1
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Sanchez-Vargas LA, Mathew A, Salje H, Sousa D, Casale NA, Farmer A, Buddhari D, Anderson K, Iamsirithaworn S, Kaewhiran S, Friberg H, Currier JR, Rothman AL. Protective Role of NS1-Specific Antibodies in the Immune Response to Dengue Virus Through Antibody-Dependent Cellular Cytotoxicity. J Infect Dis 2024; 230:1147-1156. [PMID: 38478732 DOI: 10.1093/infdis/jiae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) nonstructural protein 1 (NS1) has multiple functions within infected cells, on the cell surface, and in secreted form, and is highly immunogenic. Immunity from previous DENV infections is known to exert both positive and negative effects on subsequent DENV infections, but the contribution of NS1-specific antibodies to these effects is incompletely understood. METHODS We investigated the functions of NS1-specific antibodies and their significance in DENV infection. We analyzed plasma samples collected in a prospective cohort study prior to symptomatic or subclinical secondary DENV infection. We measured binding to purified recombinant NS1 protein and to NS1-expressing CEM cells, antibody-mediated natural killer (NK) cell activation by plate-bound NS1 protein, and antibody-dependent cellular cytotoxicity (ADCC) of NS1-expressing target cells. RESULTS We found that antibody responses to NS1 were highly serotype cross-reactive and that subjects who experienced subclinical DENV infection had significantly higher antibody responses to NS1 in preinfection plasma than subjects who experienced symptomatic infection. We observed strong positive correlations between antibody binding and NK activation. CONCLUSIONS These findings demonstrate the involvement of NS1-specific antibodies in ADCC and provide evidence for a protective effect of NS1-specific antibodies in secondary DENV infection.
Collapse
Affiliation(s)
- Luis A Sanchez-Vargas
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Anuja Mathew
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David Sousa
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Nicole A Casale
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Aaron Farmer
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kathryn Anderson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sopon Iamsirithaworn
- Department of Communicable Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Dudášová J, Valenta Z, Sachs JR. Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models. NPJ Vaccines 2024; 9:214. [PMID: 39528514 PMCID: PMC11554669 DOI: 10.1038/s41541-024-00937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/28/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding potential differences in vaccine-induced protection between demographic subgroups is key for vaccine development. Vaccine efficacy evaluation across these subgroups in phase 2b or 3 clinical trials presents challenges due to lack of precision: such trials are typically designed to demonstrate overall efficacy rather than to differentiate its value between subgroups. This study proposes a method for estimating vaccine efficacy using immunogenicity (instead of vaccination status) as a predictor in time-to-event models. The method is applied to two datasets from immunogenicity sub-studies of vaccine phase 3 clinical trials for zoster and dengue vaccines. Results show that using immunogenicity-based estimation of efficacy in subgroups using time-to-event models is more precise than the standard estimation. Incorporating immune correlate data in time-to-event models improves precision in estimating efficacy (i.e., yields narrower confidence intervals), which can assist vaccine developers and public health authorities in making informed decisions.
Collapse
Affiliation(s)
- Julie Dudášová
- Quantitative Pharmacology and Pharmacometrics, MSD, Prague, Czechia.
- First Faculty of Medicine, Charles University, Prague, Czechia.
| | - Zdeněk Valenta
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Jeffrey R Sachs
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
4
|
Gebo C, Hardy CSC, McElvany BD, Graham NR, Lu JQ, Moradpour S, Currier JR, Friberg H, Gromowski GD, Thomas SJ, Chan GC, Diehl SA, Waickman AT. B cell receptor dependent enhancement of dengue virus infection. PLoS Pathog 2024; 20:e1012683. [PMID: 39480886 PMCID: PMC11556684 DOI: 10.1371/journal.ppat.1012683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue, a mosquito-borne disease that represents a significant and growing public health burden around the world. A unique pathophysiological feature of dengue is immune-mediated enhancement, wherein preexisting immunity elicited by a primary infection can enhance the severity of a subsequent infection by a heterologous DENV serotype. A leading mechanistic explanation for this phenomenon is antibody dependent enhancement (ADE), where sub-neutralizing concentrations of DENV-specific IgG antibodies facilitate entry of DENV into FcγR expressing cells such as monocytes, macrophages, and dendritic cells. Accordingly, this model posits that phagocytic mononuclear cells are the primary reservoir of DENV. However, analysis of samples from individuals experiencing acute DENV infection reveals that B cells are the largest reservoir of infected circulating cells, representing a disconnect in our understanding of immune-mediated DENV tropism. In this study, we demonstrate that the expression of a DENV-specific B cell receptor (BCR) renders cells highly susceptible to DENV infection, with the infection-enhancing activity of the membrane-restricted BCR correlating with the ADE potential of the IgG version of the antibody. In addition, we observed that the frequency of DENV-infectible B cells increases in previously flavivirus-naïve volunteers after a primary DENV infection. These findings suggest that BCR-dependent infection of B cells is a novel mechanism immune-mediated enhancement of DENV-infection.
