1
|
Amorim R, Soares P, Chavarria D, Benfeito S, Cagide F, Teixeira J, Oliveira PJ, Borges F. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities. Eur J Med Chem 2024; 277:116723. [PMID: 39163775 DOI: 10.1016/j.ejmech.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
3
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
4
|
Hu Y, Sun C, Chen Y, Liu YD, Fan JG. Pipeline of New Drug Treatment for Non-alcoholic Fatty Liver Disease/Metabolic Dysfunction-associated Steatotic Liver Disease. J Clin Transl Hepatol 2024; 12:802-814. [PMID: 39280073 PMCID: PMC11393841 DOI: 10.14218/jcth.2024.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
Given the global prevalence and rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD), the absence of licensed medications is striking. A deeper understanding of the heterogeneous nature of MASLD has recently contributed to the discovery of novel groups of agents and the potential repurposing of currently available medications. MASLD therapies center on four major pathways. Considering the close relationship between MASLD and type 2 diabetes, the first approach involves antidiabetic medications, including incretins, thiazolidinedione insulin sensitizers, and sodium-glucose cotransporter 2 inhibitors. The second approach targets hepatic lipid accumulation and the resultant metabolic stress. Agents in this group include peroxisome proliferator-activated receptor agonists (e.g., pioglitazone, elafibranor, saroglitazar), bile acid-farnesoid X receptor axis regulators (obeticholic acid), de novo lipogenesis inhibitors (aramchol, NDI-010976), and fibroblast growth factor 21/19 analogs. The third approach focuses on targeting oxidative stress, inflammation, and fibrosis. Agents in this group include antioxidants (vitamin E), tumor necrosis factor α pathway regulators (emricasan, pentoxifylline, ZSP1601), and immune modulators (cenicriviroc, belapectin). The final group targets the gut (IMM-124e, solithromycin). Combination therapies targeting different pathogenetic pathways may provide an alternative to MASLD treatment with higher efficacy and fewer side effects. This review aimed to provide an update on these medications.
Collapse
Affiliation(s)
- Ye Hu
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Sun
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Geriatrics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Dong Liu
- Department of Gastroenterology, Changxing branch of Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Fuchs CD, Simbrunner B, Baumgartner M, Campell C, Reiberger T, Trauner M. Bile acid metabolism and signaling in liver disease. J Hepatol 2024:S0168-8278(24)02572-8. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) have signaling functions efficiently regulating their own metabolism and transport as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolized by microbiota. Disruption of BA transport, metabolism and physiological signaling function contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and metabolic dysfunction-associated steatotic liver disease (MASLD) as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signaling may also affect the intestine and kidney, thereby contributing to failure of gut integrity driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. This review will summarize recent advances in the understanding of BA signaling, metabolism and transport focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Feng X, Zhang R, Yang Z, Zhang K, Xing J. Mechanism of Metabolic Dysfunction-associated Steatotic Liver Disease: Important role of lipid metabolism. J Clin Transl Hepatol 2024; 12:815-826. [PMID: 39280069 PMCID: PMC11393839 DOI: 10.14218/jcth.2024.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, has a high global prevalence and can progress to metabolic dysfunction-associated steatohepatitis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of MASLD is primarily driven by disturbances in hepatic lipid metabolism, involving six key processes: increased hepatic fatty acid uptake, enhanced fatty acid synthesis, reduced oxidative degradation of fatty acids, increased cholesterol uptake, elevated cholesterol synthesis, and increased bile acid synthesis. Consequently, maintaining hepatic lipid metabolic homeostasis is essential for effective MASLD management. Numerous novel molecules and Chinese proprietary medicines have demonstrated promising therapeutic potential in treating MASLD, primarily by inhibiting lipid synthesis and promoting lipid oxidation. In this review, we summarized recent research on MASLD, elucidated the molecular mechanisms by which lipid metabolism disorders contribute to MASLD pathogenesis, and discussed various lipid metabolism-targeted therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Xiaoxi Feng
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rutong Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenye Yang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Xing
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Cheon I, Kim M, Kim KH, Ko S. Hepatic Nuclear Receptors in Cholestasis-to-Cholangiocarcinoma Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00358-4. [PMID: 39326734 DOI: 10.1016/j.ajpath.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Cholestasis, characterized by impaired bile flow, is associated with an increased risk of cholangiocarcinoma (CCA), a malignancy originating from the biliary epithelium and hepatocytes. Hepatic nuclear receptors (NRs) are pivotal in regulating bile acid and metabolic homeostasis, and their dysregulation is implicated in cholestatic liver diseases and the progression of liver cancer. This review elucidates the role of various hepatic NRs in the pathogenesis of cholestasis-to-CCA progression. We explore their impact on bile acid metabolism as well as their interactions with other signaling pathways implicated in CCA development. Additionally, we introduce available murine models of cholestasis/primary sclerosing cholangitis leading to CCA and discuss the clinical potential of targeting hepatic NRs as a promising approach for the prevention and treatment of cholestatic liver diseases and CCA. Understanding the complex interplay between hepatic NRs and cholestasis-to-CCA pathology holds promise for the development of novel preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Naoumov NV, Kleiner DE, Chng E, Brees D, Saravanan C, Ren Y, Tai D, Sanyal AJ. Digital quantitation of bridging fibrosis and septa reveals changes in natural history and treatment not seen with conventional histology. Liver Int 2024. [PMID: 39248039 DOI: 10.1111/liv.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) with bridging fibrosis is a critical stage in the evolution of fatty liver disease. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence (AI) provides sensitive and reproducible quantitation of liver fibrosis. This methodology was applied to gain an in-depth understanding of intra-stage fibrosis changes and septa analyses in a homogenous, well-characterised group with MASH F3 fibrosis. METHODS Paired liver biopsies (baseline [BL] and end of treatment [EOT]) of 57 patients (placebo, n = 17 and tropifexor n = 40), with F3 fibrosis stage at BL according to the clinical research network (CRN) scoring, were included. Unstained sections were examined using SHG/TPEF microscopy with AI. Changes in liver fibrosis overall and in five areas of liver lobules were quantitatively assessed by qFibrosis. Progressive, regressive septa, and 12 septa parameters were quantitatively analysed. RESULTS qFibrosis demonstrated fibrosis progression or regression in 14/17 (82%) patients receiving placebo, while the CRN scoring categorised 11/17 (65%) as 'no change'. Radar maps with qFibrosis readouts visualised quantitative fibrosis dynamics in different areas of liver lobules even in cases categorised as 'No Change'. Measurement of septa parameters objectively differentiated regressive and progressive septa (p < .001). Quantitative changes in individual septa parameters (BL to EOT) were observed both in the 'no change' and the 'regression' subgroups, as defined by the CRN scoring. CONCLUSION SHG/TPEF microscopy with AI provides greater granularity and precision in assessing fibrosis dynamics in patients with bridging fibrosis, thus advancing knowledge development of fibrosis evolution in natural history and in clinical trials.
Collapse
Affiliation(s)
| | - David E Kleiner
- Laboratory of Pathology, Post-Mortem Section, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | - Chandra Saravanan
- Novartis Institute of Biomedical Research, Cambridge, Massachusetts, USA
| | - Yayun Ren
- Histoindex Pte. Ltd., Singapore, Singapore
| | - Dean Tai
- Histoindex Pte. Ltd., Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
9
|
Gupta V, Sehrawat TS, Pinzani M, Strazzabosco M. Portal Fibrosis and the Ductular Reaction: Pathophysiological Role in the Progression of Liver Disease and Translational Opportunities. Gastroenterology 2024:S0016-5085(24)05455-6. [PMID: 39251168 DOI: 10.1053/j.gastro.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/11/2024]
Abstract
A consistent feature of chronic liver diseases and the hallmark of pathologic repair is the so-called "ductular reaction." This is a histologic abnormality characterized by an expansion of dysmorphic cholangiocytes inside and around portal spaces infiltrated by inflammatory, mesenchymal, and vascular cells. The ductular reaction is a highly regulated response based on the reactivation of morphogenetic signaling mechanisms and a complex crosstalk among a multitude of cell types. The nature and mechanism of these exchanges determine the difference between healthy regenerative liver repair and pathologic repair. An orchestrated signaling among cell types directs mesenchymal cells to deposit a specific extracellular matrix with distinct physical and biochemical properties defined as portal fibrosis. Progression of fibrosis leads to vast architectural and vascular changes known as "liver cirrhosis." The signals regulating the ecology of this microenvironment are just beginning to be addressed. Contrary to the tumor microenvironment, immune modulation inside this "benign" microenvironment is scarcely known. One of the reasons for this is that both the ductular reaction and portal fibrosis have been primarily considered a manifestation of cholestatic liver disease, whereas this phenomenon is also present, albeit with distinctive features, in all chronic human liver diseases. Novel human-derived cellular models and progress in "omics" technologies are increasing our knowledge at a fast pace. Most importantly, this knowledge is on the edge of generating new diagnostic and therapeutic advances. Here, we will critically review the latest advances, in terms of mechanisms, pathophysiology, and treatment prospects. In addition, we will delineate future avenues of research, including innovative translational opportunities.
