1
|
Opuni KFM, Ruß M, Geens R, Vocht LD, Wielendaele PV, Debuy C, Sterckx YGJ, Glocker MO. Mass spectrometry-complemented molecular modeling predicts the interaction interface for a camelid single-domain antibody targeting the Plasmodium falciparum circumsporozoite protein's C-terminal domain. Comput Struct Biotechnol J 2024; 23:3300-3314. [PMID: 39296809 PMCID: PMC11409006 DOI: 10.1016/j.csbj.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Bioanalytical methods that enable rapid and high-detail characterization of binding specificities and strengths of protein complexes with low sample consumption are highly desired. The interaction between a camelid single domain antibody (sdAbCSP1) and its target antigen (PfCSP-Cext) was selected as a model system to provide proof-of-principle for the here described methodology. Research design and methods The structure of the sdAbCSP1 - PfCSP-Cext complex was modeled using AlphaFold2. The recombinantly expressed proteins, sdAbCSP1, PfCSP-Cext, and the sdAbCSP1 - PfCSP-Cext complex, were subjected to limited proteolysis and mass spectrometric peptide analysis. ITEM MS (Intact Transition Epitope Mapping Mass Spectrometry) and ITC (Isothermal Titration Calorimetry) were applied to determine stoichiometry and binding strength. Results The paratope of sdAbCSP1 mainly consists of its CDR3 (aa100-118). PfCSP-Cext's epitope is assembled from its α-helix (aa40-52) and opposing loop (aa83-90). PfCSP-Cext's GluC cleavage sites E46 and E58 were shielded by complex formation, confirming the predicted epitope. Likewise, sdAbCSP1's tryptic cleavage sites R105 and R108 were shielded by complex formation, confirming the predicted paratope. ITEM MS determined the 1:1 stoichiometry and the high complex binding strength, exemplified by the gas phase dissociation reaction enthalpy of 50.2 kJ/mol. The in-solution complex dissociation constant is 5 × 10-10 M. Conclusions Combining AlphaFold2 modeling with mass spectrometry/limited proteolysis generated a trustworthy model for the sdAbCSP1 - PfCSP-Cext complex interaction interface.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Science, University of Ghana, P.O. Box LG43, Legon, Ghana
| | - Manuela Ruß
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Line De Vocht
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Christophe Debuy
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
2
|
Stofella M, Grimaldi A, Smit JH, Claesen J, Paci E, Sobott F. Computational Tools for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Chem Rev 2024; 124:12242-12263. [PMID: 39481095 PMCID: PMC11565574 DOI: 10.1021/acs.chemrev.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Hydrogen-deuterium exchange (HDX) has become a pivotal method for investigating the structural and dynamic properties of proteins. The versatility and sensitivity of mass spectrometry (MS) made the technique the ideal companion for HDX, and today HDX-MS is addressing a growing number of applications in both academic research and industrial settings. The prolific generation of experimental data has spurred the concurrent development of numerous computational tools, designed to automate parts of the workflow while employing different strategies to achieve common objectives. Various computational methods are available to perform automated peptide searches and identification; different statistical tests have been implemented to quantify differences in the exchange pattern between two or more experimental conditions; alternative strategies have been developed to deconvolve and analyze peptides showing multimodal behavior; and different algorithms have been proposed to computationally increase the resolution of HDX-MS data, with the ultimate aim to provide information at the level of the single residue. This review delves into a comprehensive examination of the merits and drawbacks associated with the diverse strategies implemented by software tools for the analysis of HDX-MS data.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| | - Antonio Grimaldi
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Jochem H. Smit
- Department
of Microbiology and Immunology, Rega Institute for Medical Research,
Laboratory of Molecular Bacteriology, KU
Leuven, 3000 Leuven, Belgium
| | - Jürgen Claesen
- Epidemiology
and Data Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Frank Sobott
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| |
Collapse
|
3
|
Shaw AL, Suresh S, Parson MAH, Harris NJ, Jenkins ML, Yip CK, Burke JE. Structure of calcineurin bound to PI4KA reveals dual interface in both PI4KA and FAM126A. Structure 2024; 32:1973-1983.e6. [PMID: 39216471 DOI: 10.1016/j.str.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phosphatidylinositol 4-kinase alpha (PI4KA) maintains the phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine pools of the plasma membrane. A key regulator of PI4KA is its association into a complex with TTC7 and FAM126 proteins. This complex can be regulated by the CNAβ1 isoform of the phosphatase calcineurin. We previously identified that CNAβ1 directly binds to FAM126A. Here, we report a cryoelectron microscopic (cryo-EM) structure of a truncated PI4KA complex bound to calcineurin, revealing a unique direct interaction between PI4KA and calcineurin. Hydrogen deuterium exchange mass spectrometry (HDX-MS) and computational analysis show that calcineurin forms a complex with an evolutionarily conserved IKISVT sequence in PI4KA's horn domain. We also characterized conserved LTLT and PSISIT calcineurin binding sequences in the C terminus of FAM126A. These dual sites in PI4KA and FAM126A are both in close proximity to phosphorylation sites in the PI4KA complex, suggesting key roles of calcineurin-regulated phosphosites in PI4KA regulation. This work reveals novel insight into how calcineurin can regulate PI4KA activity.
Collapse
Affiliation(s)
- Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
4
|
Morstein J, Bowcut V, Fernando M, Yang Y, Zhu L, Jenkins ML, Evans JT, Guiley KZ, Peacock DM, Krahnke S, Lin Z, Taran KA, Huang BJ, Stephen AG, Burke JE, Lightstone FC, Shokat KM. Targeting Ras-, Rho-, and Rab-family GTPases via a conserved cryptic pocket. Cell 2024; 187:6379-6392.e17. [PMID: 39255801 PMCID: PMC11531380 DOI: 10.1016/j.cell.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
The family of Ras-like GTPases consists of over 150 different members, regulated by an even larger number of guanine exchange factors (GEFs) and GTPase-activating proteins (GAPs) that comprise cellular switch networks that govern cell motility, growth, polarity, protein trafficking, and gene expression. Efforts to develop selective small molecule probes and drugs for these proteins have been hampered by the high affinity of guanosine triphosphate (GTP) and lack of allosteric regulatory sites. This paradigm was recently challenged by the discovery of a cryptic allosteric pocket in the switch II region of K-Ras. Here, we ask whether similar pockets are present in GTPases beyond K-Ras. We systematically surveyed members of the Ras, Rho, and Rab family of GTPases and found that many GTPases exhibit targetable switch II pockets. Notable differences in the composition and conservation of key residues offer potential for the development of optimized inhibitors for many members of this previously undruggable family.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Victoria Bowcut
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Micah Fernando
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Yue Yang
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA 94550, USA
| | - Lawrence Zhu
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John T Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Keelan Z Guiley
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - D Matthew Peacock
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Sophie Krahnke
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Katrine A Taran
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA 94550, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Ford-Siltz LA, Tohma K, Kihn K, Kendra JA, Deredge D, Wintrode P, Gao Y, Parra GI. Characterization of cross-reactive, non-neutralizing monoclonal antibodies against a pandemic GII.4 norovirus variant. Microbiol Spectr 2024:e0114324. [PMID: 39470287 DOI: 10.1128/spectrum.01143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
Antibodies are thought to play a major role in protection against human norovirus infection. Mouse humoral responses closely mimic those of humans; thus, mouse models are used to characterize norovirus epitopes on the major viral capsid protein, VP1. We have developed a panel of mouse monoclonal antibodies (mAbs) produced against the last pandemic variant to emerge, Sydney 2012. While most mAbs (25/44) were mapped to variable antigenic sites on VP1, 19 of the mAbs were cross-reactive against multiple genotypes or GII.4 variants. Most (12/19) of the cross-reactive mAbs bound to the Shell domain and were cross-reactive with different GII noroviruses. Interestingly, mAb 30A11 exhibited cross-reactivity against all tested norovirus genotypes (GI, GII, GIV, and GIX). This mAb was mapped to a highly conserved region of the Shell domain (51PIDPWII57) using peptide ELISA and immunofluorescence. Of those mapping to the Protruding (P) domain, two (19C10 and 14B11) showed cross-reactivity with GII noroviruses. Using hydrogen-deuterium exchange mass spectrometry, we mapped 19C10 to a conserved region of the P domain near the P/Shell interface, which explains its cross-reactivity with different GII noroviruses and lack of histo-blood group antigen-blocking activity. Binding and mutational analyses showed that residues 518, 519, and 525 are important for 19C10 and 14B11 epitope recognition. While the antibodies described here are mostly non-neutralizing, they can be useful tools for research and diagnostics of noroviruses. The role of non-neutralizing, cross-reactive antibodies targeting different areas of the viral capsid merits further research to facilitate our understanding of immunity to norovirus infection and disease. IMPORTANCE To gain insights into the overall immune responses to human norovirus, we characterized non-neutralizing, cross-reactive monoclonal antibodies (mAbs) developed against a pandemic GII.4 norovirus. We determined the binding epitope of an antibody that exhibited cross-reactivity against all tested noroviruses, which makes it a useful tool for research and diagnostics. The epitope of two additional non-neutralizing mAbs was mapped to a less conserved region on the viral capsid protein, explaining their cross-reactivity patterns. Often overlooked, the role of non-neutralizing, cross-reactive mAbs merits further research to facilitate our understanding of immunity to norovirus infection and disease.