Collapse
Affiliation(s)
- Chad Gebo
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Céline S. C. Hardy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Benjamin D. McElvany
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, United States of America
| | - Nancy R. Graham
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, United States of America
| | - Joseph Q. Lu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Shima Moradpour
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Stephen J. Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Gary C. Chan
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Sean A. Diehl
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, United States of America
| | - Adam T. Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
5
|
Songprakhon P, Panya A, Choomee K, Limjindaporn T, Noisakran S, Tarasuk M, Yenchitsomanus PT. Cordycepin exhibits both antiviral and anti-inflammatory effects against dengue virus infection. iScience 2024; 27:110711. [PMID: 39262808 PMCID: PMC11387592 DOI: 10.1016/j.isci.2024.110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cordycepin, a natural derivative of adenosine from Cordyceps militaris, can inhibit the replication of the dengue virus (DENV). Here, we investigated its antiviral and anti-inflammatory effects in DENV infected cells. Cordycepin significantly inhibited DENV-2 infection, virion production, and viral protein synthesis. It also reduced DENV-induced cytokine/chemokine production, including RANTES, IP-10, IL-6, and TNF-α. Mechanistically, cordycepin targeted the DENV NS5 protein, suppressing RANTES expression and hindering viral replication. Additionally, it inhibited the NF-κB pathway, leading to reduced nuclear translocation and signaling deactivation. PCR array analysis revealed cordycepin's suppression of 46 genes associated with DENV-induced inflammation. These findings highlight cordycepin's dual potential as an antiviral and anti-inflammatory agent against DENV, making it as a promising candidate for dengue treatment, targeting both viral and host factors.
Collapse
Affiliation(s)
- Pucharee Songprakhon
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Aussara Panya
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kornkan Choomee
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
6
|
Liu Y, Wang M, Yu N, Zhao W, Wang P, Zhang H, Sun W, Jin N, Lu H. Trends and insights in dengue virus research globally: a bibliometric analysis (1995-2023). J Transl Med 2024; 22:818. [PMID: 39227968 PMCID: PMC11370300 DOI: 10.1186/s12967-024-05561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) is the most widespread arbovirus. The World Health Organization (WHO) declared dengue one of the top 10 global health threats in 2019. However, it has been underrepresented in bibliometric analyses. This study employs bibliometric analysis to identify research hotspots and trends, offering a comprehensive overview of the current research dynamics in this field. RESULTS We present a report spanning from 1995 to 2023 that provides a unique longitudinal analysis of Dengue virus (DENV) research, revealing significant trends and shifts not extensively covered in previous literature. A total of 10,767 DENV-related documents were considered, with a notable increase in publications, peaking at 747 articles in 2021. Plos Neglected Tropical Diseases has become the leading journal in Dengue virus research, publishing 791 articles in this field-the highest number recorded. Our bibliometric analysis provides a comprehensive mapping of DENV research across multiple dimensions, including vector ecology, virology, and emerging therapies. The study delineates a complex network of immune response genes, including IFNA1, DDX58, IFNB1, STAT1, IRF3, and NFKB1, highlighting significant trends and emerging themes, particularly the impacts of climate change and new outbreaks on disease transmission. Our findings detail the progress and current status of key vaccine candidates, including the licensed Dengvaxia, newer vaccines such as Qdenga and TV003, and updated clinical trials. The study underscores significant advancements in antiviral therapies and vector control strategies for dengue, highlighting innovative drug candidates such as AT-752 and JNJ-1802, and the potential of drug repurposing with agents like Ribavirin, Remdesivir, and Lopinavir. Additionally, it discusses biological control methods, including the introduction of Wolbachia-infected mosquitoes and gene-editing technologies. CONCLUSION This bibliometric study underscores the critical role of interdisciplinary collaboration in advancing DENV research, identifying key trends and areas needing further exploration, including host-virus dynamics, the development and application of antiviral drugs and vaccines, and the use of artificial intelligence. It advocates for strengthened partnerships across various disciplines to effectively tackle the challenges posed by DENV.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China.
| | - MengMeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ning Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China.
| | - Ningyi Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
7
|
Rawle DJ, Hugo LE, Cox AL, Devine GJ, Suhrbier A. Generating prophylactic immunity against arboviruses in vertebrates and invertebrates. Nat Rev Immunol 2024; 24:621-636. [PMID: 38570719 DOI: 10.1038/s41577-024-01016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E Hugo
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Zambrana JV, Hasund CM, Aogo RA, Bos S, Arguello S, Gonzalez K, Collado D, Miranda T, Kuan G, Gordon A, Balmaseda A, Katzelnick LC, Harris E. Primary exposure to Zika virus is linked with increased risk of symptomatic dengue virus infection with serotypes 2, 3, and 4, but not 1. Sci Transl Med 2024; 16:eadn2199. [PMID: 38809964 DOI: 10.1126/scitranslmed.adn2199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.
Collapse
Affiliation(s)
- José Victor Zambrana
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chloe M Hasund
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Rosemary A Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Sonia Arguello
- Sustainable Sciences Institute, Managua 14006, Nicaragua
| | - Karla Gonzalez
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua 14062, Nicaragua
| | | | | | - Guillermina Kuan
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua 12037, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua 14062, Nicaragua
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| |
Collapse
|
9
|
Frazer JL, Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J Med Microbiol 2024; 73. [PMID: 38722305 DOI: 10.1099/jmm.0.001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.
