1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Fan X, Chen H, He W, Zhang J. Emerging microglial biology highlights potential therapeutic targets for Alzheimer's disease. Ageing Res Rev 2024; 101:102471. [PMID: 39218078 DOI: 10.1016/j.arr.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is a chronic degenerative disease of the central nervous system, which primarily affects elderly people and accounts for 70-80 % of dementia cases. The current prevailing amyloid cascade hypothesis suggests that Alzheimer's disease begins with the deposition of amyloid β (Aβ) in the brain. Major therapeutic strategies target Aβ production, aggregation, and clearance, although many clinical trials have shown that these therapeutic strategies are not sufficient to completely improve cognitive deficits in AD patients. Recent genome-wide association studies have identified that multiple important regulators are the most significant genetic risk factors for Alzheimer's disease, especially in the innate immune pathways. These genetic risk factors suggest a critical role for microglia, highlighting their therapeutic potential in treating neurodegenerative diseases. In this review, we discuss how these recently documented AD risk genes affect microglial function and AD pathology and how they can be further targeted to regulate microglial states and slow AD progression, especially the highly anticipated APOE and TREM2 targets. We focused on recent findings that modulation of innate and adaptive neuroimmune microenvironment crosstalk reverses cognitive deficits in AD patients. We also considered novel strategies for microglia in AD patients.
Collapse
Affiliation(s)
- Xi Fan
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Chen
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Wei He
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Jianmin Zhang
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
3
|
Luikku AJ, Nerg O, Koivisto AM, Hänninen T, Junkkari A, Kemppainen S, Juopperi SP, Sinisalo R, Pesola A, Soininen H, Hiltunen M, Leinonen V, Rauramaa T, Martiskainen H. Deep learning assisted quantitative analysis of Aβ and microglia in patients with idiopathic normal pressure hydrocephalus in relation to cognitive outcome. J Neuropathol Exp Neurol 2024; 83:967-978. [PMID: 39101555 PMCID: PMC11487103 DOI: 10.1093/jnen/nlae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Neuropathologic changes of Alzheimer disease (AD) including Aβ accumulation and neuroinflammation are frequently observed in the cerebral cortex of patients with idiopathic normal pressure hydrocephalus (iNPH). We created an automated analysis platform to quantify Aβ load and reactive microglia in the vicinity of Aβ plaques and to evaluate their association with cognitive outcome in cortical biopsies of patients with iNPH obtained at the time of shunting. Aiforia Create deep learning software was used on whole slide images of Iba1/4G8 double immunostained frontal cortical biopsies of 120 shunted iNPH patients to identify Iba1-positive microglia somas and Aβ areas, respectively. Dementia, AD clinical syndrome (ACS), and Clinical Dementia Rating Global score (CDR-GS) were evaluated retrospectively after a median follow-up of 4.4 years. Deep learning artificial intelligence yielded excellent (>95%) precision for tissue, Aβ, and microglia somas. Using an age-adjusted model, higher Aβ coverage predicted the development of dementia, the diagnosis of ACS, and more severe memory impairment by CDR-GS whereas measured microglial densities and Aβ-related microglia did not correlate with cognitive outcome in these patients. Therefore, cognitive outcome seems to be hampered by higher Aβ coverage in cortical biopsies in shunted iNPH patients but is not correlated with densities of surrounding microglia.
Collapse
Affiliation(s)
- Antti J Luikku
- Institute of Clinical Medicine—Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Ossi Nerg
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne M Koivisto
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurosciences, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Geriatrics/Rehabilitation and Internal Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Hänninen
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
| | - Antti Junkkari
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Rosa Sinisalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Alli Pesola
- Institute of Clinical Medicine—Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine—Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine—Neurosurgery, University of Eastern Finland, Kuopio, Finland
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine—Pathology, University of Eastern Finland, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Kaji S, Berghoff SA, Spieth L, Schlaphoff L, Sasmita AO, Vitale S, Büschgens L, Kedia S, Zirngibl M, Nazarenko T, Damkou A, Hosang L, Depp C, Kamp F, Scholz P, Ewers D, Giera M, Ischebeck T, Wurst W, Wefers B, Schifferer M, Willem M, Nave KA, Haass C, Arzberger T, Jäkel S, Wirths O, Saher G, Simons M. Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis. Immunity 2024:S1074-7613(24)00458-8. [PMID: 39419029 DOI: 10.1016/j.immuni.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for β sheet-binding dyes triggered Aβ amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aβ amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aβ plaque formation.
