1
|
Chang WL, Tegang K, Samuels BA, Saxe M, Wichmann J, David DJ, David IM, Augustin A, Fischer H, Golling S, Lamerz J, Roth D, Graf M, Zoffmann S, Santarelli L, Jagasia R, Hen R. Pharmacological Enhancement of Adult Hippocampal Neurogenesis Improves Behavioral Pattern Separation in Young and Aged Male Mice. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100419. [PMID: 39830600 PMCID: PMC11741898 DOI: 10.1016/j.bpsgos.2024.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis, its significance as a pharmacological target has not been tested. Methods In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in young and aged mice for effects on BPS and anxiety-related behaviors. Results Chronic treatment with RO6871135 (7.5 mg/kg) increased adult hippocampal neurogenesis and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of adult hippocampal neurogenesis by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMKIIa, CaMKIIb, MAP2K6, and GSK-3β. An analog compound also demonstrated high affinity for CDK8, CaMKIIa, and GSK-3β. Conclusions These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS and point to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.
Collapse
Affiliation(s)
- Wei-li Chang
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| | | | | | | | - Juergen Wichmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis J. David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Indira Mendez David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Angélique Augustin
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Holger Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sabrina Golling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens Lamerz
- Roche Pharma Research and Early Development, Predictive Modelling & Data Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Doris Roth
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Martin Graf
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sannah Zoffmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - René Hen
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
2
|
Rey HG, Panagiotaropoulos TI, Gutierrez L, Chaure FJ, Nasimbera A, Cordisco S, Nishida F, Valentin A, Alarcon G, Richardson MP, Kochen S, Quian Quiroga R. Lack of context modulation in human single neuron responses in the medial temporal lobe. Cell Rep 2025; 44:115218. [PMID: 39823228 DOI: 10.1016/j.celrep.2024.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
In subjects implanted with intracranial electrodes, we use two different stories involving the same person (or place) to evaluate whether and to what extent context modulates human single-neuron responses. Nearly all neurons (97% during encoding and 100% during recall) initially responding to a person/place do not modulate their response with context. Likewise, nearly none (<1%) of the initially non-responsive neurons show conjunctive coding, responding to particular persons/places in a particular context during the tasks. In line with these findings, taking all neurons together it is possible to decode the person/place being depicted in each story, but not the particular story. Moreover, the neurons show consistent results across encoding and recall of the stories and during passive viewing of pictures. These results suggest a context invariant, non-conjunctive coding of memories at the single-neuron level in the human hippocampus and amygdala, in contrast to what has been described in other species.
Collapse
Affiliation(s)
- Hernan G Rey
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Departments of Neurosurgery, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Theofanis I Panagiotaropoulos
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Cognitive Neuroimaging Unit, INSERM, Universite Paris-Sud, Universite Paris-Saclay, Paris, France; Department of Psychology, National and Kapodistrian University of Athens, 15784 Athens, Greece; Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Lorenzo Gutierrez
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fernando J Chaure
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Institute of Biomedical Engineering, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Santiago Cordisco
- ENyS, CEMET, Av. Calchaquí 5401, Buenos Aires 1888, Argentina; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fabian Nishida
- ENyS, CEMET, Av. Calchaquí 5401, Buenos Aires 1888, Argentina
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Gonzalo Alarcon
- Department of Clinical Neurophysiology. Royal Manchester Children's Hospital, Manchester, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Silvia Kochen
- ENyS, CEMET, Av. Calchaquí 5401, Buenos Aires 1888, Argentina; Epilepsy Centre, El Cruce Hospital, Buenos Aires, Argentina
| | - Rodrigo Quian Quiroga
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Cho I, Leger KR, Valoumas I, Mair RW, Goh JOS, Gutchess A. How age and culture impact the neural correlates of memory retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-024-01245-1. [PMID: 39776064 DOI: 10.3758/s13415-024-01245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Culture can shape memory, but little research has investigated age effects. The present study examined the neural correlates of memory retrieval for old, new, and similar lures in younger and older Americans and Taiwanese. A total of 207 participants encoded pictures of objects and, during fMRI scanning, completed a surprise object recognition task testing discrimination of similar and new from old items. Results show that age and culture impact discrimination of old from new items. Taiwanese performed worse than Americans, with age effects more pronounced for Taiwanese. The cultural differences in the engagement of left inferior frontal gyrus (LIFG) in younger adults (i.e., greater activity for old [for Taiwanese] or new items [for Americans]) were eliminated with age. The results are interpreted as reflecting cultural differences in orientation to novelty versus familiarity for younger, but not older, adults, with the LIFG supporting interference resolution at retrieval. Support is not as strong for cultural differences in pattern separation processes. Although Americans had higher levels of memory discrimination than Taiwanese, neither cultural nor age differences were found in hippocampal activity, which is surprising given the region's role in pattern separation. The findings suggest ways in which cultural life experiences and concomitant information processing strategies can contribute to consistent effects of age across cultures or contribute to different trajectories with age in terms of memory.
Collapse
Affiliation(s)
- Isu Cho
- Department of Psychology, Brandeis University, Waltham, MA, USA.
- Department of Psychology, Sungkyunkwan University, 25-2, Seonggyungwan-Ro, Jongno-Gu, Seoul, Republic of Korea, 03063.
| | - Krystal R Leger
- Department of Psychology, Brandeis University, Waltham, MA, USA
| | | | - Ross W Mair
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei City, Taiwan
- Center of Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei City, Taiwan
| | - Angela Gutchess
- Department of Psychology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
4
|
Laing PAF, Dunsmoor JE. Event Segmentation Promotes the Reorganization of Emotional Memory. J Cogn Neurosci 2025; 37:110-134. [PMID: 39231276 DOI: 10.1162/jocn_a_02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Event boundaries help structure the content of episodic memories by segmenting continuous experiences into discrete events. Event boundaries may also serve to preserve meaningful information within an event, thereby actively separating important memories from interfering representations imposed by past and future events. Here, we tested the hypothesis that event boundaries organize emotional memory based on changing dynamics as events unfold. We developed a novel threat-reversal learning task whereby participants encoded trial-unique exemplars from two semantic categories across three phases: preconditioning, fear acquisition, and reversal. Shock contingencies were established for one category during acquisition (CS+) and then switched to the other during reversal (CS-). Importantly, reversal was either separated by a perceptible event boundary (Experiment 1) or occurred immediately after acquisition, with no perceptible context shift (Experiment 2). In a surprise recognition memory test the next day, memory performance tracked the learning contingencies from encoding in Experiment 1, such that participants selectively recognized more threat-associated CS+ exemplars from before (retroactive) and during acquisition, but this pattern reversed toward CS- exemplars encoded during reversal. By contrast, participants with continuous encoding-without a boundary between conditioning and reversal-exhibited undifferentiated memory for exemplars from both categories encoded before acquisition and after reversal. Further analyses highlight nuanced effects of event boundaries on reversing conditioned fear, updating mnemonic generalization, and emotional biasing of temporal source memory. These findings suggest that event boundaries provide anchor points to organize memory for distinctly meaningful information, thereby adaptively structuring memory based on the content of our experiences.
Collapse
|
5
|
Jennen L, Mazereel V, Vancampfort D, Qiao Z, Vansteelandt K, Dupont P, Lecei A, van Winkel R. The effects of acute exercise on emotional pattern separation in adolescents and young adults. Neuroimage 2025; 305:120959. [PMID: 39631572 DOI: 10.1016/j.neuroimage.2024.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Acute exercise has been associated with cognitive improvements, particularly in memory processes linked to the hippocampus, such as the ability to discriminate between similar stimuli, called hippocampal pattern separation. This can be assessed behaviorally with a mnemonic discrimination task and neurally with functional magnetic resonance imaging (fMRI). Additionally, previous research has shown an emotional modulatory effect on pattern separation, involving the amygdala. In this randomized between-subject study, we investigated whether a 10-minute bout of moderate-intensity exercise, compared to rest, could enhance pattern separation of neutral and emotional images in a group of healthy adolescents and young adults (n=53). Our results showed no significant effects of exercise on either mnemonic discrimination performance or neural activity in the hippocampus and amygdala. Additionally, arterial spin labeling (ASL) confirmed that there were no significant differences in cerebral blood flow between exercise and rest. We did observe worse discrimination for images with a higher similarity level and worse discrimination for highly similar positive images compared to negative and neutral images. However, there were no significant correlations between behavioral outcomes and neural activity. Exploratory analysis revealed a neural signal consistent with pattern completion in the bilateral CA1 and left CA3, but no evidence of pattern separation. Future studies should optimize the exercise characteristics necessary to robustly enhance pattern separation.
