1
|
Viramontes KM, Thone MN, De La Torre JJ, Neubert EN, DeRogatis JM, Garcia C, Henriquez ML, Tinoco R. Contrasting roles of PSGL-1 and PD-1 in regulating T-cell exhaustion and function during chronic viral infection. J Virol 2025:e0224224. [PMID: 39912665 DOI: 10.1128/jvi.02242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
Immune checkpoints are critical regulators of T-cell exhaustion, impairing their ability to eliminate antigens present during chronic viral infections. Current immune checkpoint inhibitors (ICIs) used in the clinic aim to reinvigorate exhausted T cells; yet, most patients fail to respond or develop resistance to these therapies, underscoring the need to better understand these immunosuppressive pathways. PSGL-1 (Selplg), a recently discovered immune checkpoint, negatively regulates T-cell function. We investigated the cell-intrinsic effects of PSGL-1, PD-1, and combined deletion on CD8+ T cells during chronic viral infection. We found that combined PSGL-1 and PD-1 (Selplg-/-Pdcd1-/-) deficiency in CD8+ T cells increased their frequencies and numbers throughout chronic infection compared to the wild type. This phenotype was primarily driven by PD-1 deficiency. Furthermore, while PD-1 deletion increased virus-specific T-cell frequencies, it was detrimental to their function. Conversely, PSGL-1 deletion improved T-cell function but resulted in lower frequencies and numbers. The primary mechanism behind these differences in cell maintenance was driven by proliferation rather than survival. Combined PSGL-1 and PD-1 deletion resulted in defective T-cell differentiation, driving cells from a progenitor self-renewal state to a more terminal dysfunctional state. These findings suggest that PD-1 and PSGL-1 have distinct, yet complementary, roles in regulating T-cell exhaustion and differentiation during chronic viral infection. Overall, this study provides novel insights into the individual and combined roles of PSGL-1 and PD-1 in CD8+ T-cell exhaustion. It underscores the potential of targeting these checkpoints in a more dynamic and sequential manner to optimize virus-specific T-cell responses, offering critical perspectives for improving therapeutic strategies aimed at reinvigorating exhausted CD8+ T cells.IMPORTANCEOur findings provide a comprehensive analysis of how the dual deletion of PD-1 and PSGL-1 impacts the response and function of virus-specific CD8+ T cells, revealing novel insights into their roles in chronic infection. Notably, our findings show that while PD-1 deletion enhances T-cell frequencies, it paradoxically reduces T-cell functionality. Conversely, PSGL-1 deletion improves T-cell function but reduces their survival. Whereas the combined deletion of PSGL-1 and PD-1 in CD8+ T cells improved their survival but decreased their function and progenitor-exhausted phenotypes during infection. We believe our study advances the understanding of immune checkpoint regulation in chronic infections and has significant implications for developing more effective immune checkpoint inhibitor (ICI) therapies.
Collapse
Affiliation(s)
- Karla M Viramontes
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Melissa N Thone
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Jamie-Jean De La Torre
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N Neubert
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Chris Garcia
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
2
|
Zhang Z, Langenbach M, Sagar S, Fetsch V, Stritzker J, Severa E, Meng K, Winkler F, Rana N, Zoldan K, Godbole I, Solis S, Weber JS, Rafei-Shamsabadi D, Lehr S, Diehl R, Venhoff AC, Voll RE, Buettner N, Neumann-Haefelin C, Boettler T, Hofmann M, Boerries M, Meiss F, Zeiser R, Thimme R, Herati RS, Bengsch B. Efficacy of CTLA-4 checkpoint therapy is dependent on IL-21 signaling to mediate cytotoxic reprogramming of PD-1 +CD8 + T cells. Nat Immunol 2025; 26:92-104. [PMID: 39702858 DOI: 10.1038/s41590-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
The mechanisms underlying the efficacy of anti-programmed cell death protein 1 (PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) therapy are incompletely understood. Here, by immune profiling responding PD-1+CD8+ T (TResp) cell populations from patients with advanced melanoma, we identified differential programming of TResp cells in response to combination therapy, from an exhausted toward a more cytotoxic effector program. This effect does not occur with anti-PD-1 monotherapy. Single-cell transcriptome and T cell receptor repertoire analysis was used to identify altered effector programming of expanding PD-1+CD8+ T cell clones with distinct regulon usage, STAT1 and STAT3 utilization and antitumor specificity connected to interleukin (IL)-21 signaling in combination and anti-CTLA-4 monotherapy. Therapeutic efficacy of CTLA-4 blockade was lost in B16F10 melanoma models with either Il21r- deficiency or anti-IL-21 receptor blockade. Together, these results show how IL-21 signaling to TResp is critical for anti-CTLA-4-based checkpoint therapies and highlight major signaling differences to anti-PD-1 monotherapy.
Collapse
Affiliation(s)
- Zhen Zhang
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Marlene Langenbach
- Faculty of Medicine, Clinic for Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Sagar Sagar
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Viktor Fetsch
- Faculty of Medicine, Clinic for Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Jonas Stritzker
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Elizabeth Severa
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ke Meng
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Frances Winkler
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Nisha Rana
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Katharina Zoldan
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Ira Godbole
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Sabrina Solis
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jeffrey S Weber
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - David Rafei-Shamsabadi
- Department of Dermatology and Venereology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Saskia Lehr
- Department of Dermatology and Venereology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Rebecca Diehl
- Department of Dermatology and Venereology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Ana Cecilia Venhoff
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Nico Buettner
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
- Department of Gastroenterology and Hepatology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Tobias Boettler
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Faculty of Medicine, Clinic for Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Robert Thimme
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Ramin S Herati
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Bertram Bengsch
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) Heidelberg, Germany, Partner Site Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Kim SY, Koh JY, Lee DH, Kim HD, Choi SJ, Ko YY, Lee HS, Lee JS, Choi IA, Lee EY, Jeong HW, Jung MK, Park SH, Park JY, Kim W, Shin EC. Epigenetic scars in regulatory T cells are retained after successful treatment of chronic hepatitis C with direct-acting antivirals. J Hepatol 2024; 81:806-818. [PMID: 38879170 DOI: 10.1016/j.jhep.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND & AIMS Chronic HCV infection results in abnormal immunological alterations, which are not fully normalized after viral elimination by direct-acting antiviral (DAA) treatment. Herein, we longitudinally examined phenotypic, transcriptomic, and epigenetic alterations in peripheral blood regulatory T (Treg) cells from patients with chronic HCV infection before, during, and after DAA treatment. METHODS Patients with chronic genotype 1b HCV infection who achieved sustained virologic response by DAA treatment and age-matched healthy donors were recruited. Phenotypic characteristics of Treg cells were investigated through flow cytometry analysis. Moreover, the transcriptomic and epigenetic landscapes of Treg cells were analyzed using RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin with sequencing) analysis. RESULTS The Treg cell population - especially the activated Treg cell subpopulation - was expanded in peripheral blood during chronic HCV infection, and this expansion was sustained even after viral clearance. RNA sequencing analysis revealed that viral clearance did not abrogate the inflammatory features of these Treg cells, such as Treg activation and TNF signaling. Moreover, ATAC-seq analysis showed inflammatory imprinting in the epigenetic landscape of Treg cells from patients, which remained after treatment. These findings were further confirmed by intracellular cytokine staining, demonstrating that Treg cells exhibited inflammatory features and TNF production in chronic HCV infection that were maintained after viral clearance. CONCLUSIONS Overall, our results showed that during chronic HCV infection, the expanded Treg cell population acquired inflammatory features at phenotypic, transcriptomic, and epigenetic levels, which were maintained even after successful viral elimination by DAA treatment. Further studies are warranted to examine the clinical significance of sustained inflammatory features in the Treg cell population after recovery from chronic HCV infection. IMPACT AND IMPLICATIONS During chronic HCV infection, several immune components are altered both quantitatively and qualitatively. The recent introduction of direct-acting antivirals has led to high cure rates. Nevertheless, we have demonstrated that inflammatory features of Treg cells are maintained at phenotypic, transcriptomic, and epigenetic levels even after successful DAA treatment. Further in-depth studies are required to investigate the long-term clinical outcomes of patients who have recovered from chronic HCV infection.
Collapse
Affiliation(s)
- So-Young Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; GENOME INSIGHT Inc., Daejeon 34051, Republic of Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| | - Hyung-Don Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yun Yeong Ko
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; GENOME INSIGHT Inc., Daejeon 34051, Republic of Korea
| | - In Ah Choi
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Min Kyung Jung
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
4
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
5
|
Haga Y, Coates S, Ray R. Hepatitis C virus chronicity and oncogenic potential: Vaccine development progress. Mol Aspects Med 2024; 99:101305. [PMID: 39167987 DOI: 10.1016/j.mam.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hepatitis C virus (HCV) infection is a major health problem worldwide. It can cause liver cirrhosis and hepatocellular carcinoma (HCC), making it a cause of morbidity from liver disease. Thus, there is an urgent need for a prophylactic HCV vaccine. Fortunately, modern medicine has transformed the therapy for HCV infection through development of direct-acting antiviral agents (DAAs), achieving high rates of sustained virologic response and giving significant relief from HCC and associated mortality, but unfortunately it fails to eradicate the risk of HCC, especially in HCV-cleared patients with already advanced liver disease. Additionally, DAA-cured patients do not develop sufficient antiviral immunity and are susceptible to reinfection. A comprehensive strategy to control HCV infection must include a vaccine development approach in which the host can develop humoral and cellular immunity to eradicate HCV successfully; however, this remains a challenge as HCV has developed systems to evade immune attacks from its host. This review highlights the current understanding of HCV's effect on liver disease and cancer progression, the nature of immune responses from cell populations interacting with HCV, and the current strategies for vaccine development. The information in this review will advance prophylactic intervention strategies for HCV infection, with the end goal being to prevent chronicity and subsequent liver disease leading to HCC.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Sydney Coates
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA; Department Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, 63104, USA.
| |
Collapse
|
6
|
Heim K, Sagar, Sogukpinar Ö, Llewellyn-Lacey S, Price DA, Emmerich F, Kraft ARM, Cornberg M, Kielbassa S, Knolle P, Wohlleber D, Bengsch B, Boettler T, Neumann-Haefelin C, Thimme R, Hofmann M. Attenuated effector T cells are linked to control of chronic HBV infection. Nat Immunol 2024; 25:1650-1662. [PMID: 39198634 PMCID: PMC11362014 DOI: 10.1038/s41590-024-01928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
Hepatitis B virus (HBV)-specific CD8+ T cells play a dominant role during acute-resolving HBV infection but are functionally impaired during chronic HBV infection in humans. These functional deficits have been linked with metabolic and phenotypic heterogeneity, but it has remained unclear to what extent different subsets of HBV-specific CD8+ T cells still suppress viral replication. We addressed this issue by deep profiling, functional testing and perturbation of HBV-specific CD8+ T cells during different phases of chronic HBV infection. Our data revealed a mechanism of effector CD8+ T cell attenuation that emerges alongside classical CD8+ T cell exhaustion. Attenuated HBV-specific CD8+ T cells were characterized by cytotoxic properties and a dampened effector differentiation program, determined by antigen recognition and TGFβ signaling, and were associated with viral control during chronic HBV infection. These observations identify a distinct subset of CD8+ T cells linked with immune efficacy in the context of a chronic human viral infection with immunotherapeutic potential.
