1
|
Zhou M, Lu Y, Tang Y, Zhang T, Xiao D, Zhang M, Zhang S, Li J, Cai X, Lin Y. A DNA-based nanorobot for targeting, hitchhiking, and regulating neutrophils to enhance sepsis therapy. Biomaterials 2025; 318:123183. [PMID: 39951831 DOI: 10.1016/j.biomaterials.2025.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/29/2024] [Accepted: 02/09/2025] [Indexed: 02/16/2025]
Abstract
Targeted regulation of neutrophils is an effective approach for treating neutrophil-driven inflammatory diseases, but challenges remain in minimizing off-target effects and extending drug half-life. A DNA-based nanorobot was developed to target neutrophils by using an N-acetyl Pro-Gly-Pro (Ac-PGP) peptide to specifically bind to the C-X-C motif of chemokine receptor 2 (CXCR2) on neutrophil membranes. This robot (a tetrahedral framework nucleic acid modified with Ac-PGP, APT) identified and hitchhiked neutrophils to accumulate at inflammatory sites and prolong its half-lives, whilst also was internalized to influence the neutrophil cell cycle and maturation process to regulate oxidative stress, inflammation, migration, and recruitment in both in vivo and in vitro inflammation experiments. Consequently, the tissue damage caused by sepsis was greatly reduced. This novel neutrophil-based nanorobot highlights the high precision of targeting and regulating neutrophils, and presents a potential strategy for treating multiple neutrophil-driven diseases.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Lu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuanlin Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shunhao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jun Li
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Trauma Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China; National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Wu S, Zhou M, Zhou H, Han L, Liu H. Astragaloside IV- loaded biomimetic nanoparticles target IκBα to regulate neutrophil extracellular trap formation for sepsis therapy. J Nanobiotechnology 2025; 23:155. [PMID: 40022068 PMCID: PMC11869569 DOI: 10.1186/s12951-025-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
This study explored the novel mechanism of Astragaloside IV (As) in treating sepsis and its application through a biomimetic nano-delivery system (As@ZM). Sepsis, a condition of organ dysfunction caused by an abnormal host response to infection, poses a significant threat to global health due to its high mortality rate. Our findings revealed a new mechanism for As in treating sepsis, which involved the reduction of neutrophil extracellular traps (NETs) release, potentially related to As binding with IκBα to inhibit the activation of the NF-κB pathway. As treated neutrophils also improved the immune microenvironment by crosstalk with endothelial cells and lung epithelial cells. However, the stability and bioavailability of As limited its clinical application. To address this issue, we had developed a ZIF-8-based nano-delivery system that achieved targeted delivery through neutrophil membrane coating, significantly enhancing the therapeutic efficacy of As. The innovative design of As@ZM offered a new strategy for sepsis treatment, with the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Shujuan Wu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huimin Zhou
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Huifan Liu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Ou Z, Li L, Ren P, Zhou TT, He F, Chen J, Cai H, Han X, Wu YD, Li J, Li XR, Tan Q, Li W, Chen Q, Zhang NZ, He X, Chen WG, Zhao Y, Sun J, Zhang Q, Wu YT, Liang Y, You J, Hu G, Tian XQ, Liao S, Fu BQ, Chen A, Cai XP, Yang H, Wang J, Jin X, Xu X, Jia WZ, Li J, Yan HB. Spatiotemporal Transcriptomic Profiling Reveals the Dynamic Immunological Landscape of Alveolar Echinococcosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2405914. [PMID: 39985260 DOI: 10.1002/advs.202405914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/03/2024] [Indexed: 02/24/2025]
Abstract
Alveolar echinococcosis (AE) is caused by the chronic infection of E. multilocularis, whose tumor-like growth can lead to high fatality if improperly treated. The early diagnosis of infection and the treatment of advanced AE remain challenging. Herein, bulk RNA-seq, scRNA-seq, and spatial transcriptomics technologies are integrated, to reveal the host immune response mechanism against E. multilocularis both spatially and chronologically, collecting mouse liver samples at multiple timepoints up to 15 months post infection. These results unveil an unprecedented high-resolution spatial atlas of the E. multilocularis infection foci and the functional roles of neutrophils, Spp1+ macrophages, and fibroblasts during disease progression. The heterogeneity of neutrophil and macrophage subpopulations are critical in both parasite-killing and the occurrence of immunosuppression during AE progression. These findings indicate the transition of parasite control strategy from "active killing" to "negative segregation" by the host, providing instructive insights into the treatment strategy for echinococcosis.
Collapse
Affiliation(s)
- Zhihua Ou
- BGI Research, Beijing, 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Li Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Peidi Ren
- BGI Research, Beijing, 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Ting-Ting Zhou
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Fan He
- BGI Research, Beijing, 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialing Chen
- BGI Research, Beijing, 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Cai
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- BGI Research, Shenzhen, 518083, China
| | - Xiumin Han
- Qinghai Provincial People's Hospital, Clinical Research Institute of Hydatid Disease, Xining, 810007, China
| | - Yao-Dong Wu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jiandong Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- BGI Research, Shenzhen, 518083, China
| | - Xiu-Rong Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Qiming Tan
- BGI Research, Beijing, 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Wenhui Li
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Qi Chen
- BGI Research, Beijing, 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nian-Zhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiuju He
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- BGI Research, Shenzhen, 518083, China
| | - Wei-Gang Chen
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yanping Zhao
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- BGI Research, Shenzhen, 518083, China
| | - Jiwen Sun
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Qian Zhang
- BGI Research, Beijing, 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Tao Wu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yingan Liang
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jie You
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Guohai Hu
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Xue-Qi Tian
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Sha Liao
- BGI Research, Shenzhen, 518083, China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ao Chen
- BGI Research, Chongqing, 401329, China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing, 401329, China
| | - Xue-Peng Cai
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | | | - Jian Wang
- BGI Research, Shenzhen, 518083, China
- China National GeneBank, BGI Research, Shenzhen, 518120, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Wan-Zhong Jia
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
- BGI Research, Belgrade, 11000, Serbia
| | - Hong-Bin Yan
- State Key Laboratory for Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs/National Para-reference Laboratory for Animal Echinococcosis/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| |
Collapse
|
4
|
Li J, Xuan M, Yang L, Liu Y, Lou N, Fu L, Shi Q, Xue C. Comprehensive single-cell analysis deciphered the immunoregulatory mechanism of TPPU in alleviating sepsis-related acute liver injury. J Adv Res 2025:S2090-1232(25)00116-X. [PMID: 39956402 DOI: 10.1016/j.jare.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025] Open
Abstract
INTRODUCTION Sepsis-related acute liver injury involves complex immune dysfunctions. Epoxyeicosatrienoic acids (EETs), bioactive molecules derived from arachidonic acid (AA) via cytochrome P450 (CYP450) and rapidly hydrolyzed by soluble epoxide hydrolase (sEH), possess anti-inflammatory properties. Nevertheless, the impact of the sEH inhibitor TPPU on sepsis-related acute liver injury remains uncertain. OBJECTIVES This study utilized comprehensive single-cell analysis to investigate the immunoregulatory mechanism of TPPU in alleviating sepsis-related acute liver injury. METHODS Hepatic bulk RNA sequencing and proteomics analyses were employed to investigate the mechanisms underlying sepsis-related acute liver injury induced by cecal ligation and puncture in mice. Cytometry by time-of-flight and single-cell RNA sequencing were conducted to thoroughly examine the immunoregulatory role of TPPU at single-cell resolution. RESULTS Downregulation of AA metabolism and the CYP450 pathway was observed during sepsis-related acute liver injury, and TPPU treatment reduced inflammatory cytokine production and mitigated sepsis-related hepatic inflammatory injury. Comprehensive single-cell analysis revealed that TPPU promotes the expansion of anti-inflammatory CD206+CD73+ M2-like macrophages and PDL1-CD39-CCR2+ neutrophils, reprogramming liver neutrophils to an anti-inflammatory CAMP+NGP+CD177+ phenotype. Additionally, TPPU inhibits the CCL6-CCR1 signaling mediated by M2-like macrophages and CAMP+NGP+CD177+ neutrophils, altering intercellular communication within the septic liver immune microenvironment. CONCLUSION This study demonstrated TPPU's protective efficacy against sepsis-related acute liver injury, underscoring its vital role in modulating liver macrophages and neutrophils and enhancing prospects for personalized immunomodulatory therapy.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingru Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmiao Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Zhang J, Shao Y, Wu J, Zhang J, Xiong X, Mao J, Wei Y, Miao C, Zhang H. Dysregulation of neutrophil in sepsis: recent insights and advances. Cell Commun Signal 2025; 23:87. [PMID: 39953528 PMCID: PMC11827254 DOI: 10.1186/s12964-025-02098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Sepsis remains the leading cause of death in intensive care units. Despite newer antimicrobial and supportive therapies, specific treatments are still lacking. Neutrophils are pivotal components of the effector phase of the host immune defense against pathogens and play a crucial role in the control of infections under normal circumstances. In addition to its anti-infective effects, the dysregulation and overactivation of neutrophils may lead to severe inflammation or tissue damage and are potential mechanisms for poor prognosis in sepsis. This review focuses on recent advancements in the understanding of the functional status of neutrophils across various pathological stages of sepsis to explore the mechanisms by which neutrophils participate in sepsis progression and provide insights for the treatment of sepsis by targeting neutrophils.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wu
- Department of Anesthesiology, Zhongshan Hospital(Xiamen), Fudan University, Xiamen, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Xiangsheng Xiong
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Jingjing Mao
- Department of Anesthesiology, Huai'an hospital affiliated to Yangzhou University (The fifth People's Hospital of Huai'an), Huai'an, Jiangsu, China
| | - Yunwei Wei
- Department of Anesthesiology, Women's Health Center of Shanxi, Children's Hospital of Shanxi, Taiyuan, Shanxi, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Khan N, Tran KA, Chevre R, Locher V, Richter M, Sun S, Sadeghi M, Pernet E, Herrero-Cervera A, Grant A, Saif A, Downey J, Kaufmann E, Khader SA, Joubert P, Barreiro LB, Yipp BG, Soehnlein O, Divangahi M. β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus. Nat Immunol 2025; 26:174-187. [PMID: 39779870 PMCID: PMC11785525 DOI: 10.1038/s41590-024-02041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection. β-Glucan treatment reduces the morbidity and mortality against IAV infection, independent of host resistance. The enhanced survival is the result of increased recruitment of neutrophils via RoRγt+ T cells in the lung tissue. β-Glucan treatment promotes granulopoiesis in a type 1 interferon-dependent manner that leads to the generation of a unique subset of immature neutrophils utilizing a mitochondrial oxidative metabolism and producing interleukin-10. Collectively, our data indicate that β-glucan reprograms hematopoietic stem cells to generate neutrophils with a new 'regulatory' function, which is required for promoting disease tolerance and maintaining lung tissue integrity against viral infection.
