased. The mRNA level of TSLP in mouse thymus was significantly decreased, but increased for IL-7. The protein levels of TSLP and Vimentin were decreased, but increased for p-STAT3, p-JAK2, E-cadherin, and p-PI3K p55 in vivo. In vitro study was showed the levels of Snail 1, Zeb 1 and Smad increased significantly in TGF-β1 group, and RYF could reverse their expression. CONCLUSIONS RYF could restore the structure and function of the thymus in depressed breast cancer mice by reversing the phenotypic changes of TECs and activating the JAK2/STAT3/PI3K pathway.
Collapse
Affiliation(s)
- Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Wenqin Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Rongzhen Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Tangqi Branch of Traditional Chinese Medicine Hospital of Linping District, Hangzhou, Zhejiang, 311106, China.
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA, 90066, USA.
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, 999078, China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
25
|
Welham A, Chorvinsky E, Bhattacharya S, Bera BS, Salka K, Weinstock J, Chen XX, Perez GF, Pillai DK, Gutierrez MJ, Morizono H, Jaiswal J, Nino G. High TSLP responses in the human infant airways are associated with pre-activated airway epithelial IFN antiviral immunity. Immunology 2023. [PMID: 38148520 DOI: 10.1111/imm.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a primarily epithelial-derived cytokine that drives type 2 allergic immune responses. Early life viral respiratory infections elicit high TSLP production, which leads to the development of type 2 inflammation and airway hyperreactivity. The goal of this study was to examine in vivo and in vitro the human airway epithelial responses leading to high TSLP production during viral respiratory infections in early infancy. A total of 129 infants (<1-24 m, median age 10 m) with severe viral respiratory infections were enrolled for in vivo (n = 113), and in vitro studies (n = 16). Infants were classified as 'high TSLP' or 'low TSLP' for values above or below the 50th percentile. High versus low TSLP groups were compared in terms of type I-III IFN responses and production of chemokines promoting antiviral (CXCL10), neutrophilic (CXCL1, CXCL5, CXCL8), and type 2 responses (CCL11, CCL17, CCL22). Human infant airway epithelial cell (AEC) cultures were used to define the transcriptomic (RNAseq) profile leading to high versus low TSLP responses in vitro in the absence (baseline) or presence (stimulated) of a viral mimic (poly I:C). Infants in the high TSLP group had greater in vivo type III IFN airway production (median type III IFN in high TSLP 183.2 pg/mL vs. 63.4 pg/mL in low TSLP group, p = 0.007) and increased in vitro type I-III IFN AEC responses after stimulation with a viral mimic (poly I:C). At baseline, our RNAseq data showed that infants in the high TSLP group had significant upregulation of IFN signature genes (e.g., IFIT2, IFI6, MX1) and pro-inflammatory chemokine genes before stimulation. Infants in the high TSLP group also showed a baseline AEC pro-inflammatory state characterized by increased production of all the chemokines assayed (e.g., CXCL10, CXCL8). High TSLP responses in the human infant airways are associated with pre-activated airway epithelial IFN antiviral immunity and increased baseline AEC production of pro-inflammatory chemokines. These findings present a new paradigm underlying the production of TSLP in the human infant airway epithelium following early life viral exposure and shed light on the long-term impact of viral respiratory illnesses during early infancy and beyond childhood.
Collapse
Affiliation(s)
- Allison Welham
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Elizabeth Chorvinsky
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Surajit Bhattacharya
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Betelehem Solomon Bera
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Kyle Salka
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Jered Weinstock
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Xilei Xu Chen
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Dinesh K Pillai
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | - Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
- George Washington University, Washington, DC, USA
| |
Collapse
|
26
|
Mesjasz A, Trzeciak M, Gleń J, Jaskulak M. Potential Role of IL-37 in Atopic Dermatitis. Cells 2023; 12:2766. [PMID: 38067193 PMCID: PMC10706414 DOI: 10.3390/cells12232766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin 37 (IL-37) is a recently discovered member of the IL-1 cytokine family that appears to have anti-inflammatory and immunosuppressive effects in various diseases. IL-37 acts as a dual-function cytokine, exerting its effect extracellularly by forming a complex with the receptors IL-18 α (IL-18Rα) and IL-1R8 and transmitting anti-inflammatory signals, as well as intracellularly by interacting with Smad3, entering the nucleus, and inhibiting the transcription of pro-inflammatory genes. Consequently, IL-37 is linked to IL-18, which plays a role in the pathogenesis of atopic dermatitis (AD), consistent with our studies. Some isoforms of IL-37 are expressed by keratinocytes, monocytes, and other skin immune cells. IL-37 has been found to modulate the skewed T helper 2 (Th2) inflammation that is fundamental to the pathogenesis of AD. This review provides an up-to-date summary of the function of IL-37 in modulating the immune system and analyses its potential role in the pathogenesis of AD. Moreover, it speculates on IL-37's hypothetical value as a therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Alicja Mesjasz
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Marta Jaskulak
- Department of Immunobiology and Environmental Microbiology, Faculty of Health Sciences, Medical University of Gdansk, 80-214 Gdansk, Poland;
| |
Collapse
|
27
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
28
|
Shinkai M, Yabuta T. Tezepelumab: an anti-thymic stromal lymphopoietin monoclonal antibody for the treatment of asthma. Immunotherapy 2023; 15:1435-1447. [PMID: 37724378 DOI: 10.2217/imt-2023-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Asthma is a common chronic respiratory disease in which epithelial cytokines and airway inflammation play critical pathophysiological roles. Thymic stromal lymphopoietin (TSLP), an epithelial cytokine, is central in the initiation and persistence of airway inflammation in asthma. Tezepelumab is a human immunoglobulin G2λ (IgG2λ) monoclonal antibody developed for treating moderate-to-severe asthma by specifically binding to TSLP and preventing its binding to the TSLP receptor on inflammatory cells. In this narrative review, we describe the results of clinical trials that evaluated the pharmacokinetics, pharmacodynamics, efficacy and safety of tezepelumab in patients with moderate-to-severe asthma. We also introduce the ongoing clinical trials in patients with asthma as well as future trials investigating the use of tezepelumab for other indications.