Collapse
Affiliation(s)
| | - Robert Norton
- Pathology Queensland, Townsville QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Mpingabo PI, Ylade M, Aogo RA, Crisostomo MV, Thiono DJ, Daag JV, Agrupis KA, Escoto AC, Raimundi-Rodriguez GL, Odio CD, Fernandez MA, White L, de Silva AM, Deen J, Katzelnick LC. Envelope-dimer epitope-like broadly protective antibodies against dengue in children following natural infection and vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306574. [PMID: 38746253 PMCID: PMC11092691 DOI: 10.1101/2024.04.30.24306574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cross-reactive antibodies (Abs) to epitopes that span envelope proteins on the virion surface are hypothesized to protect against dengue. Here, we measured Abs targeting the quaternary envelope dimer epitope (EDE) as well as neutralizing and binding Abs and evaluate their association with dengue virus (DENV) infection, vaccine response, and disease outcome in dengue vaccinated and unvaccinated children (n=252) within a longitudinal cohort in Cebu, Philippines (n=2,996). Abs targeting EDE were prevalent and strongly associated with broad neutralization of DENV1-4 in those with baseline multitypic immunity. Subsequent natural infection and vaccination boosted EDE-like, neutralizing, and binding Abs. EDE-like Abs were associated with reduced dengue risk and mediated the protective effect of binding and neutralizing Abs on symptomatic and severe dengue. Thus, Abs targeting quaternary epitopes help explain broad cross protection in those with multiple prior DENV exposures, making them useful for evaluation and development of future vaccines and therapeutics.
Collapse
|
11
|
Dudášová J, Valenta Z, Sachs JR. Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression. BMC Med Res Methodol 2024; 24:101. [PMID: 38689224 PMCID: PMC11059665 DOI: 10.1186/s12874-024-02197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities. METHODS This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome. RESULTS Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy. CONCLUSIONS This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.
Collapse
Affiliation(s)
- Julie Dudášová
- Quantitative Pharmacology and Pharmacometrics, MSD Czech Republic, Svornosti 3321/2, 150 00 Prague 5, Prague, Czech Republic.
- First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Zdeněk Valenta
- Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jeffrey R Sachs
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
12
|
Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet 2024; 403:667-682. [PMID: 38280388 DOI: 10.1016/s0140-6736(23)02576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 01/29/2024]
Abstract
Dengue, caused by four closely related viruses, is a growing global public health concern, with outbreaks capable of overwhelming health-care systems and disrupting economies. Dengue is endemic in more than 100 countries across tropical and subtropical regions worldwide, and the expanding range of the mosquito vector, affected in part by climate change, increases risk in new areas such as Spain, Portugal, and the southern USA, while emerging evidence points to silent epidemics in Africa. Substantial advances in our understanding of the virus, immune responses, and disease progression have been made within the past decade. Novel interventions have emerged, including partially effective vaccines and innovative mosquito control strategies, although a reliable immune correlate of protection remains a challenge for the assessment of vaccines. These developments mark the beginning of a new era in dengue prevention and control, offering promise in addressing this pressing global health issue.
Collapse
Affiliation(s)
| | - Laura E Adams
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Kathryn B Anderson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Shoushtari M, Rismani E, Salehi-Vaziri M, Azadmanesh K. Structure-based evaluation of the envelope domain III-nonstructural protein 1 (EDIII-NS1) fusion as a dengue virus vaccine candidate. J Biomol Struct Dyn 2024:1-19. [PMID: 38319049 DOI: 10.1080/07391102.2024.2311350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The lack of effective medicines or vaccines, combined with climate change and other environmental factors, annually subjects a significant proportion of the world's inhabitants to the risk of dengue virus (DENV) infection. These conditions increase the likelihood of exposure to mosquito-borne diseases such as dengue fever. Hence, many research approaches tend to develop efficient vaccine candidates against the dengue virus. Therefore, we used immunoinformatics and bioinformatics to design a construction for developing a candidate vaccine against dengue virus serotypes. In this study, the in silico structure, containing the non-structural protein 1 region (NS1) (consensus and epitope), the envelope domain III protein (EDIII) as the structural part of the virus construction, and the bc-loop of envelope domain II (EDII) as the neutralizing and protected epitope, were employed. We utilized in silico tools to enhance the immunogenicity and effectiveness of dengue virus vaccine candidates. Evaluations included refining and validating physicochemical characteristics, B and T-cell epitopes, homology modeling, and the three-dimensional structure to assess the designed vaccine's quality. In silico results for tertiary structure prediction and validation revealed high-quality modeling for all vaccine constructs. Additionally, the instructed model demonstrated stability throughout molecular dynamics simulation. The results of the immune simulation suggested that the titers of IgG and IgM could be raised to desirable values following injection into in vivo models. It can be concluded that the designed construct effectively induce humoral and cellular immunity and can be proposed as effective vaccine candidate against four dengue serotypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
14
|
Hamins-Puértolas M, Buddhari D, Salje H, Cummings DAT, Fernandez S, Farmer A, Kaewhiran S, Khampaen D, Iamsirithaworn S, Srikiatkhachorn A, Waickman A, Thomas SJ, Rothman AL, Endy T, Rodriguez-Barraquer I, Anderson KB. Household immunity and individual risk of infection with dengue virus in a prospective, longitudinal cohort study. Nat Microbiol 2024; 9:274-283. [PMID: 38110699 PMCID: PMC10895643 DOI: 10.1038/s41564-023-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Although it is known that household infections drive the transmission of dengue virus (DENV), it is unclear how household composition and the immune status of inhabitants affect the individual risk of infection. Most population-based studies to date have focused on paediatric cohorts because more severe forms of dengue mainly occur in children, and the role of adults in dengue transmission is understudied. Here we analysed data from a multigenerational cohort study of 470 households, comprising 2,860 individuals, in Kamphaeng Phet, Thailand, to evaluate risk factors for DENV infection. Using a gradient-boosted regression model trained on annual haemagglutination inhibition antibody titre inputs, we identified 1,049 infections, 90% of which were subclinical. By analysing imputed infections, we found that individual antibody titres, household composition and antibody titres of other members in the same household affect an individual's risk of DENV infection. Those individuals living in households with high average antibody titres, or households with more adults, had a reduced risk of infection. We propose that herd immunity to dengue acts at the household level and may provide insight into the drivers of the recent change in the shifting age distribution of dengue cases in Thailand.
