1
|
Joshi AS. Advancing in vitro cell migration studies: a review of open-source analytical platforms for cancer and wound healing research. Cell Adh Migr 2025; 19:2488116. [PMID: 40241248 PMCID: PMC12006941 DOI: 10.1080/19336918.2025.2488116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
A single cell or cell population exhibits the fundamental phenomenon of cell migration during developmental processes or disease progression. Vast literature suggests that, in vitro 2-dimensional or 3-dimensional cell migration assay is one of the most commonly used assays in cancer, wound healing research, and developmental biology research. The data obtained from this assay are often analyzed using various proprietary or open-source programs. Proprietary software are costly and not always accessible to everyone. Whereas the open-source programs are free, easy to access, and user friendly. However, not all researchers are aware of these open-source programs. Despite the increasing availability of these programs, many researchers still rely on proprietary software, due to a lack of comparative analyses and practical guidance on their implementation. Hence, this review aims to provide insights into these open-source tools and serves as a practical guide to both biologists and computational researchers for their specific analytical needs.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- Manipal Centre for Biotherapeutics Research (MCBR), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
2
|
Pham DL, Gillette AA, Riendeau J, Wiech K, Guzman EC, Datta R, Skala MC. Perspectives on label-free microscopy of heterogeneous and dynamic biological systems. JOURNAL OF BIOMEDICAL OPTICS 2025; 29:S22702. [PMID: 38434231 PMCID: PMC10903072 DOI: 10.1117/1.jbo.29.s2.s22702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
Significance Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.
Collapse
Affiliation(s)
- Dan L. Pham
- University of Wisconsin—Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | | | | | - Kasia Wiech
- University of Wisconsin—Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | | | - Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Melissa C. Skala
- University of Wisconsin—Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| |
Collapse
|
3
|
Midekssa FS, Davidson CD, Wieger ME, Kamen JL, Hanna KM, Jayco DKP, Hu MM, Friend NE, Putnam AJ, Helms AS, Shikanov A, Baker BM. Semi-synthetic fibrous fibrin composites promote 3D microvascular assembly, survival, and host integration of endothelial cells without mesenchymal cell support. Bioact Mater 2025; 49:652-669. [PMID: 40235652 PMCID: PMC11999628 DOI: 10.1016/j.bioactmat.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025] Open
Abstract
Vasculogenic assembly of 3D capillary networks remains a promising approach to vascularizing tissue-engineered grafts, a significant outstanding challenge in tissue engineering and regenerative medicine. Current approaches for vasculogenic assembly rely on the inclusion of supporting mesenchymal cells alongside endothelial cells, co-encapsulated within vasculo-conducive materials such as low-density fibrin hydrogels. Here, we established a material-based approach to circumvent the need for supporting mesenchymal cells and report that the inclusion of synthetic matrix fibers in dense (>3 mg mL-1) 3D fibrin hydrogels can enhance vasculogenic assembly in endothelial cell monocultures. Surprisingly, we found that the addition of non-cell-adhesive synthetic matrix fibers compared to cell-adhesive synthetic fibers best encouraged vasculogenic assembly, proliferation, lumenogenesis, a vasculogenic transcriptional program, and additionally promoted cell-matrix interactions and intercellular force transmission. Implanting fiber-reinforced prevascularized constructs to assess graft-host vascular integration, we demonstrate additive effects of enhanced vascular network assembly during in vitro pre-culture, fiber-mediated improvements in endothelial cell survival and vascular maintenance post-implantation, and enhanced host cell infiltration that collectively enabled graft vessel integration with host circulation. This work establishes synthetic matrix fibers as an inexpensive alternative to sourcing and expanding secondary supporting cell types for the prevascularization of tissue constructs.
Collapse
Affiliation(s)
- Firaol S. Midekssa
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Christopher D. Davidson
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Megan E. Wieger
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Jordan L. Kamen
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Kaylin M. Hanna
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Danica Kristen P. Jayco
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Michael M. Hu
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan Ann Arbor, MI 48109, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| |
Collapse
|
4
|
Zang JL, Gibson D, Zheng AM, Shi W, Gillies JP, Stein C, Drerup CM, DeSantis ME. CCSer2 gates dynein activity at the cell periphery. J Cell Biol 2025; 224:e202406153. [PMID: 40261303 PMCID: PMC12013514 DOI: 10.1083/jcb.202406153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025] Open
Abstract
Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells, macrophages, and cultured human cells by facilitating the trafficking of cargos that are acted on by peripherally localized dynein. Our data suggest that CCSer2 disfavors the interaction between dynein and its regulator Ndel1 at the cell edge, resulting in localized dynein activation. These findings support a model where the spatial specificity of dynein is achieved by the localization of proteins that trigger Ndel1's release from dynein. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via regulating Ndel1-dynein interaction.
Collapse
Affiliation(s)
- Juliana L. Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daytan Gibson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann-Marie Zheng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Wanjing Shi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Catherine M. Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Morgan E. DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Honjo Y, Ichinohe T. Neural crest cells are sensitive to radiation-induced DNA damage. Tissue Cell 2025; 94:102774. [PMID: 39954562 DOI: 10.1016/j.tice.2025.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Radiation-induced DNA damage introduces mutations that have various deleterious effects, which may lead to apoptosis and carcinogenesis. Different tissues and cell types exhibit varying degrees of sensitivity to radiation-induced DNA damage, which is often attributed to the frequency of cell division. In this study, we showed that irradiation affects early zebrafish embryos in a manner that is not explained by direct DNA damage and repair nor by the frequency of cell division. Zebrafish embryos irradiated at 2 h post fertilization showed drastic apoptosis, mainly in the head region, during organogenesis. Herein, we show that these apoptotic cells did not show aneuploidy or micronuclei, and that not all descendants of the same cells with the same DNA damage were necessarily apoptotic. Finally, we demonstrate that apoptotic cells have various origins and that neural crest cells have a sensitive cell fate. Our results suggest the existence of a radiation damage response mechanism other than those previously described, the elucidation of which may inform strategies for greater protection against radiation injury.
Collapse
Affiliation(s)
- Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima 734-8553, Japan.
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
6
|
Bartra C, Vuraić K, Yuan Y, Codony S, Valdés-Quiroz H, Casal C, Slevin M, Máquez-Kisinousky L, Planas AM, Griñán-Ferré C, Pallàs M, Morisseau C, Hammock BD, Vázquez S, Suñol C, Sanfeliu C. Microglial pro-inflammatory mechanisms induced by monomeric C-reactive protein are counteracted by soluble epoxide hydrolase inhibitors. Int Immunopharmacol 2025; 155:114644. [PMID: 40215773 DOI: 10.1016/j.intimp.2025.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Monomeric C-reactive protein (mCRP) is a pro-inflammatory molecule generated by the dissociation of native CRP. Clinical and experimental studies suggest that mCRP deposition in the brain induces Alzheimer's disease (AD) pathology and cognitive loss. Pathological neuroinflammation is increasingly suggested as relevant in AD. Innovative therapies against neuroinflammation are desperately needed, and inhibitors of the enzyme soluble epoxide hydrolase (sEH) are a promising new generation of anti-inflammatory drugs. Mouse primary microglia and BV2 cell line cultures were exposed to mCRP to analyze its pro-inflammatory mechanisms. sEH inhibitors, both newly synthesized UB-SCG-55 and UB-SCG-65, and the reference agent TPPU, were tested for their anti-inflammatory action against mCRP. Phenotypic changes were analyzed through cell imaging techniques, as well as molecular analysis of inflammatory mediators and gene activation pathways. Results show that mCRP triggers a pro-inflammatory response through three main inflammatory pathways: iNOS, NLRP3, and COX-2, followed by increased cytokine generation. Polarization of microglia toward a M1-like phenotype was confirmed by morphological analysis. Also, mCRP can bind to and cross the cell membrane, providing further insight into its mechanisms of action. sEH inhibitors were effective against mCRP induction of a reactive microglial phenotype. The first-line compound UB-SCG-55 emerged as the most potent anti-inflammatory against mCRP injury. Therefore, the direct activation of microglia by mCRP provides evidence of its role in triggering and exacerbating neurodegenerative diseases with a neuroinflammatory component, such as AD. Furthermore, the protection given by inhibitors of sEH confirms its potential as innovative drugs against deleterious effects of neuroinflammation.
Collapse
Affiliation(s)
- Clara Bartra
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain; PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08034 Barcelona, Spain.
| | - Kristijan Vuraić
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Yi Yuan
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Sandra Codony
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Haydeé Valdés-Quiroz
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Carme Casal
- Microscopy Service, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - Mark Slevin
- CCAMF, George Emil Palade Universitatea de Medicina, Farmacie, Stiinte se Technologie, "George Emil Palade" din Targu-Mures, 540142, Tirgu Mures, Romania
| | - Leonardo Máquez-Kisinousky
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Cristina Suñol
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain
| | - Coral Sanfeliu
- Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona (IIBB), CSIC, 08036 Barcelona, Spain.
| |
Collapse
|
7
|
Tang L, Soulier NT, Wheeler R, Pokorski JK, Golden JW, Golden SS, Bae J. A responsive living material prepared by diffusion reveals extracellular enzyme activity of cyanobacteria. Proc Natl Acad Sci U S A 2025; 122:e2424405122. [PMID: 40310460 DOI: 10.1073/pnas.2424405122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Stimuli-responsive engineered living materials (ELMs) can respond to environmental or biochemical cues and have broad utility in biological sensors and machines, but have traditionally been limited to biocompatible scaffolds. This is because they are typically made by mixing cells into a precursor solution before crosslinking. Here, we demonstrate a diffusion mechanism for incorporating cells of the cyanobacterium Synechococcus elongatus sp. PCC 7942 (S. elongatus) into nanoclay-poly-N-isopropylacrylamide (NC-PNIPAm), a hydrogel with a cytotoxic precursor, by exploiting its temperature-dependent shape-morphing behavior. Subsequent growth of S. elongatus caused a decrease in the bending curvature and stiffness (local Young's modulus) of NC-PNIPAm due to partial degradation by an unannotated enzyme. Creation and observation of this cyanobacteria-hydrogel ELM showcases a method for diffusing cells into a hydrogel as well as characterizing an extracellular enzyme.