Collapse
Affiliation(s)
- Seiji Kaji
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan A Berghoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lennart Schlaphoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andrew O Sasmita
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Simona Vitale
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Shreeya Kedia
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Zirngibl
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Taisiia Nazarenko
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, Göttingen, Germany
| | - Constanze Depp
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Frits Kamp
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - David Ewers
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany; Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Klaus-Armin Nave
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Gesine Saher
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
5
|
Tang Z, Luo S, Zeng H, Huang J, Sui X, Wu M, Wang X. Search and match across spatial omics samples at single-cell resolution. Nat Methods 2024; 21:1818-1829. [PMID: 39294367 PMCID: PMC11529703 DOI: 10.1038/s41592-024-02410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Spatial omics technologies characterize tissue molecular properties with spatial information, but integrating and comparing spatial data across different technologies and modalities is challenging. A comparative analysis tool that can search, match and visualize both similarities and differences of molecular features in space across multiple samples is lacking. To address this, we introduce CAST (cross-sample alignment of spatial omics), a deep graph neural network-based method enabling spatial-to-spatial searching and matching at the single-cell level. CAST aligns tissues based on intrinsic similarities of spatial molecular features and reconstructs spatially resolved single-cell multi-omic profiles. CAST further allows spatially resolved differential analysis (∆Analysis) to pinpoint and visualize disease-associated molecular pathways and cell-cell interactions and single-cell relative translational efficiency profiling to reveal variations in translational control across cell types and regions. CAST serves as an integrative framework for seamless single-cell spatial data searching and matching across technologies, modalities and sample conditions.
Collapse
Affiliation(s)
- Zefang Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuchen Luo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hu Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiahao Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Sui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morgan Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
7
|
Shojaei M, Schaefer R, Schlepckow K, Kunze LH, Struebing FL, Brunner B, Willem M, Bartos LM, Feiten A, Palumbo G, Arzberger T, Bartenstein P, Parico GC, Xia D, Monroe KM, Haass C, Brendel M, Lindner S. PET imaging of microglia in Alzheimer's disease using copper-64 labeled TREM2 antibodies. Theranostics 2024; 14:6319-6336. [PMID: 39431020 PMCID: PMC11488106 DOI: 10.7150/thno.97149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays an essential role in microglia activation and is being investigated as a potential therapeutic target for modulation of microglia in several neurological diseases. In this study, we present the development and preclinical evaluation of 64Cu-labeled antibody-based PET radiotracers as tools for non-invasive assessment of TREM2 expression. Furthermore, we tested the potential of an antibody transport vehicle (ATV) that binds human transferrin receptor to facilitate transcytosis of TREM2 antibody-based radiotracers to the CNS and improve target engagement. Methods: A TREM2 antibody with an engineered transport vehicle (ATV:4D9) and without (4D9) were covalently modified with pNCS-benzyl-NODAGA and labeled with copper-64. Potency, stability, and specificity were assessed in vitro followed by in vivo PET imaging at the early 2 h, intermediate 20 h, and late imaging time points 40 h post-injection using a human transferrin receptor (hTfR) expressing model for amyloidogenesis (5xFAD;TfRmu/hu) or wild-type mice (WT;TfRmu/hu), and hTfR negative controls. Organs of interest were isolated to determine biodistribution by ex vivo autoradiography. Cell sorting after in vivo tracer injection was used to demonstrate cellular specificity for microglia and to validate TREM2 PET results in an independent mouse model for amyloidogenesis (AppSAA;TfRmu/hu). For translation to human imaging, a human TREM2 antibody (14D3) was radiolabeled and used for in vitro autoradiography on human brain sections. Results: The 64Cu-labeled antibodies were obtained in high radiochemical purity (RCP), radiochemical yield (RCY), and specific activity. Antibody modification did not impact TREM2 binding. ATV:4D9 binding proved to be specific, and the tracer stability was maintained over 48 h. The uptake of [64Cu]Cu-NODAGA-ATV:4D9 in the brains of hTfR expressing mice was up to 4.6-fold higher than [64Cu]Cu-NODAGA-4D9 in mice without hTfR. TREM2 PET revealed elevated uptake in the cortex of 5xFAD mice compared to wild-type, which was validated by autoradiography. PET-to-biodistribution correlation revealed that elevated radiotracer uptake in brains of 5xFAD;TfRmu/hu mice was driven by microglia-rich cortical and hippocampal brain regions. Radiolabeled ATV:4D9 was selectively enriched in microglia and cellular uptake explained PET signal enhancement in AppSAA;TfRmu/hu mice. Human autoradiography showed elevated TREM2 tracer binding in the cortex of patients with Alzheimer's disease. Conclusion: [64Cu]Cu-NODAGA-ATV:4D9 has potential for non-invasive assessment of TREM2 as a surrogate marker for microglia activation in vivo. ATV engineering for hTfR binding and transcytosis overcomes the blood-brain barrier restriction for antibody-based PET radiotracers. TREM2 PET might be a versatile tool for many applications beyond Alzheimer's disease, such as glioma and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Monireh Shojaei