Collapse
Affiliation(s)
| | - Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Aaron Farmer
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | - Anon Srikiatkhachorn
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Adam Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - Timothy Endy
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
- Coalition for Epidemic Preparedness Innovations (CEPI), Washington DC, USA
| | | | - Kathryn B Anderson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
15
|
Zambrana JV, Hasund CM, Aogo RA, Bos S, Arguello S, Gonzalez K, Collado D, Miranda T, Kuan G, Gordon A, Balmaseda A, Katzelnick L, Harris E. Primary exposure to Zika virus increases risk of symptomatic dengue virus infection with serotypes 2, 3, and 4 but not serotype 1. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299187. [PMID: 38077039 PMCID: PMC10705633 DOI: 10.1101/2023.11.29.23299187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on pre-existing antibodies and the subsequent infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) has been shown to increase DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by all four serotypes in a pediatric Nicaraguan cohort. Of 3,412 participants in 2022, 10.6% experienced symptomatic DENV infections caused by DENV1 (n=139), DENV4 (n=133), DENV3 (n=54), DENV2 (n=9), or an undetermined serotype (n=39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since the last infection, cohort year, and repeat measurements were used to predict disease risk. Compared to flavivirus-naïve participants, primary ZIKV infection increased disease risk of DENV4 (relative risk = 2.62, 95% confidence interval: 1.48-4.63) and DENV3 (2.90, 1.34-6.27) but not DENV1 (1.20, 0.72-1.99). Primary DENV infection or a DENV followed by ZIKV infection also increased DENV4 risk. We re-analyzed 19 years of cohort data and demonstrated that prior flavivirus-immunity and pre-existing antibody titer differentially affected disease risk for incoming serotypes, increasing risk of DENV2 and DENV4, protecting against DENV1, and protecting at high titers but enhancing at low titers against DENV3. We thus find that prior ZIKV infection, like prior DENV infection, increases risk of certain DENV serotypes. Cross-reactivity among flaviviruses should be carefully considered when assessing vaccine safety and efficacy.
Collapse
Affiliation(s)
- Jose Victor Zambrana
- Sustainable Sciences Institute; Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan; Ann Arbor, MI, USA
| | - Chloe M. Hasund
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; MD, USA
| | - Rosemary A. Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; MD, USA
| | - Sandra Bos
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| | | | - Karla Gonzalez
- Sustainable Sciences Institute; Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud; Managua, Nicaragua
| | | | | | - Guillermina Kuan
- Sustainable Sciences Institute; Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud; Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan; Ann Arbor, MI, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute; Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud; Managua, Nicaragua
| | - Leah Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; MD, USA
| | - Eva Harris
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| |
Collapse
|
16
|
Keelapang P, Ketloy C, Puttikhunt C, Sriburi R, Prompetchara E, Sae-Lim M, Siridechadilok B, Duangchinda T, Noisakran S, Charoensri N, Suriyaphol P, Suparattanagool P, Utaipat U, Masrinoul P, Avirutnan P, Mongkolsapaya J, Screaton G, Auewarakul P, Malaivijitnond S, Yoksan S, Malasit P, Ruxrungtham K, Pulmanausahakul R, Sittisombut N. Heterologous prime-boost immunization induces protection against dengue virus infection in cynomolgus macaques. J Virol 2023; 97:e0096323. [PMID: 37846984 PMCID: PMC10688363 DOI: 10.1128/jvi.00963-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body. This heterologous prime-boost immunization induced elevated levels of virus-specific antibodies and helped to prevent dengue virus infection in a high proportion of vaccinated macaques. In macaques that remained susceptible to dengue virus, distinct mechanisms were found to account for the immunization failures, providing a better understanding of vaccine actions. Additional studies in humans in the future may help to establish whether this combination approach represents a more effective means of preventing dengue by vaccination.
