1
|
May K, Hecker AS, Strube C, Yin T, König S. Genetic parameters and single-step genome-wide association analysis for trematode (Fasciola hepatica and Calicophoron/Paramphistomum spp.) infections in German dairy cows. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105712. [PMID: 39798592 DOI: 10.1016/j.meegid.2025.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Infections with the liver fluke (Fasciola hepatica) cause economic losses in cattle production worldwide. Also, infections with rumen flukes (Calicophoron/Paramphistomum spp.) are gaining importance in grazing cattle in Europe. However, increasing resistance of helminth parasites against anthelmintics and limitations in treatment emphasize the need for alternative breeding approaches. This study included 1602 dairy cows kept on 29 farms with 2423 observations for F. hepatica and Calicophoron/Paramphistomum spp. egg counts per gram faeces (EPG). The EPGs were binary defined (infected: EPG > 0; non-infected: EPG = 0) and logarithmically transformed. The pedigree included 7939 cows. Genotypes (777 k) were available for 214 cows. A single-step GBLUP (ssGBLUP) model was applied to estimate genetic parameters for infection traits. Genomic breeding values from ssGBLUP were used in a single-step genome-wide association study (ssGWAS) to identify genetic variants associated with helminth infections. The heritability for liver fluke infections was up to 0.09, and up to 0.34 for rumen fluke infections. The genetic correlations between liver and rumen fluke infections ranged from 0.49 to 0.53, indicating that breeding for improved resilience to both helminth taxa is possible simultaneously. The ssGWAS revealed four SNPs for liver fluke infections on BTA 5, 13, 26 and 29, and 17 SNPs for rumen fluke infections on BTA 3 and 23. The SNPs for liver fluke infections were annotated to 12 potential candidate genes, most of which involved in liver fibrosis and immunity. The LRRC8B gene was found to be involved in host-rumen fluke interactions.
Collapse
Affiliation(s)
- Katharina May
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| | - Anna Sophie Hecker
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| |
Collapse
|
2
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release. J Physiol Sci 2025; 74:34. [PMID: 39842993 PMCID: PMC11177392 DOI: 10.1186/s12576-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan; Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan; Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan; Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
3
|
Quinodoz M, Rutz S, Peter V, Garavelli L, Innes AM, Lehmann EF, Kellenberger S, Peng Z, Barone A, Campos-Xavier B, Unger S, Rivolta C, Dutzler R, Superti-Furga A. De novo variants in LRRC8C resulting in constitutive channel activation cause a human multisystem disorder. EMBO J 2025; 44:413-436. [PMID: 39623139 PMCID: PMC11729881 DOI: 10.1038/s44318-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Volume-regulated anion channels (VRACs) are multimeric proteins composed of different paralogs of the LRRC8 family. They are activated in response to hypotonic swelling, but little is known about their specific functions. We studied two human individuals with the same congenital syndrome affecting blood vessels, brain, eyes, and bones. The LRRC8C gene harbored de novo variants in both patients, located in a region of the gene encoding the boundary between the pore and a cytoplasmic domain, which is depleted of sequence variations in control subjects. When studied by cryo-EM, both LRRC8C mutant proteins assembled as their wild-type counterparts, but showed increased flexibility, suggesting a destabilization of subunit interactions. When co-expressed with the obligatory LRRC8A subunit, the mutants exhibited enhanced activation, resulting in channel activity even at isotonic conditions in which wild-type channels are closed. We conclude that structural perturbations of LRRC8C impair channel gating and constitute the mechanistic basis of the dominant gain-of-function effect of these pathogenic variants. The pleiotropic phenotype of this novel clinical entity associated with monoallelic LRRC8C variants indicates the fundamental roles of VRACs in different tissues and organs.
Collapse
Affiliation(s)
- Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Sonja Rutz
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Virginie Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland
| | - Livia Garavelli
- Clinical Genetics Unit, Azienda USL-IRCCS of Reggio Emilia, 42123, Reggio Emilia, Italy
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T3B 6A8, Canada
| | - Elena F Lehmann
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland
| | - Stephan Kellenberger
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Zhong Peng
- Department of biomedical Sciences, University of, Lausanne, 1011, Lausanne, Switzerland
| | - Angelica Barone
- Pediatric Onco-Hematology Unit, Children's Hospital, Parma University Hospital, Parma, Italy
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland
- Genetica AG, Zurich and Lausanne, Switzerland
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, 4031, Basel, Switzerland.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Raimund Dutzler
- Department of Biochemistry University of Zurich, 8057, Zurich, Switzerland.
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV), and University of Lausanne, 1011, Lausanne, Switzerland.
- Genetica AG, Zurich and Lausanne, Switzerland.
| |
Collapse
|
4
|
Ai X, Deng H, Li X, Wei Z, Chen Y, Yin T, Zhang J, Huang J, Li H, Lin X, Tan L, Chen D, Zhang X, Zhang X, Meignin C, Imler JL, Cai H. cGAS-like receptors drive a systemic STING-dependent host response in Drosophila. Cell Rep 2024; 43:115081. [PMID: 39688951 DOI: 10.1016/j.celrep.2024.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
cGAS-like receptor (cGLR)-stimulator of interferon genes (STING) recently emerged as an important pathway controlling viral infections in invertebrates. However, its exact contribution at the organismal level remains uncharacterized. Here, we use STING::GFP knockin reporter Drosophila flies to document activation of the pathway in vivo. Four tissues strongly respond to injection of the cyclic dinucleotide 3'2'- cyclic guanosine monophosphate-adenosine monophosphate (cGAMP): the central nervous system, midgut, Malpighian tubules, and genital ducts. The pattern of STING::GFP induction in flies injected with 3'2'-cGAMP or infected by two viruses with different tropism suggests that the reporter is induced by a systemic signal produced in virus-infected cells. Accordingly, ectopic expression of cGLR2 in the fat body induces STING signaling in remote tissues and a cGLR1/2-dependent activity is transferred to females during mating. Furthermore, viral infection can alter sleep in a cGLR1/2- and STING-dependent manner. Altogether, our results reveal a contribution of cyclic dinucleotide signaling to a systemic host response to viral infection in Drosophila.
Collapse
Affiliation(s)
- Xianlong Ai
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Huimin Deng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Li
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ziming Wei
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuqiang Chen
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ting Yin
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Junhui Zhang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jingxian Huang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Haoming Li
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Lin
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Di Chen
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaohan Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiuqing Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| | - Hua Cai
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Yanushkevich S, Zieminska A, Gonzalez J, Añazco F, Song R, Arias-Cavieres A, Granados ST, Zou J, Rao Y, Concepcion AR. Recent advances in the structure, function and regulation of the volume-regulated anion channels and their role in immunity. J Physiol 2024. [PMID: 39709525 DOI: 10.1113/jp285200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e. LRRC8B-E) to form functional heteromeric channels. VRACs were discovered in T lymphocytes over 35 years ago and are found in virtually all vertebrate cells. Initially, these anion channels were characterized for their role in Cl- efflux during the regulatory volume decrease process triggered when cells are subjected to hypotonic challenges. However, substantial evidence suggests that VRACs also transport small molecules under isotonic conditions. These findings have expanded the research on VRACs to explore their functions beyond volume regulation. In innate immune cells, VRACs promote inflammation by modulating the transport of immunomodulatory cyclic dinucleotides, itaconate and ATP. In adaptive immune cells, VRACs suppress their function by taking up cyclic dinucleotides to activate the STING signalling pathway. In this review, we summarize the current understanding of LRRC8 proteins in immunity and discuss recent progress in their structure, function, regulation and mechanisms for channel activation and gating. Finally, we also examine potential immunotherapeutic applications of VRAC modulation.