Collapse
Affiliation(s)
- Vikas Gupta
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Tejasav S Sehrawat
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Royal Free Hospital, London, UK; University of Pittsburgh Medical Center-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
10
|
Qiu J, Lin C, Ren G, Xu F, Hu T, Le Y, Fan X, Yu Z, Liu Q, Wang X, Dou X. Geniposide dosage and administration time: Balancing therapeutic benefits and adverse reactions in liver disease treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155799. [PMID: 38968789 DOI: 10.1016/j.phymed.2024.155799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 07/07/2024]
Abstract
Gardenia jasminoides Ellis, a staple in herbal medicine, has long been esteemed for its purported hepatoprotective properties. Its primary bioactive constituent, geniposide, has attracted considerable scientific interest owing to its multifaceted therapeutic benefits across various health conditions. However, recent investigations have unveiled potential adverse effects associated with its metabolite, genipin, particularly at higher doses and prolonged durations of administration, leading to hepatic injury. Determining the optimal dosage and duration of geniposide administration while elucidating its pharmacological and toxicological mechanisms is imperative for safe and effective clinical application. This study aimed to evaluate the safe dosage and administration duration of geniposide in mice and investigate its toxicological mechanisms within a comprehensive dosage-duration-efficacy/toxicity model. Four distinct mouse models were employed, including wild-type mice, cholestasis-induced mice, globally farnesoid X-activated receptor (FXR) knock out mice, and high-fat diet-induced (HFD) NAFLD mice. Various administration protocols, spanning one or four weeks and comprising two or three oral doses, were tailored to each model's requirements. Geniposide has positive effects on bile acid and lipid metabolism at doses below 220 mg/kg/day without causing liver injury in normal mice. However, in mice with NAFLD, this dosage is less effective in improving liver function, lipid profiles, and bile acid metabolism compared to lower doses. In cholestasis-induced mice, prolonged use of geniposide at 220 mg/kg/day worsened liver damage. Additionally, in NAFLD mice, this dosage of geniposide for four weeks led to intestinal pyroptosis and liver inflammation. These results highlight the lipid-lowering and bile acid regulatory effects of geniposide, but also warn of potential negative impacts on intestinal epithelial cells, particularly with higher doses and longer treatment durations. Therefore, achieving optimal therapeutic results requires a decrease in treatment duration as the dosage increases, in order to maintain a balanced approach to the use of geniposide in clinical settings.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China; E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Lin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Guilin Ren
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Fangying Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Tianxiao Hu
- Department of Ultrasonography, Chinese PLA 903rd Hospital, Hangzhou 310013, China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Qingsheng Liu
- Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, China
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
11
|
Alrehaili BD. Unravelling the therapeutic landscape of bile acid-based therapies in gastrointestinal disorders. Saudi J Gastroenterol 2024; 30:283-293. [PMID: 38708898 PMCID: PMC11534188 DOI: 10.4103/sjg.sjg_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Bile acids serve as endogenous ligands for nuclear and cell membrane receptors and play a crucial role in bile acid and lipid metabolism. These detergent-like compounds promote bile flow and aid in the absorption of dietary fats and fat-soluble vitamins in the intestine. Synthesized in the liver as end products of cholesterol catabolism, bile acids exhibit a chemical structure comprising a nucleus and a side chain featuring a carboxyl group, with diverse steric arrangements and potential polar substituents. Critical interactions occur between bile acid species and various nuclear and cell membrane receptors, including the farnesoid X receptor and G-protein-coupled bile acid receptor 1. This research aimed to review the literature on bile acids and their roles in treating different diseases. Currently, numerous investigations are concentrating on specific bile acid species that target nuclear receptors in the gastrointestinal system, aiming to improve the treatment of conditions such as nonalcoholic fatty liver disease. Given the global attention this topic has garnered from research groups, it is considered relatively new, thus anticipating some gaps or incomplete data. Bile acid species have a significant therapeutic promise, especially in their ability to activate or inhibit nuclear receptors, such as farnesoid X receptor. This research provides to offer essential information for scientists and medical practitioners interested in discovering new studies that underscore the importance of bile acids in ameliorating and impeding the progression of disorders. Furthermore, it opens avenues for previously overlooked bile acid-based therapies.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Pharmacology and Toxicology Department, Pharmacy College, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
12
|
Soresi M, Giannitrapani L. Glucagon-like peptide 1 agonists are potentially useful drugs for treating metabolic dysfunction-associated steatotic liver disease. World J Gastroenterol 2024; 30:3541-3547. [PMID: 39193573 PMCID: PMC11346152 DOI: 10.3748/wjg.v30.i30.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/08/2024] Open
Abstract
In this editorial, we comment on Yin et al's recently published Letter to the editor. In particular, we focus on the potential use of glucagon-like peptide 1 receptor agonists (GLP-1RAs) alone, but even more so in combination therapy, as one of the most promising therapies in metabolic dysfunction-associated steatotic liver disease (MASLD), the new definition of an old condition, non-alcoholic fatty liver disease, which aims to better define the spectrum of steatotic pathology. It is well known that GLP-1RAs, having shown outstanding performance in fat loss, weight loss, and improvement of insulin resistance, could play a role in protecting the liver from progressive damage. Several clinical trials have shown that, among GLP-1RAs, semaglutide is a safe, well-studied therapeutic choice for MASLD patients; however, most studies demonstrate that, while semaglutide can reduce steatosis, including steatohepatitis histological signs (in terms of inflammatory cell infiltration and hepatocyte ballooning), it does not improve fibrosis. Combinations of therapies with different but complementary mechanisms of action are considered the best way to improve efficiency and slow disease progression due to the complex pathophysiology of the disease. In particular, GLP-1RAs associated with antifibrotic drug therapy, dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1RA or GLP-1 and glucagon RAs have promoted greater improvement in hepatic steatosis, liver biochemistry, and non-invasive fibrosis tests than monotherapy. Therefore, although to date there are no definitive indications from international drug agencies, there is the hope that soon the therapeutic lines in the most advanced phase of study will be able to provide a therapy for MASLD, one that will certainly include the use of GLP-1RAs as combination therapy.
Collapse
Affiliation(s)
- Maurizio Soresi
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo 90127, Italy
| | - Lydia Giannitrapani
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo 90127, Italy
| |
Collapse
|
13
|
Foster C, Gagnon CA, Ashraf AP. Altered lipid metabolism and the development of metabolic-associated fatty liver disease. Curr Opin Lipidol 2024; 35:200-207. [PMID: 38484227 DOI: 10.1097/mol.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW An increasing amount of research has underscored the significant role of lipoproteins in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). This comprehensive review examines the intricate relationship between lipoprotein abnormalities and the development of MAFLD. RECENT FINDINGS Atherogenic dyslipidemia seen in insulin resistance states play a significant role in initiating and exacerbating hepatic lipid accumulation. There are also specific genetic factors ( PNPLA3 , TM6SF2 , MBOAT7 , HSD17B13 , GCKR- P446L) and transcription factors (SREBP-2, FXR, and LXR9) that increase susceptibility to both lipoprotein disorders and MAFLD. Most monogenic primary lipid disorders do not cause hepatic steatosis unless accompanied by metabolic stress. Hepatic steatosis occurs in the presence of secondary systemic metabolic stress in conjunction with predisposing environmental factors that lead to insulin resistance. Identifying specific aberrant lipoprotein metabolic factors promoting hepatic fat accumulation and subsequently exacerbating steatohepatitis will shed light on potential targets for therapeutic interventions. SUMMARY The clinical implications of interconnection between genetic factors and an insulin resistant environment that predisposes MAFLD is many fold. Potential therapeutic strategies in preventing or mitigating MAFLD progression include lifestyle modifications, pharmacological interventions, and emerging therapies targeting aberrant lipoprotein metabolism.