Collapse
Affiliation(s)
- Nargis Khan
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Kim A Tran
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Raphael Chevre
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Veronica Locher
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Mathis Richter
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Sarah Sun
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Mina Sadeghi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Andrea Herrero-Cervera
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Alexandre Grant
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Ahmed Saif
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Philippe Joubert
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec, Canada
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Shen R, Jiang Y, Liu G, Gao S, Sun H, Wu X, Gu J, Wu H, Mo K, Niu X, Ben-Ami R, Shang W, Zhang J, Wang J, Miao C, Wang Z, Chen W. Single-Cell Landscape of Bronchoalveolar Lavage Fluid Identifies Specific Neutrophils during Septic Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406218. [PMID: 39887584 DOI: 10.1002/advs.202406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/05/2024] [Indexed: 02/01/2025]
Abstract
Sepsis-induced immunosuppression is related to increased susceptibility to secondary infections and death. Lung is the most vulnerable target organ in sepsis, but the understanding of the pulmonary immunosuppression state is still limited. Here, single-cell RNA sequencing of bronchoalveolar lavage fluid (BALF) is performed to map the landscape of immune cells, revealing a neutrophil-driven immunosuppressive program in the lungs of patients with immunosuppressive sepsis. Although immunosuppressive genes are upregulated in different immune cells, only neutrophils dramatically increase in the BALF of patients in immunosuppressive phase of sepsis. Five neutrophil subpopulations in BALF are identified, among which CXCR2+ and CD274 (PD-L1 coding gene)+IL1RN+ neutrophil subpopulations increased significantly during septic immunosuppression. Interestingly, a developmental trajectory from CXCR2+ to CD274+IL1RN+ neutrophil subpopulation is disclosed. Moreover, the therapeutic effect of CXCR2 blockade is observed on the survival of septic mice, along with a decreased number of PD-L1+ neutrophils. Taken together, the CXCR2+ neutrophil subpopulation is discovered as a contributor to immunosuppression in sepsis and identified it as a potential therapeutic target in sepsis treatment.
Collapse
Affiliation(s)
- Rong Shen
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Hao Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Xinyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Ke Mo
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong, 999077, China
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20814, USA
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, 510515, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, 200032, China
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai, 201104, China
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
| |
Collapse
|
8
|
Toghani D, Gupte S, Zeng S, Mahammadov E, Crosse EI, Seyedhassantehrani N, Burns C, Gravano D, Radtke S, Kiem HP, Rodriguez S, Carlesso N, Pradeep A, Georgiades A, Lucas F, Wilson NK, Kinston SJ, Göttgens B, Zong L, Beerman I, Park B, Janssens DH, Jones D, Toghani A, Nerlov C, Pietras EM, Mesnieres M, Maes C, Kumanogoh A, Worzfeld T, Cheong JG, Josefowicz SZ, Kharchenko P, Scadden DT, Scialdone A, Spencer JA, Silberstein L. Niche-derived Semaphorin 4A safeguards functional identity of myeloid-biased hematopoietic stem cells. NATURE AGING 2025:10.1038/s43587-024-00798-7. [PMID: 39881190 DOI: 10.1038/s43587-024-00798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, Semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress. We show that, in the absence of Sema4A, myHSC inflammatory hyper-responsiveness in young mice drives excessive myHSC expansion, myeloid bias and profound loss of regenerative function with age. Mechanistically, Sema4A is mainly produced by neutrophils, signals via a cell surface receptor, Plexin D1, and safeguards the myHSC epigenetic state. Our study shows that, by selectively protecting a distinct stem cell subset, an extrinsic factor preserves functional diversity of somatic stem cell pool throughout organismal lifespan.
Collapse
Affiliation(s)
- Dorsa Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sanika Gupte
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon Zeng
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Edie I Crosse
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Christian Burns
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - David Gravano
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sonia Rodriguez
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Nadia Carlesso
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Amogh Pradeep
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexis Georgiades
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fabienne Lucas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicola K Wilson
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Le Zong
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Derek H Janssens
- Department of Epigenetics, Van Del Institute, Grand Rapids, MI, USA
| | - Daniel Jones
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ali Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claus Nerlov
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric M Pietras
- Department of Medicine-Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marion Mesnieres
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, University of Osaka, Osaka, Japan
| | - Thomas Worzfeld
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Peter Kharchenko
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Joel A Spencer
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Lev Silberstein
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
9
|
Stier MT, Sewell AE, Mwizerwa EL, Sim CY, Tanner SM, Nichols CM, Durai HH, Jennings EQ, Lindau P, Wilfong EM, Newcomb DC, Bastarache JA, Ware LB, Rathmell JC. Metabolic Adaptations Rewire CD4 T Cells in a Subset-Specific Manner in Human Critical Illness with and without Sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635146. [PMID: 39975258 PMCID: PMC11838299 DOI: 10.1101/2025.01.27.635146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Host immunity in sepsis has features of hyperinflammation together with progressive immunosuppression, particularly among CD4 T cells, that can predispose to secondary infections and ineffectual organ recovery. Metabolic and immunologic dysfunction are archetypal findings in critically ill patients with sepsis, but whether these factors are mechanistically linked remains incompletely defined. We characterized functional metabolic properties of human CD4 T cells from critically ill patients with and without sepsis and healthy adults. CD4 T cells in critical illness showed increased subset-specific metabolic plasticity, with regulatory T cells (Tregs) acquiring glycolytic capacity that stabilized suppressive markers FOXP3 and TIGIT and correlated with clinical illness severity. Single-cell transcriptomics identified differential kynurenine metabolism in Tregs, which was validated ex vivo as a mechanism of Treg glycolytic adaptation and suppressive rewiring. These findings underscore immunometabolic dysfunction as a driver of CD4 T cell remodeling in sepsis and suggest therapeutic avenues to restore an effective immune response.
Collapse
Affiliation(s)
- Matthew T. Stier
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allison E. Sewell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin L. Mwizerwa
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chooi Ying Sim
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Samantha M. Tanner
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Casey M. Nichols
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Heather H. Durai
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin Q. Jennings
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paul Lindau
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin M. Wilfong
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Lu S, Yu Y, Zhu Z, Wang M, Liu R, Liu J. Causal relationship between immune cells and heart failure: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41247. [PMID: 39792752 PMCID: PMC11730111 DOI: 10.1097/md.0000000000041247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR. Subsequently, inverse variance weighted was used as primary tool for MR analysis, and Cochran Q and leave-one-out analyses were used to assess heterogeneity and robustness, respectively. MR analysis showed that cluster of differentiation (CD) 66b++ myeloid cell absolute count (AC) (odds ratio [OR] 1.043, 95% confidence interval [CI] 1.001-1.088, P = .045), human leukocyte antigen D-related on CD14- CD16+ monocyte (OR 1.030, 95% CI 1.005-1.056, P = .019), IgD on unsw mem (OR 1.046, 95% CI 1.015-1.078, P = .003), CD4 on CD4+ (OR 1.039, 95% CI 1.009-1.070, P = .011), CD24 on IgD+ CD38- (OR 1.026, 95% CI 1.000-1.052, P = .046), CD20 on CD24 + CD27+ (OR 1.032, 95% CI 1.003-1.061, P = .029), CD19 on CD20- (OR 1.037, 95% CI 1.005-1.071, P = .023), CD62L- CD86 + myeloid dendritic cell %DC (OR 1.032, 95% CI 1.004-1.061, P = .027), human leukocyte antigen D-related + CD4 + AC (OR 1.037, 95% CI 1.003-1.072, P = .032), and effector memory CD8br AC (OR 1.048, 95% CI 1.021-1.076, P < .001) were associated with increased genetic susceptibility to HF. Cochran Q and sensitivity analyses showed that the results had no heterogeneity and were robust. This MR analysis revealed 10 immune cell phenotypes associated with increased genetic susceptibility to HF. These findings provide new directions for understanding the pathogenesis of HF and developing novel therapies.
Collapse
Affiliation(s)
- Shenghua Lu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yunfeng Yu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zheqin Zhu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Min Wang
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rongzhen Liu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianhe Liu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
11
|
Kolodyazhna A, Wiersinga WJ, van der Poll T. Aiming for precision: personalized medicine through sepsis subtyping. BURNS & TRAUMA 2025; 13:tkae073. [PMID: 39759543 PMCID: PMC11697112 DOI: 10.1093/burnst/tkae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/29/2024] [Indexed: 01/07/2025]
Abstract
According to the latest definition, sepsis is characterized by life-threatening organ dysfunction caused by a dysregulated host response to an infection. However, this definition fails to grasp the heterogeneous nature and the underlying dynamic pathophysiology of the syndrome. In response to this heterogeneity, efforts have been made to stratify sepsis patients into subtypes, either based on their clinical presentation or pathophysiological characteristics. Subtyping introduces the possibility of the implementation of personalized medicine, whereby each patient receives treatment tailored to their individual disease manifestation. This review explores the currently known subtypes, categorized by subphenotypes and endotypes, as well as the treatments that have been researched thus far in the context of sepsis subtypes and personalized medicine.
Collapse
Affiliation(s)
- Aryna Kolodyazhna
- Amsterdam University Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Amsterdam University Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Tom van der Poll
- Amsterdam University Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Gong HH, Worley MJ, Carver KA, Godin CJ, Deng JC. Deficient neutrophil responses early in influenza infection promote viral replication and pulmonary inflammation. PLoS Pathog 2025; 21:e1012449. [PMID: 39823516 PMCID: PMC11845034 DOI: 10.1371/journal.ppat.1012449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/21/2025] [Accepted: 12/11/2024] [Indexed: 01/19/2025] Open
Abstract
Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1. A self-resolving dose in B6 mice was lethal in A/J mice, which had increased viral load throughout infection accompanied by prominent bronchoalveolar neutrophilia and pulmonary vascular leakage preceding mortality. Notably, the B6 mice heavily recruited neutrophils to lungs early in infection while A/J mice failed to do so. Neutrophils from A/J mice additionally displayed reduced neutrophil extracellular trap (NET) release and reactive oxygen species (ROS) generation compared to B6 mice early in infection, suggesting the failure to control virus in A/J mice was a product of deficient neutrophil response. To determine if variation in neutrophils between strains governed viral control and inflammation, we adoptively transferred bone marrow neutrophils from B6 or A/J donors to A/J recipients early in infection and found that the transfer of B6 neutrophils enhanced viral clearance and abrogated the dissemination of CXCL1 and IL-6. The transfer of A/J neutrophils, however, failed to achieve either. Furthermore, B6 neutrophils were capable of greater levels of viral killing in vitro than their A/J counterparts. These results suggest that a key moderator of inflammation in influenza infection is the control of virus by neutrophils early in infection. Thus, host-specific differences in both the recruitment of these cells as well as interindividual variation in neutrophil ability to support viral clearance may in part dictate differing susceptibility to respiratory viral infections.