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Rebecca Schaefer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lea H. Kunze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Felix L. Struebing
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
| | - Bettina Brunner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael Willem
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Laura M. Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Astrid Feiten
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Giovanna Palumbo
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Dan Xia
- Denali Therapeutics Inc, South San Francisco, CA, USA
| | | | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. J Neuroinflammation 2024; 21:245. [PMID: 39342323 PMCID: PMC11439205 DOI: 10.1186/s12974-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease. Microglia activation is accompanied by the formation and chronic expression of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft-expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased reactive oxygen species and the dilated endoplasmic reticulum. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/-APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in Alzheimer's disease associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Seunghwan Choi
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Won-Kyu Ju
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center and Shiley Eye Institute, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
9
|
Dooling LJ, Anlaş AA, Tobin MP, Ontko NM, Marchena T, Wang M, Andrechak JC, Discher DE. Clustered macrophages cooperate to eliminate tumors via coordinated intrudopodia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613918. [PMID: 39345601 PMCID: PMC11430028 DOI: 10.1101/2024.09.19.613918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Macrophages often pervade solid tumors, but their nearest neighbor organization is understudied and potentially enables key functions such as phagocytosis. Here, we observe dynamic macrophage clusters in tumors under conditions that maximize cancer cell phagocytosis and use reductionist approaches to uncover pathways to cluster formation and roles for tumor-intrusive pseudopodia, which we term 'intrudopodia'. Macrophage clusters form over hours on low- adhesion substrates after M1 polarization with interferons, including T cell-derived cytokines, and yet clusters prove fluid on timescales of minutes. Clusters also sort from M2 macrophages that disperse on the same substrates. M1 macrophages upregulate specific cell-cell adhesion receptors but suppress actomyosin contractility, and while both pathways contribute to cluster formation, decreased cortical tension was predicted to unleash pseudopodia. Macrophage neighbors in tumor spheroids indeed extend intrudopodia between adjacent cancer cell junctions - at least when phagocytosis conditions are maximized, and coordinated intrudopodia help detach and individualize cancer cells for rapid engulfment. Macrophage clusters thereby provide a cooperative advantage for phagocytosis to overcome solid tumor cohesion.
Collapse
|
10
|
Früholz I, Meyer-Luehmann M. The intricate interplay between microglia and adult neurogenesis in Alzheimer's disease. Front Cell Neurosci 2024; 18:1456253. [PMID: 39360265 PMCID: PMC11445663 DOI: 10.3389/fncel.2024.1456253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play a crucial role in regulating adult neurogenesis and contribute significantly to the pathogenesis of Alzheimer's disease (AD). Under physiological conditions, microglia support and modulate neurogenesis through the secretion of neurotrophic factors, phagocytosis of apoptotic cells, and synaptic pruning, thereby promoting the proliferation, differentiation, and survival of neural progenitor cells (NPCs). However, in AD, microglial function becomes dysregulated, leading to chronic neuroinflammation and impaired neurogenesis. This review explores the intricate interplay between microglia and adult neurogenesis in health and AD, synthesizing recent findings to provide a comprehensive overview of the current understanding of microglia-mediated regulation of adult neurogenesis. Furthermore, it highlights the potential of microglia-targeted therapies to modulate neurogenesis and offers insights into potential avenues for developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Iris Früholz
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center ˗ University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Zatcepin A, Gnörich J, Rauchmann BS, Bartos LM, Wagner S, Franzmeier N, Malpetti M, Xiang X, Shi Y, Parhizkar S, Grosch M, Wind-Mark K, Kunte ST, Beyer L, Meyer C, Brösamle D, Wendeln AC, Osei-Sarpong C, Heindl S, Liesz A, Stoecklein S, Biechele G, Finze A, Eckenweber F, Lindner S, Rominger A, Bartenstein P, Willem M, Tahirovic S, Herms J, Buerger K, Simons M, Haass C, Rupprecht R, Riemenschneider MJ, Albert NL, Beyer M, Neher JJ, Paeger L, Levin J, Höglinger GU, Perneczky R, Ziegler SI, Brendel M. Regional desynchronization of microglial activity is associated with cognitive decline in Alzheimer's disease. Mol Neurodegener 2024; 19:64. [PMID: 39238030 PMCID: PMC11375924 DOI: 10.1186/s13024-024-00752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Boris-Stephan Rauchmann
- Institute of Neuroradiology, University Hospital LMU, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wagner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Xianyuan Xiang