Collapse
Affiliation(s)
| | - Kentaro Tohma
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| | - Kyle Kihn
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Joseph A Kendra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| | - Daniel Deredge
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Patrick Wintrode
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Yamei Gao
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| | - Gabriel I Parra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Vorauer C, Boniche-Alfaro C, Murphree T, Matsui T, Weiss T, Fries BC, Guttman M. Direct Mapping of Polyclonal Epitopes in Serum by HDX-MS. Anal Chem 2024; 96:16758-16767. [PMID: 39434663 DOI: 10.1021/acs.analchem.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Elucidating the interactions that drive antigen recognition is central to understanding antibody-mediated protection and is vital for the rational design of immunogens. Often, structural knowledge of epitopes targeted by antibodies is derived from isolated studies of monoclonal antibodies, for which numerous structural techniques exist. In contrast, there are very few approaches capable of mapping the full scope of antigen surfaces targeted by polyclonal sera through the course of a natural antibody response. Here, we develop an approach using immobilized antigen coupled to hydrogen/deuterium exchange with mass spectrometry (HDX-MS) to probe epitope targeting in the context of the fully native serum environment. Using the well-characterized Staphylococcal enterotoxin B (SEB) as a model system, we show that complex combinations of epitopes can be detected and subtle differences across different antisera can be discerned. This work reveals new insight into how neutralizing antibodies and antisera target SEB and, more importantly, establishes a novel method for directly mapping the epitope landscape of polyclonal sera.
Collapse
Affiliation(s)
- Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Camila Boniche-Alfaro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York 11794, United States
- Veteran's Administration Medical Center, Northport, New York 11768, United States
| | - Taylor Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California 94025, United States
| | - Thomas Weiss
- Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California 94025, United States
| | - Bettina C Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York 11794, United States
- Veteran's Administration Medical Center, Northport, New York 11768, United States
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Toporowska J, Kapoor P, Musgaard M, Gherbi K, Sengmany K, Qu F, Soave M, Yen HY, Hansen K, Jazayeri A, Hopper JTS, Politis A. Ligand-induced conformational changes in the β1-adrenergic receptor revealed by hydrogen-deuterium exchange mass spectrometry. Nat Commun 2024; 15:8993. [PMID: 39424782 PMCID: PMC11489754 DOI: 10.1038/s41467-024-53161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
G Protein Coupled Receptors (GPCRs) constitute the largest family of signalling proteins responsible for translating extracellular stimuli into intracellular functions. They play crucial roles in numerous physiological processes and are major targets for drug discovery. Dysregulation of GPCRs is implicated in various diseases, making understanding their structural dynamics critical for therapeutic development. Here, we use Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) to explore the structural dynamics of the turkey β1-adrenergic receptor (tβ1AR) bound with nine different ligands, including agonists, partial agonists, and antagonists. We find that these ligands induce distinct dynamic patterns across the receptor, which can be grouped by compound modality. Notably, full agonist binding destabilises the intracellular loop 1 (ICL1), while antagonist binding stabilises it, highlighting ICL1's role in G protein recruitment. Our findings indicate that the conserved L72 residue in ICL1 is crucial for maintaining receptor structural integrity and stabilising the GDP-bound state. Overall, our results provide a platform for determining drug modality and highlight how HDX-MS can be used to dissect receptor ligand interaction properties and GPCR mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Qu
- OMass Therapeutics, Oxford, UK
| | | | | | | | | | | | - Argyris Politis
- King's College London, London, UK.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Joseph RE, Wales TE, Jayne S, Britton RG, Fulton DB, Engen JR, Dyer MJS, Andreotti AH. Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572223. [PMID: 38187560 PMCID: PMC10769265 DOI: 10.1101/2023.12.18.572223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph, R.E., et al., 2020, https://doi.org/10.7554/eLife.60470 ). Here we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
Collapse
|
9
|
Konermann L, Scrosati PM. Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities. Mol Cell Proteomics 2024; 23:100853. [PMID: 39383946 DOI: 10.1016/j.mcpro.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) probes dynamic motions of proteins by monitoring the kinetics of backbone amide deuteration. Dynamic regions exhibit rapid HDX, while rigid segments are more protected. Current data readouts focus on qualitative comparative observations (such as "residues X to Y become more protected after protein exposure to ligand Z"). At present, it is not possible to decode HDX protection patterns in an atomistic fashion. In other words, the exact range of protein motions under a given set of conditions cannot be uncovered, leaving space for speculative interpretations. Amide back exchange is an under-appreciated problem, as the widely used (m-m0)/(m100-m0) correction method can distort HDX kinetic profiles. Future data analysis strategies require a better fundamental understanding of HDX events, going beyond the classical Linderstrøm-Lang model. Combined with experiments that offer enhanced spatial resolution and suppressed back exchange, it should become possible to uncover the exact range of motions exhibited by a protein under a given set of conditions. Such advances would provide a greatly improved understanding of protein behavior in health and disease.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | - Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Harold RL, Tulsian NK, Narasimamurthy R, Yaitanes N, Ayala Hernandez MG, Lee HW, Crosby P, Tripathi SM, Virshup DM, Partch CL. Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein kinase 1. Proc Natl Acad Sci U S A 2024; 121:e2415567121. [PMID: 39356670 PMCID: PMC11474029 DOI: 10.1073/pnas.2415567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Casein kinase 1δ (CK1δ) controls essential biological processes including circadian rhythms and wingless-related integration site (Wnt) signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ1 and δ2, are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C termini (XCT), but with marked changes in potential phosphorylation sites. Here, we test whether the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and hydrogen/deuterium exchange mass spectrometry, we show that the δ1 XCT is preferentially phosphorylated by the kinase and the δ1 tail makes more extensive interactions across the kinase domain. Mutation of δ1-specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in the circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion-binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ. These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
Collapse
Affiliation(s)
- Rachel L. Harold
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Nikhil K. Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Merck Sharp & Dohme International GmBH (Singapore), Neuros, Singapore138665, Singapore
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Noelle Yaitanes
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Maria G. Ayala Hernandez
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Hsiau-Wei Lee
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Priya Crosby
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Sarvind M. Tripathi
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Carrie L. Partch
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
- Center for Circadian Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California, Santa Cruz, CA95064
| |
Collapse
|
11
|
Qiu X, Chao K, Song S, Wang YQ, Chen YA, Rouse SL, Yen HY, Robinson CV. Coupling and Activation of the β1 Adrenergic Receptor - The Role of the Third Intracellular Loop. J Am Chem Soc 2024; 146. [PMID: 39359104 PMCID: PMC11487556 DOI: 10.1021/jacs.4c11250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
G protein-coupled receptors (GPCRs) belong to the most diverse group of membrane receptors with a conserved structure of seven transmembrane (TM) α-helices connected by intracellular and extracellular loops. Intracellular loop 3 (ICL3) connects TM5 and TM6, the two helices shown to play significant roles in receptor activation. Herein, we investigate the activation and signaling of the β1 adrenergic receptor (β1AR) using mass spectrometry (MS) with a particular focus on the ICL3 loop. First, using native MS, we measure the extent of receptor coupling to an engineered Gαs subunit (mini Gs) and show preferential coupling to β1AR with an intact ICL3 (β1AR_ICL3) compared to the truncated β1AR. Next, using hydrogen-deuterium exchange (HDX)-MS, we show how helix 5 of mini Gs reports on the extent of receptor activation in the presence of a range of agonists. Then, exploring a range of solution conditions and using comparative HDX, we note additional HDX protection when ICL3 is present, implying that mini Gs helix 5 presents a different binding conformation to the surface of β1AR_ICL3, a conclusion supported by MD simulation. Considering when this conformatonal change occurs we used time-resolved HDX and employed two functional assays to measure GDP release and cAMP production, with and without ICL3. We found that ICL3 exerts its effect on Gs through enhanced cAMP production but does not affect GDP release. Together, our study uncovers potential roles of ICL3 in fine-tuning GPCR activation through subtle changes in the binding pose of helix 5, only after nucleotide release from Gs.