Collapse
Affiliation(s)
- Lisa Tang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Nathan T Soulier
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Rebecca Wheeler
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Jonathan K Pokorski
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093
| | - James W Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Susan S Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093
- Department of Chemical Engineering, Chung-Ang University, Seoul 06794, Republic of Korea
| |
Collapse
|
8
|
Hassanzadeh A, Elyasi SN, Salih S, Abdulkareem SS, Saeed SR. Waveguide Evanescent Field Fluorescence Microscopy Images of Osteoblast Cells: The Effect of Trypsin and Image Processing Using TrackMate. Microsc Res Tech 2025; 88:1326-1334. [PMID: 39745108 DOI: 10.1002/jemt.24766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 11/23/2024] [Indexed: 04/07/2025]
Abstract
Waveguide evanescent field fluorescence microscopy (WEFF) is an evanescent-based microscopy that utilizes a confined thin film of light, around 100 nm, to image the plasma membrane of cells attached to a waveguide. Low photobleaching and low background besides its high axial resolution allows time-lapse imaging to investigate changes in cell morphology in the presence or absence of chemical agents. Both large field of view (FOV) and uniform illumination are very important while imaging cell-substrate contacts with an evanescent field. In the current study, we demonstrate that the WEFF microscope is capable of large FOVs with a uniform illumination source and imaging over a very long time period with a simple and inexpensive experimental setup. The interaction of the trypsin with plasma membranes of live osteoblast cells is investigated. To analyze cell images (250 images), instead of relying on manual tracking, which is time-consuming and can introduce numerous errors, we performed image processing using TrackMate to investigate the dynamic response of cells upon exposure to trypsin. This helps to save time and increase the accuracy of the analysis. The powerful tracking and analysis capabilities of the TrackMate plugin in ImageJ are used to automatically detect the cells border and trace each cluster of cells. The reduction in cell area is accompanied by a notable increase in mean intensity, reflecting changes in the intracellular environment. However, the background did not change during the experiment, which proves that the fluorescence material remains attached to the cell membrane and does not leak into the cell medium.
Collapse
Affiliation(s)
- Abdollah Hassanzadeh
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Seyed Navid Elyasi
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Siyamand Salih
- Department of Natural Sciences, Charmo Center for Research, Training and Consultancy, Charmo University, Chamchamal, Kurdistan Region, Iraq
| | | | - Salah Raza Saeed
- Department of Computer Science, Cihan University, Sulaimaniyah, Kurdistan Region, Iraq
| |
Collapse
|
9
|
Armstrong MC, Weiß YR, Hoachlander-Hobby LE, Roy AA, Visco I, Moe A, Golding AE, Hansen SD, Bement WM, Bieling P. The biochemical mechanism of Rho GTPase membrane binding, activation and retention in activity patterning. EMBO J 2025; 44:2620-2657. [PMID: 40164947 DOI: 10.1038/s44318-025-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Rho GTPases form plasma membrane-associated patterns that control the cytoskeleton during cell division, morphogenesis, migration, and wound repair. Their patterning involves transitions between inactive cytosolic and active membrane-bound states, regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). However, the relationships between these transitions and role of different regulators remain unclear. We developed a novel reconstitution approach to study Rho GTPase patterning with all major GTPase regulators in a biochemically defined system. We show that Rho GTPase dissociation from RhoGDI is rate-limiting for its membrane association. Rho GTPase activation occurs after membrane insertion, which is unaffected by GEF activity. Once activated, Rho GTPases are retained at the membrane through effector interactions, essential for their enrichment at activation sites. Thus, high cytosolic levels of RhoGDI-bound GTPases ensure a constant supply of inactive GTPases for the membrane, where GEF-mediated activation and effector binding stabilize them. These results delineate the route by which Rho GTPase patterns are established and define stage-dependent roles of its regulators.
Collapse
Affiliation(s)
- Michael C Armstrong
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yannic R Weiß
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lila E Hoachlander-Hobby
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Ankit A Roy
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ilaria Visco
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alison Moe
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriana E Golding
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - William M Bement
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
10
|
Soans RS, Smith BE, Chung STL. Unifying Structure and Function Towards a Comprehensive Macular Evaluation in Eye Disorders: A Multi-Modal Approach Using Microperimetry and Optical Coherence Tomography. IEEE Trans Biomed Eng 2025; 72:1572-1584. [PMID: 40030438 DOI: 10.1109/tbme.2024.3513234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE We present a new automatic and comprehensive framework to evaluate retinal sub-layer thickness and visual sensitivity at precise retinal locations through multi-modal registration of confocal scanning laser ophthalmoscope (cSLO) images obtained separately from an optical coherence tomography (OCT) device and a microperimeter. METHODS We map consecutive B-scans onto the cSLO images after accounting for eye motion. Next, we coarsely register the SLO-microperimetry and cSLO-OCT images using SIFT, followed by precise elastic image registration. Subsequently, we ensure the quality of the co-registered images through single-particle and object tracking of the warped microperimetry test locations. Finally, the retinal thickness is queried from the segmented retinal layers in the co-registered space. A manual mode involving projective transformation accounting for perspective distortions in the images arising from the two modalities is also included. RESULTS Validation using retinal images of 8 adults with albinism, 16 adults with amblyopia, 3 adults with macular diseases, and 15 visually healthy adults showed results with excellent reliability. CONCLUSION The proposed framework enables the evaluation of retinal thickness by utilizing precise structural and functional relationships of the eye through a self-assessing multi-tiered approach. SIGNIFICANCE Our framework lays the foundation towards a comprehensive structure-function assessment of the macular region in various eye disorders.
Collapse
|
11
|
Moncomble A, Alloyeau D, Moreaud M, Khelfa A, Wang G, Ortiz-Peña N, Amara H, Gatti R, Moreau R, Ricolleau C, Nelayah J. aquaDenoising: AI-enhancement of in situ liquid phase STEM video for automated quantification of nanoparticles growth. Ultramicroscopy 2025; 271:114121. [PMID: 40058164 DOI: 10.1016/j.ultramic.2025.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Automatic processing and full analysis of in situ liquid phase scanning transmission electron microscopy (LP-STEM) acquisitions are yet to be achievable with available techniques. This is particularly true for the extraction of information related to the nucleation and growth of nanoparticles (NPs) in liquid as several parasitic processes degrade the signal of interest. These degradations hinder the use of classical or state-of-the-art techniques making the understanding of NPs formation difficult to access. In this context, we propose aquaDenoising, a novel simulation-based deep neural framework to address the challenges of denoising LP-STEM images and videos. Trained on synthetic pairs of clean and noisy images obtained from kinematic-model-based simulations, we show that our model is able to achieve a fifteen-fold improvement in the signal-to-noise ratio of videos of gold NPs growing in water. The enhanced data unleash unprecedented possibilities for automatic segmentation and extraction of structures at different scales, from assemblies of objects down to the individual NPs with the same precision as manual segmentation performed by experts, but with higher throughput. The present denoising method can be easily adapted to other nanomaterials imaged in liquid media. All the codes developed in the present work are open and freely available.
Collapse
Affiliation(s)
- Adrien Moncomble
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Damien Alloyeau
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France.
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP 3 69360 Solaize, France
| | - Abdelali Khelfa
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Guillaume Wang
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Nathaly Ortiz-Peña
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Hakim Amara
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France; Université Paris-Saclay, ONERA, CNRS, Laboratoire d'étude des microstructures (LEM), F-92322 Châtillon, France
| | - Riccardo Gatti
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'étude des microstructures (LEM), F-92322 Châtillon, France
| | - Romain Moreau
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'étude des microstructures (LEM), F-92322 Châtillon, France
| | - Christian Ricolleau
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Jaysen Nelayah
- Université Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France.
| |
Collapse
|
12
|
Safonov P, Khaitov V, Palii O, Skarlato S, Berdieva M. Effects of nocodazole and latrunculin B on locomotion of amoeboid cells of Rhizochromulina sp. strain B44 (Heterokontophyta, Dictyochophyceae). PROTOPLASMA 2025; 262:585-594. [PMID: 39725774 DOI: 10.1007/s00709-024-02024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Rhizochromulina is a genus of unicellular dictyochophycean algae (Heterokontophyta), comprising a single species R. marina and numerous strains. Recently, we described the first arctic rhizochromuline-Rhizochromulina sp. strain B44. Amoeboid cells of this algae are able to transform into flagellates, and this transition can be triggered by prolonged mechanical disturbance. Thin branching pseudopodia of the neighboring rhizochromuline cells fuse to form a meroplasmodium. The pseudopodia contain microtubules, but do not contain actin microfilaments; actin forms the cytoplasmic cytoskeleton and extends only to the bases of the pseudopodia. Microtubule-driven pseudopodia are characteristic to a plethora of eukaryotes, but the role of microtubular and actin cytoskeleton in locomotion of these organisms remains poorly understood. We conducted a series of experiments where amoeboid cells of Rhizochromulina sp. B44 were treated with either 10 µM nocodazole, 10 µM latrunculin B, or both drugs simultaneously. Cellular locomotion was captured on camera, tracked, and then analyzed with the help of the generalized additive mixed model. The obtained results indicate that both drugs, when applied separately, decrease the motility of the studied cells. Unexpectedly, the combined treatment had the opposite effect, as the cells became more motile. The analysis also revealed a non-linear pattern of relationship between motility of amoeboid cells of rhizochromulines and density of their population.
Collapse
Affiliation(s)
- Pavel Safonov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia.
| | - Vadim Khaitov
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Kandalaksha State Nature Reserve, Kandalaksha, 184042, Russia
| | - Olga Palii
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Sergei Skarlato
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Mariia Berdieva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
13
|
Casler JC, Harper CS, Lackner LL. Mitochondria-plasma membrane contact sites regulate the ER-mitochondria encounter structure. J Cell Sci 2025; 138:JCS263685. [PMID: 39878621 PMCID: PMC11883241 DOI: 10.1242/jcs.263685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-endoplasmic reticulum (ER) MCSs - the ER-mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA) in Saccharomyces cerevisiae. We report that loss of MECA results in a substantial reduction in the number of ERMES contacts. Rather than reducing ERMES protein levels, loss of MECA results in an increase in the size of ERMES contacts. Using live-cell microscopy, we demonstrate that ERMES contacts display several dynamic behaviors, such as de novo formation, fusion and fission, that are altered in the absence of MECA or by changes in growth conditions. Unexpectedly, we find that the mitochondria-plasma membrane (PM) tethering, and not the mitochondria-ER tethering, function of MECA regulates ERMES contacts. Remarkably, synthetic tethering of mitochondria to the PM in the absence of MECA is sufficient to rescue the distribution of ERMES foci. Overall, our work reveals how one MCS can influence the regulation and function of another.