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, ShenzhenShenzhen, 518055, China
| | - Yuan Shi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Samira Parhizkar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Meyer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Desirée Brösamle
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Ann-Christin Wendeln
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Collins Osei-Sarpong
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, Regensburg, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Munich, 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Jonas J Neher
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
12
|
Li Y, Zhou H, He X, Jin L, Zhu Y, Hu L, Feng M, Zhu J, Wang L, Zheng Y, Li S, Yan Z, Cen P, Hu J, Chen Z, Yu X, Fu X, Xu C, Cao S, Cao Y, Chen G, Wang L. Impaired microglial glycolysis promotes inflammatory responses after intracerebral haemorrhage via HK2-dependent mitochondrial dysfunction. J Adv Res 2024:S2090-1232(24)00359-X. [PMID: 39142439 DOI: 10.1016/j.jare.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/28/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Intracerebral haemorrhage (ICH) is a devastating disease that leads to severe neurological deficits. Microglia are the first line of defence in the brain and play a crucial role in neurological recovery after ICH, whose activities are primarily driven by glucose metabolism. However, little is known regarding the status of glucose metabolism in microglia and its interactions with inflammatory responses after ICH. OBJECTIVES This study investigated microglial glycolysis and its mechanistic effects on microglial inflammation after ICH. METHODS We explored the status of glucose metabolism in the ipsilateral region and in fluorescence-activated-cell-sorting-isolated (FACS-isolated) microglia via 2-deoxy-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) analyses and gamma emission, respectively. Energy-related targeted metabolomics, along with 13C-glucose isotope tracing, was utilised to analyse glycolytic products in microglia. Mitochondrial membrane potential and mitochondrial reactive oxygen species (MitoROS) accumulation was assessed by flow cytometry. Behavioural, western blotting, gene regulation, and enzymatic activity analyses were conducted with a focus on microglia. RESULTS Neurological dysfunction was strongly correlated with decreased FDG-PET signals in the perihaematomal region, where microglial uptake of FDG was reduced. The decreased quantity of glucose-6-phosphate (G-6-P) in microglia was attributed to the downregulation of glucose transporter 1 (GLUT1) and hexokinase 2 (HK2). Enhanced inflammatory responses were driven by HK2 suppression via decreased mitochondrial membrane potential, which could be rescued by MitoROS scavengers. HK inhibitors aggravated neurological injury by suppressing FDG uptake and enhancing microglial inflammation in ICH mice. CONCLUSION These findings indicate an unexpected metabolic status in pro-inflammatory microglia after ICH, consisting of glycolysis impairment caused by the downregulation of GLUT1 and HK2. Additionally, HK2 suppression promotes inflammatory responses by disrupting mitochondrial function, providing insight into the mechanisms by which inflammation may be facilitated after ICH and indicating that metabolic enzymes as potential targets for ICH treatment.
Collapse
Affiliation(s)
- Yin Li
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuchao He
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingji Jin
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuhan Zhu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Majing Feng
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonghe Zheng
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiwei Li
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyuan Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Peili Cen
- Department of Nuclear Medicine and PET-CT Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zihang Chen
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Gao Chen
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Lin Wang
- Department of Neurosurgery & Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Ceccon M, Kantsjö JB, Ronchi F. Personalized Paths: Unlocking Alzheimer's via the Gut-Brain Axis. Visc Med 2024; 40:194-209. [PMID: 39157730 PMCID: PMC11326767 DOI: 10.1159/000535869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 08/20/2024] Open
Abstract
Background Alzheimer's disease (AD) is characterised by abnormal protein aggregates in the brain that lead to cognitive decline. While current therapies only treat symptoms, disease-modifying treatments are urgently needed. Studies suggest that the composition of the microbiota is altered in people with AD, suggesting a link between gut bacteria and AD-related brain changes. Summary In our narrative review, we explore various microbial interventions, such as faecal microbiota transplantation, probiotics, and diet, as powerful potential treatments. Studies suggest changes in microbiota composition following these interventions, with some beneficial effects on cognitive function. However, the mechanism of action of these microbial interventions is still unknown. Key Message Our aim was to highlight the importance of personalised approaches, taking into account individual metabolic and microbiome profiles. We try to address gaps in current research and emphasise the need for microbiota analysis at different stages of the disease and its integration with clinical parameters and lifestyle information for a comprehensive understanding of AD progression (summarised in online suppl. Fig. 1; for all online suppl. material, see https://doi.org/10.1159/000535869).