Collapse
Affiliation(s)
- Sergei Yanushkevich
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aleksandra Zieminska
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joshua Gonzalez
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisca Añazco
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Richard Song
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Sara T Granados
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Yan Rao
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Axel R Concepcion
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
6
|
Bharadwaj R, Jaiswal S, Silverman N. Cytosolic delivery of innate immune agonists. Trends Immunol 2024; 45:1001-1014. [PMID: 39567309 PMCID: PMC11624987 DOI: 10.1016/j.it.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Solute carrier proteins (SLCs) are pivotal for maintaining cellular homeostasis by transporting small molecules across cellular membranes. Recent discoveries have uncovered their involvement in modulating innate immunity, particularly within the cytosol. We review emerging evidence that links SLC transporters to cytosolic innate immune recognition and highlight their role in regulating inflammation. We explore how SLC transporters influence the activation of endosomal Toll-like receptors, cytosolic NODs, and STING sensors. Understanding the contribution of SLCs to innate immune recognition provides insight into their fundamental biological functions and opens new avenues to develop possible therapeutic interventions for autoimmune and inflammatory diseases. This review aims to discuss current knowledge and identify key gaps in this rapidly evolving field.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Swati Jaiswal
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Wang X, Yang J, Yang W, Sheng H, Jia B, Cheng P, Xu S, Hong X, Jiang C, Yang Y, Wu Z, Wang J. Multiple roles of p53 in cancer development: Regulation of tumor microenvironment, m 6A modification and diverse cell death mechanisms. J Adv Res 2024:S2090-1232(24)00481-8. [PMID: 39490612 DOI: 10.1016/j.jare.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The protein p53, encoded by the most frequently mutated gene TP53 in human cancers, has diverse functions in tumor suppression. As a best known transcription factor, p53 can regulate various fundamental cellular responses, ranging from the cell-cycle arrest, DNA repair, senescence to the programmed cell death (PCD), which includes autophagy, apoptosis, ferroptosis, cuproptosis, pyroptosis and disulfidoptosis. Accumulating evidence has indicated that the tumor microenvironment (TME), N6-methyladenosine (m6A) modification and diverse PCD are important for the progression, proliferation and metastases of cancers. AIM OF REVIEW This paper aims to systematically and comprehensively summarize the multiple roles of p53 in the development of cancers from the regulation of TME, m6A Modification and diverse PCD. KEY SCIENTIFIC CONCEPTS OF REVIEW TME, a crucial local homeostasis environment, influences every step of tumorigenesis and metastasis. m6A, the most prevalent and abundant endogenous modification in eukaryotic RNAs, plays an essential role in various biological processes, containing the progression of cancers. Additionally, PCD is an evolutionarily conserved mechanism of cell suicide and a common process in living organisms. Some forms of PCD contribute to the occurrence and development of cancer. However, the complex roles of p53 within the TME, m6A modification and diverse PCD mechanisms are still not completely understood. Presently, the function roles of p53 including the wild-type and mutant p53 in different context are summarized. Additionally, the interaction between the cancer immunity, cancer cell death and RNA m6A methylation and the p53 regulation during the development and progress of cancers were discussed. Moreover, the key molecular mechanisms by which p53 participates in the regulation of TME, m6A and diverse PCD are also explored. All the findings will facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Xiangyu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyang Sheng
- Global Biometrics and Data Sciences, Bristol Myers Squibb, New York City, USA
| | - Buyun Jia
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Cheng
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Shanshan Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinhui Hong
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuanwei Jiang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Ziyin Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
10
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Zhang Y, Wang Y, Mu P, Zhu X, Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front Immunol 2024; 15:1470468. [PMID: 39464890 PMCID: PMC11502381 DOI: 10.3389/fimmu.2024.1470468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Lu G, Liu H, Wang H, Tang X, Luo S, Du M, Christiani DC, Wei Q. Genetic variants of LRRC8C, OAS2, and CCL25 in the T cell exhaustion-related genes are associated with non-small cell lung cancer survival. Front Immunol 2024; 15:1455927. [PMID: 39416786 PMCID: PMC11479925 DOI: 10.3389/fimmu.2024.1455927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Background T cell exhaustion is a state in which T cells become dysfunctional and is associated with a decreased efficacy of immune checkpoint inhibitors. Lung cancer has the highest mortality among all cancers. However, the roles of genetic variants of the T cell exhaustion-related genes in the prognosis of non-small cell lung cancer (NSCLC) patients has not been reported. Methods We conducted a two-stage multivariable Cox proportional hazards regression analysis with two previous genome-wide association study (GWAS) datasets to explore associations between genetic variants in the T cell exhaustion-related genes and survival of NSCLC patients. We also performed expression quantitative trait loci analysis for functional validation of the identified variants. Results Of all the 52,103 single nucleotide polymorphisms (SNPs) in 672 T cell exhaustion-related genes, 1,721 SNPs were found to be associated with overall survival (OS) of 1185 NSCLC patients of the discovery GWAS dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial, and 125 of these 1,721 SNPs remained significant after validation in an additional independent replication GWAS dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. In multivariable stepwise Cox model analysis, three independent SNPs (i.e., LRRC8C rs10493829 T>C, OAS2 rs2239193 A>G, and CCL25 rs3136651 T>A) remained significantly associated with OS with hazards ratios (HRs) of 0.86 (95% confidence interval (CI) = 0.77-0.96, P = 0.008), 1.48 (95% CI = 1.18-1.85, P < 0.0001) and 0.78 (95% CI = 0.66-0.91, P = 0.002), respectively. Further combined analysis for these three SNPs suggested that an unfavorable genotype score was associated with a poor OS and disease-specific survival. Expression quantitative trait loci analysis suggested that the LRRC8C rs10493829 C allele was associated with elevated LRRC8C mRNA expression levels in normal lymphoblastoid cells, lung tissue, and whole blood. Conclusion Our findings suggested that these functional SNPs in the T cell exhaustion-related genes may be prognostic predictors for survival of NSCLC patients, possibly via a mechanism of modulating corresponding gene expression.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaozhun Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Head and Neck Surgery, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
13
|
Tranter JD, Mikami RT, Kumar A, Brown G, Abd El-Aziz TM, Zhao Y, Abraham N, Meyer C, Ajanel A, Xie L, Ashworth K, Hong J, Zhang H, Kumari T, Balutowski A, Liu A, Bark D, Nair VK, Lasky NM, Feng Y, Stitziel NO, Lerner DJ, Campbell RA, Paola JD, Cho J, Sah R. LRRC8 complexes are adenosine nucleotide release channels regulating platelet activation and arterial thrombosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615233. [PMID: 39386563 PMCID: PMC11463368 DOI: 10.1101/2024.09.26.615233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Platelet shape and volume changes are early mechanical events contributing to platelet activation and thrombosis. Here, we identify single-nucleotide polymorphisms in Leucine-Rich Repeat Containing 8 (LRRC8) protein subunits that form the Volume-Regulated Anion Channel (VRAC) which are independently associated with altered mean platelet volume. LRRC8A is required for functional VRAC in megakaryocytes (MKs) and regulates platelet volume, adhesion, and agonist-stimulated activation, aggregation, ATP secretion and calcium mobilization. MK-specific LRRC8A cKO mice have reduced arteriolar thrombus formation and prolonged arterial thrombosis without affecting bleeding times. Mechanistically, platelet LRRC8A mediates swell-induced ATP/ADP release to amplify agonist-stimulated calcium and PI3K-AKT signaling via P2X1, P2Y 1 and P2Y 12 receptors. Small-molecule LRRC8 channel inhibitors recapitulate defects observed in LRRC8A-null platelets in vitro and in vivo . These studies identify the mechanoresponsive LRRC8 channel complex as an ATP/ADP release channel in platelets which regulates platelet function and thrombosis, providing a proof-of-concept for a novel anti-thrombotic drug target.