Collapse
Affiliation(s)
- Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, 6-3-22 Higashioi, Shinagawa-ku, Tokyo, 140-8522, Japan
| | - Tadataka Yabuta
- Medical Department, AstraZeneca K.K., 3-1 Ofukacho, Kita-ku, Osaka, 530-0011, Japan
| |
Collapse
|
29
|
Gong Y, Pang H, Yu Z, Wang X, Li P, Zhang Q. Construction of inflammatory associated risk gene prognostic model of NSCLC and its correlation with chemotherapy sensitivity. Ann Med 2023; 55:2200034. [PMID: 37083272 PMCID: PMC10124980 DOI: 10.1080/07853890.2023.2200034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Inflammation is an important pathogenic factor of most malignant tumors. It is essential to understand mechanism underlying inflammation and cancer development, so as to formulate and develop anti-cancer treatment strategies. However, inflammatory-related gene characterization as well as risk model construction in prognosis and response chemotherapy or immunotherapy in NSCLC are still remain unclear. METHODS A total of 1014 lung cancer samples with RNA-seqencing results were download from The Cancer Genome Atlas (TCGA) database. The patient cohort was randomized as a training and test cohorts, and 200 inflammatory-related genes were selected based on previously published data. Consensus clustering and Enrichment and immune function analyses base on Differential expression genes (DEGs) were performed. Prognosis Prediction Model were Constructed and Chemotherapy and immunotherapy sensitivity base on this model were performed. At last, H1299 and HCC827 cells were used to tested the mitoxantrone and oxal iplatin sensitivity after KRT6A knockdown. RESULTS We identified the inflammatory-related genes from NSCLC datasets to build one prognosis prediction signature based on cluster inflammatory-related genes to lay a certain foundation for distinguishing high-risk NSCLC cases with dismal prognostic outcome. The nomogram provides the AUC values for 1-, 3-, and 5-year overall survival were 0.831, 0.853, and 0.86 in validation cohort. Morover, different sensitivity of immunotherapy or chemotherapy also were classified base on the different risk groups in NSCLC patients, which provided potent clinical reference. At last, targeting KRT6A sensitive to mitoxantrone and oxaliplatin in H1299 and HCC827 cells. CONCLUSIONS Inflammatory-related gene risk-score is the potential chemotherapeutic and immunotherapeutic biomarker for NSCLC, and targeting KRT6A sensitive to mitoxantrone and oxaliplatin in NSCLC.HighlightsInflammatory-related genes can lay a certain foundation for distinguishing high-risk NSCLC cases with dismal prognostic outcome.Risk-score base on inflammatory-related genes is positive correlated with CD274, TGFBR1 and TGFB1 expression.Targeting KRT6A sensitive to mitoxantrone and oxaliplatin in H1299 and HCC827 cells.
Collapse
Affiliation(s)
- Yange Gong
- Department of pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Hongyan Pang
- Department of pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Zhiqiang Yu
- Department of pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Xue Wang
- Department of pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Ping Li
- Department of pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Qianyun Zhang
- Department of pulmonary and Critical Care Medicine (PCCM) Ward II, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| |
Collapse
|
30
|
Marcella S, Petraroli A, Canè L, Ferrara AL, Poto R, Parente R, Palestra F, Cristinziano L, Modestino L, Galdiero MR, Monti M, Marone G, Triggiani M, Varricchi G, Loffredo S. Thymic stromal lymphopoietin (TSLP) is a substrate for tryptase in patients with mastocytosis. Eur J Intern Med 2023; 117:111-118. [PMID: 37500310 DOI: 10.1016/j.ejim.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant β-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.