Collapse
Affiliation(s)
- Matteo Ceccon
- Institute of Microbiology, Infectious Disease, and Immunology/Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johan B Kantsjö
- Institute of Microbiology, Infectious Disease, and Immunology/Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Francesca Ronchi
- Institute of Microbiology, Infectious Disease, and Immunology/Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
15
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Yin Y, Yang H, Li R, Wu G, Qin Q, Tang Y. A systematic review of the role of TREM2 in Alzheimer's disease. Chin Med J (Engl) 2024; 137:1684-1694. [PMID: 38915213 PMCID: PMC11268819 DOI: 10.1097/cm9.0000000000003000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Given the established genetic linkage between triggering receptors expressed on myeloid cells 2 (TREM2) and Alzheimer's disease (AD), an expanding research body has delved into the intricate role of TREM2 within the AD context. However, a conflicting landscape of outcomes has emerged from both in vivo and in vitro investigations. This study aimed to elucidate the multifaceted nuances and gain a clearer comprehension of the role of TREM2. METHODS PubMed database was searched spanning from its inception to January 2022. The search criteria took the form of ("Alzheimer's disease" OR "AD") AND ("transgenic mice model" OR "transgenic mouse model") AND ("Triggering receptor expressed on myeloid cells" OR "TREM2"). Inclusion criteria consisted of the following: (1) publication of original studies in English; (2) utilization of transgenic mouse models for AD research; and (3) reports addressing the subject of TREM2. RESULTS A total of 43 eligible articles were identified. Our analysis addresses four pivotal queries concerning the interrelation of TREM2 with microglial function, Aβ accumulation, tau pathology, and inflammatory processes. However, the diverse inquiries posed yielded inconsistent responses. Nevertheless, the inconsistent roles of TREM2 within these AD mouse models potentially hinge upon factors such as age, sex, brain region, model type, and detection methodologies. CONCLUSIONS This review substantiates the evolving understanding of TREM2's disease progression-dependent impacts. Furthermore, it reviews the interplay between TREM2 and its effects across diverse tissues and temporal stages.
Collapse
Affiliation(s)
- Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Hanchen Yang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Ruiyang Li
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Guangshan Wu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China
| |
Collapse
|
17
|
Sun Z, Zhang X, So KF, Jiang W, Chiu K. Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules 2024; 14:833. [PMID: 39062547 PMCID: PMC11274940 DOI: 10.3390/biom14070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-β (Aβ) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aβ and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aβ and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kwok-Fai So
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou 510632, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Hudgins AD, Zhou S, Arey RN, Rosenfeld MG, Murphy CT, Suh Y. A systems biology-based identification and in vivo functional screening of Alzheimer's disease risk genes reveal modulators of memory function. Neuron 2024; 112:2112-2129.e4. [PMID: 38692279 PMCID: PMC11223975 DOI: 10.1016/j.neuron.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.
Collapse
Affiliation(s)
- Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel N Arey
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael G Rosenfeld
- Department of Medicine, School of Medicine, University of California, La Jolla, CA, USA; Howard Hughes Medical Institute, University of California, La Jolla, CA, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
20
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
21
|
Lin C, Kong Y, Chen Q, Zeng J, Pan X, Miao J. Decoding sTREM2: its impact on Alzheimer's disease - a comprehensive review of mechanisms and implications. Front Aging Neurosci 2024; 16:1420731. [PMID: 38912524 PMCID: PMC11190086 DOI: 10.3389/fnagi.2024.1420731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). This review comprehensively examines sTREM2's involvement in AD, focusing on its regulatory functions in microglial responses, neuroinflammation, and interactions with key pathological processes. We discuss the dynamic changes in sTREM2 levels in cerebrospinal fluid and plasma throughout AD progression, highlighting its potential as a therapeutic target. Furthermore, we explore the impact of genetic variants on sTREM2 expression and its interplay with other AD risk genes. The evidence presented in this review suggests that modulating sTREM2 activity could influence AD trajectory, making it a promising avenue for future research and drug development. By providing a holistic understanding of sTREM2's multifaceted role in AD, this review aims to guide future studies and inspire novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Lin
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Kong