Collapse
Affiliation(s)
- Kathrin Heim
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Özlem Sogukpinar
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Florian Emmerich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), Hannover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC), Hannover Medical School, Hannover, Germany
| | - Sophie Kielbassa
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research, Munich, Germany
- Institute of Molecular Immunology, School of Life Science, TUM, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Schultheiß C, Willscher E, Paschold L, Ackermann C, Escher M, Scholz R, Knapp M, Lützkendorf J, Müller LP, Schulze Zur Wiesch J, Binder M. B cells expressing mutated IGHV1-69-encoded antigen receptors related to virus neutralization show lymphoma-like transcriptomes in patients with chronic HCV infection. Hepatol Commun 2024; 8:e0503. [PMID: 39082968 DOI: 10.1097/hc9.0000000000000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/11/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Chronic HCV infection leads to a complex interplay with adaptive immune cells that may result in B cell dyscrasias like cryoglobulinemia or lymphoma. While direct-acting antiviral therapy has decreased the incidence of severe liver damage, its effect on extrahepatic HCV manifestations such as B cell dyscrasias is still unclear. METHODS We sequenced B cell receptor (BCR) repertoires in patients with chronic HCV mono-infection and patients with HCV with a sustained virological response (SVR) after direct-acting antiviral therapy. This data set was mined for highly neutralizing HCV antibodies and compared to a diffuse large B cell lymphoma data set. The TKO model was used to test the signaling strength of selected B-BCRs in vitro. Single-cell RNA sequencing of chronic HCV and HCV SVR samples was performed to analyze the transcriptome of B cells with HCV-neutralizing antigen receptors. RESULTS We identified a B cell fingerprint with high richness and somatic hypermutation in patients with chronic HCV and SVR. Convergence to specific immunoglobulin genes produced high-connectivity complementarity-determining region 3 networks. In addition, we observed that IGHV1-69 CDR1 and FR3 mutations characterizing highly neutralizing HCV antibodies corresponded to recurrent point mutations found in clonotypic BCRs of high-grade lymphomas. These BCRs did not show autonomous signaling but a lower activation threshold in an in vitro cell model for the assessment of BCR signaling strength. Single-cell RNA sequencing revealed that B cells carrying these point mutations showed a persisting oncogenic transcriptome signature with dysregulation in signaling nodes such as CARD11, MALT1, RelB, MAPK, and NFAT. CONCLUSIONS We provide evidence that lymphoma-like cells derive from the anti-HCV immune response. In many patients, these cells persist for years after SVR and can be interpreted as a mechanistic basis for HCV-related B cell dyscrasias and increased lymphoma risk even beyond viral elimination.
Collapse
MESH Headings
- Humans
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/complications
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Transcriptome
- B-Lymphocytes/immunology
- Hepacivirus/immunology
- Hepacivirus/genetics
- Sustained Virologic Response
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Antibodies, Neutralizing/immunology
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Male
- Antiviral Agents/therapeutic use
- Mutation
- Female
- Middle Aged
Collapse
Affiliation(s)
- Christoph Schultheiß
- Divison of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Edith Willscher
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lisa Paschold
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christin Ackermann
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Escher
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rebekka Scholz
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Maximilian Knapp
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Lützkendorf
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lutz P Müller
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Schulze Zur Wiesch
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Divison of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Huang CF, Awad MH, Gal-Tanamy M, Yu ML. Unmet needs in the post-direct-acting antivirals era: The risk and molecular mechanisms of hepatocellular carcinoma after hepatitis C virus eradication. Clin Mol Hepatol 2024; 30:326-344. [PMID: 38665034 PMCID: PMC11261227 DOI: 10.3350/cmh.2024.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is one of the major etiologies of hepatocellular carcinoma (HCC) with approximately 30% of HCC being due to HCV infection worldwide. HCV eradication by antivirals greatly reduces the risk of HCC; nevertheless, HCC remains to occur in chronic hepatitis C (CHC) patients who have achieved a sustained virological response (SVR). The proportion of post-SVR HCC among newly diagnosed HCC patients is increasing in the direct-acting antiviral (DAA) era and might be due to preexisting inflammatory and fibrotic liver backgrounds, immune dysregulation between host and virus interactions, as well as host epigenetic scars, genetic predispositions and alternations. By means of applying surrogate markers and adopting risk stratification, HCC surveillance should be consistently performed in high-risk populations. In this review, we discuss the possible molecular mechanism, risk factors, and HCC surveillance strategy for HCC development after HCV eradication in CHC patients.
Collapse
Affiliation(s)
- Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung, Taiwan
| | - Manar Hijaze Awad
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Narmada BC, Khakpoor A, Shirgaonkar N, Narayanan S, Aw PPK, Singh M, Ong KH, Owino CO, Ng JWT, Yew HC, Binte Mohamed Nasir NS, Au VB, Sng R, Kaliaperumal N, Khine HHTW, di Tocco FC, Masayuki O, Naikar S, Ng HX, Chia SL, Seah CXY, Alnawaz MH, Wai CLY, Tay AYL, Mangat KS, Chew V, Yu W, Connolly JE, Periyasamy G, Plissonnier ML, Levrero M, Lim SG, DasGupta R. Single-cell landscape of functionally cured chronic hepatitis B patients reveals activation of innate and altered CD4-CTL-driven adaptive immunity. J Hepatol 2024; 81:42-61. [PMID: 38423478 DOI: 10.1016/j.jhep.2024.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS Hepatitis B surface antigen (HBsAg) loss or functional cure (FC) is considered the optimal therapeutic outcome for patients with chronic hepatitis B (CHB). However, the immune-pathological biomarkers and underlying mechanisms of FC remain unclear. In this study we comprehensively interrogate disease-associated cell states identified within intrahepatic tissue and matched PBMCs (peripheral blood mononuclear cells) from patients with CHB or after FC, at the resolution of single cells, to provide novel insights into putative mechanisms underlying FC. METHODS We combined single-cell transcriptomics (single-cell RNA sequencing) with multiparametric flow cytometry-based immune phenotyping, and multiplexed immunofluorescence to elucidate the immunopathological cell states associated with CHB vs. FC. RESULTS We found that the intrahepatic environment in CHB and FC displays specific cell identities and molecular signatures that are distinct from those found in matched PBMCs. FC is associated with the emergence of an altered adaptive immune response marked by CD4 cytotoxic T lymphocytes, and an activated innate response represented by liver-resident natural killer cells, specific Kupffer cell subtypes and marginated neutrophils. Surprisingly, we found MHC class II-expressing hepatocytes in patients achieving FC, as well as low but persistent levels of covalently closed circular DNA and pregenomic RNA, which may play an important role in FC. CONCLUSIONS Our study provides conceptually novel insights into the immuno-pathological control of HBV cure, and opens exciting new avenues for clinical management, biomarker discovery and therapeutic development. We believe that the discoveries from this study, as it relates to the activation of an innate and altered immune response that may facilitate sustained, low-grade inflammation, may have broader implications in the resolution of chronic viral hepatitis. IMPACT AND IMPLICATIONS This study dissects the immuno-pathological cell states associated with functionally cured chronic hepatitis B (defined by the loss of HBV surface antigen or HBsAg). We identified the sustained presence of very low viral load, accessory antigen-presenting hepatocytes, adaptive-memory-like natural killer cells, and the emergence of helper CD4 T cells with cytotoxic or effector-like signatures associated with functional cure, suggesting previously unsuspected alterations in the adaptive immune response, as well as a key role for the innate immune response in achieving or maintaining functional cure. Overall, the insights generated from this study may provide new avenues for the development of alternative therapies as well as patient surveillance for better clinical management of chronic hepatitis B.