Collapse
Affiliation(s)
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luisa Canè
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy
| | - Maria Monti
- CEINGE Advanced Biotechnologies, Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano (SA) 84084, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; World Allergy Organization (WAO) Center of Excellence, Naples 80131, Italy; Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples 80131, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples 80131, Italy.
| |
Collapse
|
31
|
Qu H, Liu X, Jiang T, Huang G, Cai H, Xing D, Mao Y, Zheng X. Integration analysis using bioinformatics and experimental validation on the clinical and biological significance of TSLP in cancers. Cell Signal 2023; 111:110874. [PMID: 37640192 DOI: 10.1016/j.cellsig.2023.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) has significantly impacted the development and progression of various neoplastic disorders. To comprehensively evaluate the diverse significance of TSLP in malignant tumors, we first integrative analyze the TSLP expression level in paired and unpaired pan-cancer tissue and cell line, compared against the normal tissue. The correlation between TSLP expression, molecular subtypes, immune subtypes, diagnostic value, and prognostic value in pan-cancer was also investigated. We then explored the impact of TSLP expression on multifaced immune cell infiltration and subsequent clinical outcomes in lung adenocarcinoma (LUAD) patients. and conducted cellular experiments to functionally examine the effect of TSLP on cell proliferation, apoptosis, cell cycle, migration, and invasion in LUAD. The anti-neoplastic mechanism of TSLP was further investigated by qRT-PCR and western blotting. Our findings reveal that TSLP expression is abnormally low in various cancers compared to normal tissue and is associated with different molecular and immune subtypes of cancers. Moreover, ROC and survival analysis results suggest that TSLP expression is correlated with the diagnostic, prognostic, clinical features, and immune cells of LUAD patients. Cell experiments showed that overexpression of TSLP elicited a significant reduction in LUAD cell viability, promoted cell apoptosis, impeded cell cycle progression in the G2/M phase, and inhibited cell migration and invasion. In addition, TSLP inhibited LUAD progression through the JAK1/STAT3 signaling pathway. Therefore, targeting TSLP shows potential as a therapeutic strategy for pan-cancer, particularly for LUAD, and as a biomarker for predicting the prognosis of this malignancy.
Collapse
Affiliation(s)
- Honglin Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Xinning Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China
| | - Ting Jiang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China
| | - Guodong Huang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Houhao Cai
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Daijun Xing
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Yuecheng Mao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China
| | - Xin Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, PR China; Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, Shandong, PR China.
| |
Collapse
|
32
|
Rakha A, Talaat RM, El-Maadawy EA, Gurguis AA. EFFECT OF ANTI-TSLPR MONOCLONAL ANTIBODY ON VIABILITY, PROAPOPTOTIC GENES EXPRESSION, AND PRODUCTION OF PRO-INFLAMMATORY CYTOKINES IN MCF-7 AND A549 CELLS. Exp Oncol 2023; 45:211-219. [PMID: 37824770 DOI: 10.15407/exp-oncology.2023.02.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) and its receptor (TSLPR) are expressed in various cancer cells. However, their role in cancer development is not well defined. AIM To investigate the effects of anti-TSLPR antibody on the viability, proapoptotic genes expression, and production of pro-inflammatory cytokines in MCF-7 and A549 cancer cells. MATERIALS AND METHODS MCF-7 and A549 cells were exposed to anti-TSLPR monoclonal antibody for 24, 48, and 72 h. The effect on cell viability was examined by MTT assay. The expression levels of TP53, BAX, and CASP3 genes were evaluated by the quantitative reverse transcription polymerase chain reaction (qRT-PCR). Levels of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and transforming growth factor (TGF-β1) were measured by the enzyme-linked immunosorbent assay (ELISA). RESULTS The treatment of MCF-7 cells with anti- TSLPR antibody slightly stimulates cell proliferation after 48 h and 72 h following initial cytotoxicity in 24 h with a significant reduction in IL-6 and TNF-α production. A significant increase in the BAX expression in anti-TSLPR treated cells at a concentration of 2.5 μg/ml at 24-h point was evident. In anti-TSLPR-treated A549 cells, no decrease in cell count was observed, and slight dose-dependent stimulation of cell proliferation was evident in 48 h and 72 h of culture. A significant increase in TP53, BAX, and CASP3 expression upon treatment with 2.5 μg/ml of anti-TSLPR was evident in A549 cells. CONCLUSION The effects of anti-TSLPR on cell viability, proapoptotic gene expression, and production of pro-inflammatory cytokines (IL-6 and TNF-α) vary in MCF-7 and A549 cells.