Collapse
Affiliation(s)
- Jason C. Casler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Clare S. Harper
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
14
|
Shave CD, Haider MJA, Onyishi CU, McDonald MC, Stones L, Jagielski T, May RC. Phylogenetic analysis of pathogenic algae reveals lineage-dependent patterns of phagocytosis. mBio 2025:e0049825. [PMID: 40304495 DOI: 10.1128/mbio.00498-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Prototheca is an unusual genus of algae that lack chlorophyll and are obligate heterotrophs. To date, six paraphyletic pathogenic species have been identified in the context of vertebrates, principally in cattle-associated and human-associated infections. Together with the genus Auxenochlorella and Helicosporidium, rDNA sequence analysis currently favors grouping Prototheca under a clade known as the Auxenochlorella, Helicosporidium and Prototheca (AHP) lineage. Most studies so far have focused only on Prototheca bovis and Prototheca ciferrii as cattle-associated species and on Prototheca wickerhamii as a human-associated species. However, such studies remain limited in scope as they focus on only three species of Prototheca, which is not representative of the total number of species within the AHP lineage. In this study, we employ a phylogenetics approach based on five new organelle-encoded genes to delineate higher-level relationships within the AHP lineage. We use the resultant data to then guide a live-cell imaging-based investigation of aspects of the mammalian innate immune response to 11 Prototheca species and four Auxenochlorella species. Our data reveal varying patterns of phagocytosis dynamics that are both host cell type- and algal species-dependent. Together, these findings reveal the interaction between pathogen phylogeny and host immune response, revealing ways to identify new therapeutic targets in the future. IMPORTANCE Protothecosis is a rare algal infection caused by members of the genus Prototheca, which is comprised of unusual non-photosynthetic algae. Six pathogenic species have been identified so far that can cause infection in vertebrates, primarily cattle and humans. The phylogeny of this genus remains obscure and has been revised multiple times recently. However, this phylogeny has largely been based on only three species of Prototheca. To resolve this phylogenetic conundrum, here, we employ a phylogenetics approach based on five new organelle-encoded genes. We then use these data to perform live-cell imaging of a selected range of Prototheca species co-cultured with mammalian immune cells. Visualizing these phagocytic interactions in this context helps delineate both host cell-type- and species-dependent differences in phagocytic uptake, thereby providing novel insight into lineage-based differences.
Collapse
Affiliation(s)
- Christopher D Shave
- Institute of Microbiology and Infection and School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Mohammed J A Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sabah Al-Salem University City, Kuwait City, Kuwait
| | - Chinaemerem U Onyishi
- Institute of Microbiology and Infection and School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Molecular Mycology and Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, USA
| | - Megan C McDonald
- Institute of Microbiology and Infection and School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Leanne Stones
- College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
15
|
Godeau AL, Marin-Riera M, Trubuil E, Rogalla S, Bengoetxea G, Backová L, Pujol T, Colombelli J, Sharpe J, Martin-Blanco E, Solon J. A transient contractile seam promotes epithelial sealing and sequential assembly of body segments. Nat Commun 2025; 16:4010. [PMID: 40301337 PMCID: PMC12041241 DOI: 10.1038/s41467-025-58566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
In embryos, epithelial sealing proceeds with progressive zipping eventually leading to a scar-free epithelium and ensuring the assembly of body segments in insects and neural tube in mammals. How zipping is mechanically controlled to promote tissue fusion on long distances, remains unclear. Combining physical modeling with genetic and mechanical perturbations, we reveal the existence of a transient contractile seam that generates forces to reduce the zipping angle by force balance, consequently promoting epidermal sealing during Drosophila embryogenesis. The seam is formed by the adhesion of two tissues, the epidermis and amnioserosa, and is stabilized by the tensions generated by the segment boundaries. Once a segment is zipped, the seam disassembles concurrently with the inactivation of the Jun kinase pathway. Thus, we show that epithelial sealing is promoted by a transient actomyosin contractile seam allowing sequential segment assembly.
Collapse
Affiliation(s)
- Amélie L Godeau
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain.
| | - Miquel Marin-Riera
- European Molecular Biology Laboratory (EMBL Barcelona), 08003, Barcelona, Spain
| | - Elise Trubuil
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biologia Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Svana Rogalla
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
| | - Guillermo Bengoetxea
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
| | - Lenka Backová
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain
| | - Thomas Pujol
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL Barcelona), 08003, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), Fundación Biofísica Bizkaia/Biofisika Bizakia Fundazioa (FBB), 48940, Leioa, Spain.
- Departamento de Bioquímica y Biologia Molecular, University of the Basque Country, 48940, Leioa, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
16
|
Umeda Y, Yamahira S, Nakamura K, Takagi T, Suzuki T, Sato K, Hirabayashi Y, Okamoto A, Yamaguchi S. Microfluidic cell unroofing for the in situ molecular analysis of organelles without membrane permeabilization. LAB ON A CHIP 2025; 25:2222-2233. [PMID: 40007234 DOI: 10.1039/d5lc00102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Molecular networks of organelle membranes are involved in many cell processes. However, the nature of plasma membrane as a barrier to various analytical tools, including antibodies, makes it challenging to examine intact organelle membranes without affecting their structure and functions via membrane permeabilization. Therefore, in this study, we aimed to develop a microfluidic method to unroof cells and observe the intrinsic membrane molecules in organelles. In our method, single cells were precisely arrayed on the bottom surface of microchannels in a light-guided manner using a photoactivatable cell-anchoring material. At sufficiently short cell intervals, horizontal stresses generated by the laminar flow instantly fractured the upper cell membranes, without significantly affecting some organelles inside the fractured cells. Subsequently, nucleus and other organelles in unroofed cells were observed via confocal fluorescence and scanning electron microscopy. Furthermore, distribution of the mitochondrial membrane protein, translocase of outer mitochondrial membrane 20, on the mitochondrial membrane was successfully observed via immunostaining without permeabilization. Overall, the established cell unroofing method shows great potential to examine the localization, functions, and affinities of proteins on intact organelle membranes.
Collapse
Affiliation(s)
- Yuki Umeda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Yamahira
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| | - Koki Nakamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Tomoko Suzuki
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Kae Sato
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Yamaguchi
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| |
Collapse
|
17
|
Topo EJ, Basurto De Santiago C, Cao P, Wall D, Nan B. Mechanism of bacterial outer membrane exchange revealed by quantitative microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.25.650704. [PMID: 40313922 PMCID: PMC12045341 DOI: 10.1101/2025.04.25.650704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Kin recognition, the ability to distinguish self from nonself at the cellular level is critical to multicellular life. Myxococcus xanthus is a multicellular bacterium that cooperates among genetically-related cells and reduces exploitation by nonkin through outer membrane exchange (OME) of common goods and toxins. The polymorphic cell surface receptor called TraA and its partner protein TraB mediate kin recognition by OME, but its molecular mechanism remains unknown. Here we used quantitative microscopy techniques to characterize the stoichiometry of the intracellular TraAB complexes and the intercellular TraA-TraA interactions. We visualized the OME of single protein particles between cells and revealed that OME depends on the free diffusion of outer membrane (OM) contents. Based on the predicted structures, we propose a model that TraAB overcomes the repulsion between OMs by stressing the membranes and reducing the contact area, analogous to the eukaryotic soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which mediate plasma membrane fusion. Our working model provides a novel pathway that leads to an underlying conserved mechanism for membrane fusion that is a foundation process for multicellularity.
Collapse
|
18
|
Wiggins L, Lacy S, Park G, Marrison J, Powell B, Cimini B, O'Toole P, Wilson J, Brackenbury WJ. CellPhePy: A python implementation of the CellPhe toolkit for automated cell phenotyping from microscopy time-lapse videos. J Microsc 2025. [PMID: 40275641 DOI: 10.1111/jmi.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/12/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
We previously developed the CellPhe toolkit, an open-source R package for automated cell phenotyping from ptychography time-lapse videos. To align with the growing adoption of python-based image analysis tools and to enhance interoperability with widely used software for cell segmentation and tracking, we developed a python implementation of CellPhe, named CellPhePy. CellPhePy preserves all of the core functionality of the original toolkit, including single-cell phenotypic feature extraction, time-series analysis, feature selection and cell type classification. In addition, CellPhePy introduces significant enhancements, such as an improved method for identifying features that differentiate cell populations and extended support for multiclass classification, broadening its analytical capabilities. Notably, the CellPhePy package supports CellPose segmentation and TrackMate tracking, meaning that a set of microscopy images are the only required input with segmentation, tracking and feature extraction fully automated for downstream analysis, without reliance on external applications. The workflow's increased flexibility and modularity make it adaptable to different imaging modalities and fully customisable to address specific research questions. CellPhePy can be installed via PyPi or GitHub, and we also provide a CellPhePy GUI to aid user accessibility.
Collapse
Affiliation(s)
- Laura Wiggins
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Stuart Lacy
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
| | - Graeme Park
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Joanne Marrison
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Ben Powell
- Department of Mathematics, University of York, York, UK
| | | | - Peter O'Toole
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Julie Wilson
- Department of Mathematics, University of York, York, UK
| | - William J Brackenbury
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| |
Collapse
|
19
|
Edelmann DB, Jakob AM, Wilson LG, Colin R, Brandt D, Eck F, Kalinowski J, Thormann KM. Role of a single MCP in evolutionary adaptation of Shewanella putrefaciens for swimming in planktonic and structured environments. Appl Environ Microbiol 2025; 91:e0022925. [PMID: 40130843 PMCID: PMC12016497 DOI: 10.1128/aem.00229-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Bacteria can adapt to their environments by changing phenotypic traits by mutations. However, improving one trait often results in the deterioration of another one, a trade-off that limits the degree of adaptation. The gammaproteobacterium Shewanella putrefaciens CN-32 has an elaborate motility machinery comprising two distinct flagellar systems and an extensive chemotaxis array with 36 methyl-accepting chemotaxis sensor proteins (MCPs). In this study, we performed experimental selection on S. putrefaciens for increased spreading through a porous environment. We readily obtained a mutant that showed a pronounced increase in covered distance. This phenotype was almost completely caused by a deletion of 24 bp from the chromosome, which leads to a moderately enhanced production of a single MCP. Accordingly, chemotaxis assays under free-swimming conditions and cell tracking in soft agar showed that the mutation improved navigation through nutritional gradients. In contrast, further increased levels of the MCP negatively affected spreading. The study demonstrates how moderate differences in the abundance of a single MCP can lead to an efficient upgrade of chemotaxis in specific environments at a low expense of cellular resources.IMPORTANCEExperimental evolution experiments have been used to determine the trade-offs occurring in specific environments. Several studies that have used the spreading behavior of bacteria in structured environments identified regulatory mutants that increase the swimming speed of the cells. While this results in a higher chemotaxis drift, the growth fitness decreases as the higher swimming speed requires substantial cellular resources. Here we show that rapid chemotaxis adaptation can also be achieved by modifying the chemotaxis signal input at a low metabolic cost for the cell.