Collapse
Affiliation(s)
- Christy Foster
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham
| | - Charles A Gagnon
- University of Alabama at Birmingham Marnix E. Heersink School of Medicine, Birmingham, Alabama, USA
| | - Ambika P Ashraf
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham
| |
Collapse
|
14
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
15
|
Hu X, Ge J, Wen Y. Computational study of novel natural agonists targeting farnesoid X receptor. Sci Rep 2024; 14:17597. [PMID: 39079973 PMCID: PMC11289082 DOI: 10.1038/s41598-024-68526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
The farnesoid X receptor (FXR) is a crucial therapeutic target for treating non-alcoholic steatohepatitis (NASH). Although obeticholic acid (OCA) as a FXR agonist presents good efficacy, the safety data such as severe pruritus should be carefully considered. To discover new medications, we screen and choose the optimal compounds from ZINC15 database that may agonistically interact with FXR. We utilized the DS19 software to assist us in conducting the computer-aided structure based virtual screening to discover potential FXR agonists. After LibDock scores were determined by screening, their absorption, distribution, metabolism, excretion and toxicity predictions were examined. To determine the binding affinity between the chosen drugs and FXR, molecule docking was utilized. Molecular dynamics simulation was utilized to evaluate the stabilization of the ligand-FXR complex in its native environment. Higher binding affinity and stability with FXR were observed for ZINC000013374322 and ZINC000006036327, as two novel natural compounds, with lower rodent carcinogenicity, Ames mutagenicity, no hepatotoxicity and non-inhibitors of CYP2D6. They could stably exist in the environment, possess favorable potential energy and exert pharmacological effects at lower doses. Furthermore, ZINC000006036327 had lower skin irritancy and sensitization potential compared to OCA, also suggest the possibility of improved skin itching occurrence. ZINC000013374322 and ZINC000006036327 were found to be the best leading compounds to be FXR agonists. They are chosen as safe candidates for FXR target medicine, which play comparable pharmacological effects at lower doses.
Collapse
Affiliation(s)
- Xindan Hu
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Junliang Ge
- Clinical Center for Epilepsy, Xuanwu Hospital, 45 Changchun Street, Xicheng District, Beijing, 100037, Beijing, China.
| | - Ying Wen
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
16
|
Liu Z, Chen L, Chen M, Linghu L, Liao Z, Chen M, Wang G. Sarmentol H derived from Sedum sarmentosum Bunge directly targets FXR to mitigate cholestasis by recruiting SRC-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155759. [PMID: 38788394 DOI: 10.1016/j.phymed.2024.155759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Farnesoid X receptor (FXR) is a vital receptor for bile acids and plays an important role in the treatment of cholestatic liver disease. In addition to traditional bile acid-based steroidal agonists, synthetic alkaloids are the most commonly reported non-steroidal FXR agonists. Sarmentol H is a nor-sesquiterpenoid obtained from Sedum sarmentosum Bunge, and in vitro screening experiments have shown that it might be related to the regulation of the FXR pathway in a previous study. PURPOSE To investigate the therapeutic effects of sarmentol H on cholestasis and to determine whether sarmentol H directly targets FXR to mitigate cholestasis. Furthermore, this study aimed to explore the key amino acid residues involved in the binding of sarmentol H to FXR through site-directed mutagenesis. METHODS An intrahepatic cholestasis mouse model was established to investigate the therapeutic effects of sarmentol H on cholestasis. In vitro experiments, including Co-Ip and FXR-EcRE-Luc assays, were performed to assess whether sarmentol H activates FXR by recruiting the receptor coactivator SRC1. CETSA, SIP, DARTS, and ITC were used to determine the binding of sarmentol H to FXR protein. The key amino acid residues for sarmentol H binding to FXR were analyzed by molecular docking and site-directed mutagenesis. Finally, we conducted in vivo experiments on wild-type and Fxr-/- mice to further validate the anticholestatic target of sarmentol H. RESULTS Sarmentol H had significant ameliorative effects on the pathological conditions of cholestatic mice induced with ANIT. In vitro experiments suggested that it is capable of activating FXR and regulating downstream signaling pathways by recruiting SRC1. The target validation experiments showed that sarmentol H had the ability to bind to FXR as a ligand (KD = 2.55 μmol/L) and enhance the stability of its spatial structure. Moreover, site-directed mutagenesis revealed that THR292 and TYR365 were key binding sites for sarmentol H and FXR. Furthermore, knockout of the Fxr gene resulted in a significantly higher degree of ANIT-induced cholestatic liver injury than that in wild-type cholestatic mice, and the amelioration of cholestasis or regulatory effects on FXR downstream genes by sarmentol H also disappeared in Fxr-/- cholestatic mice. CONCLUSION Sarmentol H is an FXR agonist. This is the first study to show that it exerts a significant therapeutic effect on cholestatic mice, and can directly bind to FXR and activate it by recruiting the coactivator SRC1.
Collapse
Affiliation(s)
- Zhenxiu Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Mingyun Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lang Linghu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
17
|
Bilson J, Scorletti E, Swann JR, Byrne CD. Bile Acids as Emerging Players at the Intersection of Steatotic Liver Disease and Cardiovascular Diseases. Biomolecules 2024; 14:841. [PMID: 39062555 PMCID: PMC11275019 DOI: 10.3390/biom14070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Affecting approximately 25% of the global population, steatotic liver disease (SLD) poses a significant health concern. SLD ranges from simple steatosis to metabolic dysfunction-associated steatohepatitis and fibrosis with a risk of severe liver complications such as cirrhosis and hepatocellular carcinoma. SLD is associated with obesity, atherogenic dyslipidaemia, and insulin resistance, increasing cardiovascular risks. As such, identifying SLD is vital for cardiovascular disease (CVD) prevention and treatment. Bile acids (BAs) have critical roles in lipid digestion and are signalling molecules regulating glucose and lipid metabolism and influencing gut microbiota balance. BAs have been identified as critical mediators in cardiovascular health, influencing vascular tone, cholesterol homeostasis, and inflammatory responses. The cardio-protective or harmful effects of BAs depend on their concentration and composition in circulation. The effects of certain BAs occur through the activation of a group of receptors, which reduce atherosclerosis and modulate cardiac functions. Thus, manipulating BA receptors could offer new avenues for treating not only liver diseases but also CVDs linked to metabolic dysfunctions. In conclusion, this review discusses the intricate interplay between BAs, metabolic pathways, and hepatic and extrahepatic diseases. We also highlight the necessity for further research to improve our understanding of how modifying BA characteristics affects or ameliorates disease.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
- Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Christopher D. Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
18
|
Malandris K, Papandreou S, Vasilakou D, Kakotrichi P, Sarakapina A, Kalopitas G, Karagiannis T, Giouleme O, Bekiari E, Liakos A, Iatridi F, Paschos P, Sinakos E, Tsapas A. Efficacy of pharmacologic interventions on magnetic resonance imaging biomarkers in patients with nonalcoholic fatty liver disease: systematic review and network meta-analysis. J Gastroenterol Hepatol 2024; 39:1219-1229. [PMID: 38627972 DOI: 10.1111/jgh.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND AIM Several agents are under investigation for nonalcoholic fatty liver disease (NAFLD). We assessed the comparative efficacy of pharmacologic interventions for patients with NAFLD focusing on magnetic resonance imaging (MRI) biomarkers. METHODS We searched Medline, Embase, and CENTRAL. We included randomized controlled trials of more than 12 weeks of intervention that recruited patients with biopsy-confirmed or MRI-confirmed NAFLD and assessed the efficacy of interventions on liver fat content (LFC) and fibrosis by means of MRI. We performed random-effects frequentist network meta-analyses and assessed confidence in our estimates using the CINeMA (Confidence in Network Meta-Analysis) approach. RESULTS We included 47 trials (8583 patients). Versus placebo, thiazolidinediones were the most efficacious for the absolute change in LFC, followed by vitamin E, fibroblast growth factor (FGF) analogs, and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) with mean differences ranging from -7.46% (95% confidence interval [-11.0, -3.9]) to -4.36% (-7.2, -1.5). No differences between drug classes were evident. Patients receiving GLP-1 RAs or glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs were more likely to achieve ≥30% relative reduction in LFC. Among agents, efruxifermin produced the largest reduction in LFC compared to placebo [-13.5% (-18.5, -8.5)], followed by pioglitazone, while being superior to most interventions. The effect of interventions on magnetic resonance elastography assessed fibrosis was small and insignificant. The confidence in our estimates was low to very low. CONCLUSIONS Several drug classes may reduce LFC in patients with NAFLD without a significant effect on fibrosis; nevertheless, trial duration was small, and confidence in the effect estimates was low.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Papandreou