Collapse
Affiliation(s)
- Henry H. Gong
- Graduate Program in Immunology, Ann Arbor, Michigan, United States of America
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew J. Worley
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kyle A. Carver
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caleb J. Godin
- Research Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jane C. Deng
- Graduate Program in Immunology, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Medicine Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, United States of America
| |
Collapse
|
13
|
Yang X, Pu X, Xu Y, Zhao J, Fang X, Cui J, Deng G, Liu Y, Zhu L, Shao M, Yang K. A novel prognosis evaluation indicator of patients with sepsis created by integrating six microfluidic-based neutrophil chemotactic migration parameters. Talanta 2025; 281:126801. [PMID: 39241649 DOI: 10.1016/j.talanta.2024.126801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Impaired neutrophil migration in sepsis is associated with a poor prognosis. The potential of utilizing neutrophil chemotaxis to assess immune function, disease severity, and patient prognosis in sepsis remains underexplored. This study employed an innovative approach by integrating a multi-tip pipette with a Six-Unit microfluidic chip (SU6-chip) to establish gradients in six microchannels, thereby analyzing neutrophil chemotaxis in sepsis patients. We compared chemotactic parameters between healthy controls (NH = 20) and sepsis patients (NS1 = 25), observing significant differences in gradient perception time (GP), migration distance (MD), peak velocity (Vmax), chemotactic index (CI), reverse migration rate (RM), and stop migration number (SM). A novel composite indicator, the Sepsis Neutrophil Migration Evaluation (SNME) index, was developed by integrating these six chemotactic migration parameters. The SNME index and individual chemotaxis parameters showed significant correlations with the Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE II) score, hypersensitivity C-reactive protein (hs-CRP), and heparin-binding protein (HBP). Moreover, the SNME index demonstrated potential for monitoring sepsis progression, with ROC analysis confirming its predictive accuracy (area under the curve [AUC] = 0.895, cutoff value = 31.5, specificity = 86.73 %, sensitivity = 86.71 %), outperforming individual neutrophil chemotactic parameters. In conclusion, the SNME index represents a promising new tool for adjunctive diagnosis and prognosis assessment in patients with sepsis.
Collapse
Affiliation(s)
- Xiao Yang
- University of Science and Technology of China, Hefei, 230026, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xuexue Pu
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuanyuan Xu
- Department of Pediatric Critical Care Medicine, Children's Medical Center of Anhui Medical University, Hefei, 230051, China
| | - Jun Zhao
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiao Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Junsheng Cui
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Guoqing Deng
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Min Shao
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
14
|
Sai Krishna AVS, Sinha S, Satyanarayana Rao MR, Donakonda S. The impact of PTEN status on glioblastoma multiforme: A glial cell type-specific study identifies unique prognostic markers. Comput Biol Med 2025; 184:109395. [PMID: 39531927 DOI: 10.1016/j.compbiomed.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma multiforme (GBM) is the most invasive form of brain tumor, accounting for 5 % of the cases per 100,000 people in various countries. The phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is a well-known tumor suppressor, and its alteration leads to a deleterious effect on GBM progression. The molecular mechanism of tumorigenesis in glial cell types, driven by PTEN status, is yet to be elucidated. In this study, we analyzed publicly available single-cell transcriptome profiles of PTEN wild-type (WT) and NULL GBM patients. We compared them with normal brain data to uncover many unique gene sets influenced by PTEN status. The co-expression network analysis of differentially expressed genes (DEGs) between normal brain and PTEN (WT and NULL) identified highly interconnected genes. The weighted gene co-expression network analysis (WGCNA), based on the DESeq2 algorithm, identified glial cell-type-specific modules in PTEN status-dependent bulk RNA expression profiles. We overlapped network module gene sets from single-cell and bulk transcriptome profiles, and shared genes were considered for further analysis. The hallmark pathway enrichment analysis of the genes unique to PTEN-WT and NULL revealed various tumor growth-related pathways across the glial cell types. Further characterization of PTEN-WT and PTEN-NULL networks belonging to the single-cell and bulk RNA datasets revealed that PTEN status influences the network modules in astrocytes, microglia, and oligodendrocyte precursor cells. An integrated influence value algorithm identified hub genes for each glial cell type. The prognostic analysis identified clinically relevant hub genes specific to the cell type in PTEN-WT: GLIPR2 (astrocytes), CFH, IL32, MXRA5 (microglia), and PTEN-NULL: ID1 (astrocytes) and LAT2 (microglia). Our glial cell type-level transcriptome analysis unearthed unique molecular pathways and prognostic markers in PTEN status-dependent GBM patients.
Collapse
Affiliation(s)
- A V S Sai Krishna
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Swati Sinha
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | | | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
15
|
Long Q, Ye H, Song S, Li J, Wu J, Mao J, Li R, Ke Li, Gao Z, Zheng Y. A transcriptome-based risk model in sepsis enables prognostic prediction and drug repositioning. iScience 2024; 27:111277. [PMID: 39628572 PMCID: PMC11613189 DOI: 10.1016/j.isci.2024.111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Septic management presented a tremendous challenge due to heterogeneous host responses. We aimed to develop a risk model for early septic stratification based on transcriptomic signature. Here, we combined genes OLAH, LY96, HPGD, and ABLIM1 into a prognostic risk score model, which demonstrated exceptional performance in septic diagnosis (AUC = 0.99-1.00) and prognosis (AUC = 0.61-0.70), outperforming that of Mars and SRS endotypes. Also, the model unveiled immunosuppressive status in high-risk patients and a poor response to hydrocortisone in low-risk individuals. Single-cell transcriptome analysis further elucidated expression patterns and effects of the four genes across immune cell types, illustrating integrated host responses reflected by this model. Upon distinct transcriptional profiles of risk subgroups, we identified fenretinide and meloxicam as therapeutic agents, which significantly improved survival in septic mice models. Our study introduced a risk model that optimized risk stratification and drug repurposing of sepsis, thereby offering a comprehensive management approach.
Collapse
Affiliation(s)
- Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| | - Jingsong Mao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin 541000, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Ke Li
- Department of Critical Care Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiamen University, Xiamen 361101, China
| |
Collapse
|
16
|
Meyer NJ, Prescott HC. Sepsis and Septic Shock. N Engl J Med 2024; 391:2133-2146. [PMID: 39774315 DOI: 10.1056/nejmra2403213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Nuala J Meyer
- From the Division of Pulmonary, Allergy, and Critical Care Medicine and the Center for Translational Lung Biology, Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia (N.J.M.); and the Department of Internal Medicine, University of Michigan, and VA Center for Clinical Management Research - both in Ann Arbor (H.C.P.)
| | - Hallie C Prescott
- From the Division of Pulmonary, Allergy, and Critical Care Medicine and the Center for Translational Lung Biology, Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia (N.J.M.); and the Department of Internal Medicine, University of Michigan, and VA Center for Clinical Management Research - both in Ann Arbor (H.C.P.)
| |
Collapse
|
17
|
Costamagna A, Pasquino C, Lamorte S, Navarro-Tableros V, Delsedime L, Fanelli V, Camussi G, Del Sorbo L. Human liver stem cells and derived extracellular vesicles protect from sepsis-induced acute lung injury and restore bone marrow myelopoiesis in a murine model of sepsis. Intensive Care Med Exp 2024; 12:111. [PMID: 39627601 PMCID: PMC11615238 DOI: 10.1186/s40635-024-00701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Sepsis is a condition with high mortality and morbidity, characterized by deregulation of the immune response against the pathogen. Current treatment strategies rely mainly on antibiotics and supportive care. However, there is growing interest in exploring cell-based therapies as complementary approaches. Human liver stem cells (HLSCs) are pluripotent cells of mesenchymal origin, showing some advantages compared to mesenchymal stem cells in terms of immunomodulatory properties. HSLC-derived extracellular vesicles (EVs) exhibited a superior efficacy profile compared to cells due to their potential to get through biological barriers and possibly to avoid tumorigenicity and showed to be effective in vivo and ex vivo models of liver and kidney disease. The potential of HLSCs and their EVs in recovering damage to distal organs due to sepsis other than the kidney remains unknown. This study aimed to investigate the therapeutic potential of the intravenous administration of HSLCs or HSLCs-derived EVs in a murine model of sepsis. RESULTS Sepsis was induced by caecal ligation and puncture (CLP) on C57/BL6 mice. After CLP, mice were assigned to receive either normal saline, HLSCs or their EVs and compared to a sham group which underwent only laparotomy. Survival, persistence of bacteraemia, lung function evaluation, histology and bone marrow analysis were performed. Administration of HLSCs or HLSC-EVs resulted in improved bacterial clearance and lung function in terms of lung elastance and oedema. Naïve murine hematopoietic progenitors in bone marrow were enhanced after treatment as well. Administration of HLSCs and HLSC-EVs after CLP to significantly improved survival. CONCLUSIONS Treatment with HLSCs or HLSC-derived EVs was effective in improving acute lung injury, dysmyelopoiesis and ultimately survival in this experimental murine model of lethal sepsis.
Collapse
Affiliation(s)
| | - Chiara Pasquino
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Sara Lamorte
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | | | - Luisa Delsedime
- Pathology Unit, A.O.U, Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Haem Rahimi M, Poussineau C, Cuerq C, Cour M, Lukaszewicz AC, Venet F, Monneret G. Sustained elevation of calprotectin associates with delayed appearance of myeloid-derived suppressor cells in patients with septic shock. J Crit Care 2024; 84:154899. [PMID: 39213901 DOI: 10.1016/j.jcrc.2024.154899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Muzhda Haem Rahimi
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France; Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France
| | - Cécile Poussineau
- Hospices Civils de Lyon, Clinical Chemistry Laboratory, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Charlotte Cuerq
- Hospices Civils de Lyon, Clinical Chemistry Laboratory, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Martin Cour
- Hospices Civils de Lyon, Edouard Herriot Hospital, Medical intensive Care Department, 69437 Lyon, France
| | - Anne-Claire Lukaszewicz
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France; Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, 69437 Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France; NLRP3 Inflammation and Immune Response to Sepsis Team, Centre International de Recherche in Infectiology (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France; Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France.
| |
Collapse
|
19
|
Zhang H, Qian Y, Zhang Y, Zhou X, Shen S, Li J, Sun Z, Wang W. Multi-omics analysis deciphers intercellular communication regulating oxidative stress to promote oral squamous cell carcinoma progression. NPJ Precis Oncol 2024; 8:272. [PMID: 39572698 PMCID: PMC11582705 DOI: 10.1038/s41698-024-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor in the head and neck, associated with high recurrence and poor prognosis. We performed an integrated analysis of single-cell RNA and spatial transcriptomic data from cancerous and normal tissues to create a comprehensive atlas of epithelial cells and cancer-associated fibroblasts (CAFs). Our findings show that AKR1C3+ epithelial cells, located at the tumor's stromal front, exhibit significant copy number variation and poor prognostic indicators, suggesting a role in tumor invasion. We also identified a distinct group of early-stage CAFs (named OSCC_Normal, characterized by ADH1B+, MFAP4+, and PLA2G2A+) that interact with AKR1C3+ cells, where OSCC_Normal may inhibit the FOXO1 redox switch in these epithelial cells via the IGF1/IGF1R pathway, causing oxidative stress overload. Conversely, AKR1C3+ cells use ITGA6/ITGB4 receptor to counteract the effects of OSCC_Normal, promoting cancer invasion. This study unveils complex interactions within the OSCC tumor microenvironment.