Collapse
Affiliation(s)
- Daniel B. Edelmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Anna M. Jakob
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Rémy Colin
- Max Planck Institute for Terrestrial Microbiology, and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - David Brandt
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Frederik Eck
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Kai M. Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
20
|
Constanty F, Wu B, Wei KH, Lin IT, Dallmann J, Guenther S, Lautenschlaeger T, Priya R, Lai SL, Stainier DYR, Beisaw A. Border-zone cardiomyocytes and macrophages regulate extracellular matrix remodeling to promote cardiomyocyte protrusion during cardiac regeneration. Nat Commun 2025; 16:3823. [PMID: 40268967 PMCID: PMC12019606 DOI: 10.1038/s41467-025-59169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Despite numerous advances in our understanding of zebrafish cardiac regeneration, an aspect that remains less studied is how regenerating cardiomyocytes invade and replace the collagen-containing injured tissue. Here, we provide an in-depth analysis of the process of cardiomyocyte invasion. We observe close interactions between protruding border-zone cardiomyocytes and macrophages, and show that macrophages are essential for extracellular matrix remodeling at the wound border zone and cardiomyocyte protrusion into the injured area. Single-cell RNA-sequencing reveals the expression of mmp14b, encoding a membrane-anchored matrix metalloproteinase, in several cell types at the border zone. Genetic mmp14b mutation leads to decreased macrophage recruitment, collagen degradation, and subsequent cardiomyocyte protrusion into injured tissue. Furthermore, cardiomyocyte-specific overexpression of mmp14b is sufficient to enhance cardiomyocyte invasion into the injured tissue and along the apical surface of the wound. Altogether, our data provide important insights into the mechanisms underlying cardiomyocyte invasion of the collagen-containing injured tissue during cardiac regeneration.
Collapse
Affiliation(s)
- Florian Constanty
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Bailin Wu
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ke-Hsuan Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Ting Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Julia Dallmann
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Rhein/Main, Rhein/Main, Germany
| | - Till Lautenschlaeger
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Bad Nauheim, Germany
- The Francis Crick Institute, London, UK
| | - Shih-Lei Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Rhein/Main, Rhein/Main, Germany
- Cardio-Pulmonary Institute, Bad Nauheim, Germany
| | - Arica Beisaw
- Mechanisms of Cardiac Regeneration and Repair Lab, Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
21
|
Michaut A, Chamolly A, Villedieu A, Corson F, Gros J. A tension-induced morphological transition shapes the avian extra-embryonic territory. Curr Biol 2025; 35:1681-1692.e4. [PMID: 40081377 DOI: 10.1016/j.cub.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The segregation of the extra-embryonic lineage is one of the earliest events and a key step in amniote development. Whereas the regulation of extra-embryonic cell fate specification has been extensively studied, little is known about the morphogenetic events underlying the formation of this lineage. Here, taking advantage of the amenability of avian embryos to live and quantitative imaging, we investigate the cell- and tissue-scale dynamics of epiboly, the process during which the epiblast expands to engulf the entire yolk. We show that tension arising from the outward migration of the epiblast border on the vitelline membrane stretches extra-embryonic cells, which reversibly transition from a columnar to a squamous morphology. The propagation of this tension is strongly attenuated in the embryonic territory, which concomitantly undergoes fluid-like motion, culminating in the formation of the primitive streak. We formulate a simple viscoelastic model in which the epiblast responds elastically to isotropic stress but, on a similar timescale, flows in response to shear stress, and we show that it recapitulates the flows and deformation of both embryonic and extra-embryonic tissues. Together, our results clarify the mechanical basis of early avian embryogenesis and provide a framework unifying the divergent mechanical behaviors observed in the contiguous embryonic and extra-embryonic territories that make up the epiblast.
Collapse
Affiliation(s)
- Arthur Michaut
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France
| | - Alexander Chamolly
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France; Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Aurélien Villedieu
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France
| | - Francis Corson
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France.
| | - Jérôme Gros
- Institut Pasteur, Université de Paris, CNRS UMR3738, Developmental and Stem Cell Biology Department, 75015 Paris, France.
| |
Collapse
|
22
|
Oya R, Woo KM, Fabella B, Alonso RG, Bravo P, Hudspeth AJ. Influence of Myosin Regulatory Light Chain and Myosin Light Chain Kinase on the Physiological Function of Inner Ear Hair Cells. J Assoc Res Otolaryngol 2025:10.1007/s10162-025-00986-1. [PMID: 40240732 DOI: 10.1007/s10162-025-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE In the receptor organs of the inner ear, hair cells detect mechanical stimuli such as sounds and accelerations by deflection of their hair bundles. Myosin regulatory light chain (RLC) and non-muscle myosin II (NM2) are expressed at the apical surfaces of hair cells, and NM2 and the phosphorylation of RLC by myosin light chain kinase (MLCK) have earlier been shown to regulate the shapes of hair cells' apical surfaces in rodents. The aim of our study was to elucidate the function of myosin molecules on hair cell physiology. METHODS We investigated the expression of NM2 and RLC in the bullfrog's saccule by immunostaining. Using NM2 and MLCK inhibitors, we measured the stiffness, spontaneous oscillation, and resting open probability of frog hair bundles. Six to ten saccules from pleural animals were used in each experiment. In addition, we recorded auditory brainstem responses in ten mice after transtympanic injection of an MLCK inhibitor. RESULTS We confirmed the expression of NM2A/B and MYL9 on the apical surfaces of hair cells and of NM2A and MYL12A in hair bundles. We found that NM2 and MLCK inhibitors reduce the stiffness of hair bundles from the bullfrog's saccule. Moreover, MLCK inhibition inhibits the spontaneous oscillation of hair bundles and increases the resting open probability of transduction channels. In addition, MLCK inhibition elevates hearing thresholds in mice. CONCLUSION We conclude that NM2 and the phosphorylation of RLC modulate the physiological function of hair cells and thereby help to set the normal operating conditions of hair bundles.
Collapse
Affiliation(s)
- Ryohei Oya
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Department of Otorhinolaryngology Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, 5650871, Japan.
| | - Kwang Min Woo
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Brian Fabella
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - R G Alonso
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Paloma Bravo
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
23
|
Slowikowski E, Willems C, Lemes RMR, Schuermans S, Berghmans N, Rocha RPF, Martens E, Proost P, Delang L, Marques RE, Filho JCA, Marques PE. A central role for CCR2 in monocyte recruitment and blood-brain barrier disruption during Usutu virus encephalitis. J Neuroinflammation 2025; 22:107. [PMID: 40241134 PMCID: PMC12004732 DOI: 10.1186/s12974-025-03435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Usutu virus (USUV) is an emerging neurotropic flavivirus capable of causing encephalitis in humans. Here, our main goal was to characterize the innate immune response in the brain during USUV encephalitis and to identify strategies to control disease severity. Using an immunocompetent mouse model of USUV encephalitis, we showed that microglia activation, blood-brain barrier (BBB) disruption and inflammatory monocyte recruitment are hallmarks of disease 6 days post infection. Activated microglia were in close association to USUV-infected cells, concomitantly with elevated levels of IL-6, IFN-γ, CCL2, CCL5, CXCL10 and CXCL1 in the brain. Monocyte recruitment was CCR2-dependent and driven by IFN-γ and CCL2 production beneath the brain vasculature. Moreover, CCR2 deficiency inhibited microglia activation and BBB disruption, showing the central role of CCR2 in USUV encephalitis. Accordingly, treatment with dexamethasone prevented pro-inflammatory mediator production and reduced leukocyte recruitment significantly, restraining encephalitis severity. Concluding, USUV encephalitis is driven by CCR2-mediated monocyte recruitment and BBB disruption, and blocked therapeutically by glucocorticoids.
Collapse
Affiliation(s)
- Emily Slowikowski
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Céleste Willems
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robertha Mariana Rodrigues Lemes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sara Schuermans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Rebeca Paiva Fróes Rocha
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Erik Martens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Delang
- Virus-Host Interactions and Therapeutic Approaches (VITA) Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - José Carlos Alves Filho
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Vladymyrov M, Marchetti L, Aydin S, Soldati SGN, Mossu A, Pal A, Gueissaz L, Ariga A, Engelhardt B. UFMTrack, an Under-Flow Migration Tracker enabling analysis of the entire multi-step immune cell extravasation cascade across the blood-brain barrier in microfluidic devices. eLife 2025; 13:RP91150. [PMID: 40230092 PMCID: PMC11999694 DOI: 10.7554/elife.91150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Akitaka Ariga
- Laboratory for High Energy Physics, University of BernBernSwitzerland
| | | |
Collapse
|
25
|
Fernkorn M, Schröter C. Med12 cooperates with multiple differentiation signals to facilitate efficient lineage transitions in embryonic stem cells. J Cell Sci 2025; 138:jcs263794. [PMID: 40237177 DOI: 10.1242/jcs.263794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Cell differentiation results from coordinated changes in gene transcription in response to combinations of signals. Fibroblast growth factor (FGF), Wnt and mammalian target of rapamycin (mTOR) signals regulate the differentiation of pluripotent mammalian cells towards embryonic and extraembryonic lineages, but how these signals cooperate with general transcriptional regulators is not fully resolved. Here, we report a genome-wide CRISPR screen that reveals both signaling components and general transcriptional regulators for differentiation-associated gene expression in mouse embryonic stem cells (mESCs). Focusing on the Mediator subunit-encoding Med12 gene as one of the strongest hits in the screen, we show that it regulates gene expression in parallel to FGF and mTOR signals. Loss of Med12 is compatible with differentiation along both the embryonic epiblast and the extraembryonic primitive endoderm lineage but impairs pluripotency gene expression and slows down transitions between pluripotency states. These findings suggest that Med12 helps pluripotent cells to efficiently execute transcriptional changes during differentiation, thereby modulating the effects of a broad range of signals.