Collapse
Affiliation(s)
- Balakrishnan Chakrapani Narmada
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | - Atefeh Khakpoor
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Niranjan Shirgaonkar
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Sriram Narayanan
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Pauline Poh Kim Aw
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672
| | - Malay Singh
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Kok Haur Ong
- Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Collins Oduor Owino
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jane Wei Ting Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Chuing Yew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Veonice Bijin Au
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Reina Sng
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Nivashini Kaliaperumal
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Htet Htet Toe Wai Khine
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Otsuka Masayuki
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Shamita Naikar
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hui Xin Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Su Li Chia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Myra Hj Alnawaz
- Department of Medicine, National University Hospital, Singapore
| | - Chris Lee Yoon Wai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amy Yuh Ling Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kamarjit Singh Mangat
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Bioinformatics Institute, A∗STAR, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - John Edward Connolly
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Giridharan Periyasamy
- Experimental Drug Development Centre, A∗STAR, 10 Biopolis Way, Chromos, Singapore 138670, Singapore
| | | | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France; Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France; University of Lyon Claude Bernard 1 (UCLB1), Lyon, France; Department of Medicine SCIAC and the Italian Institute of Technology (IIT) Center for Life Nanosciences (CLNS), University of Rome La Sapienza, Rome, Italy
| | - Seng Gee Lim
- Institute of Molecular and Cell Biology, A∗STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore; Department of Medicine, National University Hospital, Singapore; Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore.
| | - Ramanuj DasGupta
- Laboratory of Precision Medicine and Cancer Evolution, Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), 60 Biopolis St., #02-01 Genome, Singapore 138672.
| |
Collapse
|
10
|
Seurre C, Roca Suarez AA, Testoni B, Zoulim F, Grigorov B. After the Storm: Persistent Molecular Alterations Following HCV Cure. Int J Mol Sci 2024; 25:7073. [PMID: 39000179 PMCID: PMC11241208 DOI: 10.3390/ijms25137073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The development of direct-acting antivirals (DAAs) against hepatitis C virus (HCV) has revolutionized the management of this pathology, as their use allows viral elimination in a large majority of patients. Nonetheless, HCV remains a major public health problem due to the multiple challenges associated with its diagnosis, treatment availability and development of a prophylactic vaccine. Moreover, HCV-cured patients still present an increased risk of developing hepatic complications such as hepatocellular carcinoma. In the present review, we aim to summarize the impact that HCV infection has on a wide variety of peripheral and intrahepatic cell populations, the alterations that remain following DAA treatment and the potential molecular mechanisms implicated in their long-term persistence. Finally, we consider how recent developments in single-cell multiomics could refine our understanding of this disease in each specific intrahepatic cell population and drive the field to explore new directions for the development of chemo-preventive strategies.
Collapse
Affiliation(s)
- Coline Seurre
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Armando Andres Roca Suarez
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
11
|
Li J, Vranjkovic A, Read D, Delaney SP, Stanford WL, Cooper CL, Crawley AM. Lasting differential gene expression of circulating CD8 T cells in chronic HCV infection with cirrhosis identifies a role for Hedgehog signaling in cellular hyperfunction. Front Immunol 2024; 15:1375485. [PMID: 38887299 PMCID: PMC11180750 DOI: 10.3389/fimmu.2024.1375485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/19/2024] [Indexed: 06/20/2024] Open
Abstract
Background The impact of chronic hepatic infection on antigen non-specific immune cells in circulation remains poorly understood. We reported lasting global hyperfunction of peripheral CD8 T cells in HCV-infected individuals with cirrhosis. Whether gene expression patterns in bulk CD8 T cells are associated with the severity of liver fibrosis in HCV infection is not known. Methods RNA sequencing of blood CD8 T cells from treatment naïve, HCV-infected individuals with minimal (Metavir F0-1 ≤ 7.0 kPa) or advanced fibrosis or cirrhosis (F4 ≥ 12.5 kPa), before and after direct-acting antiviral therapy, was performed. CD8 T cell function was assessed by flow cytometry. Results In CD8 T cells from pre-DAA patients with advanced compared to minimal fibrosis, Gene Ontology analysis and Gene Set Enrichment Analysis identified differential gene expression related to cellular function and metabolism, including upregulated Hedgehog (Hh) signaling, IFN-α, -γ, TGF-β response genes, apoptosis, apical surface pathways, phospholipase signaling, phosphatidyl-choline/inositol activity, and second-messenger-mediated signaling. In contrast, genes in pathways associated with nuclear processes, RNA transport, cytoskeletal dynamics, cMyc/E2F regulation, oxidative phosphorylation, and mTOR signaling, were reduced. Hh signaling pathway was the top featured gene set upregulated in cirrhotics, wherein hallmark genes GLI1 and PTCH1 ranked highly. Inhibition of Smo-dependent Hh signaling ablated the expression of IFN-γ and perforin in stimulated CD8 T cells from chronic HCV-infected patients with advanced compared to minimal fibrosis. CD8 T cell gene expression profiles post-DAA remained clustered with pre-DAA profiles and disparately between advanced and minimal fibrosis, suggesting a persistent perturbation of gene expression long after viral clearance. Conclusions This analysis of bulk CD8 T cell gene expression in chronic HCV infection suggests considerable reprogramming of the CD8 T cell pool in the cirrhotic state. Increased Hh signaling in cirrhosis may contribute to generalized CD8 T cell hyperfunction observed in chronic HCV infection. Understanding the lasting nature of immune cell dysfunction may help mitigate remaining clinical challenges after HCV clearance and more generally, improve long term outcomes for individuals with severe liver disease.
Collapse
Affiliation(s)
- Jiafeng Li
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Agatha Vranjkovic
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Daniel Read
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sean P. Delaney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - William L. Stanford
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis L. Cooper
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Angela M. Crawley
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
12
|
Haga Y, Bandyopadhyay D, Khatun M, Tran E, Steele R, Banerjee S, Ray R, Nazzal M, Ray RB. Increased expression of long non-coding RNA FIRRE promotes hepatocellular carcinoma by HuR-CyclinD1 axis signaling. J Biol Chem 2024; 300:107247. [PMID: 38556083 PMCID: PMC11061211 DOI: 10.1016/j.jbc.2024.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
There is a critical need to understand the disease processes and identify improved therapeutic strategies for hepatocellular carcinoma (HCC). The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. The aim of this study was to identify a lncRNA as a potential biomarker of HCC and investigate the mechanisms by which the lncRNA promotes HCC progression using human cell lines and in vivo. Using RNA-Seq analysis, we found that lncRNA FIRRE was significantly upregulated in hepatitis C virus (HCV) associated liver tissue and identified that lncRNA FIRRE is significantly upregulated in HCV-associated HCC compared to adjacent non-tumor liver tissue. Further, we observed that FIRRE is significantly upregulated in HCC specimens with other etiologies, suggesting this lncRNA has the potential to serve as an additional biomarker for HCC. Overexpression of FIRRE in hepatocytes induced cell proliferation, colony formation, and xenograft tumor formation as compared to vector-transfected control cells. Using RNA pull-down proteomics, we identified HuR as an interacting partner of FIRRE. We further showed that the FIRRE-HuR axis regulates cyclin D1 expression. Our mechanistic investigation uncovered that FIRRE is associated with an RNA-binding protein HuR for enhancing hepatocyte growth. Together, these findings provide molecular insights into the role of FIRRE in HCC progression.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin D1/genetics
- ELAV-Like Protein 1/metabolism
- ELAV-Like Protein 1/genetics
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Mice, Nude
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/genetics
- Hepatitis C/complications
- Up-Regulation
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Mousumi Khatun
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ellen Tran
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Sumona Banerjee
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Mustafa Nazzal
- Department of Surgery, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA.
| |
Collapse
|
13
|
Revach OY, Cicerchia AM, Shorer O, Petrova B, Anderson S, Park J, Chen L, Mehta A, Wright SJ, McNamee N, Tal-Mason A, Cattaneo G, Tiwari P, Xie H, Sweere JM, Cheng LC, Sigal N, Enrico E, Miljkovic M, Evans SA, Nguyen N, Whidden ME, Srinivasan R, Spitzer MH, Sun Y, Sharova T, Lawless AR, Michaud WA, Rasmussen MQ, Fang J, Palin CA, Chen F, Wang X, Ferrone CR, Lawrence DP, Sullivan RJ, Liu D, Sachdeva UM, Sen DR, Flaherty KT, Manguso RT, Bod L, Kellis M, Boland GM, Yizhak K, Yang J, Kanarek N, Sade-Feldman M, Hacohen N, Jenkins RW. Disrupting CD38-driven T cell dysfunction restores sensitivity to cancer immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579184. [PMID: 38405985 PMCID: PMC10888727 DOI: 10.1101/2024.02.12.579184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.
Collapse
Affiliation(s)
- Or-Yam Revach
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angelina M. Cicerchia
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ofir Shorer
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Boryana Petrova
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Seth Anderson
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee Chen
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnav Mehta
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Niamh McNamee
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Aya Tal-Mason
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Giulia Cattaneo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Payal Tiwari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hongyan Xie
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - Matthew H. Spitzer
- Teiko Bio, Salt Lake City, UT, USA
- Department of Otolaryngology-Head and Neck Cancer, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Yi Sun
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Aleigha R. Lawless
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - William A. Michaud
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Q. Rasmussen
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacy Fang
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claire A. Palin
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Feng Chen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Xinhui Wang
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina R. Ferrone
- Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Donald P. Lawrence
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Liu
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Uma M. Sachdeva
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Debattama R. Sen
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Keith T. Flaherty
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert T. Manguso
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lloyd Bod
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Genevieve M. Boland
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naama Kanarek
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nir Hacohen
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Russell W. Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
14
|
Chen DG, Xie J, Choi J, Ng RH, Zhang R, Li S, Edmark R, Zheng H, Solomon B, Campbell KM, Medina E, Ribas A, Khatri P, Lanier LL, Mease PJ, Goldman JD, Su Y, Heath JR. Integrative systems biology reveals NKG2A-biased immune responses correlate with protection in infectious disease, autoimmune disease, and cancer. Cell Rep 2024; 43:113872. [PMID: 38427562 PMCID: PMC10995767 DOI: 10.1016/j.celrep.2024.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
Infection, autoimmunity, and cancer are principal human health challenges of the 21st century. Often regarded as distinct ends of the immunological spectrum, recent studies hint at potential overlap between these diseases. For example, inflammation can be pathogenic in infection and autoimmunity. T resident memory (TRM) cells can be beneficial in infection and cancer. However, these findings are limited by size and scope; exact immunological factors shared across diseases remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune/post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation and increased humoral immunity and that they resemble TRM cells. Our results suggest NKG2A+ biases as a cross-disease factor of protection, supporting suggestions of immunological overlap between infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | | | - Rachel H Ng
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Rongyu Zhang
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah Li
- Institute of Systems Biology, Seattle, WA, USA
| | - Rick Edmark
- Institute of Systems Biology, Seattle, WA, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ben Solomon
- Department of Pediatrics, Division of Allergy and Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Philip J Mease
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, USA; Providence St. Joseph Health, Renton, WA, USA
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, USA; Providence St. Joseph Health, Renton, WA, USA; Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
15
|
Crouchet E, Baumert TF. Unraveling the role of the liver myeloid compartment during hepatitis C virus cure. J Hepatol 2024; 80:184-187. [PMID: 37088307 PMCID: PMC7615597 DOI: 10.1016/j.jhep.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Emilie Crouchet
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France; Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire (IHU), Université de Strasbourg, Strasbourg, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
16
|
Mondelli MU, Ottolini S, Oliviero B, Mantovani S, Cerino A, Mele D, Varchetta S. Hepatitis C Virus and the Host: A Mutual Endurance Leaving Indelible Scars in the Host's Immunity. Int J Mol Sci 2023; 25:268. [PMID: 38203436 PMCID: PMC10779088 DOI: 10.3390/ijms25010268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis C virus (HCV) has spread worldwide, and it is responsible for potentially severe chronic liver disease and primary liver cancer. Chronic infection remains for life if not spontaneously eliminated and viral persistence profoundly impairs the efficiency of the host's immunity. Attempts have been made to develop an effective vaccine, but efficacy trials have met with failure. The availability of highly efficacious direct-acting antivirals (DAA) has created hope for the progressive elimination of chronic HCV infections; however, this approach requires a monumental global effort. HCV elicits a prompt innate immune response in the host, characterized by a robust production of interferon-α (IFN-α), although interference in IFN-α signaling by HCV proteins may curb this effect. The late appearance of largely ineffective neutralizing antibodies and the progressive exhaustion of T cells, particularly CD8 T cells, result in the inability to eradicate the virus in most infected patients. Moreover, an HCV cure resulting from DAA treatment does not completely restore the normal immunologic homeostasis. Here, we discuss the main immunological features of immune responses to HCV and the epigenetic scars that chronic viral persistence leaves behind.