Collapse
Affiliation(s)
- Lise Jennen
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON5b Herestraat 49, bus 1029, 3000, Leuven, Belgium.
| | - Victor Mazereel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON5b Herestraat 49, bus 1029, 3000, Leuven, Belgium; University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070, Leuven-Kortenberg, Belgium
| | - Davy Vancampfort
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070, Leuven-Kortenberg, Belgium; KU Leuven Department of Rehabilitation Sciences, ON4 Herestraat 49, bus 1510, 3000, Leuven, Belgium
| | - Zhiling Qiao
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON5b Herestraat 49, bus 1029, 3000, Leuven, Belgium
| | - Kristof Vansteelandt
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070, Leuven-Kortenberg, Belgium
| | - Patrick Dupont
- KU Leuven, Department of Neurosciences, Laboratory for Cognitive Neurology, ON5 Herestraat 49, bus 1020, 3000, Leuven, Belgium
| | - Aleksandra Lecei
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON5b Herestraat 49, bus 1029, 3000, Leuven, Belgium
| | - Ruud van Winkel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON5b Herestraat 49, bus 1029, 3000, Leuven, Belgium; University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070, Leuven-Kortenberg, Belgium
| |
Collapse
|
6
|
Vas R, Phillips T, Ferguson LA, Harikumar A, Castro M, Leal SL. High and low current perceived stress associated with enhanced emotional mnemonic discrimination. Learn Mem 2024; 31:a053989. [PMID: 39681458 DOI: 10.1101/lm.053989.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/17/2024] [Indexed: 12/18/2024]
Abstract
Stress can have profound impacts on memory. However, the directionality of stress effects on memory varies widely across studies, some showing enhancement while others showing impairment. This variability has been attributed to the Yerkes-Dodson Law, which proposes a U-shaped pattern such that too little or too much stress may be associated with cognitive dysfunction. The impact of stress on memory may also depend on what aspects of memory are being measured (e.g., emotional content, gist vs. detail) and how stress is measured (e.g., physiological measures, self-report). Here, we aimed to examine how self-reported perceived stress in the current moment was associated with memory performance. We used an emotional memory task designed to tap into potential gist versus detail trade-offs of stress impacting memory (e.g., target recognition, lure discrimination). Participants (ages 18-35) reported their current level of perceived stress. We replicated prior work showing impaired emotional relative to neutral lure discrimination in young adults in support of a gist versus detail trade-off in emotional memory. However, those with low and high current perceived stress showed better emotional lure discrimination compared to those with moderate current perceived stress. These results are in line with the Yerkes-Dodson Law but suggest that the directionality of the impact of stress on memory may depend on the type of memory measured. Low and high current perceived stress was associated with greater detailed memory, especially for emotional information, which may be maladaptive given gist vs. detail trade-offs in emotional memory.
Collapse
Affiliation(s)
- Rishi Vas
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, USA
| | - Taylor Phillips
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, USA
| | - Lorena A Ferguson
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, USA
| | - Amritha Harikumar
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, USA
| | - Madelyn Castro
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, USA
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, Houston, Texas 77005, USA
- Department of Integrative Biology & Physiology, University of California, Los Angeles California 90095, USA
| |
Collapse
|
7
|
De Simone MS, Lombardi MG, De Tollis M, Perri R, Fadda L, Caltagirone C, Carlesimo GA. Forgetting rate for the familiarity and recollection components of recognition in amnestic mild cognitive impairment: A longitudinal study. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1411-1423. [PMID: 36264763 DOI: 10.1080/23279095.2022.2135441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here we aimed to investigate the rate of forgetting of the familiarity and recollection components of recognition in patients at the onset of medial temporal lobe (MTL) pathology and destined to convert to Alzheimer's disease (AD). For this purpose, we conducted a longitudinal study of 13 patients who were diagnosed with amnestic mild cognitive impairment (a-MCI) at the first assessment and followed-up for 3 years. During this time, five patients converted to AD and eight remained in a stable condition of cognitive impairment. A group of 15 healthy subjects were enrolled as the control group (HC). In order to separately quantify the contribution of recollection and familiarity to recognition memory performance, the experimental sample was submitted to a modified version of Huppert and Piercy's procedure that included a Remember/Know paradigm. Data demonstrated that both stable and converter a-MCI patients forgot memory traces relative to the familiarity components of recognition at the same rate as HC. Conversely, converter a-MCI patients showed accelerated long-term forgetting specifically for the recollection component of recognition compared to stable a-MCI and HC. This is the first empirical demonstration that familiarity and recollection components of declarative memory are subject to different rates of forgetting in a-MCI patients as a function of their longitudinal clinical outcome. Our finding of accelerated long-term forgetting of the recollection component of recognition disclosed by converter a-MCI patients suggests that atrophy in the MTL not only interferes with the storage aspects but also disrupts the consolidation of memory traces.
Collapse
Affiliation(s)
- Maria Stefania De Simone
- Laboratory of Neuropsychology of Memory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Giovanna Lombardi
- Laboratory of Neuropsychology of Memory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Massimo De Tollis
- Technology and Training Methods for Disability Care Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Roberta Perri
- Laboratory of Neuropsychology of Memory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Lucia Fadda
- Laboratory of Neuropsychology of Memory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Carlo Caltagirone
- Laboratory of Neuropsychology of Memory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Technology and Training Methods for Disability Care Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Augusto Carlesimo
- Laboratory of Neuropsychology of Memory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
8
|
Morales-Calva F, Leal SL. Tell me why: the missing w in episodic memory's what, where, and when. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01234-4. [PMID: 39455523 DOI: 10.3758/s13415-024-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Endel Tulving defined episodic memory as consisting of a spatiotemporal context. It enables us to recollect personal experiences of people, things, places, and situations. In other words, it is made up of what, where, and when components. However, this definition does not include arguably the most important aspect of episodic memory: the why. Understanding why we remember has important implications to better understand how our memory system works and as a potential target of intervention for memory impairment. The intrinsic and extrinsic factors related to why some experiences are better remembered than others have been widely investigated but largely independently studied. How these factors interact with one another to drive an event to become a lasting memory is still unknown. This review summarizes research examining the why of episodic memory, where we aim to uncover the factors that drive core features of our memory. We discuss the concept of episodic memory examining the what, where, and when, and how the why is essential to each of these key components of episodic memory. Furthermore, we discuss the neural mechanisms known to support our rich episodic memories and how a why signal may provide critical modulatory impact on neural activity and communication. Finally, we discuss the individual differences that may further drive why we remember certain experiences over others. A better understanding of these elements, and how we experience memory in daily life, can elucidate why we remember what we remember, providing important insight into the overarching goal of our memory system.
Collapse
Affiliation(s)
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, Houston, TX, USA.
- Department of Integrative Biology & Physiology, UCLA, 621 Charles E Young Dr S, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Xie W, Ma T, Thakurdesai S, Kim I, Zhang W. Discrimination of mnemonic similarity is associated with short-term and long-term memory precision. Mem Cognit 2024:10.3758/s13421-024-01648-y. [PMID: 39433697 DOI: 10.3758/s13421-024-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Remembering specific memories with precision relies on the differentiation of similar memory contents - a process commonly referred to as pattern separation and behaviorally operationalized as lure discrimination in the mnemonic similarity task. Although pattern separation is typically investigated in the context of long-term memory (LTM), recent research extends these findings to short-term memory (STM) within a mixture model framework, emphasizing the distinction between memory quality and quantity. According to this framework, pattern separation is associated with memory precision across STM and LTM, regardless of the overall memory likelihood. However, these associations among memory quality measures may persist without the mixture model assumption. In an alternative model, a unitary memory strength measure quantified as a discrimination score (d') may also capture the association between pattern separation and memory quality, as pattern separation has been previously linked with strength-based memory performance. We tested these possibilities based on individual differences among 132 participants who underwent tasks measuring mnemonic pattern separation and STM/LTM quality. We found that behavioral estimates of pattern separation are significantly correlated with STM and LTM precision, irrespective of the likelihood of STM/LTM recall success. However, these associations are absent when considering the correlation between pattern separation and memory strength under a unitary model framework. By leveraging individual differences to constrain our understanding of cognitive models, our data unravel the intricate relationship between pattern separation and memory quality across timescales. These findings may therefore contribute to identifying sensitive behavioral measures for detecting subtle memory deficits in older adults or clinical populations.
Collapse
Affiliation(s)
- Weizhen Xie
- Department of Psychology, University of Maryland, College Park, MD, USA.
| | - Tianye Ma
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Inik Kim
- Department of Psychology, University of California, Riverside, CA, USA
| | - Weiwei Zhang
- Department of Psychology, University of California, Riverside, CA, USA
| |
Collapse
|
10
|
Hermann A, Benke C, Blecker CR, de Haas B, He Y, Hofmann SG, Iffland JR, Jengert-Stahl J, Kircher T, Leinweber K, Linka M, Mulert C, Neudert MK, Noll AK, Melzig CA, Rief W, Rothkopf C, Schäfer A, Schmitter CV, Schuster V, Stark R, Straube B, Zimmer RI, Kirchner L. Study protocol TransTAM: Transdiagnostic research into emotional disorders and cognitive-behavioral therapy of the adaptive mind. BMC Psychiatry 2024; 24:657. [PMID: 39369190 PMCID: PMC11456249 DOI: 10.1186/s12888-024-06108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Emotional disorders such as depression and anxiety disorders share substantial similarities in their etiology and treatment. In recent decades, these commonalities have been increasingly recognized in classification systems and treatment programs crossing diagnostic boundaries. METHODS To examine the prospective effects of different transdiagnostic markers on relevant treatment outcomes, we plan to track a minimum of N = 200 patients with emotional disorders during their routine course of cognitive behavioral therapy at two German outpatient clinics. We will collect a wide range of transdiagnostic markers, ranging from basic perceptual processes and self-report measures to complex behavioral and neurobiological indicators, before entering therapy. Symptoms and psychopathological processes will be recorded before entering therapy, between the 20th and 24th therapy session, and at the end of therapy. DISCUSSION Our results could help to identify transdiagnostic markers with high predictive power, but also provide deeper insights into which patient groups with which symptom clusters are less likely to benefit from therapy, and for what reasons. TRIAL REGISTRATION The trial was preregistered at the German Clinical Trial Register (DRKS-ID: DRKS00031206; 2023-05-09).
Collapse
Affiliation(s)
- Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany.