Collapse
Affiliation(s)
- Max Fernkorn
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
26
|
Zechini L, Todd H, Sanchez T, Tudor DR, Campbell JS, Antonian E, Jenkins SJ, Lucas CD, Davidson AJ, van den Elsen J, Schumacher LJ, Scopelliti A, Wood W. Drosophila complement-like Mcr acts as a wound-induced inflammatory chemoattractant. Curr Biol 2025; 35:1656-1664.e4. [PMID: 40107264 DOI: 10.1016/j.cub.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Sterile tissue injury is accompanied by an acute inflammatory response whereby innate immune cells rapidly migrate to the site of injury guided by pro-inflammatory chemotactic damage signals released at the wound. Understanding this immune response is key to improving human health, and recent advances in imaging technology have allowed researchers using different model organisms to observe this inflammatory response in vivo. Over recent decades, offering a unique combination of live time-lapse microscopy and genetics, the fruit fly Drosophila has emerged as a powerful model system to study inflammatory cell migration within a living animal.1,2,3,4 However, we still know relatively little regarding the identity of the earliest signals that drive this immune cell recruitment and the mechanisms by which they act within the complex, in vivo setting of a multicellular organism. Here, we couple the powerful genetics and live imaging of Drosophila with mathematical modeling to identify the fly complement ortholog-macroglobulin complement-related (Mcr)-as an early, wound-induced chemotactic signal responsible for the inflammatory recruitment of immune cells to injury sites in vivo. We show that epithelial-specific knockdown of Mcr suppresses the recruitment of macrophages to wounds and combine predictive mathematical modeling with in vivo genetics to understand macrophage migration dynamics following manipulation of this chemoattractant. We propose a model whereby Mcr operates alongside hydrogen peroxide to ensure a rapid and efficient immune response to damage, uncovering a novel function for this protein that parallels the chemotactic role of the complement component C5a in mammals.
Collapse
Affiliation(s)
- Luigi Zechini
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Henry Todd
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Thibaut Sanchez
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel R Tudor
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennie S Campbell
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Edward Antonian
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stephen J Jenkins
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Christopher D Lucas
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jean van den Elsen
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Linus J Schumacher
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK; School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - Alessandro Scopelliti
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Will Wood
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
27
|
Carrillo-Carrasco VP, van Galen M, Bronkhorst J, Mutte S, Kohlen W, Sprakel J, Hernández-García J, Weijers D. Auxin and tryptophan trigger common responses in the streptophyte alga Penium margaritaceum. Curr Biol 2025:S0960-9822(25)00353-7. [PMID: 40209711 DOI: 10.1016/j.cub.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
Auxin is a signaling molecule that regulates multiple processes in the growth and development of land plants. Research gathered from model species, particularly Arabidopsis thaliana, has revealed that the nuclear auxin pathway controls many of these processes through transcriptional regulation. Recently, a non-transcriptional pathway based on rapid phosphorylation mediated by kinases has been described, complementing the understanding of the complexity of auxin-regulated processes. Phylogenetic inferences of both pathways indicate that only some of these components are conserved beyond land plants. This raises fundamental questions about the evolutionary origin of auxin responses and whether algal sisters share mechanistic features with land plants. Here, we explore auxin responses in the unicellular streptophyte alga Penium margaritaceum. By assessing physiological, transcriptomic, and cellular responses, we found that auxin triggers cell proliferation, gene regulation, and acceleration of cytoplasmic streaming. Notably, all these responses are also triggered by the structurally related tryptophan. These results identify shared auxin response features among land plants and algae and suggest that less chemically specific responses preceded the emergence of auxin-specific regulatory networks in land plants.
Collapse
Affiliation(s)
| | - Martijn van Galen
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Jochem Bronkhorst
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Wouter Kohlen
- Laboratory of Cell Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708WE Wageningen, the Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Jorge Hernández-García
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, the Netherlands.
| |
Collapse
|
28
|
Annasamudram N, Zhao J, Oluwadare O, Prashanth A, Makrogiannis S. Scale selection and machine learning based cell segmentation and tracking in time lapse microscopy. Sci Rep 2025; 15:11717. [PMID: 40188205 PMCID: PMC11972337 DOI: 10.1038/s41598-025-95993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Monitoring and tracking of cell motion is a key component for understanding disease mechanisms and evaluating the effects of treatments. Time-lapse optical microscopy has been commonly employed for studying cell cycle phases. However, usual manual cell tracking is very time consuming and has poor reproducibility. Automated cell tracking techniques are challenged by variability of cell region intensity distributions and resolution limitations. In this work, we introduce a comprehensive cell segmentation and tracking methodology. A key contribution of this work is that it employs multi-scale space-time interest point detection and characterization for automatic scale selection and cell segmentation. Another contribution is the use of a neural network with class prototype balancing for detection of cell regions. This work also offers a structured mathematical framework that uses graphs for track generation and cell event detection. We evaluated cell segmentation, detection, and tracking performance of our method on time-lapse sequences of the Cell Tracking Challenge (CTC). We also compared our technique to top performing techniques from CTC. Performance evaluation results indicate that the proposed methodology is competitive with these techniques, and that it generalizes very well to diverse cell types and sizes, and multiple imaging techniques. The code of our method is publicly available on https://github.com/smakrogi/CSTQ_Pub/ , (release v.3.2).
Collapse
Affiliation(s)
- Nagasoujanya Annasamudram
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, Dover, 19901, DE, USA
| | - Jian Zhao
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, Dover, 19901, DE, USA
| | - Olaitan Oluwadare
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, Dover, 19901, DE, USA
| | - Aashish Prashanth
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, Dover, 19901, DE, USA
| | - Sokratis Makrogiannis
- Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, Dover, 19901, DE, USA.
| |
Collapse
|
29
|
Rados T, Leland OS, Escudeiro P, Mallon J, Andre K, Caspy I, von Kügelgen A, Stolovicki E, Nguyen S, Patop IL, Rangel LT, Kadener S, Renner LD, Thiel V, Soen Y, Bharat TAM, Alva V, Bisson A. Tissue-like multicellular development triggered by mechanical compression in archaea. Science 2025; 388:109-115. [PMID: 40179183 DOI: 10.1126/science.adu0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
The advent of clonal multicellularity is a critical evolutionary milestone, seen often in eukaryotes, rarely in bacteria, and only once in archaea. We show that uniaxial compression induces clonal multicellularity in haloarchaea, forming tissue-like structures. These archaeal tissues are mechanically and molecularly distinct from their unicellular lifestyle, mimicking several eukaryotic features. Archaeal tissues undergo a multinucleate stage followed by tubulin-independent cellularization, orchestrated by active membrane tension at a critical cell size. After cellularization, tissue junction elasticity becomes akin to that of animal tissues, giving rise to two cell types-peripheral (Per) and central scutoid (Scu) cells-with distinct actin and protein glycosylation polarity patterns. Our findings highlight the potential convergent evolution of a biophysical mechanism in the emergence of multicellular systems across domains of life.
Collapse
Affiliation(s)
- Theopi Rados
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Olivia S Leland
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - John Mallon
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Katherine Andre
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Elad Stolovicki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sinead Nguyen
- Brandeis University, Department of Biology, Waltham, MA, USA
| | | | - L Thiberio Rangel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Vera Thiel
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex Bisson
- Brandeis University, Department of Biology, Waltham, MA, USA
| |
Collapse
|
30
|
Li S, Park J, Phan TM, Egelman EH, Bird JE, Shin JB. Tonotopic Specialization of MYO7A Isoforms in Auditory Hair Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646665. [PMID: 40236041 PMCID: PMC11996455 DOI: 10.1101/2025.04.01.646665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
1. Mutations in Myo7a cause Usher syndrome type 1B and non-syndromic deafness, but the precise function of MYO7A in sensory hair cells remains unclear. We identify and characterize a novel isoform, MYO7A-N, expressed in auditory hair cells alongside the canonical MYO7A-C. Isoform-specific knock-in mice reveal that inner hair cells primarily express MYO7A-C, while outer hair cells express both isoforms in opposing tonotopic gradients. Both localize to the upper tip-link insertion site, consistent with a role in the tip link for mechanotransduction. Loss of MYO7A-N leads to outer hair cell degeneration and progressive hearing loss. Cryo-EM structures reveal isoform-specific differences at actomyosin interfaces, correlating with distinct ATPase activities. These findings reveal an unexpected layer of molecular diversity within the mechanotransduction machinery. We propose that MYO7A isoform specialization enables fine-tuning of tip-link tension, thus hearing sensitivity, and contributes to the frequency-resolving power of the cochlea.
Collapse
|
31
|
Bandekar AC, Ramirez-Diaz DA, Palace SG, Wang Y, Garner EC, Grad YH. Axial asymmetry organizes division plane orthogonality in Neisseria gonorrhoeae. Curr Biol 2025:S0960-9822(25)00309-4. [PMID: 40203830 DOI: 10.1016/j.cub.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/05/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025]
Abstract
For rod-shaped bacterial model organisms, the division plane is defined by the geometry of the cell. However, for Neisseria gonorrhoeae, a coccoid organism that most commonly exists as a diplococcus and that possesses genes coding for rod-based cell division systems, the relationship between cell geometry and division is unclear. Here, we characterized the organization of N. gonorrhoeae division using a combination of fluorescent probes, genetics, and time-lapse microscopy. We found that the planes of successive cell divisions are orthogonal and temporally overlapping, thereby maintaining diplococcal morphology. Division takes place perpendicular to a long axis in each coccus. In keeping with the ParABS and the MinCDE systems reading the more pronounced long axis of rod-shaped bacteria, in the coccoid N. gonorrhoeae, ParB segregates along this long axis and cells lacking minCDE suffer severe morphological consequences, including an inability to perform orthogonal division and aberrant assembly of the division plane at the cell poles. Taken together, this stresses the central role of even slight dimensional asymmetry as a general organizational principle in coccoid bacterial cell division.
Collapse
Affiliation(s)
- Aditya C Bandekar
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| | - Diego A Ramirez-Diaz
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Samantha G Palace
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Yi Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 15 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
32
|
Martin J, Neubauer V, Rittersberger R, Treitler S, Kopp P, Günday C, Shrimo I, Dabbars A, Rosenau F, Türeli AE, Günday-Türeli N, Haedicke-Peters O, Schindowski K. Development and Characterization of a Primary Ciliated Porcine Airway Model for the Evaluation of In Vitro Mucociliary Clearance and Mucosal Drug Delivery. Pharmaceutics 2025; 17:462. [PMID: 40284456 PMCID: PMC12030231 DOI: 10.3390/pharmaceutics17040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: In vitro models play a crucial role in preclinical respiratory research, enabling the testing and screening of mucosal formulations, dosage forms, and inhaled drugs. Mucociliary clearance (MCC) is an essential defense mechanism in mucosal drug delivery but is often impaired in respiratory diseases. Despite its importance, standardized in vitro MCC assays are rarely reported. Furthermore, many published methods primarily measure cilia beat frequency (CBF), which requires high-speed cameras that are not accessible to all laboratories. Therefore, this study aimed to develop a physiologically relevant, differentiated in vitro model of the respiratory epithelium that incorporates both beating cilia and functional MCC. We chose porcine airway mucosa as an alternative to human tissue due to ethical considerations and limited availability. The established model is designed to provide a reproducible and accessible method for a broad range of research laboratories. Methods: The previously published tracheal mucosal primary cell (TMPC DS) model, derived from porcine tissue, lacked the presence of beating cilia, which are crucial for effective MCC analysis. For accurate MCC assessment, beating cilia are essential as they play a key role in mucus clearance. To address this limitation, the here-described ciliated tracheal mucosal primary cell (cTMPC) model was developed. cTMPCs were isolated from porcine tissue and cultured under air-liquid interface (ALI) conditions for 21 days to promote differentiation. This model was evaluated for cell morphology, tight junction formation, ciliated and mucus-producing cells, barrier function, gene expression, and tracer/IgG transport. MCC and the model's suitability for standardized MCC assays were assessed using an inverted microscope. In contrast to the TMPC DS model, which lacked beating cilia and thus could not support MCC analysis, the cTMPC model allows for comprehensive MCC studies. Results: The developed differentiated in vitro model demonstrated key structural and functional features of the respiratory epithelium, including well-differentiated cell morphology, tight junction integrity, ciliated and mucus-producing cells, and effective barrier function. Functional MCC was observed, confirming the model's potential for standardized clearance assays. Conclusions: This differentiated in vitro model closely replicates the structural and functional characteristics of in vivo airways. It provides a valuable platform for studying mucociliary clearance, toxicology, drug uptake, and evaluating mucosal formulations and dosage forms in respiratory research.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Veronika Neubauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Cemre Günday
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (C.G.); (A.E.T.); (N.G.-T.)