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Qian Chen
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jixiang Zeng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaojin Pan
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jifei Miao
- Shenzhen Bao’an District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Fruhwürth S, Zetterberg H, Paludan SR. Microglia and amyloid plaque formation in Alzheimer's disease - Evidence, possible mechanisms, and future challenges. J Neuroimmunol 2024; 390:578342. [PMID: 38640827 DOI: 10.1016/j.jneuroim.2024.578342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aβ) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aβ plaque formation, as well as their impact on morphological and functional diversity of Aβ plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Søren R Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
23
|
Davis GH, Zaya A, Pearce MMP. Impairment of the Glial Phagolysosomal System Drives Prion-Like Propagation in a Drosophila Model of Huntington's Disease. J Neurosci 2024; 44:e1256232024. [PMID: 38589228 PMCID: PMC11097281 DOI: 10.1523/jneurosci.1256-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H Davis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Aprem Zaya
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Margaret M Panning Pearce
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| |
Collapse
|
24
|
Liu Y, Kwok W, Yoon H, Ryu JC, Stevens P, Hawkinson TR, Shedlock CJ, Ribas RA, Medina T, Keohane SB, Scharre D, Bruschweiler-Li L, Bruschweiler R, Gaultier A, Obrietan K, Sun RC, Yoon SO. Imbalance in Glucose Metabolism Regulates the Transition of Microglia from Homeostasis to Disease-Associated Microglia Stage 1. J Neurosci 2024; 44:e1563232024. [PMID: 38565291 PMCID: PMC11097271 DOI: 10.1523/jneurosci.1563-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct metabolic cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Witty Kwok
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Hyojung Yoon
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Jae Cheon Ryu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210
| | - Tara R Hawkinson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Cameron J Shedlock
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Roberto A Ribas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Terrymar Medina
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Shannon B Keohane
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Douglas Scharre
- Department of Neurology, The Ohio State University, Columbus, Ohio 43210
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Rafael Bruschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, 22908
| | - Karl Obrietan
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida, 32610
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Poxleitner M, Hoffmann SHL, Berezhnoy G, Ionescu TM, Gonzalez-Menendez I, Maier FC, Seyfried D, Ehrlichmann W, Quintanilla-Martinez L, Schmid AM, Reischl G, Trautwein C, Maurer A, Pichler BJ, Herfert K, Beziere N. Western diet increases brain metabolism and adaptive immune responses in a mouse model of amyloidosis. J Neuroinflammation 2024; 21:129. [PMID: 38745337 PMCID: PMC11092112 DOI: 10.1186/s12974-024-03080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.
Collapse
Affiliation(s)
- Marilena Poxleitner
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Florian C Maier
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Walter Ehrlichmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
26
|
Henningfield CM, Soni N, Lee RW, Sharma R, Cleland JL, Green KN. Selective targeting and modulation of plaque associated microglia via systemic hydroxyl dendrimer administration in an Alzheimer's disease mouse model. Alzheimers Res Ther 2024; 16:101. [PMID: 38711159 PMCID: PMC11071231 DOI: 10.1186/s13195-024-01470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND In Alzheimer's disease (AD), microglia surround extracellular plaques and mount a sustained inflammatory response, contributing to the pathogenesis of the disease. Identifying approaches to specifically target plaque-associated microglia (PAMs) without interfering in the homeostatic functions of non-plaque associated microglia would afford a powerful tool and potential therapeutic avenue. METHODS Here, we demonstrated that a systemically administered nanomedicine, hydroxyl dendrimers (HDs), can cross the blood brain barrier and are preferentially taken up by PAMs in a mouse model of AD. As proof of principle, to demonstrate biological effects in PAM function, we treated the 5xFAD mouse model of amyloidosis for 4 weeks via systemic administration (ip, 2x weekly) of HDs conjugated to a colony stimulating factor-1 receptor (CSF1R) inhibitor (D-45113). RESULTS Treatment resulted in significant reductions in amyloid-beta (Aβ) and a stark reduction in the number of microglia and microglia-plaque association in the subiculum and somatosensory cortex, as well as a downregulation in microglial, inflammatory, and synaptic gene expression compared to vehicle treated 5xFAD mice. CONCLUSIONS This study demonstrates that systemic administration of a dendranib may be utilized to target and modulate PAMs.