Collapse
Affiliation(s)
- Alyaa Rakha
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| | - Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| | - Eman A El-Maadawy
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| | - Adel A Gurguis
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the University of Sadat City (USC), Egypt
| |
Collapse
|
33
|
Tanaka Y, Yokoyama Y, Kambayashi T. Skin-derived TSLP stimulates skin migratory dendritic cells to promote the expansion of regulatory T cells. Eur J Immunol 2023; 53:e2350390. [PMID: 37525585 PMCID: PMC10592182 DOI: 10.1002/eji.202350390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Therapeutic strategies that enhance regulatory T (Treg) cell proliferation or suppressive function hold promise for the treatment of autoimmune and inflammatory diseases. We previously reported that the topical application of the vitamin D3 analog MC903 systemically expands Treg cells by stimulating the production of thymic stromal lymphopoietin (TSLP) from the skin. Using mice lacking TSLP receptor expression by dendritic cells (DCs), we hereby show that TSLP receptor signaling in DCs is required for this Treg expansion in vivo. Topical MC903 treatment of ear skin selectively increased the number of migratory DCs in skin-draining lymph nodes (LNs) and upregulated their expression of co-stimulatory molecules. Accordingly, DCs isolated from skin-draining LNs but not mesenteric LNs or spleen of MC903-treated mice showed an enhanced ability to promote Treg proliferation, which was driven by co-stimulatory signals through CD80/CD86 and OX40 ligand. Among the DC subsets in the skin-draining LNs of MC903-treated mice, migratory XCR1- CD11b+ type 2 and XCR1- CD11b- double negative conventional DCs promoted Treg expansion. Together, these data demonstrate that vitamin D3 stimulation of skin induces TSLP expression, which stimulates skin migratory DCs to expand Treg cells. Thus, topical MC903 treatment could represent a convenient strategy to treat inflammatory disorders by engaging this pathway.
Collapse
Affiliation(s)
- Yukinori Tanaka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
34
|
Cao L, Qian W, Li W, Ma Z, Xie S. Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front Immunol 2023; 14:1250541. [PMID: 37809098 PMCID: PMC10556530 DOI: 10.3389/fimmu.2023.1250541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.
Collapse
Affiliation(s)
- Luhong Cao
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiyue Ma
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Rochman Y, Kotliar M, Ben-Baruch Morgenstern N, Barski A, Wen T, Rothenberg ME. TSLP shapes the pathogenic responses of memory CD4 + T cells in eosinophilic esophagitis. Sci Signal 2023; 16:eadg6360. [PMID: 37699081 PMCID: PMC10602003 DOI: 10.1126/scisignal.adg6360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The cytokine thymic stromal lymphopoietin (TSLP) mediates type 2 immune responses, and treatments that interfere with TSLP activity are in clinical use for asthma. Here, we investigated whether TSLP contributes to allergic inflammation by directly stimulating human CD4+ T cells and whether this process is operational in eosinophilic esophagitis (EoE), a disease linked to variants in TSLP. We showed that about 10% of esophageal-derived memory CD4+ T cells from individuals with EoE and less than 3% of cells from control individuals expressed the receptor for TSLP and directly responded to TSLP, as determined by measuring the phosphorylation of STAT5, a transcription factor activated downstream of TSLP stimulation. Accordingly, increased numbers of TSLP-responsive memory CD4+ T cells were present in the circulation of individuals with EoE. TSLP increased the proliferation of CD4+ T cells, enhanced type 2 cytokine production, induced the increased abundance of its own receptor, and modified the expression of 212 genes. The epigenetic response to TSLP was associated with an enrichment in BATF and IRF4 chromatin-binding sites, and these transcription factors were induced by TSLP, providing a feed-forward loop. The numbers of circulating and esophageal CD4+ T cells responsive to TSLP correlated with the numbers of esophageal eosinophils, supporting a potential functional role for TSLP in driving the pathogenesis of EoE and providing the basis for a blood-based diagnostic test based on the extent of TSLP-induced STAT5 phosphorylation in circulating CD4+ T cells. These findings highlight the potential therapeutic value of TSLP inhibitors for the treatment of EoE.
Collapse
Affiliation(s)
- Yrina Rochman
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Human Genetics, Department of Pediatrics Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
36
|
Ino Y, Maruyama M, Shimizu M, Morita R, Sakamoto A, Suzuki H, Sakai A. TSLP in DRG neurons causes the development of neuropathic pain through T cells. J Neuroinflammation 2023; 20:200. [PMID: 37660072 PMCID: PMC10474733 DOI: 10.1186/s12974-023-02882-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Peripheral nerve injury to dorsal root ganglion (DRG) neurons develops intractable neuropathic pain via induction of neuroinflammation. However, neuropathic pain is rare in the early life of rodents. Here, we aimed to identify a novel therapeutic target for neuropathic pain in adults by comprehensively analyzing the difference of gene expression changes between infant and adult rats after nerve injury. METHODS A neuropathic pain model was produced in neonatal and young adult rats by spared nerve injury. Nerve injury-induced gene expression changes in the dorsal root ganglion (DRG) were examined using RNA sequencing. Thymic stromal lymphopoietin (TSLP) and its siRNA were intrathecally injected. T cells were examined using immunofluorescence and were reduced by systemic administration of FTY720. RESULTS Differences in changes in the transcriptome in injured DRG between infant and adult rats were most associated with immunological functions. Notably, TSLP was markedly upregulated in DRG neurons in adult rats, but not in infant rats. TSLP caused mechanical allodynia in adult rats, whereas TSLP knockdown suppressed the development of neuropathic pain. TSLP promoted the infiltration of T cells into the injured DRG and organized the expressions of multiple factors that regulate T cells. Accordingly, TSLP caused mechanical allodynia through T cells in the DRG. CONCLUSION This study demonstrated that TSLP is causally involved in the development of neuropathic pain through T cell recruitment.