Collapse
Affiliation(s)
- Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yang Zhang
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Xue Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Shiying Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jingyi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming, China.
- Department of Endodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.
- Yunnan Key Laboratory of Stomatology, Kunming, China.
| |
Collapse
|
20
|
Moore AR, Zheng H, Ganesan A, Hasin-Brumshtein Y, Maddali MV, Levitt JE, van der Poll T, Scicluna BP, Giamarellos-Bourboulis EJ, Kotsaki A, Martin-Loeches I, Garduno A, Rothman RE, Sevransky J, Wright DW, Atreya MR, Moldawer LL, Efron PA, Marcela K, Karvunidis T, Giannini HM, Meyer NJ, Sweeney TE, Rogers AJ, Khatri P. International multi-cohort analysis identifies novel framework for quantifying immune dysregulation in critical illness: results of the SUBSPACE consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623298. [PMID: 39605502 PMCID: PMC11601436 DOI: 10.1101/2024.11.12.623298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Progress in the management of critical care syndromes such as sepsis, Acute Respiratory Distress Syndrome (ARDS), and trauma has slowed over the last two decades, limited by the inherent heterogeneity within syndromic illnesses. Numerous immune endotypes have been proposed in sepsis and critical care, however the overlap of the endotypes is unclear, limiting clinical translation. The SUBSPACE consortium is an international consortium that aims to advance precision medicine through the sharing of transcriptomic data. By evaluating the overlap of existing immune endotypes in sepsis across over 6,000 samples, we developed cell-type specific signatures to quantify dysregulation in these immune compartments. Myeloid and lymphoid dysregulation were associated with disease severity and mortality across all cohorts. This dysregulation was not only observed in sepsis but also in ARDS, trauma, and burn patients, indicating a conserved mechanism across various critical illness syndromes. Moreover, analysis of randomized controlled trial data revealed that myeloid and lymphoid dysregulation is linked to differential mortality in patients treated with anakinra or corticosteroids, underscoring its prognostic and therapeutic significance. In conclusion, this novel immunology-based framework for quantifying cellular compartment dysregulation offers a valuable tool for prognosis and therapeutic decision-making in critical illness.
Collapse
Affiliation(s)
- Andrew R Moore
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | | | - Manoj V Maddali
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| | - Joseph E Levitt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | | | | | - Antigone Kotsaki
- 4 Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Greece
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, Dublin, Ireland
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Alexis Garduno
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James’s Hospital, Dublin, Ireland
| | - Richard E. Rothman
- Department of Emergency Medicine, The Johns Hopkins University, Baltimore, MD
| | | | - David W Wright
- Department of Emergency Medicine, Emory University, Atlanta, GA
| | - Mihir R. Atreya
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, OH
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center and the SPIES Consortium, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Sepsis and Critical Illness Research Center and the SPIES Consortium, University of Florida College of Medicine, Gainesville, FL
| | - Kralovcova Marcela
- 1 Department of Internal Medicine, Faculty of Medicine, Teaching Hospital and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Thomas Karvunidis
- 1 Department of Internal Medicine, Faculty of Medicine, Teaching Hospital and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Heather M. Giannini
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia PA
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia PA
| | | | - Angela J Rogers
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
21
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2024:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
22
|
Chua CLL, Morales RF, Chia PY, Yeo TW, Teo A. Neutrophils - an understudied bystander in dengue? Trends Microbiol 2024; 32:1132-1142. [PMID: 38749772 DOI: 10.1016/j.tim.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 11/08/2024]
Abstract
Dengue is a mosquito-borne viral disease which causes significant morbidity and mortality each year. Previous research has proposed several mechanisms of pathogenicity that mainly involve the dengue virus and host humoral immunity. However, innate immune cells, such as neutrophils, may also play an important role in dengue, albeit a much less defined role. In this review, we discuss the emerging roles of neutrophils in dengue and their involvement in pathologies associated with severe dengue. We also describe the potential use of several neutrophil proteins as biomarkers for severe dengue. These studies suggest that neutrophils are important players in dengue, and a better understanding of neutrophil-dengue biology is urgently needed.
Collapse
Affiliation(s)
- Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medicine Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- National Centre for Infectious Diseases, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
23
|
La Sorda M, De Lorenzis D, Battaglia A, Fiori B, Graffeo R, Santangelo R, D’Inzeo T, De Pascale G, Schinzari G, Pedone RR, Rossi E, Sanguinetti M, Sali M, Fattorossi A. A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients. Int J Mol Sci 2024; 25:11632. [PMID: 39519183 PMCID: PMC11547050 DOI: 10.3390/ijms252111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
We developed a flow cytometry (FC) assay enabling the rapid and accurate identification of bacterial and viral infections using whole blood samples. The streamlined flow cytometry assay is designed to be user-friendly, making it accessible even for operators with limited experience in FC techniques. The key components of the assay focus on the expression levels of specific surface markers-CD64 on polymorphonuclear neutrophils (PMN) as a marker for bacterial infection, and CD169 on monocytes (MO) for viral infection. The strong performance indicated by an area under the receiver operating characteristic (ROC) curve of 0.94 for both PMN CD64 positive predictive value (PPV) 97.96% and negative predictive value (NPV) 76.67%, and MO CD169 PPV 82.6% and NPV 86.9%, highlight the assay's robustness in differentiating between bacterial and viral infections accurately. The FC assay includes the assessment of immune system status through HLA-DR and IL-1R2 modulation in MO, providing a useful insight into the patients' immune response. The significant increase in the frequency of MO exhibiting reduced HLA-DR expression and elevated IL-1R2 levels in infected patients (compared to healthy controls) underscores the potential of these markers as indicators of infection severity. Although the overall correlation between HLA-DR and IL-1R2 expression levels was not significant across all patients, there was a trend in patients with more severe disease suggesting that these markers may have the potential to assist in stratifying patient risk. The present FC assay has the potential to become routine in the clinical microbiology laboratory community and to be helpful in guiding clinical decision making.
Collapse
Affiliation(s)
- Marilena La Sorda
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
| | - Desy De Lorenzis
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
| | - Alessandra Battaglia
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Barbara Fiori
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
| | - Rosalia Graffeo
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
| | - Rosaria Santangelo
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
| | - Tiziana D’Inzeo
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
| | - Gennaro De Pascale
- Emergency Department, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy;
| | - Giovanni Schinzari
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (G.S.); (R.R.P.); (E.R.)
| | - Romina Rose Pedone
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (G.S.); (R.R.P.); (E.R.)
| | - Ernesto Rossi
- Medical Oncology, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (G.S.); (R.R.P.); (E.R.)
| | - Maurizio Sanguinetti
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Michela Sali
- Department of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy; (M.L.S.); (D.D.L.); (B.F.); (R.G.); (R.S.); (T.D.); (M.S.); (M.S.)
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Andrea Fattorossi
- Laboratory of Oncology and Flow Cytometry, A. Gemelli University Hospital Foundation IRCCS, 00168 Rome, Italy
| |
Collapse
|
24
|
Deng M, Chen S, Wu J, Su L, Xu Z, Jiang C, Sheng L, Yang X, Zeng L, Wang J, Dai W. Exploring the anti-inflammatory and immune regulatory effects of Taohe Chengqi decoction in sepsis-induced lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118404. [PMID: 38824977 DOI: 10.1016/j.jep.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood. AIM OF THE STUDY This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury. MATERIALS AND METHODS The study began with validating THCQ's anti-inflammatory effects through in vitro and in vivo experiments. Network pharmacology was employed for mechanistic exploration, incorporating GO, KEGG, and PPI analyses of targets. Hub gene-immune cell correlations were assessed using CIBERSORT, with further scrutiny at clinical and single-cell levels. Molecular docking explored THCQ's drug-gene interactions, culminating in qPCR and WB validations of hub gene expressions in sepsis and post-THCQ treatment scenarios. RESULTS THCQ demonstrated efficacy in modulating inflammatory responses in sepsis, identified through network pharmacology. Key genes like MAPK14, MAPK3, MMP9, STAT3, LYN, AKT1, PTPN11, and HSP90AA1 emerged as central targets. Molecular docking revealed interactions between these genes and THCQ components. qPCR results showed significant modulation of these genes, indicating THCQ's potential in reducing inflammation and regulating immune responses in sepsis. CONCLUSION This study sheds light on THCQ's anti-inflammatory and immune regulatory mechanisms in sepsis, providing a foundation for further research and potential clinical application.