Collapse
Affiliation(s)
- Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Malinee Sae-Lim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Bunpote Siridechadilok
- Division of Dengue Hemorrhagic Fever Research, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Frontier Biodesign and Bioengineering Research Team, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nicha Charoensri
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Prapat Suriyaphol
- Siriraj Informatics and Data Innovation Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Utaiwan Utaipat
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Panisadee Avirutnan
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Juthathip Mongkolsapaya
- Division of Dengue Hemorrhagic Fever Research, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Prida Malasit
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
17
|
Aogo RA, Zambrana JV, Sanchez N, Ojeda S, Kuan G, Balmaseda A, Gordon A, Harris E, Katzelnick LC. Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics. Sci Transl Med 2023; 15:eadi1734. [PMID: 37967199 PMCID: PMC11001200 DOI: 10.1126/scitranslmed.adi1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Sequential infection with multiple dengue virus (DENV) serotypes is thought to induce enduring protection against dengue disease. However, long-term antibody waning has been observed after repeated DENV infection. Here, we provide evidence that highly immune Nicaraguan children and adults (n = 4478) experience boosting and waning of antibodies during and after major Zika and dengue epidemics. We develop a susceptible-infected-recovered-susceptible (SIRS-type) model that tracks immunity by titer rather than number of infections to show that boosts in highly immune individuals can contribute to herd immunity, delaying their susceptibility to transmissible infection. In contrast, our model of lifelong immunity in highly immune individuals, as previously assumed, results in complete disease eradication after introduction. Periodic epidemics under this scenario can only be sustained with a constant influx of infected individuals into the population or a high basic reproductive number. We also find that Zika virus infection can boost DENV immunity and produce delays and then surges in dengue epidemics, as observed with real epidemiological data. This work provides insight into factors shaping periodicity in dengue incidence and may inform vaccine efforts to maintain population immunity.
Collapse
Affiliation(s)
- Rosemary A. Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Jose Victor Zambrana
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, 12014, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, 16064, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| |
Collapse
|
18
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
19
|
O’Driscoll M, Buddhari D, Huang AT, Waickman A, Kaewhirun S, Iamsirithaworn S, Khampaen D, Farmer A, Fernandez S, Rodriguez-Barraquer I, Srikiatkhachorn A, Thomas S, Endy T, Rothman AL, Anderson K, Cummings DAT, Salje H. Maternally derived antibody titer dynamics and risk of hospitalized infant dengue disease. Proc Natl Acad Sci U S A 2023; 120:e2308221120. [PMID: 37774093 PMCID: PMC10576102 DOI: 10.1073/pnas.2308221120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
Infants less than 1 y of age experience high rates of dengue disease in dengue virus (DENV) endemic countries. This burden is commonly attributed to antibody-dependent enhancement (ADE), whereby concentrations of maternally derived DENV antibodies become subneutralizing, and infection-enhancing. Understanding antibody-related mechanisms of enhanced infant dengue disease risk represents a significant challenge due to the dynamic nature of antibodies and their imperfect measurement processes. Further, key uncertainties exist regarding the impact of long-term shifts in birth rates, population-level infection risks, and maternal ages on the DENV immune landscape of newborns and their subsequent risks of severe dengue disease in infancy. Here, we analyze DENV antibody data from two infant cohorts (N = 142 infants with 605 blood draws) and 40 y of infant dengue hospitalization data from Thailand. We use mathematical models to reconstruct maternally derived antibody dynamics, accounting for discretized measurement processes and limits of assay detection. We then explore possible antibody-related mechanisms of enhanced infant dengue disease risk and their ability to reconstruct the observed age distribution of hospitalized infant dengue cases. We find that ADE mechanisms are best able to reconstruct the observed data. Finally, we describe how the shifting epidemiology of dengue in Thailand, combined with declining birth rates, have decreased the absolute risk of infant dengue disease by 88% over a 40-y period while having minimal impact on the mean age of infant hospitalized dengue disease.