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany.
| | - Christoph Benke
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Carlo R Blecker
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
| | - Benjamin de Haas
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Yifei He
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Jona R Iffland
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
| | - Johanna Jengert-Stahl
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Katrin Leinweber
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Marcel Linka
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
| | - Christoph Mulert
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Ann-Kathrin Noll
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Christiane A Melzig
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Winfried Rief
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Constantin Rothkopf
- Institute of Psychology, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Axel Schäfer
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Christina V Schmitter
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Verena Schuster
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Raphaela I Zimmer
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Lukas Kirchner
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
11
|
Cappa SF. Cognitive assessment: More important than ever. J Neuropsychol 2024. [PMID: 39358982 DOI: 10.1111/jnp.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Stefano F Cappa
- University Institute of Advanced Studies (IUSS), Pavia, Italy
- IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| |
Collapse
|
12
|
Delhaye E, D'Innocenzo G, Raposo A, Coco MI. The upside of cumulative conceptual interference on exemplar-level mnemonic discrimination. Mem Cognit 2024; 52:1567-1578. [PMID: 38709388 PMCID: PMC11522113 DOI: 10.3758/s13421-024-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/07/2024]
Abstract
Although long-term visual memory (LTVM) has a remarkable capacity, the fidelity of its episodic representations can be influenced by at least two intertwined interference mechanisms during the encoding of objects belonging to the same category: the capacity to hold similar episodic traces (e.g., different birds) and the conceptual similarity of the encoded traces (e.g., a sparrow shares more features with a robin than with a penguin). The precision of episodic traces can be tested by having participants discriminate lures (unseen objects) from targets (seen objects) representing different exemplars of the same concept (e.g., two visually similar penguins), which generates interference at retrieval that can be solved if efficient pattern separation happened during encoding. The present study examines the impact of within-category encoding interference on the fidelity of mnemonic object representations, by manipulating an index of cumulative conceptual interference that represents the concurrent impact of capacity and similarity. The precision of mnemonic discrimination was further assessed by measuring the impact of visual similarity between targets and lures in a recognition task. Our results show a significant decrement in the correct identification of targets for increasing interference. Correct rejections of lures were also negatively impacted by cumulative interference as well as by the visual similarity with the target. Most interestingly though, mnemonic discrimination for targets presented with a visually similar lure was more difficult when objects were encoded under lower, not higher, interference. These findings counter a simply additive impact of interference on the fidelity of object representations providing a finer-grained, multi-factorial, understanding of interference in LTVM.
Collapse
Affiliation(s)
- Emma Delhaye
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
- GIGA-CRC In-Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Ana Raposo
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
| | - Moreno I Coco
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
- IRCSS Santa Lucia, Roma, Italy.
| |
Collapse
|
13
|
Li Z, Wang J, Tang C, Wang P, Ren P, Li S, Yi L, Liu Q, Sun L, Li K, Ding W, Bao H, Yao L, Na M, Luan G, Liang X. Coordinated NREM sleep oscillations among hippocampal subfields modulate synaptic plasticity in humans. Commun Biol 2024; 7:1236. [PMID: 39354050 PMCID: PMC11445409 DOI: 10.1038/s42003-024-06941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
The integration of hippocampal oscillations during non-rapid eye movement (NREM) sleep is crucial for memory consolidation. However, how cardinal sleep oscillations bind across various subfields of the human hippocampus to promote information transfer and synaptic plasticity remains unclear. Using human intracranial recordings from 25 epilepsy patients, we find that hippocampal subfields, including DG/CA3, CA1, and SUB, all exhibit significant delta and spindle power during NREM sleep. The DG/CA3 displays strong coupling between delta and ripple oscillations with all the other hippocampal subfields. In contrast, the regions of CA1 and SUB exhibit more precise coordination, characterized by event-level triple coupling between delta, spindle, and ripple oscillations. Furthermore, we demonstrate that the synaptic plasticity within the hippocampal circuit, as indexed by delta-wave slope, is linearly modulated by spindle power. In contrast, ripples act as a binary switch that triggers a sudden increase in delta-wave slope. Overall, these results suggest that different subfields of the hippocampus regulate one another through diverse layers of sleep oscillation synchronization, collectively facilitating information processing and synaptic plasticity during NREM sleep.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Peng Wang
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Peng Ren
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Li
- Zhejiang Lab, Hangzhou, Zhejiang, 311100, China
| | - Liye Yi
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaizhou Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, 150081, Harbin, China
- Department of Neurosurgery, BeijingTiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Xia Liang
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China.
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
14
|
Qi Z, Xiong H, Zhuo J, Cao D, Liu H, Shi W, Lang Y, Liu Y, Zhang G, Jiang T. Intracranial EEGs evidenced visual object processing in the human medial temporal lobe subregions. Neuroscience 2024; 555:205-212. [PMID: 39053670 DOI: 10.1016/j.neuroscience.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.
Collapse
Affiliation(s)
- Zihui Qi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Hainan 570228, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongcui Lang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Yaoling Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
15
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Banavar NV, Noh SM, Wahlheim CN, Cassidy BS, Kirwan CB, Stark CEL, Bornstein AM. A response time model of the three-choice Mnemonic Similarity Task provides stable, mechanistically interpretable individual-difference measures. Front Hum Neurosci 2024; 18:1379287. [PMID: 39268219 PMCID: PMC11390373 DOI: 10.3389/fnhum.2024.1379287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The Mnemonic Similarity Task (MST) is a widely used measure of individual tendency to discern small differences between remembered and presently presented stimuli. Significant work has established this measure as a reliable index of neurological and cognitive dysfunction and decline. However, questions remain about the neural and psychological mechanisms that support performance in the task. Methods Here, we provide new insights into these questions by fitting seven previously-collected MST datasets (total N = 519), adapting a three-choice evidence accumulation model (the Linear Ballistic Accumulator). The model decomposes choices into automatic and deliberative components. Results We show that these decomposed processes both contribute to the standard measure of behavior in this task, as well as capturing individual variation in this measure across the lifespan. We also exploit a delayed test/re-test manipulation in one of the experiments to show that model parameters exhibit improved stability, relative to the standard metric, across a 1 week delay. Finally, we apply the model to a resting-state fMRI dataset, finding that only the deliberative component corresponds to off-task co-activation in networks associated with long-term, episodic memory. Discussion Taken together, these findings establish a novel mechanistic decomposition of MST behavior and help to constrain theories about the cognitive processes that support performance in the task.
Collapse
Affiliation(s)
- Nidhi V. Banavar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Political Science, University of California, Berkeley, Berkeley, CA, United States
| | - Sharon M. Noh
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | - Christopher N. Wahlheim
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, CA, United States
| | - Brittany S. Cassidy
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, CA, United States
| | - C. Brock Kirwan
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| | - Aaron M. Bornstein
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Vanderlip CR, Taylor L, Kim S, Harris AL, Tuteja N, Meza N, Escalante YY, McMillan L, Yassa MA, Adams JN. Amyloid-β deposition in basal frontotemporal cortex is associated with selective disruption of temporal mnemonic discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609449. [PMID: 39253484 PMCID: PMC11383047 DOI: 10.1101/2024.08.23.609449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cerebral amyloid-beta (Aβ) accumulation, a hallmark pathology of Alzheimer's disease (AD), precedes clinical impairment by two to three decades. However, it is unclear whether Aβ contributes to subtle memory deficits observed during the preclinical stage. The heterogenous emergence of Aβ deposition may selectively impact certain memory domains, which rely on distinct underlying neural circuits. In this context, we tested whether specific domains of mnemonic discrimination, a neural computation essential for episodic memory, exhibit specific deficits related to early Aβ deposition. We tested 108 cognitively unimpaired human older adults (66% female) who underwent 18F-florbetapir positron emission tomography (Aβ-PET), and a control group of 35 young adults, on a suite of mnemonic discrimination tasks taxing object, spatial, and temporal domains. We hypothesized that Aβ pathology would be selectively associated with temporal discrimination performance due to Aβ's propensity to accumulate in the basal frontotemporal cortex, which supports temporal processing. Consistent with this hypothesis, we found a dissociation in which generalized age-related deficits were found for object and spatial mnemonic discrimination, while Aβ-PET levels were selectively associated with deficits in temporal mnemonic discrimination. Further, we found that higher Aβ-PET levels in medial orbitofrontal and inferior temporal cortex, regions supporting temporal processing, were associated with greater temporal mnemonic discrimination deficits, pointing to the selective vulnerability of circuits related to temporal processing early in AD progression. These results suggest that Aβ accumulation within basal frontotemporal regions may disrupt temporal mnemonic discrimination in preclinical AD, and may serve as a sensitive behavioral biomarker of emerging AD progression.
Collapse
Affiliation(s)
- Casey R. Vanderlip
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Lisa Taylor
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Soyun Kim
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Alyssa L. Harris
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Nandita Tuteja
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Novelle Meza
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Yuritza Y. Escalante
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Liv McMillan
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| | - Jenna N. Adams
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697 USA
| |
Collapse
|
18
|
Zhang J, Cao R, Zhu X, Zhou H, Wang S. Distinct attentional profile and functional connectivity of neurons with visual feature coding in the primate brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600401. [PMID: 38979388 PMCID: PMC11230157 DOI: 10.1101/2024.06.24.600401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Visual attention and object recognition are two critical cognitive functions that significantly influence our perception of the world. While these neural processes converge on the temporal cortex, the exact nature of their interactions remains largely unclear. Here, we systematically investigated the interplay between visual attention and object feature coding by training macaques to perform a free-gaze visual search task using natural face and object stimuli. With a large number of units recorded from multiple brain areas, we discovered that units exhibiting visual feature coding displayed a distinct attentional response profile and functional connectivity compared to units not exhibiting feature coding. Attention directed towards search targets enhanced the pattern separation of stimuli across brain areas, and this enhancement was more pronounced for units encoding visual features. Our findings suggest two stages of neural processing, with the early stage primarily focused on processing visual features and the late stage dedicated to processing attention. Importantly, feature coding in the early stage could predict the attentional effect in the late stage. Together, our results suggest an intricate interplay between visual feature and attention coding in the primate brain, which can be attributed to the differential functional connectivity and neural networks engaged in these processes.