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Vasilakou
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Kakotrichi
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Sarakapina
- First Medical Department, Papageorgiou Hospital, Thessaloniki, Greece
| | - Georgios Kalopitas
- First Medical Department, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Karagiannis
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Giouleme
- Second Propaedeutic Medical Department, Hippokration General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Bekiari
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aris Liakos
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- First Department of Nephrology, Hippokration General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Paschos
- First Medical Department, Papageorgiou Hospital, Thessaloniki, Greece
| | - Emmanouil Sinakos
- Fourth Medical Department, Hippokration General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Ratziu V, Yilmaz Y, Lazas D, Friedman SL, Lackner C, Behling C, Cummings OW, Chen L, Petitjean M, Gilgun-Sherki Y, Gorfine T, Kadosh S, Eyal E, Sanyal AJ. Aramchol improves hepatic fibrosis in metabolic dysfunction-associated steatohepatitis: Results of multimodality assessment using both conventional and digital pathology. Hepatology 2024:01515467-990000000-00930. [PMID: 38916482 DOI: 10.1097/hep.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/07/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND AND AIMS Antifibrotic trials rely on conventional pathology despite recognized limitations. We compared single-fiber digital image analysis with conventional pathology to quantify the antifibrotic effect of Aramchol, a stearoyl-CoA desaturase 1 inhibitor in development for metabolic dysfunction-associated steatohepatitis. APPROACH AND RESULTS Fifty-one patients with metabolic dysfunction-associated steatohepatitis enrolled in the open-label part of the ARMOR trial received Aramchol 300 mg BID and had paired pre-post treatment liver biopsies scored by consensus among 3 hepatopathologists, and separately assessed by a digital image analysis platform (PharmaNest) that generates a continuous phenotypic Fibrosis Composite Severity (Ph-FCS) score. Fibrosis improvement was defined as: ≥1 NASH Clinical Research Network (NASH-CRN) stage reduction; "improved" by ranked pair assessment; reduction in Ph-FCS ("any" for ≥0.3 absolute reduction and "substantial" for ≥25% relative reduction). Fibrosis improved in 31% of patients (NASH-CRN), 51% (ranked pair assessment), 74.5% (any Ph-FCS reduction), and 41% (substantial Ph-FCS reduction). Most patients with stable fibrosis by NASH-CRN or ranked pair assessment had a Ph-FCS reduction (a third with substantial reduction). Fibrosis improvement increased with treatment duration: 25% for <48 weeks versus 39% for ≥48 weeks by NASH-CRN; 43% versus 61% by ranked pair assessment, mean Ph-FCS reduction -0.54 (SD: 1.22) versus -1.72 (SD: 1.02); Ph-FCS reduction (any in 54% vs. 100%, substantial in 21% vs. 65%). The antifibrotic effect of Aramchol was corroborated by reductions in liver stiffness, Pro-C3, and enhanced liver fibrosis. Changes in Ph-FCS were positively correlated with changes in liver stiffness. CONCLUSIONS Continuous fibrosis scores generated in antifibrotic trials by digital image analysis quantify antifibrotic effects with greater sensitivity and a larger dynamic range than conventional pathology.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN) and Hôpital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Don Lazas
- ObjectiveHealth/Digestive Health Research, Nashville, Tennessee, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Caroline Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Cynthia Behling
- Department of Pathology, Sharp Health System, San Diego, California, USA
| | - Oscar W Cummings
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Li Chen
- PharmaNest Inc., Princeton, New Jersey, USA
| | | | | | - Tali Gorfine
- Galmed Pharmaceuticals Ltd, Tel Aviv, Kiryat Motzkin, Israel
| | | | - Eli Eyal
- Eyal Statistical Consulting, Petach Tikva, Israel
| | - Arun J Sanyal
- Department of Gastroenterology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
20
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
21
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
22
|
Tang Y, Fan Y, Wang Y, Wang D, Huang Q, Chen T, Cao X, Wen C, Shen X, Li J, You Y. A Current Understanding of FXR in NAFLD: The multifaceted regulatory role of FXR and novel lead discovery for drug development. Biomed Pharmacother 2024; 175:116658. [PMID: 38701562 DOI: 10.1016/j.biopha.2024.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has reached 30 %, with an annual increase. The incidence of NAFLD-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. However, there are currently no US Food and Drug Administration-approved drugs for NAFLD. Increasing evidence underscores the close association between NAFLD and bile acid metabolism disorder, highlighting the feasibility of targeting the bile acid signaling pathway for NAFLD treatment. The farnesoid X receptor (FXR) is an endogenous receptor for bile acids that exhibits favorable effects in ameliorating the metabolic imbalance of bile acids, lipid disorders, and disruption of intestinal homeostasis, all of which are key characteristics of NAFLD, making FXR a promising therapeutic target for NAFLD. The present review provides a comprehensive overview of the diverse mechanisms through which FXR improves NAFLD, with particular emphasis on its involvement in regulating bile acid homeostasis and the recent advancements in drug development targeting FXR for NAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Tang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yujuan Fan
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong Wang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongqing Chen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xinyue Cao
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Cailing Wen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
24
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
25
|
Cheng Z, Chen Y, Schnabl B, Chu H, Yang L. Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets. J Adv Res 2024; 59:173-187. [PMID: 37356804 PMCID: PMC11081971 DOI: 10.1016/j.jare.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) has been the second most common cause of liver transplantation in the United States. To date, NASH pathogenesis has not been fully elucidated but is multifactorial, involving insulin resistance, obesity, metabolic disorders, diet, dysbiosis, and gene polymorphism. An effective and approved therapy for NASH has also not been established. Bile acid is long known to have physiological detergent function in emulsifying and absorbing lipids and lipid-soluble molecules within the intestinal lumen. With more and more in-depth understandings of bile acid, it has been deemed to be a pivotal signaling molecule, which is capable of regulating lipid and glucose metabolism, liver inflammation, and fibrosis. In recent years, a plethora of studies have delineated that disrupted bile acid homeostasis is intimately correlated with NASH disease severity. AIMS The review aims to clarify the role of bile acid in hepatic lipid and glucose metabolism, liver inflammation, as well as liver fibrosis, and discusses the safety and efficacy of some pharmacological agents targeting bile acid and its associated pathways for NASH. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acid has a salutary effect on hepatic metabolic disorders, which can ameliorate liver fat accumulation and insulin resistance mainly through activating Takeda G-protein coupled receptor 5 and farnesoid X receptor. Moreover, bile acid also exerts anti-inflammation and anti-fibrosis properties. Furthermore, bile acid has great potential in nonalcoholic liver disease stratification and treatment of NASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Yixiong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
26
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
27
|
Chen J, Wang R, Xiong F, Sun H, Kemper B, Li W, Kemper J. Hammerhead-type FXR agonists induce an enhancer RNA Fincor that ameliorates nonalcoholic steatohepatitis in mice. eLife 2024; 13:RP91438. [PMID: 38619504 PMCID: PMC11018349 DOI: 10.7554/elife.91438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.