Collapse
Affiliation(s)
- Megan O’Driscoll
- Department of Genetics, University of Cambridge, CambridgeCB23EH, United Kingdom
| | - Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Angkana T. Huang
- Department of Genetics, University of Cambridge, CambridgeCB23EH, United Kingdom
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Adam Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY13210
| | - Surachai Kaewhirun
- Department of Disease Control, Ministry of Public Health, Nonthaburi11000, Thailand
| | - Sopon Iamsirithaworn
- Department of Disease Control, Ministry of Public Health, Nonthaburi11000, Thailand
| | - Direk Khampaen
- Department of Disease Control, Ministry of Public Health, Nonthaburi11000, Thailand
| | - Aaron Farmer
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | | | - Anon Srikiatkhachorn
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI02903
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok10520, Thailand
| | - Stephen Thomas
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY13210
| | - Timothy Endy
- Coalition for Epidemic Preparedness Innovations, Washington, DC20006
| | - Alan L. Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI02903
| | - Kathryn Anderson
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, NY13210
| | | | - Henrik Salje
- Department of Genetics, University of Cambridge, CambridgeCB23EH, United Kingdom
- Department of Biology, University of Florida, Gainesville, FL32611
| |
Collapse
|
20
|
Keelapang P, Kraivong R, Pulmanausahakul R, Sriburi R, Prompetchara E, Kaewmaneephong J, Charoensri N, Pakchotanon P, Duangchinda T, Suparattanagool P, Luangaram P, Masrinoul P, Mongkolsapaya J, Screaton G, Ruxrungtham K, Auewarakul P, Yoksan S, Malasit P, Puttikhunt C, Ketloy C, Sittisombut N. Blockade-of-Binding Activities toward Envelope-Associated, Type-Specific Epitopes as a Correlative Marker for Dengue Virus-Neutralizing Antibody. Microbiol Spectr 2023; 11:e0091823. [PMID: 37409936 PMCID: PMC10433959 DOI: 10.1128/spectrum.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Humans infected with dengue virus (DENV) acquire long-term protection against the infecting serotype, whereas cross-protection against other serotypes is short-lived. Long-term protection induced by low levels of type-specific neutralizing antibodies can be assessed using the virus-neutralizing antibody test. However, this test is laborious and time-consuming. In this study, a blockade-of-binding enzyme-linked immunoassay was developed to assess antibody activity by using a set of neutralizing anti-E monoclonal antibodies and blood samples from dengue virus-infected or -immunized macaques. Diluted blood samples were incubated with plate-bound dengue virus particles before the addition of an enzyme-conjugated antibody specific to the epitope of interest. Based on blocking reference curves constructed using autologous purified antibodies, sample blocking activity was determined as the relative concentration of unconjugated antibody that resulted in the same percent signal reduction. In separate DENV-1-, -2-, -3-, and -4-related sets of samples, moderate to strong correlations of the blocking activity with neutralizing antibody titers were found with the four type-specific antibodies 1F4, 3H5, 8A1, and 5H2, respectively. Significant correlations were observed for single samples taken 1 month after infection as well as samples drawn before and at various time points after infection/immunization. Similar testing using a cross-reactive EDE-1 antibody revealed a moderate correlation between the blocking activity and the neutralizing antibody titer only for the DENV-2-related set. The potential usefulness of the blockade-of-binding activity as a correlative marker of neutralizing antibodies against dengue viruses needs to be validated in humans. IMPORTANCE This study describes a blockade-of-binding assay for the determination of antibodies that recognize a selected set of serotype-specific or group-reactive epitopes in the envelope of dengue virus. By employing blood samples collected from dengue virus-infected or -immunized macaques, moderate to strong correlations of the epitope-blocking activities with the virus-neutralizing antibody titers were observed with serotype-specific blocking activities for each of the four dengue serotypes. This simple, rapid, and less laborious method should be useful for the evaluation of antibody responses to dengue virus infection and may serve as, or be a component of, an in vitro correlate of protection against dengue in the future.
Collapse
Affiliation(s)
- Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Romchat Kraivong
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jutamart Kaewmaneephong
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nicha Charoensri
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pattarakul Pakchotanon
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thaneeya Duangchinda
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasit Luangaram
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Juthathip Mongkolsapaya
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| |
Collapse
|
21
|
Wegman AD, Waldran MJ, Bahr LE, Lu JQ, Baxter KE, Thomas SJ, Waickman AT. DENV-specific IgA contributes protective and non-pathologic function during antibody-dependent enhancement of DENV infection. PLoS Pathog 2023; 19:e1011616. [PMID: 37639455 PMCID: PMC10491401 DOI: 10.1371/journal.ppat.1011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/08/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Dengue represents a growing public health burden worldwide, accounting for approximately 100 million symptomatic cases and tens of thousands of fatalities yearly. Prior infection with one serotype of dengue virus (DENV) is the greatest known risk factor for severe disease upon secondary infection with a heterologous serotype, a risk which increases as serotypes co-circulate in endemic regions. This disease risk is thought to be mediated by IgG-isotype antibodies raised during a primary infection, which poorly neutralize heterologous DENV serotypes and instead opsonize virions for uptake by FcγR-bearing cells. This antibody-dependent enhancement (ADE) of infection leads to a larger proportion of susceptible cells infected, higher viremia and greater immunopathology. We have previously characterized the induction of a serum IgA response, along with the typical IgM and IgG responses, during dengue infection, and have shown that DENV-reactive IgA can neutralize DENV and competitively antagonize IgG-mediated ADE. Here, we evaluate the potential for IgA itself to cause ADE. We show that IgG, but not IgA, mediated ADE of infection in cells expressing both FcαR and FcγRs. IgG-mediated ADE stimulated significantly higher pro-inflammatory cytokine production by primary human macrophages, while IgA did not affect, or slightly suppressed, this production. Mechanistically, we show that DENV/IgG immune complexes bind susceptible cells significantly more efficiently than DENV/IgA complexes or virus alone. Finally, we show that over the course of primary dengue infection, the expression of FcγRI (CD64) increases during the period of acute viremia, while FcγRIIa (CD32) and FcαR (CD89) expression decreases, thereby further limiting the ability of IgA to facilitate ADE in the presence of DENV. Overall, these data illustrate the distinct protective role of IgA during ADE of dengue infection and highlight the potential therapeutic and prognostic value of DENV-specific IgA.