Collapse
|
19
|
Chen L, Liu J, Kang JB, Rosenberg-Lee M, Abrams DA, Menon V. Atypical pattern separation memory and its association with restricted interests and repetitive behaviors in autistic children. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:1503-1518. [PMID: 38263761 PMCID: PMC11132949 DOI: 10.1177/13623613231223354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
LAY ABSTRACT Memory challenges remain understudied in childhood autism. Our study investigates one specific aspect of memory function, known as pattern separation memory, in autistic children. Pattern separation memory refers to the critical ability to store unique memories of similar stimuli; however, its role in childhood autism remains largely uncharted. Our study first uncovered that the pattern separation memory was significantly reduced in autistic children, and then showed that reduced memory performance was linked to their symptoms of repetitive, restricted interest and behavior. We also identified distinct subgroups with profiles of reduced and increased generalization for pattern separation memory. More than 72% of autistic children showed a tendency to reduce memory generalization, focusing heavily on unique details of objects for memorization. This focus made it challenging for them to identify commonalities across similar entities. Interestingly, a smaller proportion of autistic children displayed an opposite pattern of increased generalization, marked by challenges in differentiating between similar yet distinct objects. Our findings advance the understanding of memory function in autism and have practical implications for devising personalized learning strategies that align with the unique memory patterns exhibited by autistic children. This study will be of broad interest to researchers in psychology, psychiatry, and brain development as well as teachers, parents, clinicians, and the wider public.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, CA 95053
- Neuroscience Program, Santa Clara University, Santa Clara, CA 95053
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Jin Liu
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
- Department of Psychology, Rutgers University, Newark, NJ 07102
| | - Daniel A. Abrams
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
20
|
Concina G, Milano L, Renna A, Manassero E, Stabile F, Sacchetti B. Hippocampus-to-amygdala pathway drives the separation of remote memories of related events. Cell Rep 2024; 43:114151. [PMID: 38656872 DOI: 10.1016/j.celrep.2024.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The mammalian brain can store and retrieve memories of related events as distinct memories and remember common features of those experiences. How it computes this function remains elusive. Here, we show in rats that recent memories of two closely timed auditory fear events share overlapping neuronal ensembles in the basolateral amygdala (BLA) and are functionally linked. However, remote memories have reduced neuronal overlap and are functionally independent. The activity of parvalbumin (PV)-expressing neurons in the BLA plays a crucial role in forming separate remote memories. Chemogenetic blockade of PV preserves individual remote memories but prevents their segregation, resulting in reciprocal associations. The hippocampus drives this process through specific excitatory connections with BLA GABAergic interneurons. These findings provide insights into the neuronal mechanisms that minimize the overlap between distinct remote memories and enable the retrieval of related memories separately.
Collapse
Affiliation(s)
- Giulia Concina
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Eugenio Manassero
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Francesca Stabile
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
21
|
Cho I, Leger KR, Valoumas I, Mair RW, Goh JOS, Gutchess A. Effects of Age on Cross-Cultural Differences in the Neural Correlates of Memory Retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591227. [PMID: 38712235 PMCID: PMC11071622 DOI: 10.1101/2024.04.25.591227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Culture can shape memory, but little research investigates age effects. The present study examines the neural correlates of memory retrieval for old, new, and similar lures in younger and older Americans and Taiwanese. Results show that age and culture impact discrimination of old from new items. Taiwanese performed worse than Americans, with age effects more pronounced for Taiwanese. Americans activated the hippocampus for new more than old items, but pattern of activity for the conditions did not differ for Taiwanese, nor did it interact with age. The engagement of left inferior frontal gyrus (LIFG) differed across cultures. Patterns of greater activity for old (for Americans) or new (for Taiwanese) items were eliminated with age, particularly for older Americans. The results are interpreted as reflecting cultural differences in orientation to novelty vs. familiarity for younger, but not older, adults, with the LIFG supporting interference resolution at retrieval. Support is not as strong for cultural differences in pattern separation processes. Although Americans had higher levels of memory discrimination than Taiwanese and engaged the LIFG for correct rejections more than false alarms, the patterns of behavior and neural activity did not interact with culture and age. Neither culture nor age impacted hippocampal activity, which is surprising given the region's role in pattern separation. The findings suggest ways in which cultural life experiences and concomitant information processing strategies can contribute to consistent effects of age across cultures or contribute to different trajectories with age in terms of memory.
Collapse
|
22
|
Tamman AJF, Abdallah CG, Dunsmoor JE, Cisler JM. Neural differentiation of emotional faces as a function of interpersonal violence among adolescent girls. J Psychiatr Res 2024; 172:90-101. [PMID: 38368703 DOI: 10.1016/j.jpsychires.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
Interpersonal violence (IV) is associated with altered neural threat processing and risk for psychiatric disorder. Representational similarity analysis (RSA) is a multivariate approach examining the extent to which differences between stimuli correspond to differences in multivoxel activation patterns to these stimuli within each ROI. Using RSA, we examine overlap in neural patterns between threat and neutral faces in youth with IV. Participants were female adolescents aged 11-17 who had a history of IV exposure (n = 77) or no history of IV, psychiatric diagnoses, nor psychiatric medications (n = 37). Participants completed a facial emotion processing task during fMRI. Linear mixed models indicated that increasing hippocampal differentiation of fear and neutral faces was associated with increasing IV severity. Increased neural differentiation of these facial stimuli in the left and right hippocampus was associated with increasing physical abuse severity. Increased differentiation by the dACC correlated with increasing physical assault severity. RSA for most ROIs were not significantly associated with univariate activity, except for a positive association between amygdala RSA and activity to fear faces. Differences in statistically significant ROIs for physical assault and physical abuse may highlight distinct effects of trauma type on encoding of threat vs. neutral faces. Null associations between RSA and univariate activation in most ROIs suggest unique contributions of RSA for understanding IV compared to traditional activation. Implications include understanding mechanisms of risk in IV and trauma-specific treatment selection. Future work should replicate these findings in longitudinal studies and identify sensitive periods for neural alterations in RSA.
Collapse
Affiliation(s)
- Amanda J F Tamman
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX 77030, USA.
| | - Chadi G Abdallah
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX 77030, USA; Yale School of Medicine, New Haven, CT 06510, USA; Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA; US Department of Veterans Affairs, National Center for PTSD - Clinical Neurosciences Division, VA Connecticut, West Haven, CT 06516, USA; Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph E Dunsmoor
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Josh M Cisler
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA; Institute for Early Life Adversity Research, The University of Texas at Austin, Dell Medical School, Department of Psychiatry and Behavioral Sciences, Austin, TX 78712, USA
| |
Collapse
|
23
|
Morales-Calva F, Leal SL. Emotional modulation of memorability in mnemonic discrimination. Neurobiol Learn Mem 2024; 210:107904. [PMID: 38423168 DOI: 10.1016/j.nlm.2024.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Although elements such as emotion may serve to enhance or impair memory for images, some images are consistently remembered or forgotten by most people, an intrinsic characteristic of images known as memorability. Memorability explains some of the variability in memory performance, however, the underlying mechanisms of memorability remain unclear. It is known that emotional valence can increase the memorability of an experience, but how these two elements interact is still unknown. Hippocampal pattern separation, a computation that orthogonalizes overlapping experiences as distinct from one another, may be a candidate mechanism underlying memorability. However, these two literatures have remained largely separate. To explore the interaction between image memorability and emotion on pattern separation, we examined performance on an emotional mnemonic discrimination task, a putative behavioral correlate of hippocampal pattern separation, by splitting stimuli into memorable and forgettable categories as determined by a convolutional neural network as well as by emotion, lure similarity, and time of testing (immediately and 24-hour delay). We measured target recognition, which is typically used to determine memorability scores, as well as lure discrimination, which taxes hippocampal pattern separation and has not yet been examined within a memorability framework. Here, we show that more memorable images were better remembered across both target recognition and lure discrimination measures. However, for target recognition, this was only true upon immediate testing, not after a 24-hour delay. For lure discrimination, we found that memorability interacts with lure similarity, but depends on the time of testing, where memorability primarily impacts high similarity lure discrimination when tested immediately but impacts low similarity lure discrimination after a 24-hour delay. Furthermore, only lure discrimination showed an interaction between emotion and memorability, in which forgettable neutral images showed better lure discrimination compared to more memorable images. These results suggest that careful consideration is required of what makes an image memorable and may depend on what aspects of the image are more memorable (e.g., gist vs. detail, emotional vs. neutral).