| | - Iman Shrimo
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Akif Emre Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (C.G.); (A.E.T.); (N.G.-T.)
| | - Nazende Günday-Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (C.G.); (A.E.T.); (N.G.-T.)
| | - Oliver Haedicke-Peters
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| |
Collapse
|
33
|
Navarro PP, Vettiger A, Hajdu R, Ananda VY, López-Tavares A, Schmid EW, Walter JC, Loose M, Chao LH, Bernhardt TG. The aPBP-type cell wall synthase PBP1b plays a specialized role in fortifying the Escherichia coli division site against osmotic rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646830. [PMID: 40236067 PMCID: PMC11996507 DOI: 10.1101/2025.04.02.646830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A multi-protein system called the divisome promotes bacterial division. This apparatus synthesizes the peptidoglycan (PG) cell wall layer that forms the daughter cell poles and protects them from osmotic lysis. In the model Gram-negative bacterium Escherichia coli , PG synthases called class A penicillin-binding proteins (aPBPs) have been proposed to play crucial roles in division. However, there is limited experimental support for aPBPs playing a specialized role in division that is distinct from their general function in the expansion and fortification of the PG matrix. Here, we present in situ cryogenic electron tomography data indicating that the aPBP-type enzyme PBP1b is required to produce a wedge-like density of PG at the division site. Furthermore, atomic force and live cell microscopy showed that loss of this structure weakens the division site and renders it susceptible to lysis. Surprisingly, we found that the lipoprotein activator LpoB needed to promote the general function of PBP1b was not required for normal division site architecture or its integrity. Additionally, we show that of the two PBP1b isoforms produced in cells, it is the one with an extended cytoplasmic N-terminus that functions in division, likely via recruitment by the FtsA component of the divisome. Altogether, our results demonstrate that PBP1b plays a specialized, LpoB-independent role in E. coli cell division involving the biogenesis of a PG structure that prevents osmotic rupture. The conservation of aPBPs with extended cytoplasmic N-termini suggests that other Gram-negative bacteria may use similar mechanisms to reinforce their division site.
Collapse
|
34
|
Hamnett R, Bendrick JL, Saha Z, Robertson K, Lewis CM, Marciano JH, Zhao ET, Kaltschmidt JA. Enteric glutamatergic interneurons regulate intestinal motility. Neuron 2025; 113:1019-1035.e6. [PMID: 39983724 PMCID: PMC11968238 DOI: 10.1016/j.neuron.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025]
Abstract
The enteric nervous system (ENS) controls digestion autonomously via a complex neural network within the gut wall. Enteric neurons expressing glutamate have been identified by transcriptomic studies as a distinct subpopulation, and glutamate can affect intestinal motility by modulating enteric neuron activity. However, the nature of glutamatergic neurons, their position within the ENS circuit, and their function in regulating gut motility are unknown. We identify glutamatergic neurons as longitudinally projecting descending interneurons in the small intestine and colon and as a novel class of circumferential neurons only in the colon. Both populations make synaptic contact with diverse neuronal subtypes and signal with multiple neurotransmitters and neuropeptides in addition to glutamate, including acetylcholine and enkephalin. Knocking out the glutamate transporter VGLUT2 from enkephalin neurons disrupts gastrointestinal transit, while ex vivo optogenetic stimulation of glutamatergic neurons initiates colonic propulsive motility. Our results posit glutamatergic neurons as key interneurons that regulate intestinal motility.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| | - Jacqueline L Bendrick
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Zinnia Saha
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Keiramarie Robertson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Cheyanne M Lewis
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Jack H Marciano
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305, USA
| | - Eric Tianjiao Zhao
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Köhler B, Brieger E, Brandstätter T, Hörterer E, Wilk U, Pöhmerer J, Jötten A, Paulitschke P, Broedersz CP, Zahler S, Rädler JO, Wagner E, Roidl A. Unraveling the metastasis-preventing effect of miR-200c in vitro and in vivo. Mol Oncol 2025; 19:1029-1053. [PMID: 39404181 PMCID: PMC11977663 DOI: 10.1002/1878-0261.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 04/09/2025] Open
Abstract
Advanced breast cancer, as well as ineffective treatments leading to surviving cancer cells, can result in the dissemination of these malignant cells from the primary tumor to distant organs. Recent research has shown that microRNA 200c (miR-200c) can hamper certain steps of the invasion-metastasis cascade. However, it is still unclear whether miR-200c expression alone is sufficient to prevent breast cancer cells from metastasis formation. Hence, we performed a xenograft mouse experiment with inducible miR-200c expression in MDA-MB 231 cells. The ex vivo analysis of metastatic sites in a multitude of organs, including lung, liver, brain, and spleen, revealed a dramatically reduced metastatic burden in mice with miR-200c-expressing tumors. A fundamental prerequisite for metastasis formation is the motility of cancer cells and, therefore, their migration. Consequently, we analyzed the effect of miR-200c on collective- and single-cell migration in vitro, utilizing MDA-MB 231 and MCF7 cell systems with genetically modified miR-200c expression. Analysis of collective-cell migration revealed confluence-dependent motility of cells with altered miR-200c expression. Additionally, scratch assays showed an enhanced predisposition of miR-200c-negative cells to leave cell clusters. The in-between stage of collective- and single-cell migration was validated using transwell assays, which showed reduced migration of miR-200c-positive cells. Finally, to measure migration at the single-cell level, a novel assay on dumbbell-shaped micropatterns was performed, which revealed that miR-200c critically determines confined cell motility. All of these results demonstrate that sole expression of miR-200c impedes metastasis formation in vivo and migration in vitro and highlights miR-200c as a metastasis suppressor in breast cancer.
Collapse
Affiliation(s)
- Bianca Köhler
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Emily Brieger
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Tom Brandstätter
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Anna Jötten
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Philipp Paulitschke
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
- PHIO Scientific GmbHMunichGermany
| | - Chase P. Broedersz
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| |
Collapse
|
36
|
Hardman D, Hennig K, Martins IB, Roman W, Gomes ER, Bernabeu MO. Quantitative measurement of morphometric indicators of skeletal muscle cell behaviour and quality. J R Soc Interface 2025; 22:20240634. [PMID: 40233801 PMCID: PMC11999735 DOI: 10.1098/rsif.2024.0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
In vitro culturing of effective human-induced pluripotent stem cell-derived skeletal muscle cells (hiPSC-SMCs) has proven to be challenging. Progress is hindered by the limited range of metrics applied to assess experimental success. We present a semi-automated workflow for segmenting, tracking and quantifying migration and fusion behaviour in live and static images of myoblast and myotube cells. Workflow outputs are validated against manually labelled images and the metrics applied to images from case studies of in vitro cultures of primary mouse muscle cells under varying culture media conditions, mouse primary cells undergoing optogenetic stimulation and hiPSC-SMC. We show culture media-dependent differences in cell fusion dynamics and increased acetylcholine receptors in myonuclei under optogenetic stimulation. We show that myoblasts have greater persistence and proliferation in primary mouse cells than hiPSC, and cell-cell fusion occurred earlier but at a steadier rate in primary mouse cells.
Collapse
Affiliation(s)
- David Hardman
- Centre for Medical Informatics, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Katharina Hennig
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Inês Belo Martins
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - William Roman
- Australian Regenerative Medicine Institute, Clayton, Victoria, Australia
- Victoria Node, European Molecular Biology Laboratory, Clayton, Victoria, Australia
| | - Edgar R. Gomes
- Universidade de Lisboa Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| |
Collapse
|
37
|
Howard-Till RA, Li S, Pallabi Kar U, Fuentes CN, Fabritius AS, Winey M. A ternary complex of MIPs in the A-tubule of basal bodies and axonemes depends on RIB22 and the EF-hand domain of RIB72A in Tetrahymena cilia. Mol Biol Cell 2025; 36:br13. [PMID: 39937672 PMCID: PMC12005106 DOI: 10.1091/mbc.e24-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
The lumens of the highly stable microtubules that make up the core of basal bodies, cilia, and flagella are coated with a network of proteins known as MIPs, or microtubule inner proteins. MIPs are hypothesized to enhance the rigidity and stability of these microtubules, but how they assemble and contribute to cilia function is poorly understood. Here we describe a ciliate specific MIP, RIB22, in Tetrahymena thermophila. RIB22 is a calmodulin-like protein found in the A-tubule of doublet and triplet microtubules in cilia and basal bodies. Its localization is dependent on the conserved MIP RIB72. Here we use cryogenic electron tomography (cryoET) to examine RIB22 and its interacting partners in axonemes and basal bodies. RIB22 forms a ternary complex with the C-terminal EF-hand domain of RIB72A and another MIP, FAM166A. Tetrahymena strains lacking RIB22 or the EF-hand domain of RIB72A showed impaired cilia function. CryoET on axonemes from these strains demonstrated an interdependence of the three proteins for stabilization within the structure. Deletion of the RIB72A EF-hand domain resulted in the apparent loss of multiple MIPs in the region. These findings emphasize the intricacy of the MIP network and the importance of understanding MIPs' functions during cilium assembly and regulation.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Usha Pallabi Kar
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Christopher N. Fuentes
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Amy S. Fabritius
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| |
Collapse
|
38
|
Gobran M, Politi AZ, Welp L, Jakobi J, Urlaub H, Lenart P. PLK1 inhibition delays mitotic entry revealing changes to the phosphoproteome of mammalian cells early in division. EMBO J 2025; 44:1891-1920. [PMID: 40033019 PMCID: PMC11962124 DOI: 10.1038/s44318-025-00400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Polo-like kinase 1 (PLK1) is a conserved regulator of cell division. During mitotic prophase, PLK1 contributes to the activation of the cyclin-dependent kinase 1 (CDK1). However, the exact functions of PLK1 in prophase remain incompletely understood. Here, we show that PLK1 inhibition in synchronous G2 cell populations of multiple mammalian cell lines delays or prevents mitotic entry with high variability between individual cells. Using a mathematical model, we recapitulate this phenomenon and provide an explanation for the observed phenotypic variability. We show that PLK1-inhibited cells are delayed in a prophase-like state with low CDK1 activity that increases slowly and gradually over hours. These cells display progressively condensing chromosomes, increased microtubule dynamics, and reorganization of the actin cortex, while the nuclear envelope remains intact. We characterize this state further by phosphoproteomics, revealing phosphorylation of regulators of chromatin organization and the cytoskeleton consistent with the cellular phenotypes. Together, our results indicate that PLK1 inhibition stabilizes cells in a prophase-like state with low CDK1 activity displaying a specific set of early mitotic phosphorylation events.