Collapse
Affiliation(s)
- Mario U. Mondelli
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Ottolini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Barbara Oliviero
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Antonella Cerino
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Dalila Mele
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Stefania Varchetta
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| |
Collapse
|
17
|
Elkoshi Z. The Eradication of Carcinogenic Viruses in Established Solid Cancers. J Inflamm Res 2023; 16:6227-6239. [PMID: 38145011 PMCID: PMC10749098 DOI: 10.2147/jir.s430315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Carcinogenic viruses (oncoviruses) can initiate cancer, but their impact on established cancer varies. Some of these viruses prolong survival while others shorten it. This study classifies oncoviruses into two categories: viruses which induce a strong CD8+T cell reaction in non-cancerous tissues, and viruses which induce a weak CD8+ T cell reaction in non-cancerous tissues. The classification proves useful in predicting the effect of oncoviruses on the prognosis of solid cancers. Therefore, while eliminating carcinogenic viruses in healthy individuals (for example by immunization) may be important for cancer prevention, this study suggests that only viruses which induce a weak CD8+ T cell reaction should be eradicated in established solid tumors. The model correctly predicts the effect of oncoviruses on survival for six out of seven known oncoviruses, indicating that immune modulation by oncoviruses has a prominent effect on prognosis. It seems that CD8+ T cell response to oncoviruses observed in infected benign tissues is retained in infected tumors. Clinical significance: the effect of oncoviruses on solid cancer prognosis can be predicted with confidence based on immunological responses when clinical data are unavailable.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
18
|
Schenkel JM, Pauken KE. Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol 2023; 23:807-823. [PMID: 37253877 PMCID: PMC11448857 DOI: 10.1038/s41577-023-00884-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Tissue localization is a critical determinant of T cell immunity. CD8+ T cells are contact-dependent killers, which requires them to physically be within the tissue of interest to kill peptide-MHC class I-bearing target cells. Following their migration and extravasation into tissues, T cells receive many extrinsic cues from the local microenvironment, and these signals shape T cell differentiation, fate and function. Because major organ systems are variable in their functions and compositions, they apply disparate pressures on T cells to adapt to the local microenvironment. Additional complexity arises in the context of malignant lesions (either primary or metastatic), and this has made understanding the factors that dictate T cell function and longevity in tumours challenging. Moreover, T cell differentiation state influences how cues from the microenvironment are interpreted by tissue-infiltrating T cells, highlighting the importance of T cell state in the context of tissue biology. Here, we review the intertwined nature of T cell differentiation state, location, survival and function, and explain how dysfunctional T cell populations can adopt features of tissue-resident memory T cells to persist in tumours. Finally, we discuss how these factors have shaped responses to cancer immunotherapy.
Collapse
Affiliation(s)
- Jason M Schenkel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
20
|
Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Penna A, Montali I, Daffis S, Fletcher SP, Gaggar A, Medley J, Graupe M, Lad L, Loglio A, Soffredini R, Borghi M, Pollicino T, Musolino C, Alfieri A, Brillo F, Laccabue D, Massari M, Boarini C, Abbati G, Pedrazzi G, Missale G, Lampertico P, Ferrari C, Boni C. Phenotypic CD8 T cell profiling in chronic hepatitis B to predict HBV-specific CD8 T cell susceptibility to functional restoration in vitro. Gut 2023; 72:2123-2137. [PMID: 36717219 PMCID: PMC10579518 DOI: 10.1136/gutjnl-2022-327202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Exhausted hepatitis B virus (HBV)-specific CD8 T cells in chronic HBV infection are broadly heterogeneous. Characterisation of their functional impairment may allow to distinguish patients with different capacity to control infection and reconstitute antiviral function. DESIGN HBV dextramer+CD8 T cells were analysed ex vivo for coexpression of checkpoint/differentiation markers, transcription factors and cytokines in 35 patients with HLA-A2+chronic hepatitis B (CHB) and in 29 control HBsAg negative CHB patients who seroconverted after NUC treatment or spontaneously. Cytokine production was also evaluated in HBV peptide-stimulated T cell cultures, in the presence or absence of antioxidant, polyphenolic, PD-1/PD-L1 inhibitor and TLR-8 agonist compounds and the effect on HBV-specific responses was further validated on additional 24 HLA-A2 negative CHB patients. RESULTS Severely exhausted HBV-specific CD8 T cell subsets with high expression of inhibitory receptors, such as PD-1, TOX and CD39, were detected only in a subgroup of chronic viraemic patients. Conversely, a large predominance of functionally more efficient HBV-specific CD8 T cell subsets with lower expression of coinhibitory molecules and better response to in vitro immune modulation, typically detected after resolution of infection, was also observed in a proportion of chronic viraemic HBV patients. Importantly, the same subset of patients who responded more efficiently to in vitro immune modulation identified by HBV-specific CD8 T cell analysis were also identified by staining total CD8 T cells with PD-1, TOX, CD127 and Bcl-2. CONCLUSIONS The possibility to distinguish patient cohorts with different capacity to respond to immune modulatory compounds in vitro by a simple analysis of the phenotypic CD8 T cell exhaustion profile deserves evaluation of its clinical applicability.
Collapse
Affiliation(s)
- Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Anuj Gaggar
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | - Latesh Lad
- Gilead Sciences Inc, Foster City, California, USA
| | - Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Roberta Soffredini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marta Borghi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Teresa Pollicino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Arianna Alfieri
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Federica Brillo
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Massari
- Unit of Infectious Diseases, IRCCS, Reggio Emilia, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, Milano, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
21
|
Lee H, Jung MK, Noh JY, Park SH, Chung Y, Ha SJ, Shin EC. Better understanding CD8 + T cells in cancer and viral infections. Nat Immunol 2023; 24:1794-1796. [PMID: 37770795 DOI: 10.1038/s41590-023-01630-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Affiliation(s)
- Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Min Kyung Jung
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yeonseok Chung
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, South Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| |
Collapse
|
22
|
Heath J, Chen D, Xie J, Choi J, Ng R, Zhang R, Li S, Edmark R, Zheng H, Solomon B, Campbell K, Medina E, Ribas A, Khatri P, Lanier L, Mease P, Goldman J, Su Y. An NKG2A biased immune response confers protection for infection, autoimmune disease, and cancer. RESEARCH SQUARE 2023:rs.3.rs-3413673. [PMID: 37886475 PMCID: PMC10602172 DOI: 10.21203/rs.3.rs-3413673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Infection, autoimmunity, and cancer are the principal human health challenges of the 21st century and major contributors to human death and disease. Often regarded as distinct ends of the immunological spectrum, recent studies have hinted there may be more overlap between these diseases than appears. For example, pathogenic inflammation has been demonstrated as conserved between infection and autoimmune settings. T resident memory (TRM) cells have been highlighted as beneficial for infection and cancer. However, these findings are limited by patient number and disease scope; exact immunological factors shared across disease remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune and post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation, increased humoral immunity, and resemble TRM cells. Our results suggest that an NKG2A+ bias is a pan-disease immunological factor of protection and thus supports recent suggestions that there is immunological overlap between infection, autoimmunity, and cancer. Our findings underscore the promotion of an NKG2A+ biased response as a putative therapeutic strategy.
Collapse
|
23
|
Winkler F, Hipp AV, Ramirez C, Martin B, Villa M, Neuwirt E, Gorka O, Aerssens J, Johansson SE, Rana N, Llewellyn-Lacey S, Price DA, Panning M, Groß O, Pearce EL, Hermann CM, Schumann K, Hannibal L, Neumann-Haefelin C, Boettler T, Knolle P, Hofmann M, Wohlleber D, Thimme R, Bengsch B. Enolase represents a metabolic checkpoint controlling the differential exhaustion programmes of hepatitis virus-specific CD8 + T cells. Gut 2023; 72:1971-1984. [PMID: 37541771 PMCID: PMC10511960 DOI: 10.1136/gutjnl-2022-328734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/20/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.