Collapse
Affiliation(s)
- Jinjing Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Hao Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Jongsook Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
28
|
Jiang Y, Wu L, Zhu X, Bian H, Gao X, Xia M. Advances in management of metabolic dysfunction-associated steatotic liver disease: from mechanisms to therapeutics. Lipids Health Dis 2024; 23:95. [PMID: 38566209 PMCID: PMC10985930 DOI: 10.1186/s12944-024-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease that affects over 30% of the world's population. For decades, the heterogeneity of non-alcoholic fatty liver disease (NAFLD) has impeded our understanding of the disease mechanism and the development of effective medications. However, a recent change in the nomenclature from NAFLD to MASLD emphasizes the critical role of systemic metabolic dysfunction in the pathophysiology of this disease and therefore promotes the progress in the pharmaceutical treatment of MASLD. In this review, we focus on the mechanism underlying the abnormality of hepatic lipid metabolism in patients with MASLD, and summarize the latest progress in the therapeutic medications of MASLD that target metabolic disorders.
Collapse
Affiliation(s)
- Yuxiao Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Lili Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Department of Integrated Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Department of Endocrinology and Metabolism, Wusong Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Moon AN, Briand F, Breyner N, Song DK, Madsen MR, Kim H, Choi K, Lee Y, Namkung W. Improvement of NASH and liver fibrosis through modulation of the gut-liver axis by a novel intestinal FXR agonist. Biomed Pharmacother 2024; 173:116331. [PMID: 38428307 DOI: 10.1016/j.biopha.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Farnesoid X receptor (FXR) plays a pivotal role in the regulation of bile acid homeostasis and is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Although FXR agonists effectively alleviate pathological features of NASH, adverse effects such as disturbance of cholesterol homeostasis and occurrence of pruritus remain to be addressed. Here, we identified a novel FXR agonist, ID119031166 (ID166), and explored the pharmacological benefits of ID166 in the treatment of NASH. ID166, a potent and selective non-bile acid FXR agonist, exhibits preferential distribution in the intestine and shows no agonist activity against potential itch receptors including Mas-related G protein-coupled receptor X4 (MRGPRX4). Interestingly, ID166 significantly attenuated total nonalcoholic fatty liver disease (NAFLD) activity and liver fibrosis in a free choice diet-induced NASH hamster model. In addition, ID166 drastically modulated the relative abundance of five gut microbes and reduced the increase in plasma total bile acid levels to normal levels in NASH hamsters. Moreover, long-term treatment with ID166 significantly improved key histological features of NASH and liver fibrosis in a diet-induced NASH mouse model. In the NASH mouse livers, RNA-seq analysis revealed that ID166 reduced the gene expression changes associated with both NASH and liver fibrosis. Notably, ID166 exhibited no substantial effects on scratching behavior and serum IL-31 levels in mice. Our findings suggest that ID166, a novel FXR agonist with improved pharmacological properties, provides a preclinical basis to optimize clinical benefits for NASH drug development.
Collapse
Affiliation(s)
- An-Na Moon
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea; iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea
| | - François Briand
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, Escalquens 31750, France
| | - Natalia Breyner
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, Escalquens 31750, France
| | - Dong-Keun Song
- iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea
| | | | - Hongbin Kim
- KINS, Korean Institute of Nonclinical Study, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13505, South Korea
| | - Keonwoo Choi
- KINS, Korean Institute of Nonclinical Study, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13505, South Korea
| | - Yoonsuk Lee
- iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea.
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea.
| |
Collapse
|
30
|
Sohal A, Kowdley KV. Novel preclinical developments of the primary sclerosing cholangitis treatment landscape. Expert Opin Investig Drugs 2024; 33:335-345. [PMID: 38480008 DOI: 10.1080/13543784.2024.2330738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease associated with inflammation, fibrosis, and destruction of intra- and extrahepatic bile ducts. Despite substantial recent advances in our understanding of PSC, the only proven treatment of PSC is liver transplantation. There is an urgent unmet need to find medical therapies for this disorder. AREAS COVERED Multiple drugs are currently under evaluation as therapeutic options for this disease. This article summarizes the literature on the various novel therapeutic options that have been investigated and are currently under development for the treatment of PSC. EXPERT OPINION In the next decade, more than one drug will likely be approved for the treatment of the disease, and we will be looking at combination therapies for the optimal management of the disease.
Collapse
Affiliation(s)
- Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, USA
| | - Kris V Kowdley
- Department of Hepatology, Liver Institute Northwest, Seattle, USA
- Elson S. Floyd College of Medicine, Washington State University, Spokane, USA
| |
Collapse
|
31
|
Noureddin M. MASH clinical trials and drugs pipeline: An impending tsunami. Hepatology 2024:01515467-990000000-00811. [PMID: 38502810 DOI: 10.1097/hep.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease, formerly known as NAFLD, has ascended to prominence as the predominant chronic liver disease in Western countries and now stands as a leading cause of liver transplantations. In the more advanced stage, metabolic dysfunction-associated steatohepatitis (MASH) may lead to fibrosis, a gateway to cirrhosis, liver cancer, and liver failure. Despite extensive research and exploration of various drug mechanisms, the anticipation for the inaugural approved drug to materialize by 2024 is palpable, marking a significant milestone. Numerous pathways have been investigated for MASH treatment, exploring thyroid hormone receptors, glucagon-like peptides 1, peroxisome proliferator-activated receptors, and agents influencing hepatic steatosis synthesis, inflammatory pathways, genetic components, fibrosis mechanisms, and an array of other avenues. Over time, key regulatory directions have crystallized, now manifesting in 2 primary endpoints under investigation: resolution of steatohepatitis without worsening fibrosis and/or improvement of fibrosis stage without worsening of steatohepatitis, especially used in phase 3 clinical trials, while alternative noninvasive endpoints are explored in phase 2 trials. The prospect of proving efficacy in clinical trials opens doors to combination therapies, evaluating the ideal combination of drugs to yield comprehensive benefits, extending beyond the liver to other organs. Certain combination drug trials are already underway. In this review, we discuss the forefront of MASH drug research as of 2023/2024, illuminating mechanisms, outcomes, and future trajectories. Furthermore, we tackle the challenges confronting MASH trials and propose potential strategies for surmounting them.
Collapse
Affiliation(s)
- Mazen Noureddin
- Sherrie & Alan Conover Center for Liver Disease & Transplantation, Underwood Center for Digestive Disorders Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Houston Research Institute, Houston, Texas, USA
| |
Collapse
|
32
|
Xiao Y, Wang W, Peng S, Lu Y, Du J, Cai W. Farnesoid X receptor agonist tropifexor detoxifies ammonia by regulating the glutamine metabolism and urea cycles in cholestatic livers. Eur J Pharmacol 2024; 966:176334. [PMID: 38286357 DOI: 10.1016/j.ejphar.2024.176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Hyperammonemia refers to elevated levels of ammonia in the blood, which is an important pathological feature of liver cirrhosis and hepatic failure. Preclinical studies suggest tropifexor (TXR), a novel non-bile acid agonist of Farnesoid X Receptor (FXR), has shown promising effects on reducing hepatic steatosis, inflammation, and fibrosis. This study evaluates the impact of TXR on hyperammonemia in a piglet model of cholestasis. We here observed blood ammonia significantly elevated in patients with biliary atresia (BA) and was positively correlated with liver injury. Targeted metabolomics and immunblotting showed glutamine metabolism and urea cycles were impaired in BA patients. Next, we observed that TXR potently suppresses bile duct ligation (BDL)-induced injuries in liver and brain with improving the glutamine metabolism and urea cycles. Within the liver, TXR enhances glutamine metabolism and urea cycles by up-regulation of key regulatory enzymes, including glutamine synthetase (GS), carbamoyl-phosphate synthetase 1 (CPS1), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). In primary mice hepatocytes, TXR detoxified ammonia via increasing ureagenesis. Mechanically, TXR activating FXR to increase express enzymes that regulating ureagenesis and glutamine synthesis through a transcriptional approach. Together, these results suggest that TXR may have therapeutic implications for hyperammonemic conditions in cholestatic livers.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
33
|
Wang K, Zhang Y, Wang G, Hao H, Wang H. FXR agonists for MASH therapy: Lessons and perspectives from obeticholic acid. Med Res Rev 2024; 44:568-586. [PMID: 37899676 DOI: 10.1002/med.21991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuecan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
34
|
Wei S, Wang L, Evans PC, Xu S. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov Today 2024; 29:103910. [PMID: 38301798 DOI: 10.1016/j.drudis.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) pose a significant threat to human health and cause a tremendous socioeconomic burden. Currently, the molecular mechanisms of NAFLD and NASH remain incompletely understood, and no effective pharmacotherapies have been approved. In the past five years, significant advances have been achieved in our understanding of the pathomechanisms and potential pharmacotherapies of NAFLD and NASH. Research advances include the investigation of the effects of the fibroblast growth factor 21 (FGF21) analog pegozafermin and the thyroid hormone receptor-β (THRβ) agonist resmetriom on hepatic fat content, NASH resolution and/or fibrosis regression. Future directions of NAFLD and NASH research (including combination therapy, organoids and humanized mouse models) are also discussed in this state-of-the-art review.