Collapse
Affiliation(s)
- Fernanda Morales-Calva
- Department of Psychological Sciences, Rice University, BioScience Research Collaborative, Suite 780B, 6500 Main Street, Houston, TX 77030, USA
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, BioScience Research Collaborative, Suite 780B, 6500 Main Street, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Chang WL, Tegang K, Samuels BA, Saxe M, Wichmann J, David DJ, David IM, Augustin A, Fischer H, Golling S, Lamerz J, Roth D, Graf M, Zoffmann S, Santarelli L, Jagasia R, Hen R. Pharmacological Enhancement of Adult Hippocampal Neurogenesis Improves Behavioral Pattern Separation in Young and Aged Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578406. [PMID: 38352378 PMCID: PMC10862832 DOI: 10.1101/2024.02.01.578406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
BACKGROUND Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.
Collapse
|
25
|
Berisha DE, Rizvi B, Chappel-Farley MG, Tustison N, Taylor L, Dave A, Sattari NS, Chen IY, Lui KK, Janecek JC, Keator D, Neikrug AB, Benca RM, Yassa MA, Mander BA. Cerebrovascular pathology mediates associations between hypoxemia during rapid eye movement sleep and medial temporal lobe structure and function in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577469. [PMID: 38328085 PMCID: PMC10849660 DOI: 10.1101/2024.01.28.577469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Obstructive sleep apnea (OSA) is common in older adults and is associated with medial temporal lobe (MTL) degeneration and memory decline in aging and Alzheimer's disease (AD). However, the underlying mechanisms linking OSA to MTL degeneration and impaired memory remains unclear. By combining magnetic resonance imaging (MRI) assessments of cerebrovascular pathology and MTL structure with clinical polysomnography and assessment of overnight emotional memory retention in older adults at risk for AD, cerebrovascular pathology in fronto-parietal brain regions was shown to statistically mediate the relationship between OSA-related hypoxemia, particularly during rapid eye movement (REM) sleep, and entorhinal cortical thickness. Reduced entorhinal cortical thickness was, in turn, associated with impaired overnight retention in mnemonic discrimination ability across emotional valences for high similarity lures. These findings identify cerebrovascular pathology as a contributing mechanism linking hypoxemia to MTL degeneration and impaired sleep-dependent memory in older adults.
Collapse
Affiliation(s)
- Destiny E. Berisha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Batool Rizvi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Miranda G. Chappel-Farley
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Nicholas Tustison
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - Lisa Taylor
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Abhishek Dave
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
| | - Negin S. Sattari
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ivy Y. Chen
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Kitty K. Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92093, USA
| | - John C. Janecek
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
| | - David Keator
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ariel B. Neikrug
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
| | - Ruth M. Benca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, 53706, WI, USA
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, 27109, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine CA, 92697, USA
| | - Bryce A. Mander
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine CA, 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine CA, 92697, USA
- Department of Cognitive Sciences, University of California Irvine, Irvine CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine CA, 92697, USA
| |
Collapse
|
26
|
Cao R, Wang J, Brunner P, Willie JT, Li X, Rutishauser U, Brandmeir NJ, Wang S. Neural mechanisms of face familiarity and learning in the human amygdala and hippocampus. Cell Rep 2024; 43:113520. [PMID: 38151023 PMCID: PMC10834150 DOI: 10.1016/j.celrep.2023.113520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Recognizing familiar faces and learning new faces play an important role in social cognition. However, the underlying neural computational mechanisms remain unclear. Here, we record from single neurons in the human amygdala and hippocampus and find a greater neuronal representational distance between pairs of familiar faces than unfamiliar faces, suggesting that neural representations for familiar faces are more distinct. Representational distance increases with exposures to the same identity, suggesting that neural face representations are sharpened with learning and familiarization. Furthermore, representational distance is positively correlated with visual dissimilarity between faces, and exposure to visually similar faces increases representational distance, thus sharpening neural representations. Finally, we construct a computational model that demonstrates an increase in the representational distance of artificial units with training. Together, our results suggest that the neuronal population geometry, quantified by the representational distance, encodes face familiarity, similarity, and learning, forming the basis of face recognition and memory.
Collapse
Affiliation(s)
- Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Jinge Wang
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Malykhin N, Pietrasik W, Hoang KN, Huang Y. Contributions of hippocampal subfields and subregions to episodic memory performance in healthy cognitive aging. Neurobiol Aging 2024; 133:51-66. [PMID: 37913626 DOI: 10.1016/j.neurobiolaging.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
In the present study we investigated whether hippocampal subfield (cornu ammonis 1-3, dentate gyrus, and subiculum) and anteroposterior hippocampal subregion (head,body, and tail) volumes can predict episodic memory function using high-field high resolution structural magnetic resonance imaging (MRI). We recruited 126 healthy participants (18-85 years). MRI datasets were collected on a 4.7 T system. Participants were administered the Wechsler Memory Scale (WMS-IV) to evaluate episodic memory function. Structural equation modeling was used to test the relationship between studied variables. We found that the volume of the dentate gyrus subfield and posterior hippocampus (body) showed a significant direct effect on visuospatial memory performance; additionally, an indirect effect of age on visuospatial memory mediated through these hippocampal subfield/subregion was significant. Logical and verbal memory were not significantly associated with hippocampal subfield or subregion volumes.
Collapse
Affiliation(s)
- Nikolai Malykhin
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Wojciech Pietrasik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kim Ngan Hoang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
29
|
Schmitter M, Vrijsen JN. Exercise and Memory. Curr Top Behav Neurosci 2024; 67:141-154. [PMID: 39083174 DOI: 10.1007/7854_2024_495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Our memory is crucial to our daily functioning, our identity, and how we interact with the world around us. Maintaining memory functioning is therefore important in many ways. Exercise positively affects our memory. Even a single exercise session can directly boost different memory types, including working, procedural, and episodic memory. Due to these benefits, exercise has great potential as an intervention in different settings, such as schools or rehabilitation centers, and as a prevention strategy. In this chapter, we first give an overview of what memory is and why it is so relevant to our mental health. Next, we briefly discuss how, for whom, and under which circumstances exercise improves memory functioning. Then, we will summarize the literature of experimental studies investigating the direct effect of exercise on different memory types, while acknowledging current limitations and potential future directions. Finally, we briefly highlight the potential of exercise as intervention to preserve and improve memory.
Collapse
Affiliation(s)
- Michele Schmitter
- Behavioural Science Institute, Radboud University Nijmegen and Depression Expertise Center, Pro Persona Mental Health Care, Nijmegen, The Netherlands.
| | - Janna Nonja Vrijsen
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Depression Expertise Center, Pro Persona Mental Health Care, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Chang WL, Hen R. Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. ADVANCES IN NEUROBIOLOGY 2024; 38:163-193. [PMID: 39008016 DOI: 10.1007/978-3-031-62983-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.
Collapse
Affiliation(s)
- Wei-Li Chang
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
31
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst AL, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. Nat Commun 2023; 14:8505. [PMID: 38129375 PMCID: PMC10739909 DOI: 10.1038/s41467-023-44011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - A Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
| | - Paul E Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
32
|
Miao J, Weigl M, Kong N, Zhao MF, Mecklinger A, Zheng Z, Li J. Electrophysiological evidence for context reinstatement effects on object recognition memory. Neurobiol Learn Mem 2023; 206:107861. [PMID: 37944637 DOI: 10.1016/j.nlm.2023.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Reinstating the context present at encoding during the test phase generally enhances recognition memory compared with changing the context when specific item-context associations are established during encoding. However, it remains unclear whether context reinstatement improves the performance in differentiating between old and similar items in recognition memory tests and what underlying cognitive processes are involved. Using the context reinstatement paradigm together with event-related potentials (ERP), we examined the context-dependent effects of background scenes on recognition discrimination among similar objects. Participants were instructed to associate intentionally specific objects with background scenes during the encoding phase and subsequently complete an object recognition memory task, during which old and similar new objects were presented superimposed over the studied old or similar new background scenes. Electroencephalogram was recorded to measure the electrophysiological manifestations of cognitive processes associated with episodic retrieval. Behavioral results revealed enhanced performance in differentiating old from similar objects in the old context, as opposed to the similar context condition. Importantly, ERP results indicated a more pronounced recollection-related parietal object old/new effect in the old context compared to the similar context condition. This suggests that the ability to distinguish between old and similar objects in recognition memory is primarily driven by recollection rather than familiarity, particularly when the encoding context is reinstated during the test phase. Our findings are in line with the account that the impact of context reinstatement on object recognition memory is attributable to the enhanced recollection of specific item-context associations during retrieval and provides evidence for the specificity of episodic associative representations.
Collapse
Affiliation(s)
- Jingwen Miao
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Michael Weigl
- Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Nuo Kong
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min-Fang Zhao
- School of Education Science, Huizhou University, Huizhou, China
| | - Axel Mecklinger
- Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Zhiwei Zheng
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Juan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Chwiesko C, Janecek J, Doering S, Hollearn M, McMillan L, Vandekerckhove J, Lee MD, Ratcliff R, Yassa MA. Parsing memory and nonmemory contributions to age-related declines in mnemonic discrimination performance: a hierarchical Bayesian diffusion decision modeling approach. Learn Mem 2023; 30:296-309. [PMID: 37923355 PMCID: PMC10631138 DOI: 10.1101/lm.053838.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. Performance in this task is believed to indicate an age-related deficit in episodic memory stemming from a decreased ability to pattern-separate among similar experiences. However, cognitive processes other than memory ability might impact task performance. In this study, we investigated whether nonmnemonic decision-making processes contribute to the age-related deficit in the MDT. We applied a hierarchical Bayesian version of the Ratcliff diffusion model to the MDT performance of 26 younger and 31 cognitively normal older adults. It allowed us to decompose decision behavior in the MDT into different underlying cognitive processes, represented by specific model parameters. Model parameters were compared between groups, and differences were evaluated using the Bayes factor. Our results suggest that the age-related decline in MDT performance indicates a predominantly mnemonic deficit rather than differences in nonmnemonic decision-making processes. In addition, this mnemonic deficit might also involve a slowing in processes related to encoding and retrieval strategies, which are relevant for successful memory as well. These findings help to better understand what cognitive processes contribute to the age-related decline in MDT performance and may help to improve the diagnostic value of this popular task.