Collapse
Affiliation(s)
- Xingyu Qiu
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Kavli
Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, U.K.
| | - Kin Chao
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K.
| | - Siyuan Song
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Kavli
Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, U.K.
| | - Yi-Quan Wang
- Institute
of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
| | - Yi-An Chen
- Institute
of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
| | - Sarah L. Rouse
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K.
| | - Hsin-Yung Yen
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Institute
of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
| | - Carol V. Robinson
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, U.K.
- Kavli
Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, U.K.
| |
Collapse
|
12
|
Acosta K, Brue CR, Kim HJ, Holubovska P, Mayne L, Murakami K, Rhoades E. Structural Insights into the Role of the Proline Rich Region in Tau Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614010. [PMID: 39386529 PMCID: PMC11463496 DOI: 10.1101/2024.09.20.614010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Tau is a microtubule-associated protein that plays an important role in modulating axonal microtubules in neurons. Intracellular tau aggregates are found in a broad class of disorders, including Alzheimer's disease, termed tauopathies. Tau is an intrinsically disordered protein, and its structural disorder appears to be critical to its microtubule-related functions. Tubulin binding sites are found in tau's proline-rich region (PRR), microtubule binding repeats (MTBR: R1-R4), and pseudo-repeat, R'. While many post-translational modifications have been identified on tau, phosphorylation sites, which both regulate tubulin dimer and microtubule interactions and are correlated with disease, cluster with high frequency within the PRR. Here, we use fluorescence correlation spectroscopy and structural mass spectrometry techniques to characterize the impact of phosphomimic mutations in the PRR on tubulin dimer binding and probe the structure of the PRR-tubulin dimer complex. We find that phosphomimics cumulatively diminish tubulin dimer binding and slow microtubule polymerization. Additionally, we map two ∼15 residue regions of the PRR as primary tubulin dimer binding sites and propose a model in which PRR enhances lateral interactions between tubulin dimers, complementing the longitudinal interactions observed for MTBR. Together these measurements provide insight into the previously overlooked relevance of tau's PRR in functional interactions with tubulin. GRAPHICAL ABSTRACT
Collapse
|
13
|
Lu H, Zhu Z, Fields L, Zhang H, Li L. Mass Spectrometry Structural Proteomics Enabled by Limited Proteolysis and Cross-Linking. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39300771 DOI: 10.1002/mas.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Jeanne Dit Fouque K, Fernandez-Rojas M, Roque AE, Fernandez-Lima F. Top-Down Structural Characterization of Native Ubiquitin Combining Solution-Stable Isotope Labeling, Trapped Ion Mobility Spectrometry, and Tandem Electron Capture Dissociation Mass Spectrometry. Anal Chem 2024; 96:14963-14970. [PMID: 39214608 DOI: 10.1021/acs.analchem.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solution-phase hydrogen/deuterium exchange (HDX) coupled to native ion mobility spectrometry mass spectrometry (IMS-MS) can provide complementary structural information about the conformational dynamics of biological molecules. In the present work, the solution-stable isotope labeling (SIL) combined with trapped ion mobility spectrometry (TIMS) in tandem with top-down electron capture dissociation (ECD) is illustrated for the structural characterization of the solution native states of ubiquitin. Four different ubiquitin electrospray solution conditions: (i) single-tip nondeuterated, (ii) theta tip for online SIL HDX, (iii) single-tip SIL-deuterated, and (iv) theta tip for online SIL H/D back exchange (HDbX), were investigated to assess the H/D exchange reactivities of native ubiquitin. The combination of TIMS and ECD in a q-ToF MS instrument allowed for additional inspection of gas-phase HDbX added by top-down fragmentation, revealing the exposed and protected residues with limited scrambling effects (e.g., intramolecular H/D migration). A native charge state distribution (5+ to 7+) and TIMS profiles were observed under the single-tip nondeuterated solution conditions. Mass shift distributions of ∼40, ∼104, and ∼87D were observed when incorporating deuterium for online SIL HDX, SIL HDX, and online SIL HDbX, respectively, while retaining similar conformational states. ECD fragmentation allowed for the localization of the deuterated labeled residues of the peptide fragments, with a sequence coverage of ∼90%, for each of the ubiquitin solution condition. Changes in the TIMS trapping time settings (∼70 to ∼795 ms) were used to determine the H/D back exchange dynamics of native ubiquitin. HDbX-TIMS-q-ECD-MS/MS exhibited H/D back exchanges in the six-residue C-terminal tail as well as around Lys6, Lys11, Lys33, Lys48, and Lys63 residues, indicating that these regions are the most exposed area (less protected hydrogens) of ubiquitin as compared to the rest of the core residues that adopt a compact β-grasp fold (protected hydrogens), which was consistent with the accessible surface area of ubiquitin. The present data highlight for the first time consistency between the solution HDX and gas-phase HDbX-TIMS data for native studies.
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Meiby Fernandez-Rojas
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Anelis E Roque
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
15
|
Lin CP, Li H, Brogan DJ, Wang T, Akbari OS, Komives EA. CRISPR RNA binding drives structural ordering that primes Cas7-11 for target cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606276. [PMID: 39211128 PMCID: PMC11360901 DOI: 10.1101/2024.08.01.606276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Type III-E CRISPR-Cas effectors, of which Cas7-11 is the first, are single proteins that cleave target RNAs without nonspecific collateral cleavage, opening new possibilities for RNA editing. Biochemical experiments combined with amide hydrogen-deuterium exchange (HDX-MS) experiments provide a first glimpse of the conformational dynamics of apo Cas7-11. HDX-MS revealed the backbone comprised of the four Cas7 zinc-binding RRM folds are well-folded but insertion sequences are highly dynamic and fold upon binding crRNA. The crRNA causes folding of disordered catalytic loops and β-hairpins, stronger interactions at domain-domain interfaces, and folding of the Cas7.1 processing site. Target RNA binding causes only minor ordering around the catalytic loops of Cas7.2 and Cas7.3. We show that Cas7-11 cannot fully process the CRISPR array and that binding of partially processed crRNA induces multiple states in Cas7-11 and reduces target RNA cleavage. The insertion domain shows the most ordering upon binding of mature crRNA. Finally, we show a crRNA-induced conformational change in one of the TPR-CHAT binding sites providing an explanation for why crRNA binding facilitates TPR-CHAT binding. The results provide the first glimpse of the apo state of Cas7-11 and reveal how its structure and function are regulated by crRNA binding.
Collapse
|
16
|
Wiest A, Kielkowski P. Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers. Beilstein J Org Chem 2024; 20:2323-2341. [PMID: 39290210 PMCID: PMC11406061 DOI: 10.3762/bjoc.20.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.