Collapse
Affiliation(s)
- Mingtao Deng
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Siqi Chen
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Jian Wu
- Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Liling Su
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Zijin Xu
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Changrun Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Lei Sheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Xinyi Yang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Dong Lake District, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Long Zeng
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Jingwei Wang
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Wei Dai
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Clinical Medicine, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China.
| |
Collapse
|
25
|
Guenther T, Coulibaly A, Velásquez SY, Schulte J, Fuderer T, Sturm T, Hahn B, Thiel M, Lindner HA. Transcriptional pathways of terminal differentiation in high- and low-density blood granulocytes in sepsis. J Inflamm (Lond) 2024; 21:40. [PMID: 39434093 PMCID: PMC11492786 DOI: 10.1186/s12950-024-00414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Trauma and infection induce emergency granulopoiesis. Counts of immature granulocytes and transcriptional pathways of terminal granulocytic differentiation in blood are elevated in sepsis but correlate with disease severity. This limits their performance as sepsis biomarkers in critically ill patients. We hypothesized that activation of these pathways in sepsis is attributable to immature low-density (LD) rather than mature high-density (HD) granulocytes. METHODS We included patients with sepsis and systemic inflammatory response syndrome (SIRS) of comparable disease severity, and additionally septic shock, on intensive or intermediate care unit admission. Blood granulocyte isolation by CD15 MicroBeads was followed by density-gradient centrifugation. Flow cytometry was used to determine counts of developmental stages (precursors) and their relative abundancies in total, HD, and LD granulocytes. Five degranulation markers were quantified in plasma by multiplex immunoassays. A set of 135 genes mapping granulocyte differentiation was assayed by QuantiGene™ Plex. CEACAM4, PLAC8, and CD63 were analyzed by qRT-PCR. Nonparametric statistical tests were applied. RESULTS Precursor counts appeared higher in sepsis than SIRS but did not correlate with disease severity for early immature and mature granulocytes. Precursor subpopulations were enriched at least ten-fold in LD over HD granulocytes without sepsis-SIRS differences. Degranulation markers in blood were comparable in sepsis and SIRS. Higher expression of early developmental genes in sepsis than SIRS was more pronounced in LD and less in HD than total granulocytes. Only the cell membrane protein encoding genes CXCR2 and CEACAM4 were more highly expressed in SIRS than sepsis. By qRT-PCR, the azurophilic granule genes CD63 and PLAC8 showed higher sepsis than SIRS levels in LD granulocytes and PLAC8 also in total granulocytes where its discriminatory performance resembled C-reactive protein (CRP). CONCLUSIONS Transcriptional programs of early terminal granulocytic differentiation distinguish sepsis from SIRS due to both higher counts of immature granulocytes and elevated expression of early developmental genes in sepsis. The sustained expression of PLAC8 in mature granulocytes likely accounts for its selection in the whole blood SeptiCyte™ LAB test. Total granulocyte PLAC8 rivals CRP as sepsis biomarker. However, infection-specific transcriptional pathways, that differentiate sepsis from sterile stress-induced granulocytosis more reliably than CRP, remain to be identified.
Collapse
Affiliation(s)
- Tobias Guenther
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna Coulibaly
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonia Y Velásquez
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jutta Schulte
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tanja Fuderer
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Sturm
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bianka Hahn
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Holger A Lindner
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Mannheim Institute of Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
26
|
Feng P, He Y, Guan P, Duan C, Huang J, Chai Z, Wang J, Zheng H, Luo J, Shi Y, Li X, Huang H. Serum Procalcitonin, Hematology Parameters, and Cell Morphology in Multiple Clinical Conditions and Sepsis. J Clin Lab Anal 2024; 38:e25100. [PMID: 39305165 PMCID: PMC11520939 DOI: 10.1002/jcla.25100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The clinical value of procalcitonin (PCT) in infection diagnosis and antibiotic stewardship is still unclear. This study aimed to investigate the association between serum PCT and different clinical conditions as well as other infectious/inflammatory parameters in different septic patients in order to elucidate the value of PCT detection in infection management. METHODS Chemiluminescence immunoassay was used for serum PCT analysis. Hematology analysis was used for complete blood cell count. Digital automated cell morphology analysis was used for blood cell morphology examination. Blood, urine, and stool cultures were performed according to routine clinical laboratory standard operating procedures. C-reactive protein (CRP) was analyzed by immunoturbidimetry. Erythrocyte sedimentation rate test was performed using natural sedimentation methods. RESULTS Outpatients, ICU patients, and patients under 2 years of age with respiratory infections had higher serum PCT levels. Septic patients had the highest-serum PCT levels and other infection indexes. PCT levels in the blood, urine, and stool culture-positive patients were significantly higher than in culture-negative patients. The neutrophil granulation and reactive lymphocytes were observed together with the PCT-level increments in different septic patients, and these alterations were lessened after treatment. There was no significant change in monocyte morphology between pre- and posttreatment septic patients. CONCLUSIONS Serum PCT is associated with neutrophil cytotoxicity and lymphocyte morphology changes in sepsis; thus, the combination of neutrophil and lymphocyte digital cell morphology evaluations with PCT detection may be a useful examination for guiding the clinical management of sepsis.
Collapse
Affiliation(s)
- Pingfeng Feng
- Department of Laboratory MedicineNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouGuangdongChina
| | - Yongjian He
- Department of Laboratory MedicineNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouGuangdongChina
| | - Ping Guan
- Department of Laboratory MedicineGuangzhou Thoracic HospitalGuangzhouGuangdongChina
| | - Chaohui Duan
- Department of Laboratory MedicineSun Yat‐Sen Memorial Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Junjie Huang
- Department of Laboratory MedicineNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouGuangdongChina
| | - Zhixin Chai
- Department of Laboratory MedicineNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouGuangdongChina
| | - Jingjing Wang
- Division of the In Vitro DiagnosticsMindray CorporationShenzhenGuangdongChina
- Division of the In Vitro DiagnosticsMindray North AmericaMahwahNew JerseyUSA
| | - Huifei Zheng
- Division of the In Vitro DiagnosticsMindray CorporationShenzhenGuangdongChina
- Division of the In Vitro DiagnosticsMindray North AmericaMahwahNew JerseyUSA
| | - Junxu Luo
- Division of the In Vitro DiagnosticsMindray CorporationShenzhenGuangdongChina
- Division of the In Vitro DiagnosticsMindray North AmericaMahwahNew JerseyUSA
| | - Yuhuan Shi
- Guangzhou Daan Gene CorporationGuangzhouGuangdongChina
| | - Xin Li
- Department of Laboratory MedicineNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouGuangdongChina
| | - Huayi Huang
- Division of the In Vitro DiagnosticsMindray CorporationShenzhenGuangdongChina
- Division of the In Vitro DiagnosticsMindray North AmericaMahwahNew JerseyUSA
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
27
|
Scherger SJ, Kalil AC. Sepsis phenotypes, subphenotypes, and endotypes: are they ready for bedside care? Curr Opin Crit Care 2024; 30:406-413. [PMID: 38847501 DOI: 10.1097/mcc.0000000000001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW Sepsis remains a leading global cause of morbidity and mortality, and despite decades of research, no effective therapies have emerged. The lack of progress in sepsis outcomes is related in part to the significant heterogeneity of sepsis populations. This review seeks to highlight recent literature regarding sepsis phenotypes and the potential for further research and therapeutic intervention. RECENT FINDINGS Numerous recent studies have elucidated various phenotypes, subphenotypes, and endotypes in sepsis. Clinical parameters including vital sign trajectories and microbial factors, biomarker investigation, and genomic, transcriptomic, proteomic, and metabolomic studies have illustrated numerous differences in sepsis populations with implications for prediction, diagnosis, treatment, and prognosis of sepsis. SUMMARY Sepsis therapies including care bundles, fluid resuscitation, and source control procedures may be better guided by validated phenotypes than universal application. Novel biomarkers may improve upon the sensitivity and specificity of existing markers and identify complications and sequelae of sepsis. Multiomics have demonstrated significant differences in sepsis populations, most notably expanding our understanding of immunosuppressed sepsis phenotypes. Despite progress, these findings may be limited by modest reproducibility and logistical barriers to clinical implementation. Further studies may translate recent findings into bedside care.
Collapse
Affiliation(s)
- Sias J Scherger
- University of Nebraska Medical Center, Department of Medicine, Division of Infectious Diseases, Omaha, Nebraska, USA
| | | |
Collapse
|
28
|
DuBois AK, Ankomah PO, Campbell AC, Hua R, Nelson OK, Zeuthen CA, Das MK, Mann S, Mauermann A, Parry BA, Shapiro NI, Filbin MR, Bhattacharyya RP. Cryo-PRO facilitates whole blood cryopreservation for single-cell RNA sequencing of immune cells from clinical samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.18.24313760. [PMID: 39371152 PMCID: PMC11451723 DOI: 10.1101/2024.09.18.24313760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) has enhanced our understanding of host immune mechanisms in small cohorts, particularly in diseases with complex and heterogeneous immune responses such as sepsis. However, PBMC isolation from blood requires technical expertise, training, and approximately two hours of onsite processing using Ficoll density gradient separation ('Ficoll') for scRNA-seq compatibility, precluding large-scale sample collection at most clinical sites. To minimize onsite processing, we developed Cryo-PRO (Cryopreservation with PBMC Recovery Offsite), a method of PBMC isolation from cryopreserved whole blood that allows immediate onsite sample cryopreservation and subsequent PBMC isolation in a central laboratory prior to sequencing. We compared scRNA-seq results from samples processed using Cryo-PRO versus standard onsite Ficoll separation in 23 patients with sepsis. Critical scRNA-seq outputs including cell substate fractions and marker genes were similar for each method across multiple cell types and substates, including an important monocyte substate enriched in patients with sepsis (Pearson correlation 0.78, p<0.001; 70% of top marker genes shared). Cryo-PRO reduced onsite sample processing time from >2 hours to <15 minutes and was reproducible across two enrollment sites, thus demonstrating potential for expanding scRNA-seq in multicenter studies of sepsis and other diseases.
Collapse
Affiliation(s)
| | - Pierre O. Ankomah
- Broad Institute, Cambridge MA, USA
- Massachusetts General Hospital, Boston MA, USA
| | | | - Renee Hua
- Massachusetts General Hospital, Boston MA, USA
| | | | | | - M. Kartik Das
- Beth Israel Deaconess Medical Center, Boston MA, USA
| | - Shira Mann
- Beth Israel Deaconess Medical Center, Boston MA, USA
| | | | | | | | - Michael R. Filbin
- Broad Institute, Cambridge MA, USA
- Massachusetts General Hospital, Boston MA, USA
| | | |
Collapse
|
29
|
Rolas L, Stein M, Barkaway A, Reglero-Real N, Sciacca E, Yaseen M, Wang H, Vazquez-Martinez L, Golding M, Blacksell IA, Giblin MJ, Jaworska E, Bishop CL, Voisin MB, Gaston-Massuet C, Fossati-Jimack L, Pitzalis C, Cooper D, Nightingale TD, Lopez-Otin C, Lewis MJ, Nourshargh S. Senescent endothelial cells promote pathogenic neutrophil trafficking in inflamed tissues. EMBO Rep 2024; 25:3842-3869. [PMID: 38918502 PMCID: PMC11387759 DOI: 10.1038/s44319-024-00182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Collapse
Affiliation(s)
- Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Monja Stein
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elisabetta Sciacca
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammed Yaseen
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haitao Wang
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Vazquez-Martinez
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meredith J Giblin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edyta Jaworska
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Myles J Lewis
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
Kigar SL, Lynall ME, DePuyt AE, Atkinson R, Sun VH, Samuels JD, Eassa NE, Poffenberger CN, Lehmann ML, Listwak SJ, Livak F, Elkahloun AG, Clatworthy MR, Bullmore ET, Herkenham M. Chronic social defeat stress induces meningeal neutrophilia via type I interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610447. [PMID: 39257811 PMCID: PMC11383661 DOI: 10.1101/2024.08.30.610447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Animal models of stress and stress-related disorders are also associated with blood neutrophilia. The mechanistic relevance of this to symptoms or behavior is unclear. We used cytometry, immunohistochemistry, whole tissue clearing, and single-cell sequencing to characterize the meningeal immune response to chronic social defeat (CSD) stress in mice. We find that chronic, but not acute, stress causes meningeal neutrophil accumulation, and CSD increases neutrophil trafficking in vascular channels emanating from skull bone marrow (BM). Transcriptional analysis suggested CSD increases type I interferon (IFN-I) signaling in meningeal neutrophils. Blocking this pathway via the IFN-I receptor (IFNAR) protected against the anhedonic and anxiogenic effects of CSD stress, potentially through reduced infiltration of IFNAR+ neutrophils into the meninges from skull BM. Our identification of IFN-I signaling as a putative mediator of meningeal neutrophil recruitment may facilitate development of new therapies for stress-related disorders.