Collapse
Affiliation(s)
- Yuka Ino
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| |
Collapse
|
37
|
Zhang Y. From gene identifications to therapeutic targets for asthma: Focus on great potentials of TSLP, ORMDL3, and GSDMB. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:139-147. [PMID: 39171126 PMCID: PMC11332877 DOI: 10.1016/j.pccm.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 08/23/2024]
Abstract
Asthma is a chronic respiratory disease, and clinically, asthma exacerbations remain difficult to treat. The disease is caused by combinations of and interactions between genetic and environmental factors. Genomic and genetic approaches identified many novel genes to treat asthma and brought new insights into the disease. The products of the genes have functional roles in regulating physiological or pathophysiological processes in airway structural cells and immune system cells. Genetic factors also interact with environmental factors such as air pollutants, and bacterial and viral infections to trigger the disease. Thymic stromal lymphopoietin (TSLP), orosomucoid-like 3 (ORMDL3), and gasdermin B (GSDMB) are three genes identified by genetic studies to have a great potential as therapeutic targets of asthma. TSLP is an important driver of type 2 inflammation. ORMDL3 mediates cell stress, sphingolipid synthesis, and viral and bacterial infections. GSDMB regulates cell pyroptosis through its N and C terminals and can bind sulfatides to influence inflammatory response. Investigating inhibitors or modulators for these pathways would bring a new landscape for therapeutics of asthma in future.
Collapse
Affiliation(s)
- Youming Zhang
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
38
|
Kanninen T, Tao L, Romero R, Xu Y, Arenas-Hernandez M, Galaz J, Liu Z, Miller D, Levenson D, Greenberg JM, Panzer J, Padron J, Theis KR, Gomez-Lopez N. Thymic stromal lymphopoietin participates in the host response to intra-amniotic inflammation leading to preterm labor and birth. Hum Immunol 2023; 84:450-463. [PMID: 37422429 PMCID: PMC10530449 DOI: 10.1016/j.humimm.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
The aim of this study was to establish the role of thymic stromal lymphopoietin (TSLP) in the intra-amniotic host response of women with spontaneous preterm labor (sPTL) and birth. Amniotic fluid and chorioamniotic membranes (CAM) were collected from women with sPTL who delivered at term (n = 30) or preterm without intra-amniotic inflammation (n = 34), with sterile intra-amniotic inflammation (SIAI, n = 27), or with intra-amniotic infection (IAI, n = 17). Amnion epithelial cells (AEC), Ureaplasma parvum, and Sneathia spp. were also utilized. The expression of TSLP, TSLPR, and IL-7Rα was evaluated in amniotic fluid or CAM by RT-qPCR and/or immunoassays. AEC co-cultured with Ureaplasma parvum or Sneathia spp. were evaluated for TSLP expression by immunofluorescence and/or RT-qPCR. Our data show that TSLP was elevated in amniotic fluid of women with SIAI or IAI and expressed by the CAM. TSLPR and IL-7Rα had detectable gene and protein expression in the CAM; yet, CRLF2 was specifically elevated with IAI. While TSLP localized to all layers of the CAM and increased with SIAI or IAI, TSLPR and IL-7Rα were minimal and became most apparent with IAI. Co-culture experiments indicated that Ureaplasma parvum and Sneathia spp. differentially upregulated TSLP expression in AEC. Together, these findings indicate that TSLP is a central component of the intra-amniotic host response during sPTL.
Collapse
Affiliation(s)
- Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Li Tao
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Zhenjie Liu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dustyn Levenson
- Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jonathan M Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jonathan Panzer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Justin Padron
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, 20892 and Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
39
|
Galbraith MD, Rachubinski AL, Smith KP, Araya P, Waugh KA, Enriquez-Estrada B, Worek K, Granrath RE, Kinning KT, Paul Eduthan N, Ludwig MP, Hsieh EW, Sullivan KD, Espinosa JM. Multidimensional definition of the interferonopathy of Down syndrome and its response to JAK inhibition. SCIENCE ADVANCES 2023; 9:eadg6218. [PMID: 37379383 PMCID: PMC10306300 DOI: 10.1126/sciadv.adg6218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Individuals with Down syndrome (DS) display chronic hyperactivation of interferon signaling. However, the clinical impacts of interferon hyperactivity in DS are ill-defined. Here, we describe a multiomics investigation of interferon signaling in hundreds of individuals with DS. Using interferon scores derived from the whole blood transcriptome, we defined the proteomic, immune, metabolic, and clinical features associated with interferon hyperactivity in DS. Interferon hyperactivity associates with a distinct proinflammatory phenotype and dysregulation of major growth signaling and morphogenic pathways. Individuals with the highest interferon activity display the strongest remodeling of the peripheral immune system, including increased cytotoxic T cells, B cell depletion, and monocyte activation. Interferon hyperactivity accompanies key metabolic changes, most prominently dysregulated tryptophan catabolism. High interferon signaling stratifies a subpopulation with elevated rates of congenital heart disease and autoimmunity. Last, a longitudinal case study demonstrated that JAK inhibition normalizes interferon signatures with therapeutic benefit in DS. Together, these results justify the testing of immune-modulatory therapies in DS.