Collapse
Affiliation(s)
- Andreas Wiest
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
17
|
Chandler F, Reddy PAN, Bhutda S, Ross RL, Walden M, Walker K, Di Donato S, Cassel JA, Prakesch MA, Aman A, Datti A, Campbell LJ, Foglizzo M, Bell L, Stein DN, Ault JR, Al-Awar RS, Calabrese AN, Sicheri F, Del Galdo F, Salvino JM, Greenberg RA, Zeqiraj E. Molecular glues that inhibit specific Zn 2+-dependent DUB activity and inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611787. [PMID: 39282282 PMCID: PMC11398498 DOI: 10.1101/2024.09.07.611787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Deubiquitylases (DUBs) play a pivotal role in cell signalling and are often regulated by homo- or hetero-interactions within protein complexes. The BRCC36 isopeptidase complex (BRISC) regulates inflammatory signalling by selectively cleaving K63-linked polyubiquitin chains on Type I interferon receptors (IFNAR1). BRCC36 is a Zn2+-dependent JAMM/MPN DUB, a challenging ubiquitin protease class for the design of selective inhibitors. We identified first-in-class DUB inhibitors that act as BRISC molecular glues (BLUEs). BLUEs inhibit DUB activity by stabilising a BRISC dimer consisting of 16 subunits. The BLUE-stabilised BRISC dimer is an autoinhibited conformation, whereby the active sites and interactions with the recruiting subunit SHMT2 are blocked. This unique mode of action leads to highly selective inhibitors for BRISC over related complexes with the same catalytic subunit, splice variants and other JAMM/MPN DUBs. Structure-guided inhibitor resistant mutants confirm BLUEs on-target activity in cells, and BLUE treatment results in reduced interferon-stimulated gene (ISG) expression in human peripheral blood mononuclear cells from Scleroderma patients, a disease linked with aberrant IFNAR1 activation. BLUEs represent a new class of molecules with potential utility in Type I interferon-mediated diseases and a template for designing selective inhibitors of large protein complexes by promoting protein-protein interactions instead of blocking them.
Collapse
Affiliation(s)
- Francesca Chandler
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Poli Adi Narayana Reddy
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Smita Bhutda
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Miriam Walden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kieran Walker
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joel A Cassel
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Michael A Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Lisa J Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lillie Bell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Daniel N Stein
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rima S Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joseph M Salvino
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Eisinger M, Rahn H, Chen Y, Fernandes M, Lin Z, Hentze N, Tavella D, Moussa EM. Elucidation of the Reversible Self-Association Interface of a Diabody-Interleukin Fusion Protein Using Hydrogen-Exchange Mass Spectrometry and In Silico Modeling. Mol Pharm 2024; 21:4285-4296. [PMID: 38922328 DOI: 10.1021/acs.molpharmaceut.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Reversible self-association (RSA) of therapeutic proteins presents major challenges in the development of high-concentration formulations, especially those intended for subcutaneous administration. Understanding self-association mechanisms is therefore critical to the design and selection of candidates with acceptable developability to advance to clinical trials. The combination of experiments and in silico modeling presents a powerful tool to elucidate the interface of self-association. RSA of monoclonal antibodies has been studied extensively under different solution conditions and have been shown to involve interactions for both the antigen-binding fragment and the crystallizable fragment. Novel modalities such as bispecific antibodies, antigen-binding fragments, single-chain-variable fragments, and diabodies constitute a fast-growing class of antibody-based therapeutics that have unique physiochemical properties compared to monoclonal antibodies. In this study, the RSA interface of a diabody-interleukin 22 fusion protein (FP-1) was studied using hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) in combination with in silico modeling. Taken together, the results show that a complex solution behavior underlies the self-association of FP-1 and that the interface thereof can be attributed to a specific segment in the variable light chain of the diabody. These findings also demonstrate that the combination of HDX-MS with in silico modeling is a powerful tool to guide the design and candidate selection of novel biotherapeutic modalities.
Collapse
Affiliation(s)
- Martin Eisinger
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Harri Rahn
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Yong Chen
- Biologics Analytical Research and Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Melissa Fernandes
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Zhiyi Lin
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| | - Nikolai Hentze
- Biologics Analytical Research and Development, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Davide Tavella
- Biotherapeutics and Genetic Medicine, AbbVie Inc., Worcester, Massachusetts 01604, United States
| | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie Inc., North Chicago, Illinois 60061, United States
| |
Collapse
|
19
|
Vallat B, Webb BM, Westbrook JD, Goddard TD, Hanke CA, Graziadei A, Peisach E, Zalevsky A, Sagendorf J, Tangmunarunkit H, Voinea S, Sekharan M, Yu J, Bonvin AAMJJ, DiMaio F, Hummer G, Meiler J, Tajkhorshid E, Ferrin TE, Lawson CL, Leitner A, Rappsilber J, Seidel CAM, Jeffries CM, Burley SK, Hoch JC, Kurisu G, Morris K, Patwardhan A, Velankar S, Schwede T, Trewhella J, Kesselman C, Berman HM, Sali A. IHMCIF: An Extension of the PDBx/mmCIF Data Standard for Integrative Structure Determination Methods. J Mol Biol 2024; 436:168546. [PMID: 38508301 PMCID: PMC11377171 DOI: 10.1016/j.jmb.2024.168546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.
Collapse
Affiliation(s)
- Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Benjamin M Webb
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Thomas D Goddard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Christian A Hanke
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; Human Technopole, 20157 Milan, Italy
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| | - Jared Sagendorf
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| | - Hongsuda Tangmunarunkit
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Serban Voinea
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jian Yu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alexander A M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37221, USA; Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany
| | - Emad Tajkhorshid
- NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Catherine L Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, c/o Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, University of Connecticut, Farmington, CT 06030-3305, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyle Morris
- Electron Microscopy Data Bank, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ardan Patwardhan
- Electron Microscopy Data Bank, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland; Computational Structural Biology & SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Carl Kesselman
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Helen M Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and the Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles CA 90089, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, the Quantitative Biosciences Institute (QBI), and the Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Francisco, San Francisco, CA 94157, USA
| |
Collapse
|
20
|
Kuhn BT, Zöller J, Zimmermann I, Gemeinhardt T, Özkul DH, Langer JD, Seeger MA, Geertsma ER. Interdomain-linkers control conformational transitions in the SLC23 elevator transporter UraA. Nat Commun 2024; 15:7518. [PMID: 39209842 PMCID: PMC11362169 DOI: 10.1038/s41467-024-51814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Uptake of nucleobases and ascorbate is an essential process in all living organisms mediated by SLC23 transport proteins. These transmembrane carriers operate via the elevator alternating-access mechanism, and are composed of two rigid domains whose relative motion drives transport. The lack of large conformational changes within these domains suggests that the interdomain-linkers act as flexible tethers. Here, we show that interdomain-linkers are not mere tethers, but have a key regulatory role in dictating the conformational space of the transporter and defining the rotation axis of the mobile transport domain. By resolving a wide inward-open conformation of the SLC23 elevator transporter UraA and combining biochemical studies using a synthetic nanobody as conformational probe with hydrogen-deuterium exchange mass spectrometry, we demonstrate that interdomain-linkers control the function of transport proteins by influencing substrate affinity and transport rate. These findings open the possibility to allosterically modulate the activity of elevator proteins by targeting their linkers.