Collapse
Affiliation(s)
- Monica Gobran
- Research Group Cytoskeletal Dynamics in Oocytes, Max Planck Institute for Multidisciplinary Sciences, 11 Am Fassberg, 37077, Göttingen, Germany
| | - Antonio Z Politi
- Research Group Cytoskeletal Dynamics in Oocytes, Max Planck Institute for Multidisciplinary Sciences, 11 Am Fassberg, 37077, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 11 Am Fassberg, 37077, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 40 Robert Koch Strasse, 37075, Göttingen, Germany
| | - Jasmin Jakobi
- Research Group Cytoskeletal Dynamics in Oocytes, Max Planck Institute for Multidisciplinary Sciences, 11 Am Fassberg, 37077, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 11 Am Fassberg, 37077, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 40 Robert Koch Strasse, 37075, Göttingen, Germany
| | - Peter Lenart
- Research Group Cytoskeletal Dynamics in Oocytes, Max Planck Institute for Multidisciplinary Sciences, 11 Am Fassberg, 37077, Göttingen, Germany.
| |
Collapse
|
39
|
Universal organelle analyzer enables complex analyses with just one click. Nat Methods 2025; 22:662-663. [PMID: 40016330 DOI: 10.1038/s41592-025-02613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
|
40
|
Richens JH, Dmitrieva M, Zenner HL, Muschalik N, Butler R, Glashauser J, Camelo C, Luschnig S, Munro S, Rittscher J, St Johnston D. MSP-tracker: A versatile vesicle tracking software tool used to reveal the spatial control of polarized secretion in Drosophila epithelial cells. PLoS Biol 2025; 23:e3003099. [PMID: 40208901 PMCID: PMC12021295 DOI: 10.1371/journal.pbio.3003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 04/24/2025] [Accepted: 03/05/2025] [Indexed: 04/12/2025] Open
Abstract
Understanding how specific secretory cargoes are targeted to distinct domains of the plasma membrane in epithelial cells requires analyzing the trafficking of post-Golgi vesicles to their sites of secretion. We used the RUSH (retention using selective hooks) system to synchronously release an apical cargo, Cadherin 99C (Cad99C), and a basolateral cargo, the ECM protein Nidogen, from the endoplasmic reticulum and followed their movements to the plasma membrane. We also developed an interactive vesicle tracking framework, MSP-tracker and viewer, that exploits developments in computer vision and deep learning to determine vesicle trajectories in a noisy environment without the need for extensive training data. MSP-tracker outperformed other tracking software in detecting and tracking post-Golgi vesicles, revealing that Cad99c vesicles predominantly move apically with a mean speed of 1.1µm/sec. This is reduced to 0.85 µm/sec by a dominant slow dynein mutant, demonstrating that dynein transports Cad99C vesicles to the apical cortex. Furthermore, both the dynein mutant and microtubule depolymerization cause lateral Cad99C secretion. Thus, microtubule organization plays a central role in targeting apical secretion, suggesting that Drosophila does not have distinct apical versus basolateral vesicle fusion machinery. Nidogen vesicles undergo planar-polarized transport to the leading edge of follicle cells as they migrate over the ECM, whereas most Collagen is secreted at trailing edges. The follicle cells therefore bias secretion of different ECM components to opposite sides of the cell, revealing that the secretory pathway is more spatially organized than previously thought.
Collapse
Affiliation(s)
- Jennifer H. Richens
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Mariia Dmitrieva
- Institute of Biomedical Engineering (IBME), Department of Engineering Science and the Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Helen L. Zenner
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nadine Muschalik
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Richard Butler
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jade Glashauser
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, Münster, Germany
| | - Carolina Camelo
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, Münster, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, Münster, Germany
| | - Sean Munro
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jens Rittscher
- Institute of Biomedical Engineering (IBME), Department of Engineering Science and the Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Pylvänäinen JW, Grobe H, Jacquemet G. Practical considerations for data exploration in quantitative cell biology. J Cell Sci 2025; 138:jcs263801. [PMID: 40190255 PMCID: PMC12045597 DOI: 10.1242/jcs.263801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Data exploration is an essential step in quantitative cell biology, bridging raw data and scientific insights. Unlike polished, published figures, effective data exploration requires a flexible, hands-on approach that reveals trends, identifies outliers and refines hypotheses. This Opinion offers simple, practical advice for building a structured data exploration workflow, drawing on the authors' personal experience in analyzing bioimage datasets. In addition, the increasing availability of generative artificial intelligence and large language models makes coding and improving data workflows easier than ever before. By embracing these practices, researchers can streamline their workflows, produce more reliable conclusions and foster a collaborative, transparent approach to data analysis in cell biology.
Collapse
Affiliation(s)
- Joanna W. Pylvänäinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Hanna Grobe
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
42
|
Endo S, Yamamoto S, Miyoshi H. Development of label-free cell tracking for discrimination of the heterogeneous mesenchymal migration. PLoS One 2025; 20:e0320287. [PMID: 40163519 PMCID: PMC11957292 DOI: 10.1371/journal.pone.0320287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Image-based cell phenotyping is fundamental in both cell biology and medicine. As cells are dynamic systems, phenotyping based on static data is complemented by dynamic data extracted from time-dependent cell characteristics. We developed a label-free automatic tracking method for phase contrast images. We examined the possibility of using cell motility-based discrimination to identify different types of mesenchymal migration in invasive malignant cancer and non-cancer cells. These cells were cultured in plastic tissue culture vessels, using motility parameters from cell trajectories extracted with label-free tracking. Correlation analysis with these motility parameters identified characteristic parameters for cancer HT1080 fibrosarcoma and non-cancer 3T3-Swiss fibroblast cell lines. The parameter "sum of turn angles," combined with the "frequency of turns" at shallow angles and "migration speed," proved effective in highlighting the migration characteristics of these cells. It revealed differences in their mechanisms for generating effective propulsive forces. The requirements to characterize these differences included the spatiotemporal resolution of segmentation and tracking, capable of detecting polarity changes associated with cell morphological alterations and cell body displacement. With the segmentation and tracking method proposed here, a discrimination curve computed using quadratic discrimination analysis from the "sum of turn angles" and "frequency of turns below 30°" gave the best performance with a 94% sensitivity. Cell migration is a process related not only to cancer but also to tissue healing and growth. The proposed methodology is easy to use, enabling anyone without professional skills in image analysis, large training datasets, or special devices. It has the potential for application not only in cancer cell discrimination but also in a broad range of applications and basic research. Validating the expandability of this method to characterize cell migration, including the scheme of propulsive force generation, is an important consideration for future study.
Collapse
Affiliation(s)
- Sota Endo
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Shotaro Yamamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Hiromi Miyoshi
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
43
|
Chen D, Fearns A, Gutierrez MG. Mycobacterium tuberculosis phagosome Ca 2+ leakage triggers multimembrane ATG8/LC3 lipidation to restrict damage in human macrophages. SCIENCE ADVANCES 2025; 11:eadt3311. [PMID: 40138395 PMCID: PMC11939036 DOI: 10.1126/sciadv.adt3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
The role of canonical autophagy in controlling Mycobacterium tuberculosis (Mtb), referred to as xenophagy, is understood to involve targeting Mtb to autophagosomes, which subsequently fuse with lysosomes for degradation. Here, we found that Ca2+ leakage after Mtb phagosome damage in human macrophages is the signal that triggers autophagy-related protein 8/microtubule-associated proteins 1A/1B light chain 3 (ATG8/LC3) lipidation. Unexpectedly, ATG8/LC3 lipidation did not target Mtb to lysosomes, excluding the canonical xenophagy. Upon Mtb phagosome damage, the Ca2+ leakage-dependent ATG8/LC3 lipidation occurred on multiple membranes instead of single or double membranes excluding the noncanonical autophagy pathways. Mechanistically, Ca2+ leakage from the phagosome triggered the recruitment of the V-ATPase-ATG16L1 complex independently of FIP200, ATG13, and proton gradient disruption. Furthermore, the Ca2+ leakage-dependent ATG8/LC3 lipidation limited Mtb phagosome damage and restricted Mtb replication. Together, we uncovered Ca2+ leakage as the key signal that triggers ATG8/LC3 lipidation on multiple membranes to mitigate Mtb phagosome damage.
Collapse
Affiliation(s)
- Di Chen
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
44
|
Kaondal S, Taassob A, Jeon S, Lee SH, Nuñez HL, Akindipe BA, Lee H, Joo SY, Oliveira SM, Argüello-Miranda O. Generative frame interpolation enhances tracking of biological objects in time-lapse microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644838. [PMID: 40196554 PMCID: PMC11974701 DOI: 10.1101/2025.03.23.644838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Object tracking in microscopy videos is crucial for understanding biological processes. While existing methods often require fine-tuning tracking algorithms to fit the image dataset, here we explored an alternative paradigm: augmenting the image time-lapse dataset to fit the tracking algorithm. To test this approach, we evaluated whether generative video frame interpolation can augment the temporal resolution of time-lapse microscopy and facilitate object tracking in multiple biological contexts. We systematically compared the capacity of Latent Diffusion Model for Video Frame Interpolation (LDMVFI), Real-time Intermediate Flow Estimation (RIFE), Compression-Driven Frame Interpolation (CDFI), and Frame Interpolation for Large Motion (FILM) to generate synthetic microscopy images derived from interpolating real images. Our testing image time series ranged from fluorescently labeled nuclei to bacteria, yeast, cancer cells, and organoids. We showed that the off-the-shelf frame interpolation algorithms produced bio-realistic image interpolation even without dataset-specific retraining, as judged by high structural image similarity and the capacity to produce segmentations that closely resemble results from real images. Using a simple tracking algorithm based on mask overlap, we confirmed that frame interpolation significantly improved tracking across several datasets without requiring extensive parameter tuning and capturing complex trajectories that were difficult to resolve in the original image time series. Taken together, our findings highlight the potential of generative frame interpolation to improve tracking in time-lapse microscopy across diverse scenarios, suggesting that a generalist tracking algorithm for microscopy could be developed by combining deep learning segmentation models with generative frame interpolation.