Collapse
Affiliation(s)
- Shulin Wei
- School of Life Sciences, Jilin University, Changchun, China; Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
35
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
36
|
Nguyen M, Asgharpour A, Dixon DL, Sanyal AJ, Mehta A. Emerging therapies for MASLD and their impact on plasma lipids. Am J Prev Cardiol 2024; 17:100638. [PMID: 38375066 PMCID: PMC10875196 DOI: 10.1016/j.ajpc.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
Metabolic-dysfunction associated steatotic liver disease (MASLD) affects 1 out of every 3 individuals in the adult population and the disease prevalence is predicted to increase worldwide. Patients with MASLD are also burdened by cardiovascular disease, which is the leading cause of mortality in this population. Complex metabolic derangements such as insulin resistance and atherogenic dyslipidemia affect patients with MASLD. In patients with MASLD, treatment such as pharmacotherapy may be best directed towards improving the adverse concomitant metabolic disorders associated with MASLD, particularly the ones that may contribute to MASLD. Herein, we discuss conventional therapies that target cardiometabolic risk factors which have the potential to improve hepatic injury, and summarize emerging therapies that target hepatic receptors, fibrosis, and fatty acid oxidation in patients with MASLD. Given the relationship between hepatic injury which leads to MASLD, insulin resistance, and ultimately atherogenic dyslipidemia our review uniquely delves into the effects of conventional and emerging therapies for MASLD on plasma lipid parameters.
Collapse
Affiliation(s)
- Madison Nguyen
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Amon Asgharpour
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Richmond, VA, United States
| | - Dave L. Dixon
- Department of Pharmacotherapy and Outcome Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA, United States
- VCU Health Pauley Heart Center, Richmond, VA, United States
| | - Arun J. Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Richmond, VA, United States
| | - Anurag Mehta
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Health Pauley Heart Center, Richmond, VA, United States
| |
Collapse
|
37
|
Zhang M, Yan W, Wang T, Pei S, Wang J, Ji B, Wang G. Deoxyribonuclease I Alleviates Septic Liver Injury in a Rat Model Supported by Venoarterial Extracorporeal Membrane Oxygenation. ASAIO J 2024; 70:241-247. [PMID: 37923309 PMCID: PMC10885865 DOI: 10.1097/mat.0000000000002084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Sepsis is an unusual systemic reaction with high mortality and secondary septic liver injury is proposed to be the major cause of mortality. Extracorporeal membrane oxygenation (ECMO) can enhance terminal organ perfusion by elevating circulatory support which is used in severe sepsis patients. However, the interaction of blood components with the biomaterials of the extracorporeal membrane elicits a systemic inflammatory response. Besides, inflammation and apoptosis are the main mediators in the pathophysiology of septic liver injury. Therefore, we investigated the protective effect of Deoxyribonuclease I (DNase I) against septic liver injury supported by ECMO in rats. Sepsis was induced by lipopolysaccharide (LPS) and 24 hours after the administration, the rats were treated with ECMO. Then blood samples and liver tissues were collected. DNase I significantly attenuated the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and significantly decreased hepatic levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, myeloperoxidase (MPO), downstream inflammatory factor interleukin-1β (IL-1β) and interleukin-18 (IL-18), and improved neutrophil infiltration. Additionally, DNase I significantly reduced the expression of apoptosis key protein and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-labeled apoptotic hepatocytes. In summary, our findings demonstrated that DNase I alleviates liver injury in ECMO-supported septic rats by reducing the inflammatory and apoptotic responses.
Collapse
Affiliation(s)
- Mingru Zhang
- From the Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weidong Yan
- Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shengqiang Pei
- Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingyang Ji
- Department of Cardiopulmonary Bypass, Fuwai Hospital, National Center for Cardiovascular Disease, State Key Laboratory of Cardiovascular Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guyan Wang
- From the Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Wang Y, Yu H, Cen Z, Zhu Y, Wu W. Drug targets regulate systemic metabolism and provide new horizons to treat nonalcoholic steatohepatitis. Metabol Open 2024; 21:100267. [PMID: 38187470 PMCID: PMC10770762 DOI: 10.1016/j.metop.2023.100267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH), is the advanced stage of nonalcoholic fatty liver disease (NAFLD) with rapidly rising global prevalence. It is featured with severe hepatocyte apoptosis, inflammation and hepatic lipogenesis. The drugs directly targeting the processes of steatosis, inflammation and fibrosis are currently under clinical investigation. Nevertheless, the long-term ineffectiveness and remarkable adverse effects are well documented, and new concepts are required to tackle with the root causes of NASH progression. We critically assess the recently validated drug targets that regulate the systemic metabolism to ameliorate NASH. Thermogenesis promoted by mitochondrial uncouplers restores systemic energy expenditure. Furthermore, regulation of mitochondrial proteases and proteins that are pivotal for intracellular metabolic homeostasis normalize mitochondrial function. Secreted proteins also improve systemic metabolism, and NASH is ameliorated by agonizing receptors of secreted proteins with small molecules. We analyze the drug design, the advantages and shortcomings of these novel drug candidates. Meanwhile, the structural modification of current NASH therapeutics significantly increased their selectivity, efficacy and safety. Furthermore, the arising CRISPR-Cas9 screen strategy on liver organoids has enabled the identification of new genes that mediate lipid metabolism, which may serve as promising drug targets. In summary, this article discusses the in-depth novel mechanisms and the multidisciplinary approaches, and they provide new horizons to treat NASH.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Hanhan Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
39
|
Yang Z, Zarbl H, Guo GL. Circadian Regulation of Endocrine Fibroblast Growth Factors on Systemic Energy Metabolism. Mol Pharmacol 2024; 105:179-193. [PMID: 38238100 PMCID: PMC10877735 DOI: 10.1124/molpharm.123.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
The circadian clock is an endogenous biochemical timing system that coordinates the physiology and behavior of organisms to earth's ∼24-hour circadian day/night cycle. The central circadian clock synchronized by environmental cues hierarchically entrains peripheral clocks throughout the body. The circadian system modulates a wide variety of metabolic signaling pathways to maintain whole-body metabolic homeostasis in mammals under changing environmental conditions. Endocrine fibroblast growth factors (FGFs), namely FGF15/19, FGF21, and FGF23, play an important role in regulating systemic metabolism of bile acids, lipids, glucose, proteins, and minerals. Recent evidence indicates that endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between peripheral clocks and energy homeostasis by regulating the expression of metabolic enzymes and hormones. Circadian disruption induced by environmental stressors or genetic ablation is associated with metabolic dysfunction and diurnal disturbances in FGF signaling pathways that contribute to the pathogenesis of metabolic diseases. Time-restricted feeding strengthens the circadian pattern of metabolic signals to improve metabolic health and prevent against metabolic diseases. Chronotherapy, the strategic timing of medication administration to maximize beneficial effects and minimize toxic effects, can provide novel insights into linking biologic rhythms to drug metabolism and toxicity within the therapeutical regimens of diseases. Here we review the circadian regulation of endocrine FGF signaling in whole-body metabolism and the potential effect of circadian dysfunction on the pathogenesis and development of metabolic diseases. We also discuss the potential of chrononutrition and chronotherapy for informing the development of timing interventions with endocrine FGFs to optimize whole-body metabolism in humans. SIGNIFICANCE STATEMENT: The circadian timing system governs physiological, metabolic, and behavioral functions in living organisms. The endocrine fibroblast growth factor (FGF) family (FGF15/19, FGF21, and FGF23) plays an important role in regulating energy and mineral metabolism. Endocrine FGFs function as nutrient sensors that mediate multifactorial interactions between circadian clocks and metabolic homeostasis. Chronic disruption of circadian rhythms increases the risk of metabolic diseases. Chronological interventions such as chrononutrition and chronotherapy provide insights into linking biological rhythms to disease prevention and treatment.