Collapse
Affiliation(s)
- Benedikt T Kuhn
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathan Zöller
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Tim Gemeinhardt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dogukan H Özkul
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
21
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
22
|
Hao Q, Rathinaswamy MK, Klinge KL, Bratkowski M, Mafi A, Baumgartner CK, Hamel KM, Veits GK, Jain R, Catalano C, Fitzgerald M, Hird AW, Park E, Vora HU, Henderson JA, Longenecker K, Hutchins CW, Qiu W, Scapin G, Sun Q, Stoll VS, Sun C, Li P, Eaton D, Stokoe D, Fisher SL, Nasveschuk CG, Paddock M, Kort ME. Mechanistic insights into a heterobifunctional degrader-induced PTPN2/N1 complex. Commun Chem 2024; 7:183. [PMID: 39152201 PMCID: PMC11329783 DOI: 10.1038/s42004-024-01263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
PTPN2 (protein tyrosine phosphatase non-receptor type 2, or TC-PTP) and PTPN1 are attractive immuno-oncology targets, with the deletion of Ptpn1 and Ptpn2 improving response to immunotherapy in disease models. Targeted protein degradation has emerged as a promising approach to drug challenging targets including phosphatases. We developed potent PTPN2/N1 dual heterobifunctional degraders (Cmpd-1 and Cmpd-2) which facilitate efficient complex assembly with E3 ubiquitin ligase CRL4CRBN, and mediate potent PTPN2/N1 degradation in cells and mice. To provide mechanistic insights into the cooperative complex formation introduced by degraders, we employed a combination of structural approaches. Our crystal structure reveals how PTPN2 is recognized by the tri-substituted thiophene moiety of the degrader. We further determined a high-resolution structure of DDB1-CRBN/Cmpd-1/PTPN2 using single-particle cryo-electron microscopy (cryo-EM). This structure reveals that the degrader induces proximity between CRBN and PTPN2, albeit the large conformational heterogeneity of this ternary complex. The molecular dynamic (MD)-simulations constructed based on the cryo-EM structure exhibited a large rigid body movement of PTPN2 and illustrated the dynamic interactions between PTPN2 and CRBN. Together, our study demonstrates the development of PTPN2/N1 heterobifunctional degraders with potential applications in cancer immunotherapy. Furthermore, the developed structural workflow could help to understand the dynamic nature of degrader-induced cooperative ternary complexes.
Collapse
Affiliation(s)
- Qi Hao
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
| | | | - Kelly L Klinge
- AbbVie, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | | | | | | | - Keith M Hamel
- AbbVie, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Gesine K Veits
- C4 Therapeutics Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Rinku Jain
- AbbVie, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | | | - Mark Fitzgerald
- C4 Therapeutics Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Alexander W Hird
- C4 Therapeutics Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Eunice Park
- C4 Therapeutics Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Harit U Vora
- C4 Therapeutics Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | | | | | | | - Wei Qiu
- AbbVie, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | | | - Qi Sun
- AbbVie, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | | | - Chaohong Sun
- AbbVie, 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Ping Li
- C4 Therapeutics Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | - Dan Eaton
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - David Stokoe
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA
| | - Stewart L Fisher
- C4 Therapeutics Inc., 490 Arsenal Way, Watertown, MA, 02472, USA
| | | | - Marcia Paddock
- Calico Life Sciences LLC, South San Francisco, CA, 94080, USA.
| | - Michael E Kort
- AbbVie, 1 North Waukegan Rd, North Chicago, IL, 60064, USA.
| |
Collapse
|
23
|
Benucci B, Spinello Z, Calvaresi V, Viviani V, Perrotta A, Faleri A, Utrio Lanfaloni S, Pansegrau W, d’Alterio L, Bartolini E, Pinzuti I, Sampieri K, Giordano A, Rappuoli R, Pizza M, Masignani V, Norais N, Maione D, Merola M. Neisserial adhesin A (NadA) binds human Siglec-5 and Siglec-14 with high affinity and promotes bacterial adhesion/invasion. mBio 2024; 15:e0110724. [PMID: 39041817 PMCID: PMC11323535 DOI: 10.1128/mbio.01107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024] Open
Abstract
Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.
Collapse
MESH Headings
- Humans
- Adhesins, Bacterial/metabolism
- Adhesins, Bacterial/genetics
- Bacterial Adhesion
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins/metabolism
- Lectins/genetics
- Lectins/immunology
- Animals
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Host-Pathogen Interactions
- Protein Binding
- Mice
- CHO Cells
- Cricetulus
- Neisseria meningitidis/genetics
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Epithelial Cells/microbiology
- Epithelial Cells/metabolism
- Epithelial Cells/immunology
- Meningococcal Infections/microbiology
- Meningococcal Infections/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
Collapse
Affiliation(s)
| | | | - Valeria Calvaresi
- GSK, Siena, Italy
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marcello Merola
- GSK, Siena, Italy
- Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
24
|
De Filippis V, Acquasaliente L, Pierangelini A, Marin O. Chemical Synthesis and Structure-Activity Relationship Studies of the Coagulation Factor Xa Inhibitor Tick Anticoagulant Peptide from the Hematophagous Parasite Ornithodoros moubata. Biomimetics (Basel) 2024; 9:485. [PMID: 39194464 DOI: 10.3390/biomimetics9080485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a similar 3D fold and disulphide bond topology, they have remarkably different amino acid sequence (only ~24% sequence identity), thermal stability, folding pathways, protease specificity, and even mechanism of protease inhibition. Here, fully active and correctly folded TAP was produced in reasonably high yields (~20%) by solid-phase peptide chemical synthesis and thoroughly characterised with respect to its chemical identity, disulphide pairing, folding kinetics, conformational dynamics, and fXa inhibition. The versatility of the chemical synthesis was exploited to perform structure-activity relationship studies on TAP by incorporating non-coded amino acids at positions 1 and 3 of the inhibitor. Using Hydrogen-Deuterium Exchange Mass Spectrometry, we found that TAP has a remarkably higher conformational flexibility compared to BPTI, and propose that these different dynamics could impact the different folding pathway and inhibition mechanisms of TAP and BPTI. Hence, the TAP/BPTI pair represents a nice example of divergent evolution, while the relative facility of TAP synthesis could represent a good starting point to design novel synthetic analogues with improved pharmacological profiles.
Collapse
Affiliation(s)
- Vincenzo De Filippis
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Laura Acquasaliente
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Andrea Pierangelini
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, School of Medicine, University of Padova, Via Trieste 75, 35121 Padua, Italy
| |
Collapse
|
25
|
Matsuzaka Y, Yashiro R. Therapeutic Application and Structural Features of Adeno-Associated Virus Vector. Curr Issues Mol Biol 2024; 46:8464-8498. [PMID: 39194716 DOI: 10.3390/cimb46080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Adeno-associated virus (AAV) is characterized by non-pathogenicity, long-term infection, and broad tropism and is actively developed as a vector virus for gene therapy products. AAV is classified into more than 100 serotypes based on differences in the amino acid sequence of the capsid protein. Endocytosis involves the uptake of viral particles by AAV and accessory receptors during AAV infection. After entry into the cell, they are transported to the nucleus through the nuclear pore complex. AAVs mainly use proteoglycans as receptors to enter cells, but the types of sugar chains in proteoglycans that have binding ability are different. Therefore, it is necessary to properly evaluate the primary structure of receptor proteins, such as amino acid sequences and post-translational modifications, including glycosylation, and the higher-order structure of proteins, such as the folding of the entire capsid structure and the three-dimensional (3D) structure of functional domains, to ensure the efficacy and safety of biopharmaceuticals. To further enhance safety, it is necessary to further improve the efficiency of gene transfer into target cells, reduce the amount of vector administered, and prevent infection of non-target cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
26
|
Janowska MK, Reiter K, Magala P, Guttman M, Klevit RE. HDXBoxeR: an R package for statistical analysis and visualization of multiple Hydrogen-Deuterium Exchange Mass-Spectrometry datasets of different protein states. Bioinformatics 2024; 40:btae479. [PMID: 39078213 PMCID: PMC11310453 DOI: 10.1093/bioinformatics/btae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024] Open
Abstract
SUMMARY Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) is a powerful protein characterization technique that provides insights into protein dynamics and flexibility at the peptide level. However, analyzing HDX-MS data presents a significant challenge due to the wealth of information it generates. Each experiment produces data for hundreds of peptides, often measured in triplicate across multiple time points. Comparisons between different protein states create distinct datasets containing thousands of peptides that require matching, rigorous statistical evaluation, and visualization. Our open-source R package, HDXBoxeR, is a comprehensive tool designed to facilitate statistical analysis and comparison of multiple sets among samples and time points for different protein states, along with data visualization. AVAILABILITY AND IMPLEMENTATION HDXBoxeR is accessible as the R package (https://cran.r-project.org/web//packages/HDXBoxeR) and GitHub: mkajano/HDXBoxeR.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| | - Katherine Reiter
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Lyterian Therapeutics, South San Francisco, CA, 94080, United States
| | - Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
27
|
Shah A, Batabyal D, Qiu D, Cui W, Harrahy J, Ivanov AR. Mapping conformational changes on bispecific antigen-binding biotherapeutic by covalent labeling and mass spectrometry. J Pharm Anal 2024; 14:100966. [PMID: 39263356 PMCID: PMC11388688 DOI: 10.1016/j.jpha.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 09/13/2024] Open
Abstract
Biotherapeutic's higher order structure (HOS) is a critical determinant of its functional properties and conformational relevance. Here, we evaluated two covalent labeling methods: diethylpyrocarbonate (DEPC)-labeling and fast photooxidation of proteins (FPOP), in conjunction with mass spectrometry (MS), to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics (BABB). The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions, which cannot be detected by conventional biophysical techniques, e.g., near-ultraviolet circular dichroism (NUV-CD). The determined variations in labeling uptake under native and stress conditions, corroborated by binding assays, shed light on the binding effect, and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality. Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.