Collapse
|
14
|
Sudaryo V, Carvalho DR, Lee JM, Carozza JA, Cao X, Cordova AF, Li L. Toxicity of extracellular cGAMP and its analogs to T cells is due to SLC7A1-mediated import. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614248. [PMID: 39386698 PMCID: PMC11463533 DOI: 10.1101/2024.09.21.614248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
STING agonists are promising innate immune therapies and can synergize with adaptive immune checkpoint blockade therapies for cancer treatment, but their effectiveness is limited by the toxicity to activated T cells. An important class of STING agonists are analogs of the endogenous STING agonist, cGAMP, and while transporters for these small molecules are known in some cell types, how they enter and kill T cells remains unknown. Here, we identify the cationic amino acid transporter SLC7A1 as the dominant transporter of cGAMP and its analogs in activated primary mouse and human T cells. T cells upregulate this transporter upon activation and rapid proliferation to meet their high metabolic demand, but this comes at the cost of enabling increased transport and toxicity of cGAMP. To circumvent the essentiality of SLC7A1 to proliferating T cells, we found that the residues responsible for cGAMP transport are separate from the arginine binding pocket allowing us to perturb cGAMP transport and STING-activation mediated killing without impacting arginine transport. These results suggest that SLC7A1 is a potential target for alleviating T cell toxicity associated with cGAMP and its analogs.
Collapse
|
15
|
Wang L, Cao L, Li Z, Shao Z, Chen X, Huang Z, He X, Zheng J, Liu L, Jia XM, Xiao H. ATP-elicited Cation Fluxes Promote Volume-regulated Anion Channel LRRC8/VRAC Transport cGAMP for Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:347-361. [PMID: 38847616 DOI: 10.4049/jimmunol.2300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-β response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-β response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-β response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.
Collapse
Affiliation(s)
- Li Wang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihong Li
- State Key Laboratory of New Drug and Pharmaceutical process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Zhugui Shao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Xia Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhicheng Huang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiao He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Hu Y, Qin J, Ma Y, Yang R, Liu X, Shi C. Comprehensive review on the novel immunotherapy target: Leucine-rich repeat-containing 8A/volume-regulated anion channel. Int J Biol Sci 2024; 20:3881-3891. [PMID: 39113714 PMCID: PMC11302880 DOI: 10.7150/ijbs.95933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Leucine-rich repeat-containing 8A (LRRC8A) is a key component of the volume-regulated anion channel (VRAC) that influences essential homeostatic processes in various immune cells. These processes include the regulation of cell volume and membrane potential and the facilitation of the transport of organic agents used as anticancer drugs and immune-stimulating factors. Therefore, understanding the structure-function relationship of LRRC8A, exploring its physiological role in immunity, assessing its efficacy in treating diseases, and advancing the development of compounds that regulate its activity are important research frontiers. This review emphasized the emerging field of LRRC8A, outlined its structure and function, and summarized its role in immune cell development and immune cell-mediated antiviral and antitumor effects. Additionally, it explored the potential of LRRC8A as an immunotherapeutic target, offering insights into resolving persistent challenges and future research directions.
Collapse
Affiliation(s)
- Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Pathology, Affiliated Hospital of Yan'an University, Yanan, Shaanxi 716000, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
| | - Runze Yang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
| | - Xinyu Liu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yanan, Shaanxi 716000, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
17
|
Yongming L, Yizhe X, Zhikai Q, Yupeng W, Xiang W, Mengyuan Y, Guoqing D, Hongsheng Z. Identification of ion channel-related genes as diagnostic markers and potential therapeutic targets for osteoarthritis through bioinformatics and machine learning-based approaches. Biomarkers 2024; 29:285-297. [PMID: 38767974 DOI: 10.1080/1354750x.2024.2358316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating joint disorder characterized by the progressive degeneration of articular cartilage. Although the role of ion channels in OA pathogenesis is increasingly recognized, diagnostic markers and targeted therapies remain limited. METHODS In this study, we analyzed the GSE48556 dataset to identify differentially expressed ion channel-related genes (DEGs) in OA and normal controls. We employed machine learning algorithms, least absolute shrinkage and selection operator(LASSO), and support vector machine recursive feature elimination(SVM-RFE) to select potential diagnostic markers. Then the gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to explore the potential diagnostic markers' involvement in biological pathways. Finally, weighted gene co-expression network analysis (WGCNA) was used to identify key genes associated with OA. RESULTS We identified a total of 47 DEGs, with the majority involved in transient receptor potential (TRP) pathways. Seven genes (CHRNA4, GABRE, HTR3B, KCNG2, KCNJ2, LRRC8C, and TRPM5) were identified as the best characteristic genes for distinguishing OA from healthy samples. We performed clustering analysis and identified two distinct subtypes of OA, C1, and C2, with differential gene expression and immune cell infiltration profiles. Then we identified three key genes (PPP1R3D, ZNF101, and LOC651309) associated with OA. We constructed a prediction model using these genes and validated it using the GSE46750 dataset, demonstrating reasonable accuracy and specificity. CONCLUSIONS Our findings provide novel insights into the role of ion channel-related genes in OA pathogenesis and offer potential diagnostic markers and therapeutic targets for the treatment of OA.
Collapse
Affiliation(s)
- Liu Yongming
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Yizhe
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qian Zhikai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wang Yupeng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wang Xiang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yin Mengyuan
- Department of Traditional Chinese Orthopedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Du Guoqing
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Hongsheng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
19
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
21
|
Blest HTW, Redmond A, Avissar J, Barker J, Bridgeman A, Fowler G, Chauveau L, Hertzog J, Vendrell I, Fischer R, Iversen MB, Jing L, Koelle DM, Paludan SR, Kessler BM, Crump CM, Rehwinkel J. HSV-1 employs UL56 to antagonize expression and function of cGAMP channels. Cell Rep 2024; 43:114122. [PMID: 38652659 DOI: 10.1016/j.celrep.2024.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.