Collapse
Affiliation(s)
- Caroline Chwiesko
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - John Janecek
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Stephanie Doering
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Martina Hollearn
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Liv McMillan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Joachim Vandekerckhove
- Department of Cognitive Science, University of California, Irvine, Irvine, California 92697, USA
| | - Michael D Lee
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
- Department of Cognitive Science, University of California, Irvine, Irvine, California 92697, USA
| | - Roger Ratcliff
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
34
|
Hayes BK, Harikumar A, Ferguson LA, Dicker EE, Denny BT, Leal SL. Emotion regulation during encoding reduces negative and enhances neutral mnemonic discrimination in individuals with depressive symptoms. Neurobiol Learn Mem 2023; 205:107824. [PMID: 37673391 DOI: 10.1016/j.nlm.2023.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Individuals with depression exhibit dysfunctional emotion regulation, general episodic memory deficits, and a negativity bias, where negative experiences are better remembered. Recent work suggests that the negativity bias in depression may be driven by enhanced mnemonic discrimination, a memory measure that relies on hippocampal pattern separation - a computation that processes experiences with overlapping features as unique. Previously, we found that individuals with depressive symptoms show enhanced negative and impaired neutral mnemonic discrimination. The current study aimed to investigate emotion regulation as an approach toward modifying memory encoding of negative and neutral events in individuals with depressive symptoms. Here we show that applying psychological distancing (a cognitive reappraisal strategy characterized by taking a third-person perspective toward negative events) during encoding was associated with reduced negative and enhanced neutral mnemonic discrimination during retrieval in individuals with depressive symptoms. These results suggest that applying emotion regulation techniques during encoding may provide an effective approach toward altering dysfunctional memory in those with depressive symptoms. Given that pharmacological treatments often fail to treat depression, emotion regulation provides a powerful and practical approach toward modifying cognitive and emotional processes. Future neuroimaging studies will be important to determine how emotion regulation impacts the neural mechanisms underlying these findings.
Collapse
Affiliation(s)
- Brandon K Hayes
- Department of Psychological Sciences, Rice University, 6100 Main St. Houston TX 77005, United States
| | - Amritha Harikumar
- Department of Psychological Sciences, Rice University, 6100 Main St. Houston TX 77005, United States
| | - Lorena A Ferguson
- Department of Psychological Sciences, Rice University, 6100 Main St. Houston TX 77005, United States
| | - Eva E Dicker
- Department of Psychological Sciences, Rice University, 6100 Main St. Houston TX 77005, United States
| | - Bryan T Denny
- Department of Psychological Sciences, Rice University, 6100 Main St. Houston TX 77005, United States
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, 6100 Main St. Houston TX 77005, United States.
| |
Collapse
|
35
|
Mannion R, Harikumar A, Morales-Calva F, Leal SL. A novel face-name mnemonic discrimination task with naturalistic stimuli. Neuropsychologia 2023; 189:108678. [PMID: 37661039 DOI: 10.1016/j.neuropsychologia.2023.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Difficulty remembering faces and names is a common struggle for many people and gets more difficult as we age. Subtle changes in appearance from day to day, common facial characteristics across individuals, and overlap of names may contribute to the difficulty of learning face-name associations. Computational models suggest the hippocampus plays a key role in reducing interference across experiences with overlapping information by performing pattern separation, which enables us to encode similar experiences as distinct from one another. Thus, given the nature of overlapping features within face-name associative memory, hippocampal pattern separation may be an important underlying mechanism supporting this type of memory. Furthermore, cross-species approaches find that aging is associated with deficits in hippocampal pattern separation. Mnemonic discrimination tasks have been designed to tax hippocampal pattern separation and provide a more sensitive measure of age-related cognitive decline compared to traditional memory tasks. However, traditional face-name associative memory tasks do not parametrically vary overlapping features of faces and names to tax hippocampal pattern separation and often lack naturalistic facial features (e.g., hair, accessories, similarity of features, emotional expressions). Here, we developed a face-name mnemonic discrimination task where we varied face stimuli by similarity, race, sex, and emotional expression as well as the similarity of name stimuli. We tested a sample of healthy young and older adults on this task and found that both age groups showed worsening performance as face-name interference increased. Overall, older adults struggled to remember faces and face-name pairs more than young adults. However, while young adults remembered emotional faces better than neutral faces, older adults selectively remembered positive faces. Thus, the use of a face-name association memory task designed with varying levels of face-name interference as well as the inclusion of naturalistic face stimuli across race, sex, and emotional expressions provides a more nuanced approach relative to traditional face-name association tasks toward understanding age-related changes in memory.
Collapse
Affiliation(s)
- Renae Mannion
- Psychological Sciences, Rice University, 6500 Main St, Houston, TX, 77030, USA.
| | - Amritha Harikumar
- Psychological Sciences, Rice University, 6500 Main St, Houston, TX, 77030, USA.
| | | | - Stephanie L Leal
- Psychological Sciences, Rice University, 6500 Main St, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Jensen A, Karpov G, Collin CA, Davidson PSR. Executive Function Predicts Older Adults' Lure Discrimination Difficulties on the Mnemonic Similarity Task. J Gerontol B Psychol Sci Soc Sci 2023; 78:1642-1650. [PMID: 37330622 DOI: 10.1093/geronb/gbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVES Older adults often have difficulty remembering the details of recently encountered objects. We previously found this with the Mnemonic Similarity Task (MST). Surprisingly, the older adults' MST Lure Discrimination Index (LDI) was significantly correlated with visual acuity but not with memory or executive function. Here we ran a replication with new, larger samples of young (N = 45) and older adults (N = 70). We then combined the original and replication older adult samples (N = 108) to critically examine the relative contributions of visual acuity, memory, and executive function composite scores to LDI performance using dominance analysis. This provided, to our knowledge, the first direct statistical comparison of all 3 of these factors and their interactions on LDI. METHODS Participants completed the MST and a battery assessing visual acuity, memory, and executive function. We examined age group differences on MST performance in the new (i.e., replication) young and older adult samples and performed multiple regression and dominance analysis on the combined older adult sample. RESULTS Consistent with previous findings, the older adults showed significantly poorer LDI but preserved item recognition. LDI was significantly correlated with both memory and executive function but not with visual acuity. In the combined older adult sample, all 3 composites predicted LDI, but dominance analysis indicated that executive function was the most important predictor. DISCUSSION Older adults' MST LDI difficulty may be predicted by their executive function and visual acuity. These factors should be considered when interpreting older adults' MST performance.
Collapse
Affiliation(s)
- Adelaide Jensen
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Galit Karpov
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Charles A Collin
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
37
|
Sahakyan L, Wahlheim CN, Kwapil TR. Mnemonic discrimination deficits in multidimensional schizotypy. Hippocampus 2023; 33:1139-1153. [PMID: 37345675 DOI: 10.1002/hipo.23566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/29/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Current developmental psychopathology models indicate that schizophrenia can be understood as the most extreme expression of a multidimensional continuum of symptoms and impairment referred to as schizotypy. In nondisordered adults, schizotypy predicts risk for developing schizophrenia-spectrum psychopathology. Schizophrenia is associated with disruptions in detecting subtle differences between objects, which is linked to hippocampal dysfunction. These disruptions have been shown in the Mnemonic Similarity Task (MST) when patients are less likely to reject lures that are similar but not identical to studied objects, and instead mistake them for studied items. This pattern of errors may be a behavioral manifestation of impaired pattern separation, a key episodic memory ability associated with hippocampal integrity and overreliance on pattern completion. We examined whether multidimensional schizotypy is associated with such deficits in nondisordered young adults. Participants (n = 230) were assessed for positive, negative, and disorganized schizotypy and completed the MST and a perceptual discrimination task. MST performance showed that a combination of elevated negative and disorganized schizotypy was associated with decreased rejections of similar lures because they were mistakenly identified as studied items. These deficits were not observed in traditional recognition measures within the same task, nor in perceptual discrimination, suggesting that mnemonic discrimination deficits assessed by MST were selective and did not reflect generalized deficits. These findings extend the results obtained in schizophrenia patients and support a multidimensional model of schizophrenia-spectrum psychopathology.
Collapse
Affiliation(s)
- Lili Sahakyan
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Christopher N Wahlheim
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Thomas R Kwapil
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
38
|
Dahl MJ, Kulesza A, Werkle-Bergner M, Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci Biobehav Rev 2023; 153:105358. [PMID: 37597700 PMCID: PMC10591841 DOI: 10.1016/j.neubiorev.2023.105358] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Memory is essential in defining our identity by guiding behavior based on past experiences. However, aging leads to declining memory, disrupting older adult's lives. Memories are encoded through experience-dependent modifications of synaptic strength, which are regulated by the catecholamines dopamine and noradrenaline. While cognitive aging research demonstrates how dopaminergic neuromodulation from the substantia nigra-ventral tegmental area regulates hippocampal synaptic plasticity and memory, recent findings indicate that the noradrenergic locus coeruleus sends denser inputs to the hippocampus. The locus coeruleus produces dopamine as biosynthetic precursor of noradrenaline, and releases both to modulate hippocampal plasticity and memory. Crucially, the locus coeruleus is also the first site to accumulate Alzheimer's-related abnormal tau and severely degenerates with disease development. New in-vivo assessments of locus coeruleus integrity reveal associations with Alzheimer's markers and late-life memory impairments, which likely stem from impaired dopaminergic and noradrenergic neurotransmission. Bridging research across species, the reviewed findings suggest that degeneration of the locus coeruleus results in deficient dopaminergic and noradrenergic modulation of hippocampal plasticity and thus memory decline.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Agnieszka Kulesza
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, California, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
39
|
Müller-Komorowska D, Kuru B, Beck H, Braganza O. Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding. Nat Commun 2023; 14:6106. [PMID: 37777512 PMCID: PMC10543394 DOI: 10.1038/s41467-023-41803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.