Collapse
Affiliation(s)
- Frances Winkler
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anna V Hipp
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carlos Ramirez
- Health Data Science Unit, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Bianca Martin
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Emilia Neuwirt
- Institute of Neuropathology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeuic Area, Janssen Pharmaceutica, Beerse, Belgium
| | - Susanne E Johansson
- Translational Biomarkers, Infectious Diseases Therapeuic Area, Janssen Pharmaceutica, Beerse, Belgium
| | - Nisha Rana
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University Hospital Freiburg, Freiburg im Breisgau, Germany
| | - Olaf Groß
- Institute of Neuropathology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Erika L Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Carl M Hermann
- Health Data Science Unit, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Kathrin Schumann
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Luciana Hannibal
- Department of General Pediatrics, Laboratory of Clinical Biochemistry and Metabolism, Medical Center-University of Freiburg, Adolescent Medicine and Neonatology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias Boettler
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Percy Knolle
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
- Institute of Molecular Immunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maike Hofmann
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Thimme
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Heidelberg, Germany
| |
Collapse
|
24
|
Neubert EN, DeRogatis JM, Lewis SA, Viramontes KM, Ortega P, Henriquez ML, Buisson R, Messaoudi I, Tinoco R. HMGB2 regulates the differentiation and stemness of exhausted CD8 + T cells during chronic viral infection and cancer. Nat Commun 2023; 14:5631. [PMID: 37704621 PMCID: PMC10499904 DOI: 10.1038/s41467-023-41352-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Chronic infections and cancers evade the host immune system through mechanisms that induce T cell exhaustion. The heterogeneity within the exhausted CD8+ T cell pool has revealed the importance of stem-like progenitor (Tpex) and terminal (Tex) exhausted T cells, although the mechanisms underlying their development are not fully known. Here we report High Mobility Group Box 2 (HMGB2) protein expression is upregulated and sustained in exhausted CD8+ T cells, and HMGB2 expression is critical for their differentiation. Through epigenetic and transcriptional programming, we identify HMGB2 as a cell-intrinsic regulator of the differentiation and maintenance of Tpex cells during chronic viral infection and in tumors. Despite Hmgb2-/- CD8+ T cells expressing TCF-1 and TOX, these master regulators were unable to sustain Tpex differentiation and long-term survival during persistent antigen. Furthermore, HMGB2 also had a cell-intrinsic function in the differentiation and function of memory CD8+ T cells after acute viral infection. Our findings show that HMGB2 is a key regulator of CD8+ T cells and may be an important molecular target for future T cell-based immunotherapies.
Collapse
Affiliation(s)
- Emily N Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Rémi Buisson
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
25
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
26
|
Rudloff MW, Zumbo P, Favret NR, Roetman JJ, Detrés Román CR, Erwin MM, Murray KA, Jonnakuti ST, Dündar F, Betel D, Philip M. Hallmarks of CD8 + T cell dysfunction are established within hours of tumor antigen encounter before cell division. Nat Immunol 2023; 24:1527-1539. [PMID: 37537361 PMCID: PMC10878719 DOI: 10.1038/s41590-023-01578-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
Tumor-specific CD8+ T cells (TST) in patients with cancer are dysfunctional and unable to halt cancer progression. TST dysfunction, also known as exhaustion, is thought to be driven by chronic T cell antigen receptor (TCR) stimulation over days to weeks. However, we know little about the interplay between CD8+ T cell function, cell division and epigenetic remodeling within hours of activation. Here, we assessed early CD8+ T cell differentiation, cell division, chromatin accessibility and transcription in tumor-bearing mice and acutely infected mice. Surprisingly, despite robust activation and proliferation, TST had near complete effector function impairment even before undergoing cell division and had acquired hallmark chromatin accessibility features previously associated with later dysfunction/exhaustion. Moreover, continued tumor/antigen exposure drove progressive epigenetic remodeling, 'imprinting' the dysfunctional state. Our study reveals the rapid divergence of T cell fate choice before cell division in the context of tumors versus infection.
Collapse
Affiliation(s)
- Michael W Rudloff
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Natalie R Favret
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Jessica J Roetman
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Carlos R Detrés Román
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Megan M Erwin
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Kristen A Murray
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Sriya T Jonnakuti
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Department of Pathology, Microbiology, and Immunology, Vanderbilt School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Huang CH, Hsieh SY. More immunosuppressive, more immunotherapy responsive? A double-edged sword of HBV-induced immune response in HCC. Hepatology 2023; 78:706-708. [PMID: 37013921 DOI: 10.1097/hep.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Affiliation(s)
- Chien-Hao Huang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | | |
Collapse
|
28
|
Yibirin M, Mustafayev K, Hosry J, Pundhir P, Klingen J, Yepez Guevara E, Granwehr BP, Kaseb A, Naing A, Patel S, Shah AY, Skoulidis F, Tawbi HA, Wang L, Miller E, Zhang HC, Zurita-Saavedra A, Torres HA. Immune Checkpoint Inhibitors Suppress Hepatitis C Virus Replication in Infected Patients With Solid Tumors. Am J Gastroenterol 2023; 118:1609-1617. [PMID: 37307533 PMCID: PMC11809494 DOI: 10.14309/ajg.0000000000002361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Data are scarce regarding the virologic impact and safety of immune checkpoint inhibitors (ICI) in patients with chronic hepatitis C virus (HCV) infection. We examined the virologic impact of ICI in HCV-infected patients with solid tumors and their safety. METHODS HCV-infected patients with solid tumor treated with ICI at our institution between April 26, 2016, and January 5, 2022, were enrolled in a prospective observational study. The primary outcomes were ICI-induced changes in HCV viremia (HCV inhibition and HCV reactivation) and safety of ICI. RESULTS We enrolled 52 consecutive patients with solid tumors treated with ICI. Most were men (41; 79%), White (31; 59%), without cirrhosis (34; 65%), and with HCV genotype 1 (40; 77%). Four patients (7.7%) experienced HCV inhibition while receiving ICI including 1 patient who developed undetectable viremia for 6 months in the absence of direct-acting antivirals (DAA). Two patients (4%) developed HCV reactivation, both while receiving immunosuppressive therapy for ICI-related toxic effects. Adverse events occurred in 36 patients (69%), and 39 of the 47 adverse events (83%) were grade 1-2. Grade 3-4 adverse events occurred in 8 patients (15%), and in all cases, they were related to ICI, not to HCV. No HCV-associated liver failure or death occurred. DISCUSSION Inhibition of HCV replication with virologic cure can develop in patients receiving ICI without DAA. HCV reactivation occurs primarily in patients receiving immunosuppressants for ICI-related toxic effects. ICI are safe in HCV-infected patients with solid tumors. Chronic HCV infection should not be considered a contraindication for ICI therapy.
Collapse
Affiliation(s)
- Marcel Yibirin
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Khalis Mustafayev
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeff Hosry
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pooja Pundhir
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joseph Klingen
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Eduardo Yepez Guevara
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bruno P. Granwehr
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ahmed Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sapna Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amishi Y. Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ferdinandos Skoulidis
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lan Wang
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ethan Miller
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hao Chi Zhang
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amado Zurita-Saavedra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Harrys A. Torres
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Departments of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
29
|
Pichler AC, Carrié N, Cuisinier M, Ghazali S, Voisin A, Axisa PP, Tosolini M, Mazzotti C, Golec DP, Maheo S, do Souto L, Ekren R, Blanquart E, Lemaitre L, Feliu V, Joubert MV, Cannons JL, Guillerey C, Avet-Loiseau H, Watts TH, Salomon BL, Joffre O, Grinberg-Bleyer Y, Schwartzberg PL, Lucca LE, Martinet L. TCR-independent CD137 (4-1BB) signaling promotes CD8 +-exhausted T cell proliferation and terminal differentiation. Immunity 2023; 56:1631-1648.e10. [PMID: 37392737 PMCID: PMC10649891 DOI: 10.1016/j.immuni.2023.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.
Collapse
Affiliation(s)
- Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Samira Ghazali
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Allison Voisin
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Laura do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Eve Blanquart
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Virginie Feliu
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Jennifer L Cannons
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille Guillerey
- Cancer Immunotherapies Group, The University of Queensland, Brisbane, QLD, Australia
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benoit L Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivier Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana E Lucca
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France.
| |
Collapse
|
30
|
Zou J, Li J, Zhong X, Tang D, Fan X, Chen R. Liver in infections: a single-cell and spatial transcriptomics perspective. J Biomed Sci 2023; 30:53. [PMID: 37430371 PMCID: PMC10332047 DOI: 10.1186/s12929-023-00945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The liver is an immune organ that plays a vital role in the detection, capture, and clearance of pathogens and foreign antigens that invade the human body. During acute and chronic infections, the liver transforms from a tolerant to an active immune state. The defence mechanism of the liver mainly depends on a complicated network of intrahepatic and translocated immune cells and non-immune cells. Therefore, a comprehensive liver cell atlas in both healthy and diseased states is needed for new therapeutic target development and disease intervention improvement. With the development of high-throughput single-cell technology, we can now decipher heterogeneity, differentiation, and intercellular communication at the single-cell level in sophisticated organs and complicated diseases. In this concise review, we aimed to summarise the advancement of emerging high-throughput single-cell technologies and re-define our understanding of liver function towards infections, including hepatitis B virus, hepatitis C virus, Plasmodium, schistosomiasis, endotoxemia, and corona virus disease 2019 (COVID-19). We also unravel previously unknown pathogenic pathways and disease mechanisms for the development of new therapeutic targets. As high-throughput single-cell technologies mature, their integration into spatial transcriptomics, multiomics, and clinical data analysis will aid in patient stratification and in developing effective treatment plans for patients with or without liver injury due to infectious diseases.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao Zhong
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Zhou MJ, Zhang C, Fu YJ, Wang H, Ji Y, Huang X, Li L, Wang Y, Qing S, Shi Y, Shen L, Wang YY, Li XY, Li YY, Chen SY, Zhen C, Xu R, Shi M, Wang FS, Cheng Y. Cured HCV patients with suboptimal hepatitis B vaccine response exhibit high self-reactive immune signatures. Hepatol Commun 2023; 7:e00197. [PMID: 37378628 PMCID: PMC10309501 DOI: 10.1097/hc9.0000000000000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND RATIONALE Chronic HCV infection induces lasting effects on the immune system despite viral clearance. It is unclear whether certain immune alterations are associated with vaccine responses in cured HCV patients. APPROACH Thirteen cured HCV patients received the standard 3-dose hepatitis B vaccine and were followed up at the 0, 1st, 6th, and 7th months (M0, M1, M6, and M7) after the first dose of vaccination. Thirty-three-color and 26-color spectral flow cytometry panels were used for high-dimensional immunophenotyping of the T-cell and B-cell subsets, respectively. RESULTS Compared to the healthy controls (HC), 17 of 43 (39.5%) immune cell subsets showed abnormal frequencies in cured HCV patients. Patients with cured HCV were further divided into high responders (HR, n = 6) and nonresponders (NR1, n = 7) based on the levels of hepatitis B surface antibodies at M1. Alterations in cell populations were more significant in NR1. Moreover, we found that high levels of self-reactive immune signatures, including Tregs, TD/CD8, IgD-only memory B, and autoantibodies, were associated with suboptimal hepatitis B vaccine responses. CONCLUSIONS Our data suggest that cured HCV patients exhibit persistent perturbations in the adaptive immune system, among which highly self-reactive immune signatures may contribute to a suboptimal hepatitis B vaccine response.