Collapse
Affiliation(s)
- Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P. Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Belinda Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayleigh Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross E. Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kohl T. Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Division of Allergy/Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
40
|
Yao J, Liang Z, Duan L, G Y, Liu J, An G. Construction of a novel immune response prediction signature to predict the efficacy of immune checkpoint inhibitors in clear cell renal cell carcinoma patients. Heliyon 2023; 9:e15925. [PMID: 37484396 PMCID: PMC10360603 DOI: 10.1016/j.heliyon.2023.e15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 07/25/2023] Open
Abstract
Background Immune checkpoint inhibitor (ICI) treatment has enhanced survival outcomes in clear cell renal cell carcinoma (ccRCC) patients. Nevertheless, the effectiveness of immunotherapy in ccRCC patients is restricted and we intended to develop and characterize an immune response prediction signature (IRPS) to forecast the efficacy of immunotherapy. Methods RNA-seq expression profile and clinicopathologic characteristics of 539 kidney cancer and 72 patients with normal specimens, were downloaded from the Cancer Genome Atlas (TCGA) database, while the Gene Expression Omnibus (GEO) database was used as the validation set, which included 24 ccRCC samples. Utilization of the TCGA data and immune genes databases (ImmPort and the InnateDB), we explored through Weighted Gene Co-expression Network Analysis (WGCNA), along with Least Absolute Shrinkage and Selection Operator method (LASSO), and constructed an IRPS for kidney cancer patients. GSEA and CIBERSORT were performed to declare the molecular and immunologic mechanism underlying the predictive value of IRPS. The Human Protein Atlas (HPA) was deployed to verify the protein expressions of IRPS genes. Tumor immune dysfunction and exclusion (TIDE) score and immunophenoscore (IPS) were computed to determine the risk of immune escape and value the discrimination of IRPS. A ccRCC cohort with anti-PD-1 therapy was obtained as an external validation data set to verify the predictive value of IRPS. Results We constructed a 10 gene signature related to the prognosis and immune response of ccRCC patients. Considering the IRPS risk score, patients were split into high and low risk groups. Patients with high risk in the TCGA cohort tended towards advanced tumor stage and grade with poor prognosis (p < 0.001), which was validated in GEO database (p = 0.004). High-risk group tumors were related with lower PD-L1 expression, higher TMB, higher MSIsensor score, lower IPS, higher TIDE score, and enriched Treg cells, which might be the potential mechanism of immune dysfunction and exclusion. Patients in the IRPS low risk group had better PFS (HR:0.73; 95% CI: 0.54-1.0; P = 0.047). Conclusion A novel biomarker of IRPS was constructed to predict the benefit of immunotherapy, which might lead to more individualized prognoses and tailored therapy for kidney cancer patients.
Collapse
Affiliation(s)
- Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ziwei Liang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ling Duan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yang G
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jian Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
41
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
42
|
Zhang S, Liu Y, Javeed A, Jian C, Sun J, Wu S, Han B. Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry. Eur J Med Chem 2023; 249:115151. [PMID: 36731273 DOI: 10.1016/j.ejmech.2023.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The prevalence of allergic diseases has been continuously increasing over the past few decades, affecting approximately 20-30% of the global population. Allergic reactions to infection of respiratory tract, digestive tract, and skin system involve multiple different targets. The main difficulty of anti-allergy research is how to develop drugs with good curative effect and less side effects by adopting new multi-targets and mechanisms according to the clinical characteristics of different allergic populations and different allergens. This review focuses on information concerning potential therapeutic targets as well as the synthetic anti-allergy small molecules with respect to their medicinal chemistry. The structure-activity relationship and the mechanism of compound-target interaction were highlighted with perspective to histamine-1/4 receptor antagonists, leukotriene biosynthesis, Th2 cytokines inhibitors, and calcium channel blockers. We hope that the study of chemical scaffold modification and optimization for different lead compounds summarized in this review not only lays the foundation for improvement of success rate and efficiency of virtual screening of antiallergic drugs, but also can provide valuable reference for the drug design of related promising research such as allergy, inflammation, and cancer.