Collapse
Affiliation(s)
- Caden M Henningfield
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Ryan W Lee
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Rishi Sharma
- Ashvattha Therapeutics, Inc, Redwood City, CA, 94065, USA
| | | | - Kim N Green
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA.
| |
Collapse
|
27
|
Da Mesquita S, Rua R. Brain border-associated macrophages: common denominators in infection, aging, and Alzheimer's disease? Trends Immunol 2024; 45:346-357. [PMID: 38632001 PMCID: PMC11088519 DOI: 10.1016/j.it.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Mammalian brain border-associated macrophages (BAMs) are strategically positioned to support vital properties and processes: for example, the composition of the brain's perivascular extracellular matrix and cerebrospinal fluid flow via the glymphatic pathway. BAMs also effectively restrict the spread of infectious microbes into the brain. However, while fighting infections, BAMs sustain long-term transcriptomic changes and can be replaced by inflammatory monocytes, potentially leading to a gradual loss of their beneficial homeostatic functions. We hypothesize that by expediting the deterioration of BAMs, multiple infection episodes might be associated with accelerated brain aging and the putative development of neurodegenerative diseases. Our viewpoint is supported by recent studies suggesting that rejuvenating aged BAMs, and counterbalancing their detrimental inflammatory signatures during infections, might hold promise in treating aging-related neurological disorders, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | - Rejane Rua
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.
| |
Collapse
|
28
|
Elkjaer ML, Hartebrodt A, Oubounyt M, Weber A, Vitved L, Reynolds R, Thomassen M, Rottger R, Baumbach J, Illes Z. Single-Cell Multi-Omics Map of Cell Type-Specific Mechanistic Drivers of Multiple Sclerosis Lesions. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200213. [PMID: 38564686 PMCID: PMC11073880 DOI: 10.1212/nxi.0000000000200213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND OBJECTIVES In progressive multiple sclerosis (MS), compartmentalized inflammation plays a pivotal role in the complex pathology of tissue damage. The interplay between epigenetic regulation, transcriptional modifications, and location-specific alterations within white matter (WM) lesions at the single-cell level remains underexplored. METHODS We examined intracellular and intercellular pathways in the MS brain WM using a novel dataset obtained by integrated single-cell multi-omics techniques from 3 active lesions, 3 chronic active lesions, 3 remyelinating lesions, and 3 control WM of 6 patients with progressive MS and 3 non-neurologic controls. Single-nucleus RNA-seq and ATAC-seq were combined and additionally enriched with newly conducted spatial transcriptomics from 1 chronic active lesion. Functional gene modules were then validated in our previously published bulk tissue transcriptome data obtained from 73 WM lesions of patients with progressive MS and 25 WM of non-neurologic disease controls. RESULTS Our analysis uncovered an MS-specific oligodendrocyte genetic signature influenced by the KLF/SP gene family. This modulation has potential associations with the autocrine iron uptake signaling observed in transcripts of transferrin and its receptor LRP2. In addition, an inflammatory profile emerged within these oligodendrocytes. We observed unique cellular endophenotypes both at the periphery and within the chronic active lesion. These include a distinct metabolic astrocyte phenotype, the importance of FGF signaling among astrocytes and neurons, and a notable enrichment of mitochondrial genes at the lesion edge populated predominantly by astrocytes. Our study also identified B-cell coexpression networks indicating different functional B-cell subsets with differential location and specific tendencies toward certain lesion types. DISCUSSION The use of single-cell multi-omics has offered a detailed perspective into the cellular dynamics and interactions in MS. These nuanced findings might pave the way for deeper insights into lesion pathogenesis in progressive MS.
Collapse
Affiliation(s)
- Maria L Elkjaer
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne Hartebrodt
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mhaned Oubounyt
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anna Weber
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Vitved
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Reynolds
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Richard Rottger
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- From the Department of Neurology (M.L.E., A.W., Z.I.), Odense University Hospital; BRIDGE (M.L.E., A.W., M.T., Z.I.), Department of Clinical Research; Department of Molecular Medicine (M.L.E., A.W., L.V., Z.I.), University of Southern Denmark, Odense, Denmark; Biomedical Network Science Lab (A.H.), Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Department of Mathematics and Computer Science (A.H., Richard Rottger, J.B.), University of Southern Denmark, Odense, Denmark; Institute for Computational Systems Biology (M.O., J.B.), University of Hamburg, Germany; Department of Brain Sciences (Richard Reynolds), Imperial College, London, United Kingdom; and Clinical Genome Center (M.T.), Research Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
29
|