Collapse
Affiliation(s)
- Adam D. Wegman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Mitchell J. Waldran
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Lauren E. Bahr
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Joseph Q. Lu
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Kristen E. Baxter
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Stephen J. Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Adam T. Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
22
|
Ooi EE, Kalimuddin S. Insights into dengue immunity from vaccine trials. Sci Transl Med 2023; 15:eadh3067. [PMID: 37437017 DOI: 10.1126/scitranslmed.adh3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The quest for an effective dengue vaccine has culminated in two approved vaccines and another that has completed phase 3 clinical trials. However, shortcomings exist in each, suggesting that the knowledge on dengue immunity used to develop these vaccines was incomplete. Vaccine trial findings could refine our understanding of dengue immunity, because these are experimentally derived, placebo-controlled data. Results from these trials suggest that neutralizing antibody titers alone are insufficient to inform protection against symptomatic infection, implicating a role for cellular immunity in protection. These findings have relevance for both future dengue vaccine development and application of current vaccines for maximal public health benefit.
Collapse
Affiliation(s)
- Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Shirin Kalimuddin
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
23
|
Thomas SJ. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 2023; 8:55. [PMID: 37061527 PMCID: PMC10105158 DOI: 10.1038/s41541-023-00658-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
Dengue is a major global public health problem requiring a safe and efficacious vaccine as the foundation of a comprehensive countermeasure strategy. Despite decades of attempts, the world has a single dengue vaccine licensed in numerous countries, but restrictions and conditions of its use have deterred uptake. Recently, clinical efficacy data has been revealed for two additional dengue vaccine candidates and the data appears encouraging. In this perspective I discuss dengue, the complexities of dengue vaccine development, early development setbacks, and how the latest data from the field may be cause for measured optimism. Finally, I provide some perspectives on evaluating dengue vaccine performance and how the pursuit of the perfect dengue vaccine may prevent advancement of vaccines which are good enough.
Collapse
Affiliation(s)
- Stephen J Thomas
- SUNY Upstate Medical University, Institute for Global Health and Translational Sciences, Syracuse, NY, USA.
| |
Collapse
|
24
|
Pintado Silva J, Fernandez-Sesma A. Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol 2023; 104:001831. [PMID: 36857199 PMCID: PMC10228381 DOI: 10.1099/jgv.0.001831] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Dengue virus (DENV) is the mosquito-borne virus of greatest human health concern. There are four serotypes of DENV (1-4) that co-circulate in endemic areas. Each serotype of DENV is individually capable of causing the full spectrum of disease, ranging from self-resolving dengue fever to the more severe dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS). Based on data published by the CDC, one in four people who become infected with dengue will become ill. Of those that do develop symptomology, the symptoms can range from mild to severe. Symptoms can vary from rash, ocular aches and pains to more intense symptoms in the manifestation of severe dengue. Roughly, 1 in 20 people who become ill will develop severe dengue, which can result in shock, internal bleeding and death. There is currently no specific treatment for dengue and only one licensed vaccine (Dengvaxia) for children 9 through 16 years of age in just a few countries. Despite its licensure for clinical use, Dengvaxia has performed with low efficacy in children and dengue naïve individuals and critically has resulted in increased risk of developing severe dengue in young, vaccinated recipients. Currently, there are various novel strategies for the development of a dengue vaccine. In this review we have conducted a detailed overview of the DENV vaccine landscape, focusing on nine vaccines in the pipeline to provide a comprehensive overview of the most state-of-the-art developments in strategies for vaccines against DENV.
Collapse
Affiliation(s)
- Jessica Pintado Silva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, New York, NY 10029, USA
| |
Collapse
|
25
|
Sehrawat S, Osterrieder N, Schmid DS, Rouse BT. Can the triumph of mRNA vaccines against COVID-19 be extended to other viral infections of humans and domesticated animals? Microbes Infect 2023; 25:105078. [PMID: 36435367 PMCID: PMC9682868 DOI: 10.1016/j.micinf.2022.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The unprecedented success of mRNA vaccines in managing the COVID-19 pandemic raises the prospect of applying the mRNA platform to other viral diseases of humans and domesticated animals, which may lead to more efficacious vaccines for some agents. We briefly discuss reasons why mRNA vaccines achieved such success against COVID-19 and indicate what other virus infections and disease conditions might also be ripe for control using mRNA vaccines. We also evaluate situations where mRNA could prove valuable to rebalance the status of immune responsiveness and achieve success as a therapeutic vaccine approach against infections that induce immunoinflammatory lesions.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City, PO Manauli, Mohali 140306, Punjab, India.