Collapse
Affiliation(s)
- Shanshan Zhang
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Ansar Javeed
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cuiqin Jian
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinlyu Sun
- Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Bingnan Han
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
43
|
Charriot J, Ahmed E, Bourdin A. Local targeting of TSLP: feat or defeat. Eur Respir J 2023; 61:61/3/2202389. [PMID: 36894191 DOI: 10.1183/13993003.02389-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 03/11/2023]
Affiliation(s)
- Jérémy Charriot
- Department of Respiratory Diseases, Univ. Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ. Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | - Engi Ahmed
- Department of Respiratory Diseases, Univ. Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ. Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Univ. Montpellier, CHU Montpellier, Montpellier, France
- PhyMedExp, Univ. Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
44
|
Gerla L, Moitra S, Pink D, Govindasamy N, Duchesne M, Reklow E, Hillaby A, May A, Lewis JD, Melenka L, Hobman TC, Mayers I, Lacy P. SARS-CoV-2-Induced TSLP Is Associated with Duration of Hospital Stay in COVID-19 Patients. Viruses 2023; 15:v15020556. [PMID: 36851770 PMCID: PMC9959394 DOI: 10.3390/v15020556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelium-derived pro-inflammatory cytokine involved in lung inflammatory responses. Previous studies show conflicting observations in blood TSLP in COVID-19, while none report SARS-CoV-2 inducing TSLP expression in bronchial epithelial cells. Our objective in this study was to determine whether TSLP levels increase in COVID-19 patients and if SARS-CoV-2 induces TSLP expression in bronchial epithelial cells. Plasma cytokine levels were measured in patients hospitalized with confirmed COVID-19 and age- and sex-matched healthy controls. Demographic and clinical information from COVID-19 patients was collected. We determined associations between plasma TSLP and clinical parameters using Poisson regression. Cultured human nasal (HNEpC) and bronchial epithelial cells (NHBEs), Caco-2 cells, and patient-derived bronchial epithelial cells (HBECs) obtained from elective bronchoscopy were infected in vitro with SARS-CoV-2, and secretion as well as intracellular expression of TSLP was detected by immunofluorescence. Increased TSLP levels were detected in the plasma of hospitalized COVID-19 patients (603.4 ± 75.4 vs 997.6 ± 241.4 fg/mL, mean ± SEM), the levels of which correlated with duration of stay in hospital (β: 0.11; 95% confidence interval (CI): 0.01-0.21). In cultured NHBE and HBECs but not HNEpCs or Caco-2 cells, TSLP levels were significantly elevated after 24 h post-infection with SARS-CoV-2 (p < 0.001) in a dose-dependent manner. Plasma TSLP in COVID-19 patients significantly correlated with duration of hospitalization, while SARS-CoV-2 induced TSLP secretion from bronchial epithelial cells in vitro. Based on our findings, TSLP may be considered an important therapeutic target for COVID-19 treatment.
Collapse
Affiliation(s)
- Luke Gerla
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Subhabrata Moitra
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Desmond Pink
- Nanostics Inc., Edmonton, AB T6G 2E9, Canada
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H6, Canada
| | - Natasha Govindasamy
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H6, Canada
- Entos Pharmaceuticals, Edmonton, AB T6G 3Q5, Canada
| | - Marc Duchesne
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Eileen Reklow
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H6, Canada
| | - Angela Hillaby
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Amy May
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - John D. Lewis
- Nanostics Inc., Edmonton, AB T6G 2E9, Canada
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2H6, Canada
| | - Lyle Melenka
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Synergy Respiratory Care, Sherwood Park, AB T6G 2E9, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H6, Canada
| | - Irvin Mayers
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Paige Lacy
- Alberta Respiratory Centre (ARC) Research, Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-780-492-6085
| |
Collapse
|
45
|
Matera MG, Calzetta L, Cazzola M, Ora J, Rogliani P. Biologic therapies for chronic obstructive pulmonary disease. Expert Opin Biol Ther 2023; 23:163-173. [PMID: 36527286 DOI: 10.1080/14712598.2022.2160238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complicated chronic inflammatory response that is resistant to corticosteroid therapy. As a result, there is a critical need for effective anti-inflammatory medications to treat people with COPD. Using monoclonal antibodies (mAbs) to inhibit cytokines and chemokines or their receptors could be a potential approach to treating the inflammatory component of COPD. AREAS COVERED The therapeutic potential that some of these mAbs might have in COPD is reviewed. EXPERT OPINION No mAb directed against cytokines or chemokines has shown any therapeutic impact in COPD patients, apart from mAbs targeting the IL-5 pathway that appear to have statistically significant, albeit weak, effect in patients with eosinophilic COPD. This may reflect the complexity of COPD, in which no single cytokine or chemokine has a dominant role. Because the umbrella term COPD encompasses several endotypes with diverse underlying processes, mAbs targeting specific cytokines or chemokines should most likely be evaluated in limited and focused populations.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| |
Collapse
|
46
|
Gauvreau GM, Bergeron C, Boulet LP, Cockcroft DW, Côté A, Davis BE, Leigh R, Myers I, O'Byrne PM, Sehmi R. Sounding the alarmins-The role of alarmin cytokines in asthma. Allergy 2023; 78:402-417. [PMID: 36463491 PMCID: PMC10108333 DOI: 10.1111/all.15609] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022]
Abstract