Collapse
Affiliation(s)
- Daniel Müller-Komorowska
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
| | - Baris Kuru
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V, Bonn, Germany
| | - Oliver Braganza
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
- Institute for Socio-Economics, University of Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
40
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst L, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558688. [PMID: 37790541 PMCID: PMC10542525 DOI: 10.1101/2023.09.20.558688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, Irvine, CA, 92617, USA
| | - Paul E. Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J. Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A. Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
41
|
Phillips TO, Castro M, Vas RK, Ferguson LA, Harikumar A, Leal SL. Perceived antidepressant efficacy associated with reduced negative and enhanced neutral mnemonic discrimination. Front Hum Neurosci 2023; 17:1225836. [PMID: 37701502 PMCID: PMC10494429 DOI: 10.3389/fnhum.2023.1225836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction While antidepressants are one of the first-line treatments for depression, the mechanisms underlying antidepressant action are unclear. Furthermore, the extent to which antidepressants impact emotional and cognitive dysfunction in depression requires more fine-grained approaches toward measuring these impacts in humans. Depression is associated with emotion and mood dysregulation in addition to cognitive deficits. Depressed individuals experience general memory impairment as well as a negativity bias in episodic memory, where negative events are better remembered than positive or neutral events. One potential mechanism hypothesized to underlie the negativity bias in memory is dysfunctional hippocampal pattern separation, in which depressed individuals tend to show impaired general pattern separation but enhanced negative pattern separation. Mnemonic discrimination tasks have been designed to tax hippocampal pattern separation in humans and provide a powerful approach to develop a mechanistic account for cognitive dysfunction in depression. While antidepressants have been examined primarily in rodent models in the context of hippocampal pattern separation, this has yet to be examined in humans. Methods Here, we investigated how antidepressant usage and their perceived efficacy was associated with emotional mnemonic discrimination, given our prior work indicating a negativity bias for mnemonic discrimination in individuals with greater depressive symptoms. Results We found that individuals who reported a greater improvement in their depressive symptoms after taking antidepressants (responders) showed reduced negative and enhanced neutral mnemonic discrimination compared to those with little to no improvement (non-responders). Perceived antidepressant efficacy was the strongest predictor of a reduction in the negativity bias for mnemonic discrimination, even when controlling for current depressive symptoms, antidepressant type, and other relevant factors. Discussion These results suggest that antidepressants, when effective, can shift memory dynamics toward healthy function.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie L. Leal
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| |
Collapse
|
42
|
Amelchenko EM, Bezriadnov DV, Chekhov OA, Ivanova AA, Kedrov AV, Anokhin KV, Lazutkin AA, Enikolopov G. Cognitive Flexibility Is Selectively Impaired by Radiation and Is Associated with Differential Recruitment of Adult-Born Neurons. J Neurosci 2023; 43:6061-6083. [PMID: 37532464 PMCID: PMC10451007 DOI: 10.1523/jneurosci.0161-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.
Collapse
Affiliation(s)
- Evgeny M Amelchenko
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| | - Dmitri V Bezriadnov
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
| | - Olga A Chekhov
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| | - Anna A Ivanova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, 117485, Russian Federation
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Alexander V Kedrov
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
| | - Konstantin V Anokhin
- P.K. Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russian Federation
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Alexander A Lazutkin
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, 117485, Russian Federation
| | - Grigori Enikolopov
- Center for Developmental Genetics
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
43
|
Yun S, Soler I, Tran FH, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. Front Behav Neurosci 2023; 17:1151877. [PMID: 37324519 PMCID: PMC10267474 DOI: 10.3389/fnbeh.2023.1151877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities that are disrupted in many brain disorders. A better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on the integrity of the hippocampal dentate gyrus (DG) which receives glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). An inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here, we asked if the activity of LEC fan cells that directly project to the DG (LEC → DG neurons) regulates the relatively more complex hippocampal-dependent abilities of behavioral pattern separation or cognitive flexibility. C57BL/6J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA). Prior work shows that 4 weeks post-surgery, TRIP8b mice have more DG neurogenesis and greater activity of LEC → DG neurons compared to SCR shRNA mice. Here, 4 weeks post-surgery, the mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based location discrimination reversal [LDR]) and innate fear of open spaces (elevated plus maze [EPM]) followed by quantification of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). There was no effect of treatment (SCR shRNA vs. TRIP8b) on performance during general touchscreen training, LDR training, or the 1st days of LDR testing. However, in the last days of LDR testing, the TRIP8b shRNA mice had improved pattern separation (reached the first reversal more quickly and had more accurate discrimination) compared to the SCR shRNA mice, specifically when the load on pattern separation was high (lit squares close together or "small separation"). The TRIP8b shRNA mice were also more cognitively flexible (achieved more reversals) compared to the SCR shRNA mice in the last days of LDR testing. Supporting a specific influence on cognitive behavior, the SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate that the TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis compared to the SCR shRNA mice. This study advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival-behavioral pattern separation and cognitive flexibility-and suggests that the activity of LEC → DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- University of Pennsylvania, Philadelphia, PA, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Harley A. Haas
- University of Pennsylvania, Philadelphia, PA, United States
| | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, United States
| | | | - Maiko Suarez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Christopher R. de Santis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
44
|
Han CZ, Donoghue T, Cao R, Kunz L, Wang S, Jacobs J. Using multi-task experiments to test principles of hippocampal function. Hippocampus 2023; 33:646-657. [PMID: 37042212 PMCID: PMC10249632 DOI: 10.1002/hipo.23540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Investigations of hippocampal functions have revealed a dizzying array of findings, from lesion-based behavioral deficits, to a diverse range of characterized neural activations, to computational models of putative functionality. Across these findings, there remains an ongoing debate about the core function of the hippocampus and the generality of its representation. Researchers have debated whether the hippocampus's primary role relates to the representation of space, the neural basis of (episodic) memory, or some more general computation that generalizes across various cognitive domains. Within these different perspectives, there is much debate about the nature of feature encodings. Here, we suggest that in order to evaluate hippocampal responses-investigating, for example, whether neuronal representations are narrowly targeted to particular tasks or if they subserve domain-general purposes-a promising research strategy may be the use of multi-task experiments, or more generally switching between multiple task contexts while recording from the same neurons in a given session. We argue that this strategy-when combined with explicitly defined theoretical motivations that guide experiment design-could be a fruitful approach to better understand how hippocampal representations support different behaviors. In doing so, we briefly review key open questions in the field, as exemplified by articles in this special issue, as well as previous work using multi-task experiments, and extrapolate to consider how this strategy could be further applied to probe fundamental questions about hippocampal function.
Collapse
Affiliation(s)
- Claire Z. Han
- Department of Biomedical Engineering, Columbia University
| | | | - Runnan Cao
- Department of Radiology, Washington University in St. Louis
| | - Lukas Kunz
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University
| |
Collapse
|
45
|
Neudert MK, Schäfer A, Zehtner RI, Fricke S, Seinsche RJ, Kruse O, Stark R, Hermann A. Behavioral pattern separation is associated with neural and electrodermal correlates of context-dependent fear conditioning. Sci Rep 2023; 13:5577. [PMID: 37019951 PMCID: PMC10076331 DOI: 10.1038/s41598-023-31504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Hippocampus-dependent pattern separation is considered as a relevant factor for context discrimination and might therefore impact the contextual modulation of conditioned fear. However, the association between pattern separation and context-dependent fear conditioning has not been investigated so far. In the current study, 72 healthy female students completed the Mnemonic Similarity Task, a measure of behavioral pattern separation, in addition to a context-dependent fear conditioning paradigm during functional magnetic resonance imaging. The paradigm included fear acquisition in context A and extinction training in context B on a first day, as well as retrieval testing of the fear and extinction memories in the safe context B (extinction recall) and a novel context C (fear renewal) one day later. Main outcome measures comprised skin conductance responses (SCRs) and blood oxygen level-dependent responses in brain regions of the fear and extinction circuit. Regarding retrieval testing, pattern separation did not correlate with extinction recall, but with stronger dorsal anterior cingulate cortex activation and conditioned SCRs (trend) during fear renewal, indicating a stronger retrieval of the fear memory trace. Our findings suggest that behavioral pattern separation ability seems to be important for context-dependent fear modulation, which is impaired in patients with posttraumatic stress disorder.
Collapse
Affiliation(s)
- Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany.