Collapse
Affiliation(s)
- Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Helmut Zarbl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (Z.Y., G.L.G.), Environmental and Occupational Health Sciences Institute (Z.Y., H.Z., G.L.G.), Department of Environmental and Occupational Health Justice, School of Public Health (H.Z.), Rutgers Center for Lipid Research (G.L.G.), Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, New Jersey (G.L.G.)
| |
Collapse
|
40
|
Chen J, Wang R, Xiong F, Sun H, Kemper B, Li W, Kemper JK. Hammerhead-type FXR agonists induce an eRNA FincoR that ameliorates nonalcoholic steatohepatitis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567833. [PMID: 38045226 PMCID: PMC10690184 DOI: 10.1101/2023.11.20.567833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nuclear receptor, Farnesoid X Receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and GRO-seq analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FincoR. We show that FincoR is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of FincoR in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by FincoR. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, FincoR, contributing to the amelioration of NASH in mice. FincoR may represent a new drug target for addressing metabolic disorders, including NASH.
Collapse
Affiliation(s)
- Jinjing Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hao Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
41
|
Wang Y, Zheng J, Long Y, Wu W, Zhu Y. Direct degradation and stabilization of proteins: New horizons in treatment of nonalcoholic steatohepatitis. Biochem Pharmacol 2024; 220:115989. [PMID: 38122854 DOI: 10.1016/j.bcp.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is featured with excessive hepatic lipid accumulation and its global prevalence is soaring. Nonalcoholic steatohepatitis (NASH), the severe systemic inflammatory subtype of NAFLD, is tightly associated with metabolic comorbidities, and the hepatocytes manifest severe inflammation and ballooning. Currently the therapeutic options for treating NASH are limited. Potent small molecules specifically intervene with the signaling pathways that promote pathogenesis of NASH. Nevertheless they have obvious adverse effects and show long-term ineffectiveness in clinical trials. It poses the fundamental question to efficiently and safely inhibit the pathogenic processes. Targeted protein degradation (TPD) belongs to the direct degradation strategies and is a burgeoning strategy. It utilizes the small molecules to bind to the target proteins and recruit the endogenous proteasome, lysosome and autophagosome-mediated degradation machineries. They effectively and specifically degrade the target proteins. It has exhibited promising therapeutic effects in treatment of cancer, neurodegenerative diseases and other diseases in a catalytic manner at low doses. We critically discuss the principles of multiple direct degradation strategies, especially PROTAC and ATTEC. We extensively analyze their emerging application in degradation of excessive pathogenic proteins and lipid droplets, which promote the progression of NASH. Moreover, we discuss the opposite strategy that utilizes the small molecules to recruit deubiquinases to stabilize the NASH/MASH-suppressing proteins. Their advantages, limitations, as well as the solutions to address the limitations have been analyzed. In summary, the innovative direct degradation strategies provide new insights into design of next-generation therapeutics to combat NASH with optimal safety paradigm and efficiency.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, PR China.
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yun Long
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, PR China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| |
Collapse
|
42
|
Harris SJ, Smith N, Hummer B, Schreibman IR, Faust AJ, Geyer NR, Chinchilli VM, Sciamanna C, Loomba R, Stine JG. Exercise training improves serum biomarkers of liver fibroinflammation in patients with metabolic dysfunction-associated steatohepatitis. Liver Int 2024; 44:532-540. [PMID: 38014619 PMCID: PMC10844956 DOI: 10.1111/liv.15769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND AIMS Exercise training is recommended for all patients with metabolic dysfunction-associated steatotic liver disease and may reverse liver fibrosis. Whether exercise training improves liver fibrosis without body weight loss remains controversial. We further investigated this relationship using serum biomarkers of liver fibroinflammation in a post hoc analysis of an exercise trial where patients did not lose significant body weight. METHODS In the NASHFit trial, patients with metabolic dysfunction-associated steatohepatitis were randomized to receive either moderate-intensity aerobic exercise training or standard clinical care for 20 weeks. Mediterranean-informed dietary counselling was provided to each group. Change in serum biomarkers was measured and compared between the two groups. RESULTS Exercise training led to improvement in serum biomarkers of liver fibroinflammation, including (1) ≥17 IU/L reduction in alanine aminotransferase (ALT) in 53% of individuals in the exercise training group compared to 13% in the standard clinical care group (p < 0.001; mean reduction 24% vs. 10% respectively) and (2) improvement in CK18 (-61 vs. +71 ng/mL, p = 0.040). ALT improvement ≥17 IU/L was correlated with ≥30% relative reduction in magnetic resonance imaging-measured liver fat and PNPLA3 genotype. CONCLUSION Exercise training improves multiple serum biomarkers of liver fibroinflammation at clinically significant thresholds of response without body weight loss. This study provides further evidence that exercise training should be viewed as a weight-neutral intervention for which response to intervention can be readily monitored with widely available non-invasive biomarkers that can be applied at the population level.
Collapse
Affiliation(s)
- Sara J. Harris
- College of Medicine, The Pennsylvania State University,
Hershey PA
| | - Nataliya Smith
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| | - Breianna Hummer
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| | - Ian R. Schreibman
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
| | - Alison J. Faust
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
| | - Nathaniel R. Geyer
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Chris Sciamanna
- College of Medicine, The Pennsylvania State University,
Hershey PA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California San Diego, San Diego CA
- NAFLD Research Center, University of California San Diego,
San Diego CA
| | - Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of
Medicine, Penn State Health- Milton S. Hershey Medical Center, Hershey PA
- Fatty Liver Program, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
- Liver Center, Penn State Health- Milton S. Hershey Medical
Center, Hershey PA
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
- Cancer Institute, Penn State Health- Milton S. Hershey
Medical Center, Hershey PA
| |
Collapse
|
43
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
44
|
Zailaie SA, Khoja BB, Siddiqui JJ, Mawardi MH, Heaphy E, Aljagthmi A, Sergi CM. Investigating the Role of Non-Coding RNA in Non-Alcoholic Fatty Liver Disease. Noncoding RNA 2024; 10:10. [PMID: 38392965 PMCID: PMC10891858 DOI: 10.3390/ncrna10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that do not code for protein but play key roles in regulating cellular processes. NcRNAs globally affect gene expression in diverse physiological and pathological contexts. Functionally important ncRNAs act in chromatin modifications, in mRNA stabilization and translation, and in regulation of various signaling pathways. Non-alcoholic fatty liver disease (NAFLD) is a set of conditions caused by the accumulation of triacylglycerol in the liver. Studies of ncRNA in NAFLD are limited but have demonstrated that ncRNAs play a critical role in the pathogenesis of NAFLD. In this review, we summarize NAFLD's pathogenesis and clinical features, discuss current treatment options, and review the involvement of ncRNAs as regulatory molecules in NAFLD and its progression to non-alcoholic steatohepatitis (NASH). In addition, we highlight signaling pathways dysregulated in NAFLD and review their crosstalk with ncRNAs. Having a thorough understanding of the disease process's molecular mechanisms will facilitate development of highly effective diagnostic and therapeutic treatments. Such insights can also inform preventive strategies to minimize the disease's future development.
Collapse
Affiliation(s)
- Samar A. Zailaie
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Basmah B. Khoja
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Jumana J. Siddiqui
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Mawardi
- Medicine Department, Gastroenterology Section, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia;
| | - Emily Heaphy
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Amjad Aljagthmi
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Consolato M. Sergi
- Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
45
|
Chen C, Zhang B, Tu J, Peng Y, Zhou Y, Yang X, Yu Q, Tan X. Discovery of 4-aminophenylacetamide derivatives as intestine-specific farnesoid X receptor antagonists for the potential treatment of nonalcoholic steatohepatitis. Eur J Med Chem 2024; 264:115992. [PMID: 38043493 DOI: 10.1016/j.ejmech.2023.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, lipid and glucose metabolism and is emerging as a promising therapeutic target for nonalcoholic steatohepatitis (NASH). Emerging evidence suggested that intestine-specific FXR antagonists exhibited remarkable metabolic improvements and slowed NASH progression. In this study, we discovered several potent FXR antagonists using a multistage ligand- and structure-based virtual screening approach. Notably, compound V023-9340, which possesses a 4-aminophenylacetamide scaffold, emerged as the most potent FXR antagonist with an IC50 value of 4.27 μM. In vivo, V023-9340 demonstrated selective accumulation in the intestine, substantially ameliorating high-fat diet (HFD)-induced NASH in mice by mitigating hepatic steatosis and inflammation. Mechanistic studies revealed that V023-9340 strongly inhibited intestinal FXR while concurrently feedback-activated hepatic FXR. Further structure-activity relationship optimization employing V023-9340 has resulted in the synthesis of a more efficacious compound V02-8 with an IC50 value of 0.89 μM, which exhibited a 4.8-fold increase in FXR antagonistic activity compared to V023-9340. In summary, 4-aminophenylacetamide derivative V023-9340 represented a novel intestine-specific FXR antagonist and showed improved effects against HFD-induced NASH in mice, which may serve as a promising lead in discovering potential therapeutic drugs for NASH treatment.