The alarmin cytokines thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 are epithelial cell-derived mediators that contribute to the pathobiology and pathophysiology of asthma. Released from airway epithelial cells exposed to environmental triggers, the alarmins drive airway inflammation through the release of predominantly T2 cytokines from multiple effector cells. The upstream positioning of the alarmins is an attractive pharmacological target to block multiple T2 pathways important in asthma. Blocking the function of TSLP inhibits allergen-induced responses including bronchoconstriction, airway hyperresponsiveness, and inflammation, and subsequent clinical trials of an anti-TSLP monoclonal antibody, tezepelumab, in asthma patients demonstrated improvements in lung function, airway responsiveness, inflammation, and importantly, a reduction in the rate of exacerbations. Notably, these improvements were observed in patients with T2-high and with T2-low asthma. Clinical trials blocking IL-33 and its receptor ST2 have also shown improvements in lung function and exacerbation rates; however, the impact of blocking the IL-33/ST2 axis in T2-high versus T2-low asthma is unclear. To date, there is no evidence that IL-25 blockade is beneficial in asthma. Despite the considerable overlap in the cellular functions of IL-25, IL-33, and TSLP, they appear to have distinct roles in the immunopathology of asthma.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Celine Bergeron
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andréanne Côté
- Centre for Lung Health, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard Leigh
- Department of Medicine, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Irvin Myers
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
48
|
Drake LY, Koloko Ngassie ML, Roos BB, Teske JJ, Prakash YS. Asthmatic lung fibroblasts promote type 2 immune responses via endoplasmic reticulum stress response dependent thymic stromal lymphopoietin secretion. Front Physiol 2023; 14:1064822. [PMID: 36760534 PMCID: PMC9907026 DOI: 10.3389/fphys.2023.1064822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Lung fibroblasts contribute to asthma pathology partly through modulation of the immune environment in the airway. Tumor necrosis factor-α (TNFα) expression is upregulated in asthmatic lungs. How asthmatic lung fibroblasts respond to TNFα stimulation and subsequently regulate immune responses is not well understood. Endoplasmic reticulum (ER) stress and unfolded protein responses (UPR) play important roles in asthma, but their functional roles are still under investigation. In this study, we investigated TNFα-induced cytokine production in primary lung fibroblasts from asthmatic vs. non-asthmatic human subjects, and downstream effects on type 2 immune responses. TNFα significantly upregulated IL-6, IL-8, C-C motif chemokine ligand 5 (CCL5), and thymic stromal lymphopoietin (TSLP) mRNA expression and protein secretion by lung fibroblasts. Asthmatic lung fibroblasts secreted higher levels of TSLP which promoted IL-33-induced IL-5 and IL-13 production by peripheral blood mononuclear cells. TNFα exposure enhanced expression of ER stress/UPR pathways in both asthmatic and non-asthmatic lung fibroblasts, especially inositol-requiring protein 1α in asthmatics. ER stress/UPR inhibitors decreased IL-6, CCL5, and TSLP protein secretion by asthmatic lung fibroblasts. Our data suggest that TNFα and lung fibroblasts form an important axis in asthmatic lungs to promote asthmatic inflammation that can be attenuated by inhibiting ER stress/UPR pathway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,*Correspondence: Li Y. Drake,
| | - Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
49
|
Li W, Liao C, Du J, Hu J, Wang L, Song X, He Z, Xiao X, Ye L. Increased expression of long-isoform thymic stromal lymphopoietin is associated with rheumatoid arthritis and fosters inflammatory responses. Front Immunol 2023; 13:1079415. [PMID: 36726974 PMCID: PMC9885117 DOI: 10.3389/fimmu.2022.1079415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that is involved in the pathogenesis of inflammatory diseases and asthma, but the expression and biological implications of the existence of two isoforms, long TSLP (lTSLP) and short TSLP (sTSLP), in RA have yet to be elucidated. Here we report that lTSLP is the predominant TSLP isoform in RA and active RA, whereas sTSLP is the major TSLP isoform in inactive RA and healthy controls. lTSLP expression is associated with disease activity, including 28-joint Disease Activity Score (DAS28) and erythrocyte sedimentation rate (ESR), as well as proinflammatory cytokine expression, irrespective of other laboratory parameters. Importantly, lTSLP alone or combined with LPS promotes the expression of proinflammatory cytokines IL-1β, IL-6, and IL-8 in PBMCs of RA, but restrains anti-inflammatory cytokine IL-10 expression in PBMCs of RA. Furthermore, we found that STAT5 signaling is involved in lTSLP-induced inflammatory accumulation in PBMCs of RA. Therefore, these results highlight the clinical significance of lTSLP in RA pathology and inflammatory response in acute-phase disease, which may provide a therapeutic target for RA.
Collapse
Affiliation(s)
- Wanlin Li
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chenghui Liao
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Hu
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Lu Wang
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xun Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhendan He
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Liang Ye, ; Xiaohua Xiao, ; Zhendan He,
| | - Xiaohua Xiao
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China,*Correspondence: Liang Ye, ; Xiaohua Xiao, ; Zhendan He,
| | - Liang Ye
- Department of Pharmacy, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China,*Correspondence: Liang Ye, ; Xiaohua Xiao, ; Zhendan He,
| |
Collapse
|
50
|
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings. Indeed, several genetic variants for TSLP are linked to disease severity, and chromosomal alterations in TSLP are common in certain cancers, indicating important roles of TSLP in disease. In this Review, we discuss recent advances in TSLP biology, highlighting how it regulates the tissue environment not only in allergic disease but also in infectious diseases, inflammatory diseases and cancer. Encouragingly, therapies targeting the TSLP pathway are being actively pursued for several diseases.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|