Collapse
Affiliation(s)
- Henry T W Blest
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Alexander Redmond
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jed Avissar
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jake Barker
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Anne Bridgeman
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Gerissa Fowler
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Lise Chauveau
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jonny Hertzog
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Jan Rehwinkel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
22
|
Wang K, Zhu W, Huang W, Huang K, Luo H, Long L, Yi B. TRIM Expression in HNSCC: Exploring the Link Between Ubiquitination, Immune Infiltration, and Signaling Pathways Through Bioinformatics. Int J Gen Med 2024; 17:2389-2405. [PMID: 38808201 PMCID: PMC11132118 DOI: 10.2147/ijgm.s463286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Objective Ubiquitination is an important post-translational modification. However, the significance of the TRIM family of E3 ubiquitin ligases in head and neck squamous cell carcinoma (HNSCC) has not been determined. In this study, the roles of TRIM E3 ubiquitin ligases in lymphovascular invasion in head and neck squamous cell carcinoma (HNSCC) were evaluated. Materials and Methods TRIM expression and related parameters were obtained from UbiBrowser2.0, UALCAN, TIMER, TISIDB, LinkedOmics, STRING, and GeneMANIA databases. Immunohistochemistry was used to confirm their expression. Results TRIM2, TRIM11, TRIM28, and TRIM56 were upregulated in HNSCC with lymphovascular invasion. TRIM expression was strongly associated with immune infiltration, including key treatment targets, like PD-1 and CTL4. Co-expressed genes and possible ubiquitination substrates included tumor-related factors. The TRIMs had predicted roles in ubiquitination-related pathways and vital signaling pathways, eg, MAPK, PI3K-Akt, and JAK-STAT signaling pathways. Conclusion Ubiquitination mediated by four TRIMs might be involved in the regulation of tumor immunity, laying the foundation for future studies of the roles of the TRIM family on the prediction and personalized medicine in HNSCC. The four TRIMs might exert oncogenic effects by promoting lymphovascular invasion in HNSCC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Kangkang Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Lu Long
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| |
Collapse
|
23
|
Li L. Stimulating STING for cancer therapy: Taking the extracellular route. Cell Chem Biol 2024; 31:851-861. [PMID: 38723635 DOI: 10.1016/j.chembiol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Ten years ago, the second messenger cGAMP was discovered as the activator of the anti-cancer STING pathway. The characterization of cGAMP's paracrine action and dominant extracellular hydrolase ENPP1 cemented cGAMP as an intercellular immunotransmitter that coordinates the innate and adaptive immune systems to fight cancer. In this Perspective, I look back at a decade of discovery of extracellular cGAMP biology and drug development aiming to supply or preserve extracellular cGAMP for cancer treatment. Reviewing our understanding of the cell type-specific regulatory mechanisms of STING agonists, including their transporters and degradation enzymes, I explain on a molecular and cellular level the successes and challenges of direct STING agonists for cancer therapy. Based on what we know now, I propose new ways to stimulate the STING pathway in a manner that is not only cancer specific, but also cell type specific to fully harness the anti-cancer effect of cGAMP while avoiding collateral damage.
Collapse
Affiliation(s)
- Lingyin Li
- Arc Institute, Palo Alto, CA, 94304 USA; Department of Biochemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, CA, 94305 USA.
| |
Collapse
|
24
|
Ma XY, Chen MM, Meng LH. Second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP): the cell autonomous and non-autonomous roles in cancer progression. Acta Pharmacol Sin 2024; 45:890-899. [PMID: 38177693 PMCID: PMC11053103 DOI: 10.1038/s41401-023-01210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Wu Y, Li Y, Yan N, Huang J, Li X, Zhang K, Lu Z, Qiu Z, Cheng H. Nuclear-targeted chimeric peptide nanorods to amplify innate anti-tumor immunity through localized DNA damage and STING activation. J Control Release 2024; 369:531-544. [PMID: 38580138 DOI: 10.1016/j.jconrel.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Stimulator of the interferon genes (STING) pathway is appealing but challenging to potentiate the innate anti-tumor immunity. In this work, nuclear-targeted chimeric peptide nanorods (designated as PFPD) are constructed to amplify innate immunity through localized DNA damage and STING activation. Among which, the chimeric peptide (PpIX-FFVLKPKKKRKV) is fabricated with photosensitizer and nucleus targeting peptide sequence, which can self-assemble into nanorods and load STING agonist of DMXAA. The uniform nanosize distribution and good stability of PFPD improve the sequential targeting delivery of drugs towards tumor cells and nuclei. Under light irradiation, PFPD produce a large amount of reactive oxygen species (ROS) to destroy nuclear DNA in situ, and the released cytosolic DNA fragment will efficiently activate innate anti-tumor immunity in combination with STING agonist. In vitro and in vivo results indicate the superior ability of PFPD to activate natural killer cells and T cells, thus efficiently eradicating lung metastatic tumor without inducing unwanted side effects. This work provides a sophisticated strategy for localized activation of innate immunity for systemic tumor treatment, which may inspire the rational design of nanomedicine for tumor precision therapy.
Collapse
Affiliation(s)
- Yeyang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Yanmei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Jiaqi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Xinyu Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Keyan Zhang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Zhenming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Ziwen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
26
|
Liu D, He W, Yang LL. Revitalizing antitumor immunity: Leveraging nucleic acid sensors as therapeutic targets. Cancer Lett 2024; 588:216729. [PMID: 38387757 DOI: 10.1016/j.canlet.2024.216729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Nucleic acid sensors play a critical role in recognizing and responding to pathogenic nucleic acids as danger signals. Upon activation, these sensors initiate downstream signaling cascades that lead to the production and release of pro-inflammatory cytokines, chemokines, and type I interferons. These immune mediators orchestrate diverse effector responses, including the activation of immune cells and the modulation of the tumor microenvironment. However, careful consideration must be given to balancing the activation of nucleic acid sensors to avoid unwanted autoimmune or inflammatory responses. In this review, we provide an overview of nucleic acid sensors and their role in combating cancer through the perception of various aberrant nucleic acids and activation of the immune system. We discuss the connections between different programmed cell death modes and nucleic acid sensors. Finally, we outline the development of nucleic acid sensor agonists, highlighting how their potential as therapeutic targets opens up new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
27
|
Colangelo NW, Gerber NK, Vatner RE, Cooper BT. Harnessing the cGAS-STING pathway to potentiate radiation therapy: current approaches and future directions. Front Pharmacol 2024; 15:1383000. [PMID: 38659582 PMCID: PMC11039815 DOI: 10.3389/fphar.2024.1383000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
In this review, we cover the current understanding of how radiation therapy, which uses ionizing radiation to kill cancer cells, mediates an anti-tumor immune response through the cGAS-STING pathway, and how STING agonists might potentiate this. We examine how cGAS-STING signaling mediates the release of inflammatory cytokines in response to nuclear and mitochondrial DNA entering the cytoplasm. The significance of this in the context of cancer is explored, such as in response to cell-damaging therapies and genomic instability. The contribution of the immune and non-immune cells in the tumor microenvironment is considered. This review also discusses the burgeoning understanding of STING signaling that is independent of inflammatory cytokine release and the various mechanisms by which cancer cells can evade STING signaling. We review the available data on how ionizing radiation stimulates cGAS-STING signaling as well as how STING agonists may potentiate the anti-tumor immune response induced by ionizing radiation. There is also discussion of how novel radiation modalities may affect cGAS-STING signaling. We conclude with a discussion of ongoing and planned clinical trials combining radiation therapy with STING agonists, and provide insights to consider when planning future clinical trials combining these treatments.