Collapse
Affiliation(s)
- Stacey L. Kigar
- National Institute of Mental Health, Bethesda, MD, USA
- Department of Medicine, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Mary-Ellen Lynall
- Department of Psychiatry, University of Cambridge, UK
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | | | | | | | | | | | | | | | - Ferenc Livak
- Laboratory of Genome Integrity, Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Microarrays and Single-Cell Genomics, National Human Genome Research Institute, Bethesda, MD, USA
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, UK
| | | | | |
Collapse
|
31
|
Thind MK, Miraglia E, Ling C, Khan MA, Glembocki A, Bourdon C, ChenMi Y, Palaniyar N, Glogauer M, Bandsma RHJ, Farooqui A. Mitochondrial perturbations in low-protein-diet-fed mice are associated with altered neutrophil development and effector functions. Cell Rep 2024; 43:114493. [PMID: 39028622 PMCID: PMC11372442 DOI: 10.1016/j.celrep.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Emiliano Miraglia
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Catriona Ling
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meraj A Khan
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aida Glembocki
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - YueYing ChenMi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| |
Collapse
|
32
|
Joosten SC, Wiersinga WJ, Poll TVD. Dysregulation of Host-Pathogen Interactions in Sepsis: Host-Related Factors. Semin Respir Crit Care Med 2024; 45:469-478. [PMID: 38950605 PMCID: PMC11663080 DOI: 10.1055/s-0044-1787554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sepsis stands as a prominent contributor to sickness and death on a global scale. The most current consensus definition characterizes sepsis as a life-threatening organ dysfunction stemming from an imbalanced host response to infection. This definition does not capture the intricate array of immune processes at play in sepsis, marked by simultaneous states of heightened inflammation and immune suppression. This overview delves into the immune-related processes of sepsis, elaborating about mechanisms involved in hyperinflammation and immune suppression. Moreover, we discuss stratification of patients with sepsis based on their immune profiles and how this could impact future sepsis management.
Collapse
Affiliation(s)
- Sebastiaan C.M. Joosten
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Willem J. Wiersinga
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tom van der Poll
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Atreya MR, Huang M, Moore AR, Zheng H, Hasin-Brumshtein Y, Fitzgerald JC, Weiss SL, Cvijanovich NZ, Bigham MT, Jain PN, Schwarz AJ, Lutfi R, Nowak J, Thomas NJ, Quasney M, Dahmer MK, Baines T, Haileselassie B, Lautz AJ, Stanski NL, Standage SW, Kaplan JM, Zingarelli B, Sahay R, Zhang B, Sweeney TE, Khatri P, Sanchez-Pinto LN, Kamaleswaran R. Identification and transcriptomic assessment of latent profile pediatric septic shock phenotypes. Crit Care 2024; 28:246. [PMID: 39014377 PMCID: PMC11253460 DOI: 10.1186/s13054-024-05020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Sepsis poses a grave threat, especially among children, but treatments are limited owing to heterogeneity among patients. We sought to test the clinical and biological relevance of pediatric septic shock subclasses identified using reproducible approaches. METHODS We performed latent profile analyses using clinical, laboratory, and biomarker data from a prospective multi-center pediatric septic shock observational cohort to derive phenotypes and trained a support vector machine model to assign phenotypes in an internal validation set. We established the clinical relevance of phenotypes and tested for their interaction with common sepsis treatments on patient outcomes. We conducted transcriptomic analyses to delineate phenotype-specific biology and inferred underlying cell subpopulations. Finally, we compared whether latent profile phenotypes overlapped with established gene-expression endotypes and compared survival among patients based on an integrated subclassification scheme. RESULTS Among 1071 pediatric septic shock patients requiring vasoactive support on day 1 included, we identified two phenotypes which we designated as Phenotype 1 (19.5%) and Phenotype 2 (80.5%). Membership in Phenotype 1 was associated with ~ fourfold adjusted odds of complicated course relative to Phenotype 2. Patients belonging to Phenotype 1 were characterized by relatively higher Angiopoietin-2/Tie-2 ratio, Angiopoietin-2, soluble thrombomodulin (sTM), interleukin 8 (IL-8), and intercellular adhesion molecule 1 (ICAM-1) and lower Tie-2 and Angiopoietin-1 concentrations compared to Phenotype 2. We did not identify significant interactions between phenotypes, common treatments, and clinical outcomes. Transcriptomic analysis revealed overexpression of genes implicated in the innate immune response and driven primarily by developing neutrophils among patients designated as Phenotype 1. There was no statistically significant overlap between established gene-expression endotypes, reflective of the host adaptive response, and the newly derived phenotypes, reflective of the host innate response including microvascular endothelial dysfunction. However, an integrated subclassification scheme demonstrated varying survival probabilities when comparing patient endophenotypes. CONCLUSIONS Our research underscores the reproducibility of latent profile analyses to identify pediatric septic shock phenotypes with high prognostic relevance. Pending validation, an integrated subclassification scheme, reflective of the different facets of the host response, holds promise to inform targeted intervention among those critically ill.
Collapse
Affiliation(s)
- Mihir R Atreya
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA.
| | - Min Huang
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew R Moore
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Hong Zheng
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | - Scott L Weiss
- Nemours Children's Health, Wilmington, DE, 19803, USA
| | | | | | - Parag N Jain
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adam J Schwarz
- Children's Hospital of Orange County, Orange, CA, 92868, USA
| | - Riad Lutfi
- Riley Hospital for Children, Indianapolis, IN, 46202, USA
| | - Jeffrey Nowak
- Children's Hospital and Clinics of Minnesota, Minneapolis, MN, 55404, USA
| | - Neal J Thomas
- Penn State Hershey Children's Hospital, Hershey, PA, 17033, USA
| | - Michael Quasney
- C.S Mott Children's Hospital, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary K Dahmer
- C.S Mott Children's Hospital, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Torrey Baines
- University of Florida Health Children's Hospital, Gainesville, FL, 32610, USA
| | | | - Andrew J Lautz
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Natalja L Stanski
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Stephen W Standage
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Jennifer M Kaplan
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, MLC2005, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Rashmi Sahay
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Bin Zhang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - L Nelson Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rishikesan Kamaleswaran
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30322, USA
| |
Collapse
|
34
|
Burnham KL, Milind N, Lee W, Kwok AJ, Cano-Gamez K, Mi Y, Geoghegan CG, Zhang P, McKechnie S, Soranzo N, Hinds CJ, Knight JC, Davenport EE. eQTLs identify regulatory networks and drivers of variation in the individual response to sepsis. CELL GENOMICS 2024; 4:100587. [PMID: 38897207 PMCID: PMC11293594 DOI: 10.1016/j.xgen.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.