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 5F, Block 1B, To Yuen Building, 31 To Yuen Street, Kowloon Tong, Hong Kong.
| | - D Scott Schmid
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee Knoxville, TN 37996-0845, USA.
| |
Collapse
|
26
|
Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol 2022; 13:932408. [PMID: 36033843 PMCID: PMC9399815 DOI: 10.3389/fmicb.2022.932408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fight against infectious diseases calls for the development of safe and effective vaccines that generate long-lasting protective immunity. In a few situations, vaccine-mediated immune responses may have led to exacerbated pathology upon subsequent infection with the pathogen targeted by the vaccine. Such vaccine-associated enhanced disease (VAED) has been reported, or at least suspected, in animal models, and in a few instances in humans, for vaccine candidates against the respiratory syncytial virus (RSV), measles virus (MV), dengue virus (DENV), HIV-1, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), and the Middle East respiratory syndrome coronavirus (MERS-CoV). Although alleviated by clinical and epidemiological evidence, a number of concerns were also initially raised concerning the short- and long-term safety of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is causing the ongoing COVID-19 pandemic. Although the mechanisms leading to this phenomenon are not yet completely understood, the individual and/or collective role of antibody-dependent enhancement (ADE), complement-dependent enhancement, and cell-dependent enhancement have been highlighted. Here, we review mechanisms that may be associated with the risk of VAED, which are important to take into consideration, both in the assessment of vaccine safety and in finding ways to define models and immunization strategies that can alleviate such concerns.
Collapse
Affiliation(s)
| | | | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud-INSERM U1184, CEA, Fontenay-Aux-Roses, France
| | | |
Collapse
|
27
|
Cationic Geminoid Peptide Amphiphiles Inhibit DENV2 Protease, Furin, and Viral Replication. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103217. [PMID: 35630694 PMCID: PMC9143577 DOI: 10.3390/molecules27103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Dengue is an important arboviral infectious disease for which there is currently no specific cure. We report gemini-like (geminoid) alkylated amphiphilic peptides containing lysines in combination with glycines or alanines (C15H31C(O)-Lys-(Gly or Ala)nLys-NHC16H33, shorthand notation C16-KXnK-C16 with X = A or G, and n = 0–2). The representatives with 1 or 2 Ala inhibit dengue protease and human furin, two serine proteases involved in dengue virus infection that have peptides with cationic amino acids as their preferred substrates, with IC50 values in the lower µM range. The geminoid C16-KAK-C16 combined inhibition of DENV2 protease (IC50 2.3 µM) with efficacy against replication of wildtype DENV2 in LLC-MK2 cells (EC50 4.1 µM) and an absence of toxicity. We conclude that the lysine-based geminoids have activity against dengue virus infection, which is based on their inhibition of the proteases involved in viral replication and are therefore promising leads to further developing antiviral therapeutics, not limited to dengue.
Collapse
|
28
|
Dengue Fever in Italy: The "Eternal Return" of an Emerging Arboviral Disease. Trop Med Infect Dis 2022; 7:tropicalmed7010010. [PMID: 35051126 PMCID: PMC8782038 DOI: 10.3390/tropicalmed7010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Enhanced surveillance for dengue virus (DENV) infections in Italy has been implemented since 2012, with annual reports from the National Health Institute. In this study, we summarize available evidence on the epidemiology of officially notified DENV infections from 2010–2021. In total, 1043 DENV infection cases were diagnosed, and most of them occurred in travelers, with only 11 autochthonous cases. The annual incidence rates of DENV infections peaked during 2019 with 0.277 cases per 100,000 (95% confidence interval [95% CI] 0.187–0.267), (age-adjusted incidence rate: 0.328, 95% CI 0.314–0.314). Cases of DENV were clustered during the summer months of July (11.4%), August (19.3%), and September (12.7%). The areas characterized by higher notification rates were north-western (29.0%), and mostly north-eastern Italy (41.3%). The risk for DENV infection in travelers increased in the time period 2015–2019 (risk ratio [RR] 1.808, 95% CI 1.594–2.051) and even during 2020–2021 (RR 1.771, 95% CI 1.238–2.543). Higher risk for DENV was additionally reported in male subjects compared with females subjects, and aged 25 to 44 years, and in individuals from northern and central Italy compared to southern regions and islands. In a multivariable Poisson regression model, the increased number of travelers per 100 inhabitants (incidence rate ratio [IRR] 1.065, 95% CI 1.036–1.096), the incidence in other countries (IRR 1.323, 95% CI 1.165–1.481), the share of individuals aged 25 to 44 years (IRR 1.622, 95% CI 1.338–1.968), and foreign-born residents (IRR 2.717, 95% CI 1.555–3.881), were identified as effectors of annual incidence. In summary, although the circulation of DENV remains clustered among travelers, enhanced surveillance is vital for the early detection of human cases and the prompt implementation of response measures.
Collapse
|
29
|
Behnam MAM, Klein CD. On track to tackle dengue: History and future of NS4B ligands. Cell Host Microbe 2021; 29:1735-1737. [PMID: 34883063 DOI: 10.1016/j.chom.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recent publication in Nature (Kaptein et al., 2021) reports a highly potent antiviral compound against dengue with promising efficacy in mice. Here, we track the history of this compound class, its pharmacology, and its chemistry, with insights into its potential as orally available drugs to prevent and treat dengue.
Collapse
Affiliation(s)
- Mira A M Behnam
- Faculty of Pharmaceutical Engineering, The German International University, Cairo, Egypt.
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|