Collapse
Affiliation(s)
- Nicholas W. Colangelo
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Naamit K. Gerber
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Ralph E. Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Benjamin T. Cooper
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
28
|
Zhang H, Liu R, Jing Z, Li C, Fan W, Li H, Li H, Ren J, Cui S, Zhao W, Yu L, Bai Y, Liu S, Fang C, Yang W, Wei Y, Li L, Peng S. LRRC8A as a central mediator promotes colon cancer metastasis by regulating PIP5K1B/PIP2 pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167066. [PMID: 38350542 DOI: 10.1016/j.bbadis.2024.167066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Colorectal cancer (CRC) has been the third most common malignancy and the second cause of cancer-related mortality. As the core of volume-sensitive chloride currents, leucine-rich repeat-containing 8A (LRRC8A) contributes to tumor progression but is not consistent, especially for whom the roles in colon carcinoma metastasis were not fully elucidated. Herein, LRRC8A proteins were found highly expressed in hematogenous metastasis from human colorectal cancer samples. The oxaliplatin-resistant HCT116 cells highly expressed LRRC8A, which was related to impaired proliferation and enhanced migration. The over-expressed LRRC8A slowed proliferation and increased migration ex vivo and in vivo. The elevated LRRC8A upregulated the focal adhesion, MAPK, AMPK, and chemokine signaling pathways via phosphorylation and dephosphorylation. Inhibition of LRRC8A impeded the TNF-α signaling cascade and TNF-α-induced migration. LRRC8A binding to PIP5K1B regulated the PIP2 formation, providing a platform for LRRC8A to mediate cell signaling transduction. Importantly, LRRC8A self-regulated its transcription via NF-κB1 and NF-κB2 pathways and the upregulation of NIK/NF-κB2/LRRC8A transcriptional axis was unfavorable for colon cancer patients. Collectively, our findings reveal that LRRC8A is a central mediator in mediating multiple signaling pathways to promote metastasis and targeting LRRC8A proteins could become a potential clinical biomarker-driven treatment strategy for colon cancer patients.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.
| | - Rong Liu
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Zhenghui Jing
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Chunying Li
- School of Nursing, Li Shui University, Lishui, Zhejiang 323020, China
| | - Wentao Fan
- Guangzhou Huayin Medical Laboratory Center. Ltd, Guangzhou, Guangdong 510663, China
| | - Houli Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hongbing Li
- Department of Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jie Ren
- Department of Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shiyu Cui
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Wenbao Zhao
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Lei Yu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuhui Bai
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong 510500, China
| | - Shujing Liu
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong 510500, China
| | - Chunlu Fang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong 510500, China
| | - Wenqi Yang
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong 510500, China
| | - Yuan Wei
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong 510500, China
| | - Liangming Li
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong 510500, China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou, Guangdong 510500, China
| | - Shuang Peng
- Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong 510500, China; School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou, Guangdong 510500, China.
| |
Collapse
|
29
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
30
|
Shen Q, Xu P, Mei C. Role of micronucleus-activated cGAS-STING signaling in antitumor immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:25-34. [PMID: 38273467 PMCID: PMC10945493 DOI: 10.3724/zdxbyxb-2023-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling is a significant component of the innate immune system and functions as a vital sentinel mechanism to monitor cellular and tissue aberrations in microbial invasion and organ injury. cGAS, a cytosolic DNA sensor, is specialized in recognizing abnormally localized cytoplasmic double-stranded DNA (dsDNA) and catalyzes the formation of a second messenger cyclic-GMP-AMP (cGAMP), which initiates a cascade of type Ⅰ interferon and inflammatory responses mediated by STING. Micronucleus, a byproduct of chromosomal missegregation during anaphase, is also a significant contributor to cytoplasmic dsDNA. These unstable subcellular structures are susceptible to irreversible nuclear envelope rupture, exposing genomic dsDNA to the cytoplasm, which potently recruits cGAS and activates STING-mediated innate immune signaling and its downstream activities, including type Ⅰ interferon and classical nuclear factor-κB (NF-κB) signaling pathways lead to senescence, apoptosis, autophagy activating anti-cancer immunity or directly killing tumor cells. However, sustained STING activation-induced endoplasmic reticulum stress, activated chronic type Ⅰ interferon and nonclassical NF-κB signaling pathways remodel immunosuppressive tumor microenvironment, leading to immune evasion and facilitating tumor metastasis. Therefore, activated cGAS-STING signaling plays a dual role of suppressing or facilitating tumor growth in tumorigenesis and therapy. This review elaborates on research advances in mechanisms of micronucleus inducing activation of cGAS-STING signaling and its implications in tumorigenesis and therapeutic strategies of malignant tumors.
Collapse
Affiliation(s)
- Qin Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Chen Mei
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
| |
Collapse
|
31
|
Kostritskaia Y, Klüssendorf M, Pan YE, Hassani Nia F, Kostova S, Stauber T. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handb Exp Pharmacol 2024; 283:181-218. [PMID: 37468723 DOI: 10.1007/164_2023_673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Simona Kostova
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
32
|
Wu X, Yi X, Zhao B, Zhi Y, Xu Z, Cao Y, Cao X, Pang J, Yung KKL, Zhang S, Liu S, Zhou P. The volume regulated anion channel VRAC regulates NLRP3 inflammasome by modulating itaconate efflux and mitochondria function. Pharmacol Res 2023; 198:107016. [PMID: 38006980 DOI: 10.1016/j.phrs.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
The NLRP3 inflammasome is a supramolecular complex that is linked to sterile and pathogen-dependent inflammation, and its excessive activation underlies many diseases. Ion flux disturbance and cell volume regulation are both reported to mediate NLRP3 inflammasome activation, but the underlying orchestrating signaling remains not fully elucidated. The volume-regulated anion channel (VRAC), formed by LRRC8 proteins, is an important constituent that controls cell volume by permeating chloride and organic osmolytes in response to cell swelling. We now demonstrate that Lrrc8a, the essential component of VRAC, plays a central and specific role in canonical NLRP3 inflammasome activation. Moreover, VRAC acts downstream of K+ efflux for NLRP3 stimuli that require K+ efflux. Mechanically, our data demonstrate that VRAC modulates itaconate efflux and damaged mitochondria production for NLRP3 inflammasome activation. Further in vivo experiments show mice with Lrrc8a deficiency in myeloid cells were protected from lipopolysaccharides (LPS)-induced endotoxic shock. Taken together, this work identifies VRAC as a key regulator of NLRP3 inflammasome and innate immunity by regulating mitochondrial adaption for macrophage activation and highlights VRAC as a prospective drug target for the treatment of NLRP3 inflammasome and itaconate related diseases.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ken Kin Lam Yung