Collapse
Affiliation(s)
- Ming-Ju Zhou
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yuan-Jie Fu
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Haiyan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingjie Ji
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xia Huang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lin Li
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ye Wang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Song Qing
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yanze Shi
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lili Shen
- Bengbu Medical College, Bengbu, China
| | - You-Yuan Wang
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | - Yuan-Yuan Li
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Si-Yuan Chen
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongqian Cheng
- The Fifth Medical Centre of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
32
|
Lee J, Lee K, Bae H, Lee K, Lee S, Ma J, Jo K, Kim I, Jee B, Kang M, Im SJ. IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation. Front Immunol 2023; 14:1117092. [PMID: 37409128 PMCID: PMC10319055 DOI: 10.3389/fimmu.2023.1117092] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
In chronic infections and cancer, exhausted CD8 T cells exhibit heterogeneous subpopulations. TCF1+PD-1+ progenitor exhausted CD8 T cells (Tpex) can self-renew and give rise to Tim-3+PD-1+ terminally differentiated CD8 T cells that retain their effector functions. Tpex cells are thus essential to maintaining a pool of antigen-specific CD8 T cells during persistent antigenic stimulation, and only they respond to PD-1-targeted therapy. Despite their potential as a crucial therapeutic target for immune interventions, the mechanisms controlling the maintenance of virus-specific Tpex cells remain to be determined. We observed approximately 10-fold fewer Tpex cells in the spleens of mice chronically infected with lymphocytic choriomeningitis virus (LCMV) one-year post-infection (p.i.) than at three months p.i. Similar to memory CD8 T cells, Tpex cells have been found to undergo self-renewal in the lymphoid organs, prominently the bone marrow, during chronic LCMV infection. Furthermore, ex vivo treatment with IL-15 preferentially induced the proliferation of Tpex cells rather than the terminally differentiated subsets. Interestingly, single-cell RNA sequencing analysis of LCMV-specific exhausted CD8 T cells after ex vivo IL-15 treatment compared with those before treatment revealed increased expression of ribosome-related genes and decreased expression of genes associated with the TCR signaling pathway and apoptosis in both Tpex and Ttex subsets. The exogenous administration of IL-15 to chronically LCMV-infected mice also significantly increased self-renewal of Tpex cells in the spleen and bone marrow. In addition, we assessed the responsiveness of CD8 tumor-infiltrating lymphocytes (TILs) from renal cell carcinoma patients to IL-15. Similar to the data we obtained from chronic viral infection in mice, the expansion of the Tpex subset of PD-1+ CD8 TILs upon ex vivo IL-15 treatment was significantly higher than that of the terminally differentiated subset. These results show that IL-15 could promote self-renewal of Tpex cells, which has important therapeutic implications.
Collapse
Affiliation(s)
- Junghwa Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungmin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeonjin Bae
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kunhee Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Solhwi Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junhui Ma
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungjo Jo
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ijun Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - ByulA Jee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
33
|
Zhang J, Lei F, Tan H. The development of CD8 T-cell exhaustion heterogeneity and the therapeutic potentials in cancer. Front Immunol 2023; 14:1166128. [PMID: 37275913 PMCID: PMC10232978 DOI: 10.3389/fimmu.2023.1166128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
CD8+ T cells are essential lymphocytes with cytotoxic properties for antitumor immunotherapy. However, during chronic infection or tumorigenesis, these cells often become dysfunctional with a gradually depleted ability to release cytokines and the exhibition of reduced cytotoxicity, the state referred to as "T-cell exhaustion" (Tex). This unique state was characterized by the increasing expression of inhibitory checkpoint receptors, and interventions targeting immune checkpoint blockades (ICBs) have been considered as a promising strategy to stimulate T-cell killing. Recent investigations have demonstrated that exhausted T cells not only display functional, metabolic, transcriptional, and epigenetic differences but also comprise a heterogeneous group of cells. In this review, we summarize the current findings on dynamic differentiation process during Tex heterogeneity development in cancer and chronic infection. We discuss how the responses to immunotherapy are determined by these distinct subsets and highlight prospective approaches for improving the efficacy of ICB therapy for cancer by leveraging the heterogeneity of T cells.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, China
| | - Feifei Lei
- Lab of Liver Disease, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huabing Tan
- Lab of Liver Disease, Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
34
|
DeRogatis JM, Neubert EN, Viramontes KM, Henriquez ML, Nicholas DA, Tinoco R. Cell-Intrinsic CD38 Expression Sustains Exhausted CD8 + T Cells by Regulating Their Survival and Metabolism during Chronic Viral Infection. J Virol 2023; 97:e0022523. [PMID: 37039663 PMCID: PMC10134879 DOI: 10.1128/jvi.00225-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 04/12/2023] Open
Abstract
Acute and chronic viral infections result in the differentiation of effector and exhausted T cells with functional and phenotypic differences that dictate whether the infection is cleared or progresses to chronicity. High CD38 expression has been observed on CD8+ T cells across various viral infections and tumors in patients, suggesting an important regulatory function for CD38 on responding T cells. Here, we show that CD38 expression was increased and sustained on exhausted CD8+ T cells following chronic lymphocytic choriomeningitis virus (LCMV) infection, with lower levels observed on T cells from acute LCMV infection. We uncovered a cell-intrinsic role for CD38 expression in regulating the survival of effector and exhausted CD8+ T cells. We observed increased proliferation and function of Cd38-/- CD8+ progenitor exhausted T cells compared to those of wild-type (WT) cells. Furthermore, decreased oxidative phosphorylation and glycolytic potential were observed in Cd38-/- CD8+ T cells during chronic but not acute LCMV infection. Our studies reveal that CD38 has a dual cell-intrinsic function in CD8+ T cells, where it decreases proliferation and function yet supports their survival and metabolism. These findings show that CD38 is not only a marker of T cell activation but also has regulatory functions on effector and exhausted CD8+ T cells. IMPORTANCE Our study shows how CD38 expression is regulated on CD8+ T cells responding during acute and chronic viral infection. We observed higher CD38 levels on CD8+ T cells during chronic viral infection compared to levels during acute viral infection. Deleting CD38 had an important cell-intrinsic function in ensuring the survival of virus-specific CD8+ T cells throughout the course of viral infection. We found defective metabolism in Cd38-/- CD8+ T cells arising during chronic infection and changes in their progenitor T cell phenotype. Our studies revealed a dual cell-intrinsic role for CD38 in limiting proliferation and granzyme B production in virus-specific exhausted T cells while also promoting their survival. These data highlight new avenues for research into the mechanisms through which CD38 regulates the survival and metabolism of CD8+ T cell responses to viral infections.
Collapse
Affiliation(s)
- Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| | - Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Dequina A. Nicholas
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
| |
Collapse
|
35
|
Cornberg M, Mischke J, Kraft AR, Wedemeyer H. Immunological scars after cure of hepatitis C virus infection: Long-HepC? Curr Opin Immunol 2023; 82:102324. [PMID: 37043890 DOI: 10.1016/j.coi.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
Hepatitis C virus (HCV) infection provides a unique opportunity to study the effects of spontaneous or treatment-induced viral elimination on the human immune system. Twenty to 50% of patients with acute HCV infection spontaneously clear the virus, which is related to the quality of the individual's immune response, while the chronic infection is associated with an altered and impaired immune response. Direct-acting antiviral agents are now available that provide sustained viral elimination in more than 95% of patients with chronic HCV infection. Viral elimination leads to a decrease in disease sequelae such as cirrhosis and hepatocellular carcinoma, and extrahepatic manifestations also improve. However, some patients may still experience long-term complications, and viral elimination does not protect against HCV reinfection. This review addresses the question of whether the altered and impaired immune response caused by HCV normalizes after viral elimination and if this may affect the long-term clinical course after HCV cure.
Collapse
Affiliation(s)
- Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Anke Rm Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Ford BR, Poholek AC. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:869-879. [PMID: 36947818 PMCID: PMC10037537 DOI: 10.4049/jimmunol.2200681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Collapse
Affiliation(s)
- B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
37
|
Saadey AA, Yousif A, Osborne N, Shahinfar R, Chen YL, Laster B, Rajeev M, Bauman P, Webb A, Ghoneim HE. Rebalancing TGFβ1/BMP signals in exhausted T cells unlocks responsiveness to immune checkpoint blockade therapy. Nat Immunol 2023; 24:280-294. [PMID: 36543960 DOI: 10.1038/s41590-022-01384-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
T cell dysfunctionality prevents the clearance of chronic infections and cancer. Furthermore, epigenetic programming in dysfunctional CD8+ T cells limits their response to immunotherapies, including immune checkpoint blockade (ICB). However, it is unclear which upstream signals drive acquisition of dysfunctional epigenetic programs, and whether therapeutically targeting these signals can remodel terminally dysfunctional T cells to an ICB-responsive state. Here we innovate an in vitro model system of stable human T cell dysfunction and show that chronic TGFβ1 signaling in posteffector CD8+ T cells accelerates their terminal dysfunction through stable epigenetic changes. Conversely, boosting bone morphogenetic protein (BMP) signaling while blocking TGFβ1 preserved effector and memory programs in chronically stimulated human CD8+ T cells, inducing superior responses to tumors and synergizing the ICB responses during chronic viral infection. Thus, rebalancing TGFβ1/BMP signals provides an exciting new approach to unleash dysfunctional CD8+ T cells and enhance T cell immunotherapies.
Collapse
Affiliation(s)
- Abbey A Saadey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Amir Yousif
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicole Osborne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Roya Shahinfar
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yu-Lin Chen
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Meera Rajeev
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Parker Bauman
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Webb
- Biomedical Informatics Shared Resources, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.