Collapse
Affiliation(s)
- Arnik Shah
- Amgen Inc., Cambridge, MA, 02141, USA
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | | | | | | | | | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
28
|
McHenry MW, Shi P, Camara CM, Cohen DT, Rettenmaier TJ, Adhikary U, Gygi MA, Yang K, Gygi SP, Wales TE, Engen JR, Wells JA, Walensky LD. Covalent inhibition of pro-apoptotic BAX. Nat Chem Biol 2024; 20:1022-1032. [PMID: 38233584 PMCID: PMC11252247 DOI: 10.1038/s41589-023-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
BCL-2-associated X protein (BAX) is a promising therapeutic target for activating or restraining apoptosis in diseases of pathologic cell survival or cell death, respectively. In response to cellular stress, BAX transforms from a quiescent cytosolic monomer into a toxic oligomer that permeabilizes the mitochondria, releasing key apoptogenic factors. The mitochondrial lipid trans-2-hexadecenal (t-2-hex) sensitizes BAX activation by covalent derivatization of cysteine 126 (C126). In this study, we performed a disulfide tethering screen to discover C126-reactive molecules that modulate BAX activity. We identified covalent BAX inhibitor 1 (CBI1) as a compound that selectively derivatizes BAX at C126 and inhibits BAX activation by triggering ligands or point mutagenesis. Biochemical and structural analyses revealed that CBI1 can inhibit BAX by a dual mechanism of action: conformational constraint and competitive blockade of lipidation. These data inform a pharmacologic strategy for suppressing apoptosis in diseases of unwanted cell death by covalent targeting of BAX C126.
Collapse
Affiliation(s)
- Matthew W McHenry
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Peiwen Shi
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christina M Camara
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel T Cohen
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - T Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Micah A Gygi
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ka Yang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
29
|
Harold RL, Tulsian NK, Narasimamurthy R, Yaitanes N, Hernandez MGA, Lee HW, Crosby P, Tripathi SM, Virshup DM, Partch CL. Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein Kinase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.24.538174. [PMID: 39131317 PMCID: PMC11312495 DOI: 10.1101/2023.04.24.538174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Casein kinase 1 δ (CK1δ) controls essential biological processes including circadian rhythms and Wnt signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ 1 and δ 2 , are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C-termini (XCT), but with marked changes in potential phosphorylation sites. Here we test if the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and HDX-MS, we show that the δ 1 XCT is preferentially phosphorylated by the kinase and the δ 1 tail makes more extensive interactions across the kinase domain. Mutation of δ1 -specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ . These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
Collapse
Affiliation(s)
- Rachel L. Harold
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Nikhil K. Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- MSD International GmBH (Singapore), Neuros, 8 Biomedical Grove, Singapore, 138665
| | | | - Noelle Yaitanes
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Maria G. Ayala Hernandez
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Hsiau-Wei Lee
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Priya Crosby
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Sarvind M. Tripathi
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Carrie L. Partch
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
30
|
Mühlenbeck H, Tsutsui Y, Lemmon MA, Bender KW, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. eLife 2024; 12:RP92110. [PMID: 39028038 PMCID: PMC11259431 DOI: 10.7554/elife.92110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.
Collapse
Affiliation(s)
- Henning Mühlenbeck
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Yuko Tsutsui
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Biology Institute, Yale University West CampusWest HavenUnited States
| | - Kyle W Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of ZürichZürichSwitzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
31
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.587787. [PMID: 38746453 PMCID: PMC11092606 DOI: 10.1101/2024.04.30.587787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIa/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Current address: Department of Biology, Western University, London, ON, N6A 3K7 Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
32
|
Roeselová A, Maslen SL, Shivakumaraswamy S, Pellowe GA, Howell S, Joshi D, Redmond J, Kjær S, Skehel JM, Balchin D. Mechanism of chaperone coordination during cotranslational protein folding in bacteria. Mol Cell 2024; 84:2455-2471.e8. [PMID: 38908370 DOI: 10.1016/j.molcel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.
Collapse
Affiliation(s)
- Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Grant A Pellowe
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Dhira Joshi
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Joanna Redmond
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
33
|
Wales TE, Pajak A, Roeselová A, Shivakumaraswamy S, Howell S, Kjær S, Hartl FU, Engen JR, Balchin D. Resolving chaperone-assisted protein folding on the ribosome at the peptide level. Nat Struct Mol Biol 2024:10.1038/s41594-024-01355-x. [PMID: 38987455 DOI: 10.1038/s41594-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein folding in vivo begins during synthesis on the ribosome and is modulated by molecular chaperones that engage the nascent polypeptide. How these features of protein biogenesis influence the maturation pathway of nascent proteins is incompletely understood. Here, we use hydrogen-deuterium exchange mass spectrometry to define, at peptide resolution, the cotranslational chaperone-assisted folding pathway of Escherichia coli dihydrofolate reductase. The nascent polypeptide folds along an unanticipated pathway through structured intermediates not populated during refolding from denaturant. Association with the ribosome allows these intermediates to form, as otherwise destabilizing carboxy-terminal sequences remain confined in the ribosome exit tunnel. Trigger factor binds partially folded states without disrupting their structure, and the nascent chain is poised to complete folding immediately upon emergence of the C terminus from the exit tunnel. By mapping interactions between the nascent chain and ribosomal proteins, we trace the path of the emerging polypeptide during synthesis. Our work reveals new mechanisms by which cellular factors shape the conformational search for the native state.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Aleksandra Pajak
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | | | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA.
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
34
|
Nie DY, Tabor JR, Li J, Kutera M, St-Germain J, Hanley RP, Wolf E, Paulakonis E, Kenney TMG, Duan S, Shrestha S, Owens DDG, Maitland MER, Pon A, Szewczyk M, Lamberto AJ, Menes M, Li F, Penn LZ, Barsyte-Lovejoy D, Brown NG, Barsotti AM, Stamford AW, Collins JL, Wilson DJ, Raught B, Licht JD, James LI, Arrowsmith CH. Recruitment of FBXO22 for targeted degradation of NSD2. Nat Chem Biol 2024:10.1038/s41589-024-01660-y. [PMID: 38965384 DOI: 10.1038/s41589-024-01660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.
Collapse
Affiliation(s)
- David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John R Tabor
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianping Li
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Kutera
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ronan P Hanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- C4 Therapeutics, Watertown, MA, USA
| | - Esther Wolf
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Ethan Paulakonis
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Tristan M G Kenney
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shili Duan
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Suman Shrestha
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Amphista Therapeutics, Cambridge, UK
| | | | - Ailing Pon
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Menes
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony M Barsotti
- Deerfield Discovery and Development, Deerfield Management, New York, NY, USA
| | - Andrew W Stamford
- Deerfield Discovery and Development, Deerfield Management, New York, NY, USA
| | - Jon L Collins
- Office of the Vice Chancellor for Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan D Licht
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Rincon Pabon JP, Akbar Z, Politis A. MSe Collision Energy Optimization for the Analysis of Membrane Proteins Using HDX-cIMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1383-1389. [PMID: 38842540 PMCID: PMC11228973 DOI: 10.1021/jasms.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has evolved as an essential technique in structural proteomics. The use of ion mobility separation (IMS) coupled to HDX-MS has increased the applicability of the technique to more complex systems and has been shown to improve data quality and robustness. The first step when running any HDX-MS workflow is to confirm the sequence and retention time of the peptides resulting from the proteolytic digestion of the nondeuterated protein. Here, we optimized the collision energy ramp of HDMSE experiments for membrane proteins using a Waters SELECT SERIES cIMS-QTOF system following an HDX workflow using Phosphorylase B, XylE transporter, and Smoothened receptor (SMO) as model systems. Although collision energy (CE) ramp 10-50 eV gave the highest amount of positive identified peptides when using Phosphorylase B, XylE, and SMO, results suggest optimal CE ramps are protein specific, and different ramps can produce a unique set of peptides. We recommend cIMS users use different CE ramps in their HDMSE experiments and pool the results to ensure maximum peptide identifications. The results show how selecting an appropriate CE ramp can change the sequence coverage of proteins ranging from 4 to 94%.