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Wu X, Zhou F, Cheng B, Tong G, Chen M, He L, Li Z, Yu S, Wang S, Lin L. Immune activity score to assess the prognosis, immunotherapy and chemotherapy response in gastric cancer and experimental validation. PeerJ 2023; 11:e16317. [PMID: 38025711 PMCID: PMC10655707 DOI: 10.7717/peerj.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Background Gastric cancer (GC) is an extremely heterogeneous malignancy with a complex tumor microenvironment (TME) that contributes to unsatisfactory prognosis. Methods The overall activity score for assessing the immune activity of GC patients was developed based on cancer immune cycle activity index in the Tracking Tumor Immunophenotype (TIP). Genes potentially affected by the overall activity score were screened using weighted gene co-expression network analysis (WGCNA). Based on the expression profile data of GC in The Cancer Genome Atlas (TCGA) database, COX analysis was applied to create an immune activity score (IAS). Differences in TME activity in the IAS groups were analyzed. We also evaluated the value of IAS in estimating immunotherapy and chemotherapy response based on immunotherapy cohort. Gene expression in IAS model and cell viability were determined by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and Cell Counting Kit-8 (CCK-8) assay, respectively. Results WGCAN analysis screened 629 overall activity score-related genes, which were mainly associated with T cell response and B cell response. COX analysis identified AKAP5, CTLA4, LRRC8C, AOAH-IT1, NPC2, RGS1 and SLC2A3 as critical genes affecting the prognosis of GC, based on which the IAS was developed. Further RT-qPCR analysis data showed that the expression of AKAP5 and CTLA4 was downregulated, while that of LRRC8C, AOAH-IT1, NPC2, RGS1 and SLC2A3 was significantly elevated in GC cell lines. Inhibition of AKAP5 increased cell viability but siAOAH-IT1 promoted viability of GC cells. IAS demonstrated excellent robustness in predicting immunotherapy outcome and GC prognosis, with low-IAS patients having better prognosis and immunotherapy. In addition, resistance to Erlotinib, Rapamycin, MG-132, Cyclopamine, AZ628, and Sorafenib was reduced in patients with low IAS. Conclusion IAS was a reliable prognostic indicator. For GC patients, IAS showed excellent robustness in predicting GC prognosis, immune activity status, immunotherapy response, and chemotherapeutic drug resistance. Our study provided novel insights into the prognostic assessment in GC.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Fengrui Zhou
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Boran Cheng
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Gangling Tong
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Minhua Chen
- Community Healthcare Center of Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lirui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhu Li
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Shaokang Yu
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Shubin Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Liping Lin
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, China
| |
Collapse
|
34
|
Wang Y, Sun Z, Ping J, Tang J, He B, Chang T, Zhou Q, Yuan S, Tang Z, Li X, Lu Y, He R, He X, Liu Z, Yin L, Wu N. Cell volume controlled by LRRC8A-formed volume-regulated anion channels fine-tunes T cell activation and function. Nat Commun 2023; 14:7075. [PMID: 37925509 PMCID: PMC10625614 DOI: 10.1038/s41467-023-42817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Biosynthesis drives the cell volume increase during T cell activation. However, the contribution of cell volume regulation in TCR signaling during T lymphoblast formation and its underlying mechanisms remain unclear. Here we show that cell volume regulation is required for optimal T cell activation. Inhibition of VRACs (volume-regulated anion channels) and deletion of leucine-rich repeat-containing protein 8A (LRRC8A) channel components impair T cell activation and function, particularly under weak TCR stimulation. Additionally, LRRC8A has distinct influences on mRNA transcriptional profiles, indicating the prominent effects of cell volume regulation for T cell functions. Moreover, cell volume regulation via LRRC8A controls T cell-mediated antiviral immunity and shapes the TCR repertoire in the thymus. Mechanistically, LRRC8A governs stringent cell volume increase via regulated volume decrease (RVD) during T cell blast formation to keep the TCR signaling molecules at an adequate density. Together, our results show a further layer of T cell activation regulation that LRRC8A functions as a cell volume controlling "valve" to facilitate T cell activation.
Collapse
Affiliation(s)
- Yuman Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jieming Ping
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianlong Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boxiao He
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Teding Chang
- Department of Traumatic Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijie Yuan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Tang
- Department of Traumatic Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Ning Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The First Affiliated Hospital of Anhui Medical University, Institute of Clinical Immunology, Anhui Medical University, Hefei, China.
| |
Collapse
|
35
|
Damasceno LEA, Cunha TM, Cunha FQ, Sparwasser T, Alves-Filho JC. A clinically-relevant STING agonist restrains human T H17 cell inflammatory profile. Int Immunopharmacol 2023; 124:111007. [PMID: 37778170 DOI: 10.1016/j.intimp.2023.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The STING signaling pathway has gained attention over the last few years due to its ability to incite antimicrobial and antitumoral immunity. Conversely, in mouse models of autoimmunity such as colitis and multiple sclerosis, where TH17 cells are implicated in tissue inflammation, STING activation has been associated with the attenuation of immunogenic responses. In this line, STING was found to limit murine TH17 pro-inflammatory program in vitro. Here we demonstrate that 2'3'-c-di-AM(PS)2(Rp,Rp), a STING agonist that has been undergoing clinical trials for antitumor immunotherapy, activates the STING signalosome in differentiating human TH17 cells. Of particular interest, 2'3'-c-di-AM(PS)2(Rp,Rp) reduces IL-17A production and IL23R expression by human TH17 cells while it favors the generation of regulatory T (Treg) cells. These findings suggest that STING agonists may be promising approaches for treating human TH17-mediated chronic inflammation.
Collapse
Affiliation(s)
- Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil.
| |
Collapse
|
36
|
Wang Y, De Labastida Rivera F, Edwards CL, Frame TC, Engel JA, Bukali L, Na J, Ng SS, Corvino D, Montes de Oca M, Bunn PT, Soon MS, Andrew D, Loughland JR, Zhang J, Amante FH, Barber BE, McCarthy JS, Lopez JA, Boyle MJ, Engwerda CR. STING activation promotes autologous type I interferon-dependent development of type 1 regulatory T cells during malaria. J Clin Invest 2023; 133:e169417. [PMID: 37781920 PMCID: PMC10541195 DOI: 10.1172/jci169417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
The development of highly effective malaria vaccines and improvement of drug-treatment protocols to boost antiparasitic immunity are critical for malaria elimination. However, the rapid establishment of parasite-specific immune regulatory networks following exposure to malaria parasites hampers these efforts. Here, we identified stimulator of interferon genes (STING) as a critical mediator of type I interferon production by CD4+ T cells during blood-stage Plasmodium falciparum infection. The activation of STING in CD4+ T cells by cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) stimulated IFNB gene transcription, which promoted development of IL-10- and IFN-γ-coproducing CD4+ T (type I regulatory [Tr1]) cells. The critical role for type I IFN signaling for Tr1 cell development was confirmed in vivo using a preclinical malaria model. CD4+ T cell sensitivity to STING phosphorylation was increased in healthy volunteers following P. falciparum infection, particularly in Tr1 cells. These findings identified STING expressed by CD4+ T cells as an important mediator of type I IFN production and Tr1 cell development and activation during malaria.