- The Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
38
|
Rivoltini L, Bhoori S, Camisaschi C, Bergamaschi L, Lalli L, Frati P, Citterio D, Castelli C, Mazzaferro V. Y 90-radioembolisation in hepatocellular carcinoma induces immune responses calling for early treatment with multiple checkpoint blockers. Gut 2023; 72:406-407. [PMID: 35508369 PMCID: PMC9872224 DOI: 10.1136/gutjnl-2021-326869] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sherrie Bhoori
- HPB Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Chiara Camisaschi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy .,Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Luca Lalli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Frati
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Davide Citterio
- HPB Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Vincenzo Mazzaferro
- HPB Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy .,Department of Oncology, Università degli Studi di Milano, Milano, Lombardia, Italy
| |
Collapse
|
39
|
The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 2023; 20:238-253. [PMID: 36631717 DOI: 10.1038/s41575-022-00724-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 01/13/2023]
Abstract
Functional cure of chronic hepatitis B (CHB) - or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy - is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.
Collapse
|
40
|
Hudson WH, Wieland A. Technology meets TILs: Deciphering T cell function in the -omics era. Cancer Cell 2023; 41:41-57. [PMID: 36206755 PMCID: PMC9839604 DOI: 10.1016/j.ccell.2022.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
T cells are at the center of cancer immunology because of their ability to recognize mutations in tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate exhausted T cell responses have transformed the clinical management of several malignancies. In parallel, the development of novel multidimensional analysis platforms, such as single-cell RNA sequencing and high-dimensional flow cytometry, has yielded unprecedented insights into immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating immune cells in single tumors, across tumor types, and among individuals with cancer. Here we discuss the opportunities and challenges of studying the complex tumor microenvironment with -omics technologies that generate vast amounts of data, highlighting the opportunities and limitations of these technologies with a particular focus on interpreting high-dimensional studies of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- William H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
41
|
Blake MK, O’Connell P, Aldhamen YA. Fundamentals to therapeutics: Epigenetic modulation of CD8 + T Cell exhaustion in the tumor microenvironment. Front Cell Dev Biol 2023; 10:1082195. [PMID: 36684449 PMCID: PMC9846628 DOI: 10.3389/fcell.2022.1082195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
In the setting of chronic antigen exposure in the tumor microenvironment (TME), cytotoxic CD8+ T cells (CTLs) lose their immune surveillance capabilities and ability to clear tumor cells as a result of their differentiation into terminally exhausted CD8+ T cells. Immune checkpoint blockade (ICB) therapies reinvigorate exhausted CD8+ T cells by targeting specific inhibitory receptors, thus promoting their cytolytic activity towards tumor cells. Despite exciting results with ICB therapies, many patients with solid tumors still fail to respond to such therapies and patients who initially respond can develop resistance. Recently, through new sequencing technologies such as the assay for transposase-accessible chromatin with sequencing (ATAC-seq), epigenetics has been appreciated as a contributing factor that enforces T cell differentiation toward exhaustion in the TME. Importantly, specific epigenetic alterations and epigenetic factors have been found to control CD8+ T cell exhaustion phenotypes. In this review, we will explain the background of T cell differentiation and various exhaustion states and discuss how epigenetics play an important role in these processes. Then we will outline specific epigenetic changes and certain epigenetic and transcription factors that are known to contribute to CD8+ T cell exhaustion. We will also discuss the most recent methodologies that are used to study and discover such epigenetic modulations. Finally, we will explain how epigenetic reprogramming is a promising approach that might facilitate the development of novel exhausted T cell-targeting immunotherapies.
Collapse
Affiliation(s)
| | | | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
42
|
Casey JL, Dore GJ, Grebely J, Matthews GV, Cherepanov V, Martinello M, Marks P, Janssen HLA, Hansen BE, Kaul R, MacParland SA, Gehring AJ, Feld JJ. Hepatitis C virus-specific immune responses following direct-acting antivirals administered during recent hepatitis C virus infection. J Viral Hepat 2023; 30:64-72. [PMID: 36302162 DOI: 10.1111/jvh.13761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/09/2022]
Abstract
Individuals who spontaneously clear hepatitis C virus (HCV) infection have demonstrated evidence of partial protective immunity, whereas treatment-induced clearance provides little or no protection against reinfection. We aimed to investigate whether treatment of acute HCV infection with direct-acting antivirals (DAA) prevents establishment of, or reverses, T-cell exhaustion, leading to a virus-specific T-cell immune profile more similar to that seen in spontaneous clearance. The magnitude and breadth of HCV-specific T-cell responses before and after DAA or interferon-based therapy in acute or chronic HCV were compared to those of participants with spontaneous clearance of infection, using Enzyme-linked Immunospot (ELISPOT). PBMCs were available for 55 patients comprising 4 groups: spontaneous clearance (n = 17), acute interferon (n = 14), acute DAA (n = 13) and chronic DAA (n = 11). After controlling for sex, the magnitude of post-treatment HCV-specific responses after acute DAA treatment was greater than after chronic DAA or acute IFN treatment and similar to those found in spontaneous clearers. However, spontaneous clearers responded to more HCV peptide pools indicating greater breadth of response. In conclusion, early treatment with DAAs may prevent or reverse some degree of immune exhaustion and result in stronger HCV-specific responses post-treatment. However, individuals with spontaneous clearance had broader HCV-specific responses.
Collapse
Affiliation(s)
- Julia L Casey
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Dore
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason Grebely
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Gail V Matthews
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vera Cherepanov
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Philippa Marks
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Bettina E Hansen
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Sonya A MacParland
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Oltmanns C, Liu Z, Mischke J, Tauwaldt J, Mekonnen YA, Urbanek-Quaing M, Debarry J, Maasoumy B, Wedemeyer H, Kraft ARM, Xu CJ, Cornberg M. Reverse inflammaging: Long-term effects of HCV cure on biological age. J Hepatol 2023; 78:90-98. [PMID: 36152762 DOI: 10.1016/j.jhep.2022.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Chronic hepatitis C virus (HCV) infection can be cured with direct-acting antivirals (DAAs). However, not all sequelae of chronic hepatitis C appear to be completely reversible after sustained virologic response (SVR). Recently, chronic viral infections have been shown to be associated with biological age acceleration defined by the epigenetic clock. The aim of this study was to investigate whether chronic HCV infection is associated with epigenetic changes and biological age acceleration and whether this is reversible after SVR. METHODS We included 54 well-characterized individuals with chronic hepatitis C who achieved SVR after DAA therapy at three time points: DAA treatment initiation, end of treatment, and long-term follow-up (median 96 weeks after end of treatment). Genome-wide DNA methylation status was determined in peripheral blood mononuclear cells (PBMCs) and used to calculate epigenetic age acceleration (EAA) using Horvath's clock. RESULTS Individuals with HCV had an overall significant EAA of 3.12 years at baseline compared with -2.61 years in the age- and sex-matched reference group (p <0.00003). HCV elimination resulted in a significant long-term increase in DNA methylation dominated by hypermethylated CpGs in all patient groups. Accordingly, EAA decreased to 1.37 years at long-term follow-up. The decrease in EAA was significant only between the end of treatment and follow-up (p = 0.01). Interestingly, eight individuals who developed hepatocellular carcinoma after SVR had the highest EAA and showed no evidence of reversal after SVR. CONCLUSIONS Our data contribute to the understanding of the biological impact of HCV elimination after DAA therapy and demonstrate that HCV elimination can lead to "reverse inflammaging". In addition, our data support the potential use of biological age as a biomarker for HCV sequelae after SVR. IMPACT AND IMPLICATIONS Chronic hepatitis C virus infection is now curable with direct-acting antivirals, but it remains unclear whether hepatitis C sequelae are fully reversible after viral elimination. Our results suggest that epigenetic changes or acceleration of biological age are reversible in principle, but this requires time, while a lack of reversibility appears to be associated with the development of hepatocellular carcinoma. While most clinical risk scores now take chronological age into account, it may be worthwhile to explore how biological age might improve these scores in the future. Biological age may be a cornerstone for the individualized clinical assessment of patients in the future, as it better reflects patients' lifestyle and environmental exposures over decades.
Collapse
Affiliation(s)
- Carlos Oltmanns
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany
| | - Zhaoli Liu
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany
| | - Jasmin Mischke
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany
| | - Jan Tauwaldt
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany
| | - Yonatan Ayalew Mekonnen
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany; Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Melanie Urbanek-Quaing
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany
| | - Jennifer Debarry
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Anke R M Kraft
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Markus Cornberg
- Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; TWINCORE, a Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany.
| |
Collapse
|
44
|
Lu X, Song B, Weng W, Su B, Wu H, Cheung AKL, Zhang T, Gao Y. Characteristics of CD8 + Stem Cell-Like Memory T Cell Subset in Chronic Hepatitis C Virus Infection. Viral Immunol 2023; 36:25-32. [PMID: 36346310 DOI: 10.1089/vim.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The dysfunction of memory CD8+ T cell cannot be reverted by successful clearance of hepatitis C virus (HCV) after direct-acting antivirals (DAAs) therapy, increasing the risk of reinfection with HCV. Stem cell-like memory T cells (Tscm) with superior properties of long-lasting, self-renewing, and multipotency contribute to the maintenance of immune function. We investigated the impact of HCV infection on CD8+ Tscm, and their possible role in disease progression, by using DAA-naive HCV-infected and human immunodeficiency virus (HIV)/HCV-coinfected cohorts. The distribution of memory CD8+ T cell subsets and the level of T cell immune activation were determined by flow cytometry. Associations between CD8+ Tscm and other memory T cell subsets, HCV viral load, as well as the level of T cell immune activation were analyzed. We observed that the proportion of CD8+ Tscm increased in both HCV and HIV/HCV individuals. The proportion of CD8+ Tscm had positive and negative correlation with CD8+ Tcm (central memory T cells) and CD8+ Tem (effector memory T cell), respectively, representing the contribution of CD8+ Tscm in T cell homeostasis. In addition, higher frequency of CD8+ Tscm indicated lower HCV viral load and less T cell immune activation in HCV infection, which suggested that CD8+ Tscm is likely associated with effective control of HCV replication for protective immunity. Considering the characteristics of Tscm, our current findings provide implications for Tscm-based vaccine design and immunotherapy development to achieve HCV elimination.