Collapse
Affiliation(s)
- Cong Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Bing Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiaojiao Tu
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yanfen Peng
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yihuan Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xinping Yang
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Qiming Yu
- Guangxi Key Laboratory of Environmental Exposure Omics and Life Cycle Health, College of Public Health, Guilin Medical University, Guilin 541199, China.
| | - Xiangduan Tan
- Guangxi Key Laboratory of Drug Discovery and Optimization, College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
46
|
Sanyal AJ, Jha P, Kleiner DE. Digital pathology for nonalcoholic steatohepatitis assessment. Nat Rev Gastroenterol Hepatol 2024; 21:57-69. [PMID: 37789057 DOI: 10.1038/s41575-023-00843-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Histological assessment of nonalcoholic fatty liver disease (NAFLD) has anchored knowledge development about the phenotypes of the condition, their natural history and their clinical course. This fact has led to the use of histological assessment as a reference standard for the evaluation of efficacy of drug interventions for nonalcoholic steatohepatitis (NASH) - the more histologically active form of NAFLD. However, certain limitations of conventional histological assessment systems pose challenges in drug development. These limitations have spurred intense scientific and commercial development of machine learning and digital approaches towards the assessment of liver histology in patients with NAFLD. This research field remains an area in rapid evolution. In this Perspective article, we summarize the current conventional assessment of NASH and its limitations, the use of specific digital approaches for histological assessment, and their application to the study of NASH and its response to therapy. Although this is not a comprehensive review, the leading tools currently used to assess therapeutic efficacy in drug development are specifically discussed. The potential translation of these approaches to support routine clinical assessment of NAFLD and an agenda for future research are also discussed.
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Prakash Jha
- Food and Drug Administration, Silver Spring, MD, USA
| | - David E Kleiner
- Post-Mortem Section Laboratory of Pathology Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Jin HL, Feng XY, Feng SL, Dai L, Zhu WT, Yuan ZW. Isoquercitrin attenuates the progression of non-alcoholic steatohepatitis in mice by modulating galectin-3-mediated insulin resistance and lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155188. [PMID: 38056146 DOI: 10.1016/j.phymed.2023.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a global health problem with no effective treatment. Isoquercitrin (IQ) alters hepatic lipid metabolism and inhibits adipocyte differentiation. The underlying regulatory mechanisms of IQ in regulating insulin resistance (IR) and lipid metabolism remain unclear. PURPOSE This study was aimed at investigating the effects of IQ on NASH and deciphering whether the underlying mechanisms are via modulation of galectin-3 mediated IR and lipid metabolism. METHODS IR-HepG2 cell lines were used to demonstrate the ability of IQ to modulate galectin-3-mediated glucose disposal and lipid metabolism. A 20-week high-fat diet (HFD)-induced NASH model was established in C57BL/6J mice, and the protective effect of IQ on lipid disposal in the liver was verified. Further, the mRNA and protein levels of glucose and lipid metabolism were investigated, and lysophosphatidylcholine (LPC) and acylcarnitine (AC) profiling were performed to characterize the changes in endogenous substances associated with mitochondrial function and lipid metabolism in serum and cells. Furthermore, the pharmacokinetic features of IQ were explored in a rat model of NASH. RESULTS IQ restored liver function and ameliorated inflammation and lipid accumulationin NASH model mice. Notably, significant regulation of the proteins included fatty acid-generating and transporting, cholesterol metabolism enzymes, nuclear transcription factors, mitochondrial metabolism, and IR-related enzymes was noted to be responsible for the therapeutic mechanisms of IQ against experimental NASH. Serum lipid metabolism-related metabolomic assay confirmed that LPC and AC biosynthesis mostly accounted for the therapeutic effect of IQ in mice with NASH and that IQ maintained the homeostasis of LPC and AC levels. CONCLUSION This is the first study showing that IQ protects against of NASH by modulating galectin-3-mediated IR and lipid metabolism. The mechanisms responsible for liver protection and improved lipid metabolic disorder by IQ may be related to the suppression of IR and regulation of mitochondrial function and lipid metabolism. Galectin-3 down-regulation represents a potentially novel approach for the treatment and prevention of NASH.
Collapse
Affiliation(s)
- Hong-Liu Jin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiao-Ying Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Sen-Ling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ling Dai
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Ting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhong-Wen Yuan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, 63#, Duobao Street, Guangzhou, Guangdong 510150, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
48
|
Song Y, Lau HCH, Zhang X, Yu J. Bile acids, gut microbiota, and therapeutic insights in hepatocellular carcinoma. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0394. [PMID: 38148326 PMCID: PMC10884537 DOI: 10.20892/j.issn.2095-3941.2023.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and aggressive liver malignancy. The interplay between bile acids (BAs) and the gut microbiota has emerged as a critical factor in HCC development and progression. Under normal conditions, BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs. The gut microbiota plays a critical role in BA metabolism, and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis. Of note, dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis, thereby leading to liver inflammation and fibrosis, and ultimately contributing to HCC development. Therefore, understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis. In this review, we comprehensively explore the roles and functions of BA metabolism, with a focus on the interactions between BAs and gut microorganisms in HCC. Additionally, therapeutic strategies targeting BA metabolism and the gut microbiota are discussed, including the use of BA agonists/antagonists, probiotic/prebiotic and dietary interventions, fecal microbiota transplantation, and engineered bacteria. In summary, understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.
Collapse
Affiliation(s)
- Yang Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Harry CH Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
49
|
Machado MV. MASLD treatment-a shift in the paradigm is imminent. Front Med (Lausanne) 2023; 10:1316284. [PMID: 38146424 PMCID: PMC10749497 DOI: 10.3389/fmed.2023.1316284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
MASLD prevalence is growing towards the leading cause of end-stage liver disease. Up to today, the most effective treatment is weight loss. Weight loss interventions are moving from lifestyle changes to bariatric surgery or endoscopy, and, more recently, to a new wave of anti-obesity drugs that can compete with bariatric surgery. Liver-targeted therapy is a necessity for those patients who already present liver fibrosis. The field is moving fast, and in the near future, we will testify to a disruptive change in MASLD treatment, similar to the paradigm-shift that occurred for hepatitis C almost one decade ago with direct antiviral agents.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
| |
Collapse
|
50
|
Mohammed OS, Attia HG, Mohamed BMSA, Elbaset MA, Fayed HM. Current investigations for liver fibrosis treatment: between repurposing the FDA-approved drugs and the other emerging approaches. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11808. [PMID: 38022905 PMCID: PMC10662312 DOI: 10.3389/jpps.2023.11808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Long-term liver injuries lead to hepatic fibrosis, often progressing into cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. There is currently no effective therapy available for liver fibrosis. Thus, continuous investigations for anti-fibrotic therapy are ongoing. The main theme of anti-fibrotic investigation during recent years is the rationale-based selection of treatment molecules according to the current understanding of the pathology of the disease. The research efforts are mainly toward repurposing current FDA-approved drugs targeting etiological molecular factors involved in developing liver fibrosis. In parallel, investigations also focus on experimental small molecules with evidence to hinder or reverse the fibrosis. Natural compounds, immunological, and genetic approaches have shown significant encouraging effects. This review summarizes the efficacy and safety of current under-investigation antifibrosis medications targeting various molecular targets, as well as the properties of antifibrosis medications, mainly in phase II and III clinical trials.
Collapse
Affiliation(s)
- Omima S. Mohammed
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|