Collapse
Affiliation(s)
- Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | | | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Luzia Bukali
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Marcela Montes de Oca
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Megan S.F. Soon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Jia Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - James S. McCarthy
- Victorian Infectious Diseases Services, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - J. Alejandro Lopez
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Environment and Science, Nathan, Australia
| | - Michelle J. Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Life Sciences Division, Burnet Institute, Melbourne, Australia
| | | |
Collapse
|
37
|
Manolios N, Papaemmanouil J, Adams DJ. The role of ion channels in T cell function and disease. Front Immunol 2023; 14:1238171. [PMID: 37705981 PMCID: PMC10497217 DOI: 10.3389/fimmu.2023.1238171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
T lymphocytes (T cells) are an important sub-group of cells in our immune system responsible for cell-mediated adaptive responses and maintaining immune homeostasis. Abnormalities in T cell function, lead the way to the persistence of infection, impaired immunosurveillance, lack of suppression of cancer growth, and autoimmune diseases. Ion channels play a critical role in the regulation of T cell signaling and cellular function and are often overlooked and understudied. Little is known about the ion "channelome" and the interaction of ion channels in immune cells. This review aims to summarize the published data on the impact of ion channels on T cell function and disease. The importance of ion channels in health and disease plus the fact they are easily accessible by virtue of being expressed on the surface of plasma membranes makes them excellent drug targets.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW, Australia
| | - John Papaemmanouil
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
38
|
Liu T, Li Y, Wang D, Stauber T, Zhao J. Trends in volume-regulated anion channel (VRAC) research: visualization and bibliometric analysis from 2014 to 2022. Front Pharmacol 2023; 14:1234885. [PMID: 37538172 PMCID: PMC10394876 DOI: 10.3389/fphar.2023.1234885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Objective: In this study, we utilized bibliometric methods to assess the worldwide scientific output and identify hotspots related to the research on the volume-regulated anion channel (VRAC) from 2014 to 2022. Methods: From Web of Science, we obtained studies related to VRAC published from 2014 to 2022. To analyzed the data, we utilized VOSviewer, a tool for visualizing network, to create networks based on the collaboration between countries, institutions, and authors. Additionally, we performed an analysis of journal co-citation, document citation, and co-occurrence of keywords. Furthermore, we employed CiteSpace (6.1. R6 Advanced) to analyzed keywords and co-cited references with the strongest burst. Results: The final analysis included a total of 278 related articles and reviews, covering the period from 2014 to 2022. The United States emerged as the leading country contributing to this field, while the University of Copenhagen stood out as the most prominent institution. The author with most publications and most citations was Thomas J. Jentsch. Among the cited references, the article by Voss et al. published in Science (2014) gained significant attention for its identification of LRRC8 heteromers as a crucial component of the volume-regulated anion channel VRAC. Pflügers Archiv European Journal of Physiology and Journal of Physiology-London were the leading journals in terms of the quantity of associated articles and citations. Through the analysis of keyword co-occurrence, it was discovered that VRAC is involved in various physiological processes including cell growth, migration, apoptosis, swelling, and myogenesis, as well as anion and organic osmolyte transport including chloride, taurine, glutamate and ATP. VRAC is also associated with related ion channels such as TMEM16A, TMEM16F, pannexin, and CFTR, and associated with various diseases including epilepsy, leukodystrophy, atherosclerosis, hypertension, cerebral edema, stroke, and different types of cancer including gastric cancer, glioblastoma and hepatocellular carcinoma. Furthermore, VRAC is involved in anti-tumor drug resistance by regulating the uptake of platinum-based drugs and temozolomide. Additionally, VRAC has been studied in the context of pharmacology involving DCPIB and flavonoids. Conclusion: The aim of this bibliometric analysis is to provide an overall perspective for research on VRAC. VRAC has become a topic of increasing interest, and our analysis shows that it continues to be a prominent area. This study offers insights into the investigation of VRAC channel and may guide researchers in identifying new directions for future research.
Collapse
Affiliation(s)
- Tianbao Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
| | - Yin Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Dawei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, China
| |
Collapse
|
39
|
Hagino T, Qiu Z. Insights into stoichiometry and gating of heteromeric LRRC8A-LRRC8C volume-regulated anion channels. Nat Struct Mol Biol 2023:10.1038/s41594-023-01012-9. [PMID: 37286822 DOI: 10.1038/s41594-023-01012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Tatsuya Hagino
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Zhaozhu Qiu
- Departments of Physiology, Neuroscience, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Blest HTW, Chauveau L. cGAMP the travelling messenger. Front Immunol 2023; 14:1150705. [PMID: 37287967 PMCID: PMC10242147 DOI: 10.3389/fimmu.2023.1150705] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.
Collapse
Affiliation(s)
- Henry T. W. Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier (IRIM) - CNRS UMR 9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
41
|
Huang Y, Wang Q, Peng Y, Du W, Wang Q, Qi J, Hao Z, Wang Y. Spatiotemporal expression patterns of genes coding for plasmalemmal chloride transporters and channels in neurological diseases. Mol Brain 2023; 16:30. [PMID: 36934242 PMCID: PMC10024392 DOI: 10.1186/s13041-023-01018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Neuronal voltage changes which are dependent on chloride transporters and channels are involved in forming neural functions during early development and maintaining their stability until adulthood. The intracellular chloride concentration maintains a steady state, which is delicately regulated by various genes coding for chloride transporters and channels (GClTC) on the plasmalemma; however, the synergistic effect of these genes in central nervous system disorders remains unclear. In this study, we first defined 10 gene clusters with similar temporal expression patterns, and identified 41 GClTC related to brain developmental process. Then, we found 4 clusters containing 22 GClTC were enriched for the neuronal functions. The GClTC from different clusters presented distinct cell type preferences and anatomical heterogeneity. We also observed strong correlations between clustered genes and diseases, most of which were nervous system disorders. Finally, we found that one of the most well-known GClTC, SLC12A2, had a more profound effect on glial cell-related diseases than on neuron-related diseases, which was in accordance with our observation that SLC12A2 was mainly expressed in oligodendrocytes during brain development. Our findings provide a more comprehensive understanding of the temporal and spatial expression characteristics of GClTC, which can help us understand the complex roles of GClTC in the development of the healthy human brain and the etiology of brain disorders.
Collapse
Affiliation(s)
- Yanruo Huang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qihang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunsong Peng
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zijian Hao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
42
|
Kuhl N, Linder A, Philipp N, Nixdorf D, Fischer H, Veth S, Kuut G, Xu TT, Theurich S, Carell T, Subklewe M, Hornung V. STING agonism turns human T cells into interferon-producing cells but impedes their functionality. EMBO Rep 2023; 24:e55536. [PMID: 36705069 PMCID: PMC9986811 DOI: 10.15252/embr.202255536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) axis is the predominant DNA sensing system in cells of the innate immune system. However, human T cells also express high levels of STING, while its role and physiological trigger remain largely unknown. Here, we show that the cGAS-STING pathway is indeed functional in human primary T cells. In the presence of a TCR-engaging signal, both cGAS and STING activation switches T cells into type I interferon-producing cells. However, T cell function is severely compromised following STING activation, as evidenced by increased cell death, decreased proliferation, and impaired metabolism. Interestingly, these different phenotypes bifurcate at the level of STING. While antiviral immunity and cell death require the transcription factor interferon regulatory factor 3 (IRF3), decreased proliferation is mediated by STING independently of IRF3. In summary, we demonstrate that human T cells possess a functional cGAS-STING signaling pathway that can contribute to antiviral immunity. However, regardless of its potential antiviral role, the activation of the cGAS-STING pathway negatively affects T cell function at multiple levels. Taken together, these results could help inform the future development of cGAS-STING-targeted immunotherapies.