Collapse
Affiliation(s)
- Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nikhil Milind
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Wanseon Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew J Kwok
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kiki Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuxin Mi
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Ping Zhang
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | | | - Nicole Soranzo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Charles J Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Julian C Knight
- Centre for Human Genetics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
| | | |
Collapse
|
35
|
Ciesielski TH. Sepsis research: Heterogeneity as a foundation rather than an afterthought. CELL GENOMICS 2024; 4:100608. [PMID: 38991496 PMCID: PMC11293572 DOI: 10.1016/j.xgen.2024.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Our understanding of sepsis has been hampered by the implicit assumption that sepsis is a homogeneous disease. In this issue of Cell Genomics, Burnham et al.1 have started to characterize the genetic variants and regulatory networks that underlie variations in the individual response to sepsis; this may eventually enable targeted intervention development.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
36
|
Verhey TB, Seo H, Gillmor A, Thoppey-Manoharan V, Schriemer D, Morrissy S. mosaicMPI: a framework for modular data integration across cohorts and -omics modalities. Nucleic Acids Res 2024; 52:e53. [PMID: 38813827 PMCID: PMC11229337 DOI: 10.1093/nar/gkae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Advances in molecular profiling have facilitated generation of large multi-modal datasets that can potentially reveal critical axes of biological variation underlying complex diseases. Distilling biological meaning, however, requires computational strategies that can perform mosaic integration across diverse cohorts and datatypes. Here, we present mosaicMPI, a framework for discovery of low to high-resolution molecular programs representing both cell types and states, and integration within and across datasets into a network representing biological themes. Using existing datasets in glioblastoma, we demonstrate that this approach robustly integrates single cell and bulk programs across multiple platforms. Clinical and molecular annotations from cohorts are statistically propagated onto this network of programs, yielding a richly characterized landscape of biological themes. This enables deep understanding of individual tumor samples, systematic exploration of relationships between modalities, and generation of a reference map onto which new datasets can rapidly be mapped. mosaicMPI is available at https://github.com/MorrissyLab/mosaicMPI.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Heewon Seo
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - Aaron Gillmor
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - Varsha Thoppey-Manoharan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - David Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
| | - Sorana Morrissy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol 2024; 15:1434688. [PMID: 39040114 PMCID: PMC11260823 DOI: 10.3389/fimmu.2024.1434688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Sepsis is described as a life-threatening organ dysfunction and a heterogeneous syndrome that is a leading cause of morbidity and mortality in intensive care settings. Severe sepsis could incite an uncontrollable surge of inflammatory cytokines, and the host immune system's immunosuppression could respond to counter excessive inflammatory responses, characterized by the accumulated anti-inflammatory cytokines, impaired function of immune cells, over-proliferation of myeloid-derived suppressor cells and regulatory T cells, depletion of immune effector cells by different means of death, etc. In this review, we delve into the underlying pathological mechanisms of sepsis, emphasizing both the hyperinflammatory phase and the associated immunosuppression. We offer an in-depth exploration of the critical mechanisms underlying sepsis, spanning from individual immune cells to a holistic organ perspective, and further down to the epigenetic and metabolic reprogramming. Furthermore, we outline the strengths of artificial intelligence in analyzing extensive datasets pertaining to septic patients, showcasing how classifiers trained on various clinical data sources can identify distinct sepsis phenotypes and thus to guide personalized therapy strategies for the management of sepsis. Additionally, we provide a comprehensive summary of recent, reliable biomarkers for hyperinflammatory and immunosuppressive states, facilitating more precise and expedited diagnosis of sepsis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
39
|
Ghodsi A, Hidalgo A, Libreros S. Lipid mediators in neutrophil biology: inflammation, resolution and beyond. Curr Opin Hematol 2024; 31:175-192. [PMID: 38727155 PMCID: PMC11301784 DOI: 10.1097/moh.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Acute inflammation is the body's first defense in response to pathogens or injury. Failure to efficiently resolve the inflammatory insult can severely affect tissue homeostasis, leading to chronic inflammation. Neutrophils play a pivotal role in eradicating infectious pathogens, orchestrating the initiation and resolution of acute inflammation, and maintaining physiological functions. The resolution of inflammation is a highly orchestrated biochemical process, partially modulated by a novel class of endogenous lipid mediators known as specialized pro-resolving mediators (SPMs). SPMs mediate their potent bioactions via activating specific cell-surface G protein-coupled receptors (GPCR). RECENT FINDINGS This review focuses on recent advances in understanding the multifaceted functions of SPMs, detailing their roles in expediting neutrophil apoptosis, promoting clearance by macrophages, regulating their excessive infiltration at inflammation sites, orchestrating bone marrow deployment, also enhances neutrophil phagocytosis and tissue repair mechanisms under both physiological and pathological conditions. We also focus on the novel role of SPMs in regulating bone marrow neutrophil functions, differentiation, and highlight open questions about SPMs' functions in neutrophil heterogeneity. SUMMARY SPMs play a pivotal role in mitigating excessive neutrophil infiltration and hyperactivity within pathological milieus, notably in conditions such as sepsis, cardiovascular disease, ischemic events, and cancer. This significant function highlights SPMs as promising therapeutic agents in the management of both acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anita Ghodsi
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Stephania Libreros
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| |
Collapse
|
40
|
Curion F, Theis FJ. Machine learning integrative approaches to advance computational immunology. Genome Med 2024; 16:80. [PMID: 38862979 PMCID: PMC11165829 DOI: 10.1186/s13073-024-01350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
The study of immunology, traditionally reliant on proteomics to evaluate individual immune cells, has been revolutionized by single-cell RNA sequencing. Computational immunologists play a crucial role in analysing these datasets, moving beyond traditional protein marker identification to encompass a more detailed view of cellular phenotypes and their functional roles. Recent technological advancements allow the simultaneous measurements of multiple cellular components-transcriptome, proteome, chromatin, epigenetic modifications and metabolites-within single cells, including in spatial contexts within tissues. This has led to the generation of complex multiscale datasets that can include multimodal measurements from the same cells or a mix of paired and unpaired modalities. Modern machine learning (ML) techniques allow for the integration of multiple "omics" data without the need for extensive independent modelling of each modality. This review focuses on recent advancements in ML integrative approaches applied to immunological studies. We highlight the importance of these methods in creating a unified representation of multiscale data collections, particularly for single-cell and spatial profiling technologies. Finally, we discuss the challenges of these holistic approaches and how they will be instrumental in the development of a common coordinate framework for multiscale studies, thereby accelerating research and enabling discoveries in the computational immunology field.
Collapse
Affiliation(s)
- Fabiola Curion
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| |
Collapse
|
41
|
Lindell RB, Sayed S, Campos JS, Knight M, Mauracher AA, Hay CA, Conrey PE, Fitzgerald JC, Yehya N, Famularo ST, Arroyo T, Tustin R, Fazelinia H, Behrens EM, Teachey DT, Freeman AF, Bergerson JRE, Holland SM, Leiding JW, Weiss SL, Hall MW, Zuppa AF, Taylor DM, Feng R, Wherry EJ, Meyer NJ, Henrickson SE. Dysregulated STAT3 signaling and T cell immunometabolic dysfunction define a targetable, high mortality subphenotype of critically ill children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.11.24308709. [PMID: 38946991 PMCID: PMC11213094 DOI: 10.1101/2024.06.11.24308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sepsis is the leading cause of death of hospitalized children worldwide. Despite the established link between immune dysregulation and mortality in pediatric sepsis, it remains unclear which host immune factors contribute causally to adverse sepsis outcomes. Identifying modifiable pathobiology is an essential first step to successful translation of biologic insights into precision therapeutics. We designed a prospective, longitudinal cohort study of 88 critically ill pediatric patients with multiple organ dysfunction syndrome (MODS), including patients with and without sepsis, to define subphenotypes associated with targetable mechanisms of immune dysregulation. We first assessed plasma proteomic profiles and identified shared features of immune dysregulation in MODS patients with and without sepsis. We then employed consensus clustering to define three subphenotypes based on protein expression at disease onset and identified a strong association between subphenotype and clinical outcome. We next identified differences in immune cell frequency and activation state by MODS subphenotype and determined the association between hyperinflammatory pathway activation and cellular immunophenotype. Using single cell transcriptomics, we demonstrated STAT3 hyperactivation in lymphocytes from the sickest MODS subgroup and then identified an association between STAT3 hyperactivation and T cell immunometabolic dysregulation. Finally, we compared proteomics findings between patients with MODS and patients with inborn errors of immunity that amplify cytokine signaling pathways to further assess the impact of STAT3 hyperactivation in the most severe patients with MODS. Overall, these results identify a potentially pathologic and targetable role for STAT3 hyperactivation in a subset of pediatric patients with MODS who have high severity of illness and poor prognosis.
Collapse
|
42
|
Nassiri I, Kwok AJ, Bhandari A, Bull KR, Garner LC, Klenerman P, Webber C, Parkkinen L, Lee AW, Wu Y, Fairfax B, Knight JC, Buck D, Piazza P. Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression. BIOINFORMATICS ADVANCES 2024; 4:vbae085. [PMID: 38911824 PMCID: PMC11193101 DOI: 10.1093/bioadv/vbae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Motivation Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).
Collapse
Affiliation(s)
- Isar Nassiri
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Andrew J Kwok
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Aneesha Bhandari
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Katherine R Bull
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy, Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX1 3PT, United Kingdom
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Laura Parkkinen
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Angela W Lee
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Yanxia Wu
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Benjamin Fairfax
- MRC–Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- Department of Oncology, University of Oxford & Oxford Cancer Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7DQ, United Kingdom
| | - Julian C Knight
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - David Buck
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Paolo Piazza
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
43
|
Ning X, Long S, Liu Z, Dong Y, He L, Wang S. Vertical distribution of arsenic and bacterial communities in calcareous farmland amending by organic fertilizer and iron-oxidizing bacteria: Field experiment on concomitant remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134415. [PMID: 38677113 DOI: 10.1016/j.jhazmat.2024.134415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The migration and transformation mechanisms of arsenic (As) in soil environments necessitate an understanding of its influencing processes. Here, we investigate the subsurface biogeochemical transformation of As and iron (Fe) through amended in the top 20 cm with iron oxidizing bacteria (FeOB) and organic fertilizer (OF). Our comprehensive 400-day field study, conducted in a calcareous soil profile sectioned into 20 cm increments, involved analysis by sequential extraction and assessment of microbial properties. The results reveal that the introduction of additional OF increased the release ratio of As/Fe from the non-specific adsorption fraction (136.47 %) at the subsoil depth (40-60 cm), underscoring the importance of sampling at various depths and time points to accurately elucidate the form, instability, and migration of As within the profile. Examination of bacterial interaction networks indicated a disrupted initial niche in the bottom layer, resulting in a novel cooperative symbiosis. While the addition of FeOB did not lead to the dominance of specific bacterial species, it did enhance the relative abundance of As-tolerant Acidobacteria and Gemmatimonadetes in both surface (39.2 % and 38.76 %) and deeper soils (44.29 % and 23.73 %) compared to the control. Consequently, the amendment of FeOB in conjunction with OF facilitated the formation of poorly amorphous Fe (hydr)oxides in the soil, achieved through abiotic and biotic sequestration processes. Throughout the long-term remediation process, the migration coefficient of bioavailable As within the soil profile decreased, indicating that these practices did not exacerbate As mobilization. This study carries significant implications for enhancing biogeochemical cycling in As-contaminated Sierozem soils and exploring potential bioremediation strategies. ENVIRONMENTAL IMPLICATION: The long-term exposure of sewage irrigation has potential adverse effects on the local ecosystem, causing serious environmental problems. Microorganisms play a vital role in the migration and transformation of arsenic in calcareous soil in arid areas, which highlights the necessity of understanding its dynamics. The vertical distribution, microbial community and fate of arsenic in calcareous farmland soil profile in northwest China were studied through field experiments. The results of this work have certain significance for the remediation of arsenic-contaminated soil in arid areas, and provide new insights for the migration, transformation and remediation of arsenic in this kind of soil.
Collapse
Affiliation(s)
- Xiang Ning
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China.
| | - Song Long
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Zitong Liu
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Yinwen Dong
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Liang He
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Shengli Wang
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China.
| |
Collapse
|
44
|
Mi Y, Burnham KL, Charles PD, Heilig R, Vendrell I, Whalley J, Torrance HD, Antcliffe DB, May SM, Neville MJ, Berridge G, Hutton P, Geoghegan CG, Radhakrishnan J, Nesvizhskii AI, Yu F, Davenport EE, McKechnie S, Davies R, O'Callaghan DJP, Patel P, Del Arroyo AG, Karpe F, Gordon AC, Ackland GL, Hinds CJ, Fischer R, Knight JC. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci Transl Med 2024; 16:eadh0185. [PMID: 38838133 DOI: 10.1126/scitranslmed.adh0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.