Collapse
Affiliation(s)
- Juan Pablo Rincon Pabon
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| | - Zulaikha Akbar
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| | - Argyris Politis
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
36
|
Ye X, Hu Y, Qiu H, Li N. Probe capsid structure stability and dynamics of adeno-associated virus as an important viral vector for gene therapy by hydrogen-deuterium exchange-mass spectrometry. Protein Sci 2024; 33:e5074. [PMID: 38888268 PMCID: PMC11184576 DOI: 10.1002/pro.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Adeno-associated virus (AAV), a widely used gene therapy vector, is a small, nonenveloped virus that contains a single-stranded DNA genome with a maximum length of 4.7 kb. Despite extensive biophysical and structural characterization, many aspects of AAV functions remain elusive. This knowledge gap is primarily due to a lack of structurally resolved dynamic information and the absence of structural coverage of functionally critical segments on the AAV capsid. Here, we developed a protocol to study AAV structural dynamics by hydrogen-deuterium exchange mass spectrometry (HDX-MS), a powerful method for monitoring protein structure stability and dynamics in solution. We performed HDX-MS measurements on AAVs without or with different DNA payloads of different sizes, and obtained detailed dynamic information on the entire AAV sequence including the two functionally important segments not previously structurally characterized. The unique N terminus of the capsid protein VP1 (VP1u) was found to adopt a highly dynamic and unstable conformation with low HDX protection across the entire region, whereas the presence of a DNA payload increased its protection. The VP1 and VP2 shared region (VP1/2) showed no measurable protection, with or without DNA. Differential HDX between empty and full capsid samples allowed us to identify potential new DNA-capsid interaction sites located primarily around the five-fold channel, which differ from the three-fold pocket binding site previously identified. Our HDX-MS method for characterizing AAV structural dynamics opens a new way for future efforts to understand AAV structure-function relationships and engineer next-generation AAV vectors with improved gene delivery properties.
Collapse
Affiliation(s)
- Xiang Ye
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Yunli Hu
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Ning Li
- Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| |
Collapse
|
37
|
Jakobowski A, Hill SG, Guy SW, Offenbacher AR. Substitution of the mononuclear, non-heme iron cofactor in lipoxygenases for structural studies. Methods Enzymol 2024; 704:59-87. [PMID: 39300657 DOI: 10.1016/bs.mie.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This Chapter describes methods for the biosynthetic substitution of the mononuclear, non-heme iron in plant and animal lipoxygenases (LOXs). Substitution of this iron center for a manganese ion results in an inactive, yet faithful structural surrogate of the LOX enzymes. This metal ion substitution permits structural and dynamical studies of enzyme-substrate complexes in solution and immobilized on lipid membrane surfaces. Representative procedures for two LOXs, soybean lipoxygenase (SLO) from plants and human epithelial 15-lipoxygenase-2 (15-LOX-2) from mammals, are described as examples.
Collapse
Affiliation(s)
- Andrew Jakobowski
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - S Wyatt Guy
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
38
|
Wang D, Zhang Z, Baudys J, Haynes C, Osman SH, Zhou B, Barr JR, Gumbart JC. Enhanced Surface Accessibility of SARS-CoV-2 Omicron Spike Protein Due to an Altered Glycosylation Profile. ACS Infect Dis 2024; 10:2032-2046. [PMID: 38728322 PMCID: PMC11184558 DOI: 10.1021/acsinfecdis.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.
Collapse
Affiliation(s)
- Dongxia Wang
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Zijian Zhang
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - Jakub Baudys
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Christopher Haynes
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Sarah H. Osman
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - Bin Zhou
- National
Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - John R. Barr
- National
Center for Environmental Health, Division of Laboratory Sciences, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30322 United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| |
Collapse
|
39
|
Lewis BR, Uddin MR, Kuo KM, Shah LMN, Harris NJ, Booth PJ, Hammerschmid D, Gumbart JC, Zgurskaya HI, Reading E. Mg 2+-dependent mechanism of environmental versatility in a multidrug efflux pump. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597921. [PMID: 38915626 PMCID: PMC11195059 DOI: 10.1101/2024.06.10.597921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are a major driver of multidrug resistance among Gram-negative bacteria. The periplasm provides a distinct environment between the inner and outer membranes of Gram-negative bacteria. Cations, such as Mg2+, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg2+ and pH in modulating the dynamics of the periplasmic adaptor protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug efflux pump from Escherichia coli. In the absence of Mg2+, AcrA becomes increasingly plastic within acidic conditions, but when Mg2+ is bound this is ameliorated, resulting in domain specific organisation in neutral to weakly acidic regimes. We establish a unique histidine residue directs these structural dynamics and is essential for sustaining pump efflux activity across acidic, neutral, and alkaline conditions. Overall, we propose Mg2+ conserves the structural mobility of AcrA to ensure optimal AcrAB-TolC function within rapid changing environments commonly faced by the periplasm during bacterial infection and colonization. This work highlights that Mg2+ is an important mechanistic component in this pump class and possibly across other periplasmic lipoproteins.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Muhammad R. Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA
| | - Katie M. Kuo
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, Georgia 30332, USA
| | - Laila M. N. Shah
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Nicola J. Harris
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Paula J. Booth
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Dietmar Hammerschmid
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, Georgia 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA
| | - Eamonn Reading
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
40
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC, Sicheri F. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 2024; 32:795-811.e6. [PMID: 38531363 DOI: 10.1016/j.str.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
Collapse
Affiliation(s)
- Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Julia Kitaygorodsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
41
|
Qiu Y, Huang T, Cai YD. Review of predicting protein stability changes upon variations. Proteomics 2024; 24:e2300371. [PMID: 38643379 DOI: 10.1002/pmic.202300371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Forecasting alterations in protein stability caused by variations holds immense importance. Improving the thermal stability of proteins is important for biomedical and industrial applications. This review discusses the latest methods for predicting the effects of mutations on protein stability, databases containing protein mutations and thermodynamic parameters, and experimental techniques for efficiently assessing protein stability in high-throughput settings. Various publicly available databases for protein stability prediction are introduced. Furthermore, state-of-the-art computational approaches for anticipating protein stability changes due to variants are reviewed. Each method's types of features, base algorithm, and prediction results are also detailed. Additionally, some experimental approaches for verifying the prediction results of computational methods are introduced. Finally, the review summarizes the progress and challenges of protein stability prediction and discusses potential models for future research directions.
Collapse
Affiliation(s)
- Yiling Qiu
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
42
|
Venkatakrishnan V, Braet SM, Anand GS. Dynamics, allostery, and stabilities of whole virus particles by amide hydrogen/deuterium exchange mass spectrometry (HDXMS). Curr Opin Struct Biol 2024; 86:102787. [PMID: 38458088 DOI: 10.1016/j.sbi.2024.102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
X-ray crystallography and cryo-electron microscopy have enabled the determination of structures of numerous viruses at high resolution and have greatly advanced the field of structural virology. These structures represent only a subset of snapshot end-state conformations, without describing all conformational transitions that virus particles undergo. Allostery plays a critical role in relaying the effects of varied perturbations both on the surface through environmental changes and protein (receptor/antibody) interactions into the genomic core of the virus. Correspondingly, allostery carries implications for communicating changes in genome packaging to the overall stability of the virus particle. Amide hydrogen/deuterium exchange mass spectrometry (HDXMS) of whole viruses is a powerful probe for uncovering virus allostery. Here we critically discuss advancements in understanding virus dynamics by HDXMS with single particle cryo-EM and computational approaches.