Collapse
Affiliation(s)
- Swaraj Kaondal
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Arsalan Taassob
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA
| | - Sara Jeon
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Su Hyun Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Henrique L. Nuñez
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, USA
| | - Bukola A. Akindipe
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, USA
| | - Hyunsook Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - So Young Joo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Samuel M.D. Oliveira
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, USA
| | | |
Collapse
|
45
|
Bondoc-Naumovitz KG, Crosato E, Wan KY. Functional morphology of gliding motility in benthic diatoms. Proc Natl Acad Sci U S A 2025; 122:e2426910122. [PMID: 40100624 PMCID: PMC11962607 DOI: 10.1073/pnas.2426910122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Diatoms, a highly successful group of photosynthetic algae, contribute to a quarter of global primary production. Many species are motile, despite having no appendages and a completely rigid cell body. Cells move to seek out nutrients, locate mating partners, and undergo vertical migration. To explore the natural diversity of diatom motility, we perform a comparative study across five common biofilm-forming species. Combining morphological measurements with high-resolution cell tracking, we establish how gliding movements relate to the morphology of the raphe-a specialized slit in the cell wall responsible for motility generation. Our detailed analyses reveal that cells exhibit a rich but species-dependent phenotype, switching stochastically between four stereotyped motility states. We model this behavior and use stochastic simulations to predict how heterogeneity in microscale navigation patterns leads to differences in long-time diffusivity and dispersal. In a representative species, we extend these findings to quantify diatom gliding in complex, naturalistic 3D environments, suggesting that cells may exploit these distinct motility signatures to achieve niche segregation in nature.
Collapse
Affiliation(s)
- Karen Grace Bondoc-Naumovitz
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Emanuele Crosato
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Department of Mathematics and Statistics, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
46
|
Khandan V, Chiechi RC, Verpoorte E, Mathwig K. Suppressing parasitic flow in membraneless diffusion-based microfluidic gradient generators. LAB ON A CHIP 2025; 25:1875-1887. [PMID: 40052553 DOI: 10.1039/d4lc00956h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Diffusion-based microfluidic gradient generators (DMGGs) are essential for various in vitro studies due to their ability to provide a convection-free concentration gradient. However, these systems, often referred to as membrane-based DMGGs, exhibit delayed gradient formation due to the incorporated flow-resistant membrane. This limitation substantially hinders their application in dynamic and time-sensitive studies. Here, we accelerate the gradient response in DMGGs by removing the membrane and implementing new geometrical configurations to compensate for the membrane's role in suppressing parasitic flows. We introduce these novel configurations into two microfluidic designs: the H-junction and the Y-junction. In the H-junction design, parasitic flow is redirected through a bypass channel following the gradient region. The Y-junction design features a shared discharge channel that allows converging discharge flow streams, preventing the buildup of parasitic pressure downstream of the gradient region. Using hydraulic circuit analysis and fluid dynamics simulations, we demonstrate the effectiveness of the H-junction and Y-junction designs in suppressing parasitic pressure flows. These computational results, supported by experimental data from particle image velocimetry, confirm the capability of our designs to generate a highly stable, accurate, and convection-free gradient with rapid formation. These advantages make the H-junction and Y-junction designs ideal experimental platforms for a wide range of in vitro studies, including drug testing, cell chemotaxis, and stem cell differentiation.
Collapse
Affiliation(s)
- Vahid Khandan
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, 9700 AD Groningen, The Netherlands
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department of Chemistry & Organic and Carbon Electronics Laboratory, North Carolina State University, Raleigh, NC, 27695, USA
| | - Elisabeth Verpoorte
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, 9700 AD Groningen, The Netherlands
| | - Klaus Mathwig
- University of Groningen, Groningen Research Institute of Pharmacy, Pharmaceutical Analysis, 9700 AD Groningen, The Netherlands
- imec within OnePlanet Research Center, Bronland 10, 6708 WH Wageningen, The Netherlands.
| |
Collapse
|
47
|
Quillin AL, Karloff DB, Ayele TM, Flores TF, Chen G, McEachin ZT, Valdez-Sinon AN, Heemstra JM. Imaging and Tracking RNA in Live Mammalian Cells via Fluorogenic Photoaffinity Labeling. ACS Chem Biol 2025; 20:707-720. [PMID: 39953970 PMCID: PMC11952673 DOI: 10.1021/acschembio.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Cellular RNA labeling using light-up aptamers that bind to and activate fluorogenic molecules has gained interest in recent years as an alternative to protein-based RNA labeling approaches. Aptamer-based systems are genetically encodable and cover the entire visible spectrum. However, the inherently temporary nature of the noncovalent aptamer-fluorogen interaction limits the utility of these systems in that imaging does not withstand dye washout, and dye dissociation can compromise RNA tracking. We propose that these limitations can be averted through covalent RNA labeling. Here, we describe a photoaffinity approach in which the aptamer ligand is functionalized with a photoactivatable diazirine reactive group such that irradiation with UV light results in covalent attachment to the RNA of interest. In addition to the robustness of the covalent linkage, this approach benefits from the ability to achieve spatiotemporal control over RNA labeling. To demonstrate this approach, we incorporated a photoaffinity linker into malachite green and fused a single copy of the malachite green aptamer to a Cajal body-associated small nuclear RNA of interest as well as a cytoplasmic mRNA. We observed improved sensitivity for live cell imaging of the target RNA upon UV irradiation and demonstrated visualization of RNA dynamics over a time scale of minutes. The covalent attachment uniquely enables these time-resolved experiments, whereas in noncovalent approaches, the dye molecule can be transferred between different RNA molecules, compromising tracking. We envision future applications of this method for a wide range of investigations into the cellular localization, dynamics, and protein-binding properties of cellular RNAs.
Collapse
Affiliation(s)
| | - Diane B. Karloff
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Tewoderos M. Ayele
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Tatiana F. Flores
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| | - Gerry Chen
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30363, United States
| | - Zachary T. McEachin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Arielle N. Valdez-Sinon
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Washington University, St. Louis, MO 63130, United States
| |
Collapse
|
48
|
Bergamasco MI, Ozturk E, Casillas-Espinosa PM, Garnham AL, Abeysekera W, Wimmer VC, Rajasekhar P, Vanyai HK, Whitehead L, Blewitt ME, Rogers K, Vogel AP, Hannan AJ, Smyth GK, Jones NC, Thomas T, Voss AK. KAT6B overexpression in mice causes aggression, anxiety, and epilepsy. iScience 2025; 28:111953. [PMID: 40083716 PMCID: PMC11904597 DOI: 10.1016/j.isci.2025.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Loss of the gene encoding the histone acetyltransferase KAT6B (MYST4/MORF/QKF) causes developmental brain abnormalities as well as behavioral and cognitive defects in mice. In humans, heterozygous variants in the KAT6B gene cause two cognitive disorders, Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS; OMIM:603736) and genitopatellar syndrome (GTPTS; OMIM:606170). Although the effects of KAT6B homozygous and heterozygous mutations have been documented in humans and mice, KAT6B gain-of-function effects have not been reported. Here, we show that overexpression of the Kat6b gene in mice caused aggression, anxiety, and spontaneous epilepsy. Kat6b overexpression led to an increase in histone H3 lysine 9 acetylation and upregulation of genes driving nervous system development and neuronal differentiation. Kat6b overexpression additionally promoted neural stem cell proliferation and favored neuronal over astrocyte differentiation in vivo and in vitro. Our results suggest that, in addition to loss-of-function alleles, gain-of-function KAT6B alleles may be detrimental for brain development.
Collapse
Affiliation(s)
- Maria I. Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ezgi Ozturk
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Pablo M. Casillas-Espinosa
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Verena C. Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Pradeep Rajasekhar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hannah K. Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Marnie E. Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kelly Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Adam P. Vogel
- Centre for Neurosciences of Speech, The University of Melbourne, Melbourne, VIC 3052, Australia
- Redenlab Inc, Melbourne, VIC 3000, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nigel C. Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville VIC 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Melbourne, VIC 3004, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K. Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
49
|
Dominguez MH, Muncie-Vasic JM, Bruneau BG. 4D light sheet imaging, computational reconstruction, and cell tracking in mouse embryos. STAR Protoc 2025; 6:103515. [PMID: 39754721 PMCID: PMC11754511 DOI: 10.1016/j.xpro.2024.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
As light sheet fluorescence microscopy (LSFM) becomes widely available, reconstruction of time-lapse imaging will further our understanding of complex biological processes at cellular resolution. Here, we present a comprehensive workflow for in toto capture, processing, and analysis of multi-view LSFM experiments using the ex vivo mouse embryo as a model system of development. Our protocol describes imaging on a commercial LSFM instrument followed by computational analysis in discrete segments, using open-source software. Quantification of migration and morphodynamics is included. For complete details on the use and execution of this protocol, please refer to Dominguez et al.1.
Collapse
Affiliation(s)
- Martin H Dominguez
- Gladstone Institutes, San Francisco, CA, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA; Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
50
|
Benman W, Iyengar P, Mumford TR, Huang Z, Kapoor M, Liu G, Bugaj LJ. Multiplexed dynamic control of temperature to probe and observe mammalian cells. Cell Syst 2025; 16:101234. [PMID: 40081372 DOI: 10.1016/j.cels.2025.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Temperature is an important biological stimulus, yet there is a lack of approaches to modulate the temperature of biological samples in a dynamic and high-throughput manner. The thermoPlate is a device for programmable control of temperature in a 96-well plate, compatible with cell culture and microscopy. The thermoPlate maintains feedback control of temperature independently in each well, with minutes-scale heating and cooling through ΔT = 15-20°C. We first used the thermoPlate to characterize the rapid temperature-dependent phase separation of a synthetic elastin-like polypeptide (ELP53). We then examined stress granule (SG) formation in response to dynamic heat stress, revealing adaptation of SGs to persistent heat and formation of a memory of stress that prevented SG formation in response to subsequent heat shocks. The capabilities and open-source nature of the thermoPlate will empower the study and engineering of a wide range of thermoresponsive phenomena. A record of this paper's transparent peer review process is included in the Supplemental information.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pavan Iyengar
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manya Kapoor
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|