Collapse
Affiliation(s)
- Niklas Kuhl
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine II, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Andreas Linder
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine II, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Nora Philipp
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Daniel Nixdorf
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Hannah Fischer
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Simon Veth
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Gunnar Kuut
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Teng Teng Xu
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Sebastian Theurich
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Cancer Consortium (DKTK), Partner site MunichHeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Thomas Carell
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Marion Subklewe
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of Medicine III, University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Veit Hornung
- Gene Center and Department of BiochemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
43
|
cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans 2023; 51:539-555. [PMID: 36876871 DOI: 10.1042/bst20220838] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.
Collapse
|
44
|
Gao KM, Marshak-Rothstein A, Fitzgerald KA. Type-1 interferon-dependent and -independent mechanisms in cyclic GMP-AMP synthase-stimulator of interferon genes-driven auto-inflammation. Curr Opin Immunol 2023; 80:102280. [PMID: 36638547 DOI: 10.1016/j.coi.2022.102280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
The cyclic cyclic gaunosine monophosphate adenosine monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic dsDNA and initiates immune responses against pathogens. It is also implicated in several auto-inflammatory diseases known as monogenic interferonopathies, specifically Three prime repair exonuclease 1 (Trex1) loss-of-function (LOF), Dnase2 LOF, and stimulator of interferon genes-associated-vasculopathy-with-onset-in-infancy (SAVI). Although monogenic interferonopathies have diverse clinical presentations, they are distinguished by the elevation of type-1 interferons (T1IFNs). However, animal models have demonstrated that T1IFNs contribute to only some disease outcomes and that cGAS-STING activation also promotes T1IFN-independent pathology. For example, while T1IFNs drive the immunopathology associated with Trex1 LOF, disease in Dnase2 LOF is partially independent of T1IFNs, while disease in SAVI appears to occur entirely independent of T1IFNs. Additionally, while the cGAS-STING pathway is well characterized in hematopoietic cells, these animal models point to important roles for STING activity in nonhematopoietic cells in disease. Together, these models illustrate the complex role that cGAS-STING-driven responses play in the pathogenesis of inflammatory diseases across tissues.
Collapse
Affiliation(s)
- Kevin Mj Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
45
|
Vega JL, Gutiérrez C, Rojas M, Güiza J, Sáez JC. Contribution of large-pore channels to inflammation induced by microorganisms. Front Cell Dev Biol 2023; 10:1094362. [PMID: 36699007 PMCID: PMC9868820 DOI: 10.3389/fcell.2022.1094362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Plasma membrane ionic channels selectively permeate potassium, sodium, calcium, and chloride ions. However, large-pore channels are permeable to ions and small molecules such as ATP and glutamate, among others. Large-pore channels are structures formed by several protein families with little or no evolutionary linkages including connexins (Cxs), pannexins (Panxs), innexin (Inxs), unnexins (Unxs), calcium homeostasis modulator (CALHMs), and Leucine-rich repeat-containing 8 (LRRC8) proteins. Large-pore channels are key players in inflammatory cell response, guiding the activation of inflammasomes, the release of pro-inflammatory cytokines such as interleukin-1 beta (IL-1ß), and the release of adenosine-5'-triphosphate (ATP), which is considered a danger signal. This review summarizes our current understanding of large-pore channels and their contribution to inflammation induced by microorganisms, virulence factors or their toxins.
Collapse
Affiliation(s)
- José L. Vega
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile,Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta (CIIBBA), Universidad de Antofagasta, Antofagasta, Chile,Centro de Fisiología y Medicina de Altura (FIMEDALT), Universidad de Antofagasta, Antofagasta, Chile,*Correspondence: José L. Vega,
| | - Camila Gutiérrez
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Mauro Rojas
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan Güiza
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
46
|
Rutz S, Deneka D, Dittmann A, Sawicka M, Dutzler R. Structure of a volume-regulated heteromeric LRRC8A/C channel. Nat Struct Mol Biol 2023; 30:52-61. [PMID: 36522427 PMCID: PMC9851909 DOI: 10.1038/s41594-022-00899-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
Volume-regulated anion channels (VRACs) participate in the cellular response to osmotic swelling. These membrane proteins consist of heteromeric assemblies of LRRC8 subunits, whose compositions determine permeation properties. Although structures of the obligatory LRRC8A, also referred to as SWELL1, have previously defined the architecture of VRACs, the organization of heteromeric channels has remained elusive. Here we have addressed this question by the structural characterization of murine LRRC8A/C channels. Like LRRC8A, these proteins assemble as hexamers. Despite 12 possible arrangements, we find a predominant organization with an A:C ratio of two. In this assembly, four LRRC8A subunits cluster in their preferred conformation observed in homomers, as pairs of closely interacting proteins that stabilize a closed state of the channel. In contrast, the two interacting LRRC8C subunits show a larger flexibility, underlining their role in the destabilization of the tightly packed A subunits, thereby enhancing the activation properties of the protein.
Collapse
Affiliation(s)
- Sonja Rutz
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Dawid Deneka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
48
|
The cGAS-STING pathway and cancer. NATURE CANCER 2022; 3:1452-1463. [PMID: 36510011 DOI: 10.1038/s43018-022-00468-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that, following engagement by DNA, promotes distinct immune effector responses that can impact virtually all aspects of tumorigenesis, from malignant cell transformation to metastasis. Here we address how natural tumor-associated processes and traditional cancer therapies are shaped by cGAS-STING signaling, and how this contributes to beneficial or detrimental outcomes of cancer. We consider current efforts to target the cGAS-STING axis in tumors and highlight new frontiers in cGAS-STING biology to inspire thinking about their connection to cancer.
Collapse
|
49
|
Choi J. Small molecule ectonucleotide pyrophosphatase/phosphodiesterase 1 inhibitors in cancer immunotherapy for harnessing innate immunity. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Junwon Choi
- Department of Molecular Science and Technology Ajou University Suwon Gyeonggi Republic of Korea
| |
Collapse
|
50
|
LRRC8A Is a Promising Prognostic Biomarker and Therapeutic Target for Pancreatic Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14225526. [PMID: 36428619 PMCID: PMC9688930 DOI: 10.3390/cancers14225526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor of the digestive system with increasing morbidity and mortality. The lack of sensitive and reliable biomarkers is one of the main reasons for the poor prognosis. Volume-regulated anion channels (VRAC), which are ubiquitously expressed in the vertebrate cell membrane, are composed of leucine-rich repeat-containing 8A (LRRC8A) and four other homologous family members (LRRC8B-E). VRAC heterogeneous complex is implicated in each of the six "hallmarks of cancer" and represents a novel therapeutic target for cancer. In this study, LRRC8A was speculated to be a promising prognostic biomarker and therapeutic target for PAAD based on a series of bioinformatics analyses. Additional cell experiments and immunohistochemical assays demonstrated that LRRC8A can affect the prognosis of PAAD and is correlated to cell proliferation, cell migration, drug resistance, and immune infiltration. Functional analysis indicated that LRRC8A influences the progression and prognosis of patients with PAAD by the regulation of CD8+ T cells immune infiltration. Taken together, these results can help in the design of new therapeutic drugs for patients with PAAD.
Collapse
|