Collapse
Affiliation(s)
- Yuxin Mi
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Katie L Burnham
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Justin Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Hew D Torrance
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David B Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Shaun M May
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Georgina Berridge
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Paula Hutton
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Cyndi G Geoghegan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Jayachandran Radhakrishnan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma E Davenport
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Stuart McKechnie
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Roger Davies
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
| | - David J P O'Callaghan
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Parind Patel
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Ana G Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, UK
- Department of Critical Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Charles J Hinds
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
45
|
Shen J, Li F, Han X, Fu D, Xu Y, Zhu C, Liang Z, Tang Z, Zheng R, Hu X, Lin R, Pei Q, Nie J, Luo N, Li X, Chen W, Mao H, Zhou Y, Yu X. Gasdermin D deficiency aborts myeloid calcium influx to drive granulopoiesis in lupus nephritis. Cell Commun Signal 2024; 22:308. [PMID: 38831451 PMCID: PMC11149269 DOI: 10.1186/s12964-024-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Gasdermin D (GSDMD) is emerging as an important player in autoimmune diseases, but its exact role in lupus nephritis (LN) remains controversial. Here, we identified markedly elevated GSDMD in human and mouse LN kidneys, predominantly in CD11b+ myeloid cells. Global or myeloid-conditional deletion of GSDMD was shown to exacerbate systemic autoimmunity and renal injury in lupus mice with both chronic graft-versus-host (cGVH) disease and nephrotoxic serum (NTS) nephritis. Interestingly, RNA sequencing and flow cytometry revealed that myeloid GSDMD deficiency enhanced granulopoiesis at the hematopoietic sites in LN mice, exhibiting remarkable enrichment of neutrophil-related genes, significant increases in total and immature neutrophils as well as granulocyte/macrophage progenitors (GMPs). GSDMD-deficient GMPs and all-trans-retinoic acid (ATRA)-stimulated human promyelocytes NB4 were further demonstrated to possess enhanced clonogenic and differentiation abilities compared with controls. Mechanistically, GSDMD knockdown promoted self-renewal and granulocyte differentiation by restricting calcium influx, contributing to granulopoiesis. Functionally, GSDMD deficiency led to increased pathogenic neutrophil extracellular traps (NETs) in lupus peripheral blood and bone marrow-derived neutrophils. Taken together, our data establish that GSDMD deletion accelerates LN development by promoting granulopoiesis in a calcium influx-regulated manner, unraveling its unrecognized critical role in LN pathogenesis.
Collapse
Affiliation(s)
- Jiani Shen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Feng Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xu Han
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Dongying Fu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yiping Xu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Changjian Zhu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhou Liang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ziwen Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ruilin Zheng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Ruoni Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Qiaoqiao Pei
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Jing Nie
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Luo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xiaoyan Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China.
- Department of Nephrology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
46
|
Chenoweth JG, Colantuoni C, Striegel DA, Genzor P, Brandsma J, Blair PW, Krishnan S, Chiyka E, Fazli M, Mehta R, Considine M, Cope L, Knight AC, Elayadi A, Fox A, Hertzano R, Letizia AG, Owusu-Ofori A, Boakye I, Aduboffour AA, Ansong D, Biney E, Oduro G, Schully KL, Clark DV. Gene expression signatures in blood from a West African sepsis cohort define host response phenotypes. Nat Commun 2024; 15:4606. [PMID: 38816375 PMCID: PMC11139862 DOI: 10.1038/s41467-024-48821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Our limited understanding of the pathophysiological mechanisms that operate during sepsis is an obstacle to rational treatment and clinical trial design. There is a critical lack of data from low- and middle-income countries where the sepsis burden is increased which inhibits generalized strategies for therapeutic intervention. Here we perform RNA sequencing of whole blood to investigate longitudinal host response to sepsis in a Ghanaian cohort. Data dimensional reduction reveals dynamic gene expression patterns that describe cell type-specific molecular phenotypes including a dysregulated myeloid compartment shared between sepsis and COVID-19. The gene expression signatures reported here define a landscape of host response to sepsis that supports interventions via targeting immunophenotypes to improve outcomes.
Collapse
Affiliation(s)
- Josh G Chenoweth
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Deborah A Striegel
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Pavol Genzor
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Joost Brandsma
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Paul W Blair
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Pathology, Uniformed Services University, Bethesda, MD, USA
| | - Subramaniam Krishnan
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Elizabeth Chiyka
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mehran Fazli
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rittal Mehta
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Michael Considine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Leslie Cope
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Audrey C Knight
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anissa Elayadi
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Anne Fox
- Naval Medical Research Unit EURAFCENT Ghana detachment, Accra, Ghana
| | - Ronna Hertzano
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andrew G Letizia
- Naval Medical Research Unit EURAFCENT Ghana detachment, Accra, Ghana
| | - Alex Owusu-Ofori
- Laboratory Services Directorate, Komfo Anokye Teaching Hospital (KATH), Kumasi, Ghana
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Isaac Boakye
- Research and Development Unit, KATH, Kumasi, Ghana
| | - Albert A Aduboffour
- Laboratory Services Directorate, Komfo Anokye Teaching Hospital (KATH), Kumasi, Ghana
| | - Daniel Ansong
- Child Health Directorate, KATH, Kumasi, Ghana
- Department of Child Health, KNUST, Kumasi, Ghana
| | - Eno Biney
- Accident and Emergency Department, KATH, Kumasi, Ghana
| | - George Oduro
- Accident and Emergency Department, KATH, Kumasi, Ghana
| | - Kevin L Schully
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Ft. Detrick, MD, USA
| | - Danielle V Clark
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| |
Collapse
|
47
|
Stevens J, Tezel O, Bonnefil V, Hapstack M, Atreya MR. Biological basis of critical illness subclasses: from the bedside to the bench and back again. Crit Care 2024; 28:186. [PMID: 38812006 PMCID: PMC11137966 DOI: 10.1186/s13054-024-04959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Critical illness syndromes including sepsis, acute respiratory distress syndrome, and acute kidney injury (AKI) are associated with high in-hospital mortality and long-term adverse health outcomes among survivors. Despite advancements in care, clinical and biological heterogeneity among patients continues to hamper identification of efficacious therapies. Precision medicine offers hope by identifying patient subclasses based on clinical, laboratory, biomarker and 'omic' data and potentially facilitating better alignment of interventions. Within the previous two decades, numerous studies have made strides in identifying gene-expression based endotypes and clinico-biomarker based phenotypes among critically ill patients associated with differential outcomes and responses to treatment. In this state-of-the-art review, we summarize the biological similarities and differences across the various subclassification schemes among critically ill patients. In addition, we highlight current translational gaps, the need for advanced scientific tools, human-relevant disease models, to gain a comprehensive understanding of the molecular mechanisms underlying critical illness subclasses.
Collapse
Affiliation(s)
- Joseph Stevens
- Division of Immunobiology, Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Oğuzhan Tezel
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Valentina Bonnefil
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Matthew Hapstack
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mihir R Atreya
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA.
| |
Collapse
|
48
|
Xu P, Tao Z, Zhang C. Integrated multi-omics and artificial intelligence to explore new neutrophils clusters and potential biomarkers in sepsis with experimental validation. Front Immunol 2024; 15:1377817. [PMID: 38868781 PMCID: PMC11167131 DOI: 10.3389/fimmu.2024.1377817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Background Sepsis, causing serious organ and tissue damage and even death, has not been fully elucidated. Therefore, understanding the key mechanisms underlying sepsis-associated immune responses would lead to more potential therapeutic strategies. Methods Single-cell RNA data of 4 sepsis patients and 2 healthy controls in the GSE167363 data set were studied. The pseudotemporal trajectory analyzed neutrophil clusters under sepsis. Using the hdWGCNA method, key gene modules of neutrophils were explored. Multiple machine learning methods were used to screen and validate hub genes for neutrophils. SCENIC was then used to explore transcription factors regulating hub genes. Finally, quantitative reverse transcription-polymerase chain reaction was to validate mRNA expression of hub genes in peripheral blood neutrophils of two mice sepsis models. Results We discovered two novel neutrophil subtypes with a significant increase under sepsis. These two neutrophil subtypes were enriched in the late state during neutrophils differentiation. The hdWGCNA analysis of neutrophils unveiled that 3 distinct modules (Turquoise, brown, and blue modules) were closely correlated with two neutrophil subtypes. 8 machine learning methods revealed 8 hub genes with high accuracy and robustness (ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2). The SCENIC analysis revealed that APLP, CD177, GAPDH, S100A9, and STXBP2 were significant associated with various transcriptional factors. Finally, ALPL, CD177, S100A8, S100A9, and STXBP2 significantly up regulated in peripheral blood neutrophils of CLP and LPS-induced sepsis mice models. Conclusions Our research discovered new clusters of neutrophils in sepsis. These five hub genes provide novel biomarkers targeting neutrophils for the treatment of sepsis.
Collapse
Affiliation(s)
| | | | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
49
|
Zhang P, Gao C, Guo Q, Yang D, Zhang G, Lu H, Zhang L, Zhang G, Li D. Single-cell RNA sequencing reveals the evolution of the immune landscape during perihematomal edema progression after intracerebral hemorrhage. J Neuroinflammation 2024; 21:140. [PMID: 38807233 PMCID: PMC11131315 DOI: 10.1186/s12974-024-03113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Perihematomal edema (PHE) after post-intracerebral hemorrhage (ICH) has complex pathophysiological mechanisms that are poorly understood. The complicated immune response in the post-ICH brain constitutes a crucial component of PHE pathophysiology. In this study, we aimed to characterize the transcriptional profiles of immune cell populations in human PHE tissue and explore the microscopic differences between different types of immune cells. METHODS 9 patients with basal ganglia intracerebral hemorrhage (hematoma volume 50-100 ml) were enrolled in this study. A multi-stage profile was developed, comprising Group1 (n = 3, 0-6 h post-ICH, G1), Group2 (n = 3, 6-24 h post-ICH, G2), and Group3 (n = 3, 24-48 h post-ICH, G3). A minimal quantity of edematous tissue surrounding the hematoma was preserved during hematoma evacuation. Single cell RNA sequencing (scRNA-seq) was used to map immune cell populations within comprehensively resected PHE samples collected from patients at different stages after ICH. RESULTS We established, for the first time, a comprehensive landscape of diverse immune cell populations in human PHE tissue at a single-cell level. Our study identified 12 microglia subsets and 5 neutrophil subsets in human PHE tissue. What's more, we discovered that the secreted phosphoprotein-1 (SPP1) pathway served as the basis for self-communication between microglia subclusters during the progression of PHE. Additionally, we traced the trajectory branches of different neutrophil subtypes. Finally, we also demonstrated that microglia-produced osteopontin (OPN) could regulate the immune environment in PHE tissue by interacting with CD44-positive cells. CONCLUSIONS As a result of our research, we have gained valuable insight into the immune-microenvironment within PHE tissue, which could potentially be used to develop novel treatment modalities for ICH.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Cong Gao
- Department of Clinical Medicine, Jining Medical University, Jining, China
| | - Qiang Guo
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Dongxu Yang
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangning Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Lu
- Department of Emergency Stroke, Affiliated Hospital of Jining Medical University, Jining, China
| | - Liman Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guorong Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Daojing Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
50
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|