Collapse
Affiliation(s)
- Varun Venkatakrishnan
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Sean M Braet
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Ganesh S Anand
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States; The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
43
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
44
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 2024; 12:RP91930. [PMID: 38805257 PMCID: PMC11132683 DOI: 10.7554/elife.91930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| |
Collapse
|
45
|
Benzenberg LR, Katzberger P, Wu R, Metternich JB, Riniker S, Zenobi R. Probing the Stability of a β-Hairpin Scaffold after Desolvation. J Phys Chem Lett 2024; 15:5041-5046. [PMID: 38700091 DOI: 10.1021/acs.jpclett.4c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Probing the structural characteristics of biomolecular ions in the gas phase following native mass spectrometry (nMS) is of great interest, because noncovalent interactions, and thus native fold features, are believed to be largely retained upon desolvation. However, the conformation usually depends heavily on the charge state of the species investigated. In this study, we combine transition metal ion Förster resonance energy transfer (tmFRET) and ion mobility-mass spectrometry (IM-MS) with molecular dynamics (MD) simulations to interrogate the β-hairpin structure of GB1p in vacuo. Fluorescence lifetime values and collisional cross sections suggest an unfolding of the β-hairpin motif for higher charge states. MD simulations are consistent with experimental constraints, yet intriguingly provide an alternative structural interpretation: preservation of the β-hairpin is not only predicted for 2+ but also for 4+ charged species, which is unexpected given the substantial Coulomb repulsion for small secondary structure scaffolds.
Collapse
Affiliation(s)
- Lukas R Benzenberg
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Paul Katzberger
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Ri Wu
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Jonas B Metternich
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Sereina Riniker
- Institute of Molecular Physical Science, Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| |
Collapse
|
46
|
Habeck T, Brown KA, Des Soye B, Lantz C, Zhou M, Alam N, Hossain MA, Jung W, Keener JE, Volny M, Wilson JW, Ying Y, Agar JN, Danis PO, Ge Y, Kelleher NL, Li H, Loo JA, Marty MT, Paša-Tolić L, Sandoval W, Lermyte F. Top-down mass spectrometry of native proteoforms and their complexes: a community study. Nat Methods 2024:10.1038/s41592-024-02279-6. [PMID: 38744918 PMCID: PMC11561160 DOI: 10.1038/s41592-024-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.
Collapse
Affiliation(s)
- Tanja Habeck
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Kyle A Brown
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, WA, USA
- Zhejiang University, Zhejiang, China
| | | | | | | | | | | | - Jesse W Wilson
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yujia Ying
- Sun Yat-sen University, Guangzhou, China
| | - Jeffrey N Agar
- Northeastern University, Boston, MA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Ying Ge
- University of Wisconsin-Madison, Madison, WI, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Neil L Kelleher
- Northwestern University, Evanston, IL, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Huilin Li
- Sun Yat-sen University, Guangzhou, China
| | - Joseph A Loo
- University of California, Los Angeles, CA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, WA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | | |
Collapse
|
47
|
Mühlenbeck H, Tsutsui Y, Lemmon MA, Bender KW, Zipfel C. Allosteric activation of the co-receptor BAK1 by the EFR receptor kinase initiates immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554490. [PMID: 37662281 PMCID: PMC10473708 DOI: 10.1101/2023.08.23.554490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic (pseudo)kinase signaling mechanisms have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (ELONGATION FACTOR TU RECEPTOR) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.
Collapse
|
48
|
Renawala HK, Chandrababu KB, Smith KJ, D'Addio SM, Topp EM. A Model Study to Assess Fibrillation and Product Stability to Support Peptide Drug Design. Mol Pharm 2024; 21:2223-2237. [PMID: 38552144 DOI: 10.1021/acs.molpharmaceut.3c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The fibrillation of therapeutic peptides can present significant quality concerns and poses challenges for manufacturing and storage. A fundamental understanding of the mechanisms of fibrillation is critical for the rational design of fibrillation-resistant peptide drugs and can accelerate product development by guiding the selection of solution-stable candidates and formulations. The studies reported here investigated the effects of structural modifications on the fibrillation of a 29-residue peptide (PepA) and two sequence modified variants (PepB, PepC). The C-terminus of PepA was amidated, whereas both PepB and PepC retained the carboxylate, and Ser16 in PepA and PepB was substituted with a helix-stabilizing residue, α-aminoisobutyric acid (Aib), in PepC. In thermal denaturation studies by far-UV CD spectroscopy and fibrillation kinetic studies by fluorescence and turbidity measurements, PepA and PepB showed heat-induced conformational changes and were found to form fibrils, whereas PepC did not fibrillate and showed only minor changes in the CD signal. Pulsed hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed a high degree of protection from HD exchange in mature PepA fibrils and its proteolytic fragments, indicating that most of the sequence had been incorporated into the fibril structure and occurred nearly simultaneously throughout the sequence. The effects of the net peptide charge and formulation pH on fibrillation kinetics were investigated. In real-time stability studies of two formulations of PepA at pH's 7.4 and 8.0, analytical methods detected significant changes in the stability of the formulations at different time points during the study, which were not observed during accelerated studies. Additionally, PepA samples were withdrawn from real-time stability and subjected to additional stress (40 °C, continuous shaking) to induce fibrillation; an approach that successfully amplified oligomers or prefibrillar species previously undetected in a thioflavin T assay. Taken together, these studies present an approach to differentiate and characterize fibrillation risk in structurally related peptides under accelerated and real-time conditions, providing a model for rapid, iterative structural design to optimize the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karthik B Chandrababu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Katelyn J Smith
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suzanne M D'Addio
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Elizabeth M Topp
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- National Institute for Bioprocessing Research and Training, Belfield, Blackrock, Co. Dublin A94 X099, Ireland
| |
Collapse
|
49
|
Gogishvili D, Illes-Toth E, Harris MJ, Hopley C, Teunissen CE, Abeln S. Structural flexibility and heterogeneity of recombinant human glial fibrillary acidic protein (GFAP). Proteins 2024; 92:649-664. [PMID: 38149328 DOI: 10.1002/prot.26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is a promising biomarker for brain and spinal cord disorders. Recent studies have highlighted the differences in the reliability of GFAP measurements in different biological matrices. The reason for these discrepancies is poorly understood as our knowledge of the protein's 3-dimensional conformation, proteoforms, and aggregation remains limited. Here, we investigate the structural properties of GFAP under different conditions. For this, we characterized recombinant GFAP proteins from various suppliers and applied hydrogen-deuterium exchange mass spectrometry (HDX-MS) to provide a snapshot of the conformational dynamics of GFAP in artificial cerebrospinal fluid (aCSF) compared to the phosphate buffer. Our findings indicate that recombinant GFAP exists in various conformational species. Furthermore, we show that GFAP dimers remained intact under denaturing conditions. HDX-MS experiments show an overall decrease in H-bonding and an increase in solvent accessibility of GFAP in aCSF compared to the phosphate buffer, with clear indications of mixed EX2 and EX1 kinetics. To understand possible structural interface regions and the evolutionary conservation profiles, we combined HDX-MS results with the predicted GFAP-dimer structure by AlphaFold-Multimer. We found that deprotected regions with high structural flexibility in aCSF overlap with predicted conserved dimeric 1B and 2B domain interfaces. Structural property predictions combined with the HDX data show an overall deprotection and signatures of aggregation in aCSF. We anticipate that the outcomes of this research will contribute to a deeper understanding of the structural flexibility of GFAP and ultimately shed light on its behavior in different biological matrices.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Eva Illes-Toth
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Matthew J Harris
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Christopher Hopley
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Thomas S, Schulz AM, Leong JM, Zeczycki TN, Garcia BL. The molecular determinants of classical pathway complement inhibition by OspEF-related proteins of Borrelia burgdorferi. J Biol Chem 2024; 300:107236. [PMID: 38552741 PMCID: PMC11066524 DOI: 10.1016/j.jbc.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.
Collapse
Affiliation(s)
- Sheila Thomas
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Anna M Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - Tonya N Zeczycki
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|