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany.
| | - Axel Schäfer
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Raphaela I Zehtner
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Fricke
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rosa J Seinsche
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Onno Kruse
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
46
|
Kelley DP, Albrechet‐Souza L, Cruise S, Maiya R, Destouni A, Sakamuri SSVP, Duplooy A, Hibicke M, Nichols C, Katakam PVG, Gilpin NW, Francis J. Conditioned place avoidance is associated with a distinct hippocampal phenotype, partly preserved pattern separation, and reduced reactive oxygen species production after stress. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12840. [PMID: 36807494 PMCID: PMC10067435 DOI: 10.1111/gbb.12840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation. In Experiment 1, we performed RNA sequencing of the dorsal hippocampus 16 days after stress in rats that either develop conditioned place avoidance to a predator urine-associated context (Avoiders), or do not (Non-Avoiders). Weighted genome correlational network analysis showed that increased expression of oxidative phosphorylation-associated gene transcripts and decreased expression of gene transcripts for axon guidance and insulin signaling were associated with avoidance behavior. Based on these data, in Experiment 2, we hypothesized that Avoiders would exhibit elevated hippocampal (HPC) ROS production and degraded object pattern separation (OPS) compared with Nonavoiders. Stress impaired pattern separation performance in Non-Avoider and Avoider rats compared with nonstressed Controls, but surprisingly, Avoiders exhibited partly preserved pattern separation performance and significantly lower ROS production compared with Non-Avoiders. Lower ROS production was associated with better OPS performance in Stressed rats, but ROS production was not associated with OPS performance in Controls. These results suggest a strong negative association between HPC ROS production and pattern separation after stress, and that stress effects on these outcome variables may be associated with avoidance of a stress-paired context.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Lucas Albrechet‐Souza
- Department of Cell Biology & AnatomyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Shealan Cruise
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Rajani Maiya
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Aspasia Destouni
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | | | - Alexander Duplooy
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Meghan Hibicke
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Charles Nichols
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Prasad V. G. Katakam
- Department of PharmacologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Nicholas W. Gilpin
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Neuroscience Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Southeast Louisiana VA Healthcare System (SLVHCS)New OrleansLouisianaUSA
| | - Joseph Francis
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| |
Collapse
|
47
|
Adams JN, Márquez F, Larson MS, Janecek JT, Miranda BA, Noche JA, Taylor L, Hollearn MK, McMillan L, Keator DB, Head E, Rissman RA, Yassa MA. Differential involvement of hippocampal subfields in the relationship between Alzheimer's pathology and memory interference in older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12419. [PMID: 37035460 PMCID: PMC10075195 DOI: 10.1002/dad2.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
Introduction We tested whether Alzheimer's disease (AD) pathology predicts memory deficits in non-demented older adults through its effects on medial temporal lobe (MTL) subregional volume. Methods Thirty-two, non-demented older adults with cerebrospinal fluid (CSF) (amyloid-beta [Aβ]42/Aβ40, phosphorylated tau [p-tau]181, total tau [t-tau]), positron emission tomography (PET; 18F-florbetapir), high-resolution structural magnetic resonance imaging (MRI), and neuropsychological assessment were analyzed. We examined relationships between biomarkers and a highly granular measure of memory consolidation, retroactive interference (RI). Results Biomarkers of AD pathology were related to RI. Dentate gyrus (DG) and CA3 volume were uniquely associated with RI, whereas CA1 and BA35 volume were related to both RI and overall memory recall. AD pathology was associated with reduced BA35, CA1, and subiculum volume. DG volume and Aβ were independently associated with RI, whereas CA1 volume mediated the relationship between AD pathology and RI. Discussion Integrity of distinct hippocampal subfields demonstrate differential relationships with pathology and memory function, indicating specificity in vulnerability and contribution to different memory processes.
Collapse
Affiliation(s)
- Jenna N. Adams
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Freddie Márquez
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Myra S. Larson
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - John T. Janecek
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Blake A. Miranda
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jessica A. Noche
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Lisa Taylor
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Martina K. Hollearn
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Liv McMillan
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - David B. Keator
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Robert A. Rissman
- Department of NeurosciencesUniversity of CaliforniaSan DiegoCaliforniaUSA
- Veterans Affairs San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
48
|
Quian Quiroga R. An integrative view of human hippocampal function: Differences with other species and capacity considerations. Hippocampus 2023; 33:616-634. [PMID: 36965048 DOI: 10.1002/hipo.23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
We describe an integrative model that encodes associations between related concepts in the human hippocampal formation, constituting the skeleton of episodic memories. The model, based on partially overlapping assemblies of "concept cells," contrast markedly with the well-established notion of pattern separation, which relies on conjunctive, context dependent single neuron responses, instead of the invariant, context independent responses found in the human hippocampus. We argue that the model of partially overlapping assemblies is better suited to cope with memory capacity limitations, that the finding of different types of neurons and functions in this area is due to a flexible and temporary use of the extraordinary machinery of the hippocampus to deal with the task at hand, and that only information that is relevant and frequently revisited will consolidate into long-term hippocampal representations, using partially overlapping assemblies. Finally, we propose that concept cells are uniquely human and that they may constitute the neuronal underpinnings of cognitive abilities that are much further developed in humans compared to other species.
Collapse
Affiliation(s)
- Rodrigo Quian Quiroga
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK
- Department of neurosurgery, clinical neuroscience center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Xie W, Cappiello M, Yassa MA, Ester E, Zaghloul KA, Zhang W. The entorhinal-DG/CA3 pathway in the medial temporal lobe retains visual working memory of a simple surface feature. eLife 2023; 12:83365. [PMID: 36861959 PMCID: PMC10019891 DOI: 10.7554/elife.83365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/01/2023] [Indexed: 03/03/2023] Open
Abstract
Classic models consider working memory (WM) and long-term memory as distinct mental faculties that are supported by different neural mechanisms. Yet, there are significant parallels in the computation that both types of memory require. For instance, the representation of precise item-specific memory requires the separation of overlapping neural representations of similar information. This computation has been referred to as pattern separation, which can be mediated by the entorhinal-DG/CA3 pathway of the medial temporal lobe (MTL) in service of long-term episodic memory. However, although recent evidence has suggested that the MTL is involved in WM, the extent to which the entorhinal-DG/CA3 pathway supports precise item-specific WM has remained elusive. Here, we combine an established orientation WM task with high-resolution fMRI to test the hypothesis that the entorhinal-DG/CA3 pathway retains visual WM of a simple surface feature. Participants were retrospectively cued to retain one of the two studied orientation gratings during a brief delay period and then tried to reproduce the cued orientation as precisely as possible. By modeling the delay-period activity to reconstruct the retained WM content, we found that the anterior-lateral entorhinal cortex (aLEC) and the hippocampal DG/CA3 subfield both contain item-specific WM information that is associated with subsequent recall fidelity. Together, these results highlight the contribution of MTL circuitry to item-specific WM representation.
Collapse
Affiliation(s)
- Weizhen Xie
- Surgical Neurology Branch, National Institute of Neurological Disorders and StrokeBethesdaUnited States
- Department of Psychology, University of California, RiversideRiversideUnited States
- Department of Psychology, University of MarylandCollege ParkUnited States
| | - Marcus Cappiello
- Department of Psychology, University of California, RiversideRiversideUnited States
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, IrvineIrvineUnited States
| | - Edward Ester
- Department of Psychology, University of NevadaRenoUnited States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and StrokeBethesdaUnited States
| | - Weiwei Zhang
- Department of Psychology, University of California, RiversideRiversideUnited States
| |
Collapse
|
50
|
Crombie KM, Adams TG, Dunsmoor JE, Greenwood BN, Smits JA, Nemeroff CB, Cisler JM. Aerobic exercise in the treatment of PTSD: An examination of preclinical and clinical laboratory findings, potential mechanisms, clinical implications, and future directions. J Anxiety Disord 2023; 94:102680. [PMID: 36773486 PMCID: PMC10084922 DOI: 10.1016/j.janxdis.2023.102680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with heightened emotional responding, avoidance of trauma related stimuli, and physical health concerns (e.g., metabolic syndrome, type 2 diabetes, cardiovascular disease). Existing treatments such as exposure-based therapies (e.g., prolonged exposure) aim to reduce anxiety symptoms triggered by trauma reminders, and are hypothesized to work via mechanisms of extinction learning. However, these conventional gold standard psychotherapies do not address physical health concerns frequently presented in PTSD. In addition to widely documented physical and mental health benefits of exercise, emerging preclinical and clinical evidence supports the hypothesis that precisely timed administration of aerobic exercise can enhance the consolidation and subsequent recall of fear extinction learning. These findings suggest that aerobic exercise may be a promising adjunctive strategy for simultaneously improving physical health while enhancing the effects of exposure therapies, which is desirable given the suboptimal efficacy and remission rates. Accordingly, this review 1) encompasses an overview of preclinical and clinical exercise and fear conditioning studies which form the basis for this claim; 2) discusses several plausible mechanisms for enhanced consolidation of fear extinction memories following exercise, and 3) provides suggestions for future research that could advance the understanding of the potential importance of incorporating exercise into the treatment of PTSD.
Collapse
Affiliation(s)
- Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America.
| | - Tom G Adams
- University of Kentucky, Department of Psychology, 105 Kastle Hill, Lexington, KY 40506-0044, United States of America; Yale School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, United States of America
| | - Joseph E Dunsmoor
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Benjamin N Greenwood
- University of Colorado Denver, Department of Psychology, Campus Box 173, PO Box 173364, Denver, CO 80217-3364, United States of America
| | - Jasper A Smits
- The University of Texas at Austin, Department of Psychology, 108 E Dean Keeton St., Austin, TX 78712, United States of America
| | - Charles B Nemeroff
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America; Institute for Early Life Adversity Research, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78712, United States of America
| |
Collapse
|