Collapse
Affiliation(s)
- Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bingbing Song
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Department of Dermatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yanqing Gao
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Identification of human progenitors of exhausted CD8 + T cells associated with elevated IFN-γ response in early phase of viral infection. Nat Commun 2022; 13:7543. [PMID: 36477661 PMCID: PMC9729230 DOI: 10.1038/s41467-022-35281-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
T cell exhaustion is a hallmark of hepatitis C virus (HCV) infection and limits protective immunity in chronic viral infections and cancer. Limited knowledge exists of the initial viral and immune dynamics that characterise exhaustion in humans. We studied longitudinal blood samples from a unique cohort of individuals with primary infection using single-cell multi-omics to identify the functions and phenotypes of HCV-specific CD8+ T cells. Early elevated IFN-γ response against the transmitted virus is associated with the rate of immune escape, larger clonal expansion, and early onset of exhaustion. Irrespective of disease outcome, we find heterogeneous subsets of progenitors of exhaustion, based on the level of PD-1 expression and loss of AP-1 transcription factors. Intra-clonal analysis shows distinct trajectories with multiple fates and evolutionary plasticity of precursor cells. These findings challenge the current paradigm on the contribution of CD8+ T cells to HCV disease outcome and provide data for future studies on T cell differentiation in human infections.
Collapse
|
46
|
Maladaptive consequences of inflammatory events shape individual immune identity. Nat Immunol 2022; 23:1675-1686. [PMID: 36411382 DOI: 10.1038/s41590-022-01342-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
Abstract
The vertebrate immune system develops in layers, as modes of immunity have evolved on top of each other through time with the expansion of organismal complexity. The maturation timing of immune cell subsets, such as innate immune cells, innate-like cells and adaptive cells, corresponds to their physiological roles in protective immunity. While various cell subsets have specialized roles, they also complement each other to clear pathogens, resolve inflammation and maintain homeostasis, especially at barrier sites with high microbial density. Immune cells adapt to inflammatory insults through mechanisms including epigenetic and metabolic reprogramming, clonal expansion and enhanced communication with the surrounding tissue environment. Over time, these adaptations shape an individual immune identity, reflective of the overlay between the genetic predisposition and the antigenic and environmental exposures of each individual. While some aspects of this immune shaping are natural consequences of immune maturation over time, others are maladaptive and predispose to irreversible pathology. In this Perspective, we provide a framework for categorizing the shaping events of the immune response, in terms of mechanisms, contexts and functional outcomes. We aim to clarify how these terms can be appropriately applied to future findings that impact immune function.
Collapse
|
47
|
Sugrue JA, Posseme C, Tan Z, Pou C, Charbit B, Bondet V, Bourke NM, Brodin P, Duffy D, O'Farrelly C. Enhanced TLR3 responsiveness in hepatitis C virus resistant women from the Irish anti-D cohort. Cell Rep Med 2022; 3:100804. [PMID: 36334594 PMCID: PMC9729829 DOI: 10.1016/j.xcrm.2022.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Natural resistance to infection is an overlooked outcome after hepatitis C virus (HCV) exposure. Between 1977 and 1979, 1,200 Rhesus D-negative Irish women were exposed to HCV-contaminated anti-D immunoglobulin. Here, we investigate why some individuals appear to resist infection despite exposure (exposed seronegative [ESN]). We screen HCV-resistant and -susceptible donors for anti-HCV adaptive immune responses using ELISpots and VirScan to profile antibodies against all know human viruses. We perform standardized ex vivo whole blood stimulation (TruCulture) assays with antiviral ligands and assess antiviral responses using NanoString transcriptomics and Luminex proteomics. We describe an enhanced TLR3-type I interferon response in ESNs compared with seropositive women. We also identify increased inflammatory cytokine production in response to polyIC in ESNs compared with seropositive women. These enhanced responses may have contributed to innate immune protection against HCV infection in our cohort.
Collapse
Affiliation(s)
- Jamie A Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Céline Posseme
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Nollaig M Bourke
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Paris, France; Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
48
|
Preddy I, Nandoliya K, Miska J, Ahmed AU. Checkpoint: Inspecting the barriers in glioblastoma immunotherapies. Semin Cancer Biol 2022; 86:473-481. [PMID: 35150865 PMCID: PMC9363531 DOI: 10.1016/j.semcancer.2022.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Despite an aggressive standard of care involving radiation therapy, temozolomide-based chemotherapy, and surgical resection, glioblastoma multiforme (GBM) continues to exhibit very high recurrence and mortality rates partly due to the highly plastic and heterogenous nature of the tumor. In recent years, activation of the immune system has emerged as a promising strategy in cancer therapies. However, despite recent successes in other fields, immunotherapeutic approaches continue to encounter challenges in GBM. In this review, we first discuss immunotherapies targeting the most well-studied immune checkpoint proteins, CTLA-4 and PD-1, followed by discussions on therapies targeting immune-stimulatory molecules and secreted metabolic enzymes. Finally, we address the major challenges with immunotherapy in GBM and the potential for combination and neoadjuvant immunotherapies to tip the scales in the fight against glioblastoma.
Collapse
Affiliation(s)
- Isabelle Preddy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States
| | - Khizar Nandoliya
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, United States
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, United States; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
49
|
Kasmani MY, Ciecko AE, Brown AK, Petrova G, Gorski J, Chen YG, Cui W. Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage. Life Sci Alliance 2022; 5:5/10/e202201503. [PMID: 35667687 PMCID: PMC9170949 DOI: 10.26508/lsa.202201503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Paired scRNA-seq and scTCR-seq reveals that diabetogenic CD8 T cells in the islets and spleens of NOD mice exhibit phenotypic and clonal heterogeneity despite restricted TCR gene usage. Expression of certain TCR genes correlates with clonal proliferation and effector phenotype. Type 1 diabetes (T1D) is an autoimmune disorder defined by CD8 T cell–mediated destruction of pancreatic β cells. We have previously shown that diabetogenic CD8 T cells in the islets of non-obese diabetic mice are phenotypically heterogeneous, but clonal heterogeneity remains relatively unexplored. Here, we use paired single-cell RNA and T-cell receptor sequencing (scRNA-seq and scTCR-seq) to characterize autoreactive CD8 T cells from the islets and spleens of non-obese diabetic mice. scTCR-seq demonstrates that CD8 T cells targeting the immunodominant β-cell epitope IGRP206-214 exhibit restricted TCR gene usage. scRNA-seq identifies six clusters of autoreactive CD8 T cells in the islets and six in the spleen, including memory and exhausted cells. Clonal overlap between IGRP206-214–reactive CD8 T cells in the islets and spleen suggests these cells may circulate between the islets and periphery. Finally, we identify correlations between TCR genes and T-cell clonal expansion and effector fate. Collectively, our work demonstrates that IGRP206-214–specific CD8 T cells are phenotypically heterogeneous but clonally restricted, raising the possibility of selectively targeting these TCR structures for therapeutic benefit.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Ashley E Ciecko
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Galina Petrova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jack Gorski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
50
|
Kemming J, Gundlach S, Panning M, Huzly D, Huang J, Lütgehetmann M, Pischke S, Schulze Zur Wiesch J, Emmerich F, Llewellyn-Lacey S, Price DA, Tanriver Y, Warnatz K, Boettler T, Thimme R, Hofmann M, Fischer N, Neumann-Haefelin C. Mechanisms of CD8+ T-cell failure in chronic hepatitis E virus infection. J Hepatol 2022; 77:978-990. [PMID: 35636577 DOI: 10.1016/j.jhep.2022.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS In immunosuppressed patients, persistent HEV infection is common and may lead to cirrhosis and liver failure. HEV clearance depends on an effective virus-specific CD8+ T-cell response; however, the knowledge gap around HEV-specific CD8+ T-cell epitopes has hindered analysis of the mechanisms of T-cell failure in persistent infection. METHODS We comprehensively studied HEV-specific CD8+ T-cell responses in 46 patients with self-limiting (n = 34) or chronic HEV infection (n = 12), by epitope-specific expansion, functional testing, ex vivo peptide HLA class I tetramer multi-parametric staining, and viral sequence analysis. RESULTS We identified 25 HEV-specific CD8+ T-cell epitopes restricted by 9 different HLA class I alleles. In self-limiting HEV infection, HEV-specific CD8+ T cells were vigorous, contracted after resolution of infection, and formed functional memory responses. In contrast, in chronic infection, the HEV-specific CD8+ T-cell response was diminished, declined over time, and displayed phenotypic features of exhaustion. However, improved proliferation of HEV-specific CD8+ T cells, increased interferon-γ production and evolution of a memory-like phenotype were observed upon reduction of immunosuppression and/or ribavirin treatment and were associated with viral clearance. In 1 patient, mutational viral escape in a targeted CD8+ T-cell epitope contributed to CD8+ T-cell failure. CONCLUSION Chronic HEV infection is associated with HEV-specific CD8+ T-cell exhaustion, indicating that T-cell exhaustion driven by persisting antigen recognition also occurs in severely immunosuppressed hosts. Functional reinvigoration of virus-specific T cells is at least partially possible when antigen is cleared. In a minority of patients, viral escape also contributes to HEV-specific CD8+ T-cell failure and thus needs to be considered in personalized immunotherapeutic approaches. LAY SUMMARY Hepatitis E virus (HEV) infection is usually cleared spontaneously (without treatment) in patients with fully functioning immune systems. In immunosuppressed patients, chronic HEV infection is common and can progress rapidly to cirrhosis and liver failure. Herein, we identified the presence of HEV-specific CD8+ T cells (a specific type of immune cell that can target HEV) in immunosuppressed patients, but we show that these cells do not function properly. This dysfunction appears to play a role in the development of chronic HEV infection in vulnerable patients.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Swantje Gundlach
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Sven Pischke
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Schulze Zur Wiesch
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Yakup Tanriver
- Department of Medicine IV (Nephrology and Primary Care), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|