Lan G, Chen X, Yang J, Sun P, Cai Y, Li A, Zhu Y, Liu Z, Ma S, Guo T. Microglial Reactivity Correlates with Presynaptic Loss Independent of β-Amyloid and Tau. Ann Neurol 2024; 95:917-928. [PMID: 38356322 PMCID: PMC11060909 DOI: 10.1002/ana.26885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE Triggering receptor expressed on myeloid cells-2 (TREM2) and progranulin (PGRN) are critical regulators of microglia activation and can be detected in cerebrospinal fluid (CSF). However, whether microglial reactivity is detrimental or neuroprotective for Alzheimer disease (AD) is still debatable. METHODS We identified 663 participants with baseline β-amyloid (Aβ) positron emission tomography (PET) and CSF biomarker data, including phosphorylated tau181 (p-Tau181), soluble TREM2 (sTREM2), PGRN, and growth-associated protein-43 (GAP-43). Among them, 254 participants had concurrent longitudinal CSF biomarkers. We used multivariate regression analysis to study the associations of CSF microglial biomarkers with Aβ PET, CSF p-Tau181, and CSF GAP-43 cross-sectionally and longitudinally. A Chinese aging cohort's independent CSF samples (n = 65) were analyzed as a validation. RESULTS Higher baseline levels of CSF microglial biomarkers were related to faster rates of CSF sTREM2 increase and CSF PGRN decrease. Elevated CSF p-Tau181 was associated with higher levels of CSF microglial biomarkers and faster rates of CSF sTREM2 increase and CSF PGRN decrease. In both cohorts, higher Aβ burden was associated with attenuated CSF p-Tau181 effects on CSF microglial biomarker increases. Independent of Aβ PET and CSF p-Tau181 pathologies, higher levels of CSF sTREM2 but not CSF PGRN were related to elevated CSF GAP-43 levels and faster rates of CSF GAP-43 increase. INTERPRETATION These findings suggest that higher Aβ burden may attenuate the p-Tau-associated microglial responses, and TREM2-related microglial reactivity may independently correlate with GAP-43-related presynaptic loss. This study highlights the two-edged role of microglial reactivity in AD and other neurodegenerative diseases. ANN NEUROL 2024;95:917-928.
Collapse
Affiliation(s)
- Guoyu Lan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China, 518000
| | - Jie Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Pan Sun
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Yalin Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | - Zhen Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
| | | | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, China, 518000
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China, 518000
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China, 518000
| |
Collapse
|
30
|
Lepiarz-Raba I, Hidayat T, Hannan AJ, Jawaid A. Potential Alzheimer's disease drug targets identified through microglial biology research. Expert Opin Drug Discov 2024; 19:587-602. [PMID: 38590098 DOI: 10.1080/17460441.2024.2335210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Microglia, the primary immune cells in the brain, play multifaceted roles in Alzheimer's disease (AD). Microglia can potentially mitigate the pathological progression of AD by clearing amyloid beta (Aβ) deposits in the brain and through neurotrophic support. In contrast, disproportionate activation of microglial pro-inflammatory pathways, as well as excessive elimination of healthy synapses, can exacerbate neurodegeneration in AD. The challenge, therefore, lies in discerning the precise regulation of the contrasting microglial properties to harness their therapeutic potential in AD. AREAS COVERED This review examines the evidence relevant to the disease-modifying effects of microglial manipulators in AD preclinical models. The deleterious pro-inflammatory effects of microglia in AD can be ameliorated via direct suppression or indirectly through metabolic manipulation, epigenetic targeting, and modulation of the gut-brain axis. Furthermore, microglial clearance of Aβ deposits in AD can be enhanced via strategically targeting microglial membrane receptors, lysosomal functions, and metabolism. EXPERT OPINION Given the intricate and diverse nature of microglial responses throughout the course of AD, therapeutic interventions directed at microglia warrant a tactical approach. This could entail employing therapeutic regimens, which concomitantly suppress pro-inflammatory microglial responses while selectively enhancing Aβ phagocytosis.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Taufik Hidayat
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ali Jawaid
- Laboratory for Translational Research in Exposures and Neuropsychiatric Disorders (TREND), Braincity: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
31
|
Vandermeulen L, Geric I, Fumagalli L, Kreir M, Lu A, Nonneman A, Premereur J, Wolfs L, Policarpo R, Fattorelli N, De Bondt A, Van Den Wyngaert I, Asselbergh B, Fiers M, De Strooper B, d'Ydewalle C, Mancuso R. Regulation of human microglial gene expression and function via RNAase-H active antisense oligonucleotides in vivo in Alzheimer's disease. Mol Neurodegener 2024; 19:37. [PMID: 38654375 PMCID: PMC11040766 DOI: 10.1186/s13024-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-β plaques in vivo in a model of AD. CONCLUSIONS This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.
Collapse
Affiliation(s)
- Lina Vandermeulen
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ivana Geric
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Laura Fumagalli
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mohamed Kreir
- Preclinical Development & Safety, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ashley Lu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Annelies Nonneman
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Jessie Premereur
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Rafaela Policarpo
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Nicola Fattorelli
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium.
| | - Renzo Mancuso
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium.
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
32
|
Niso-Santano M, Fuentes JM, Galluzzi L. Immunological aspects of central neurodegeneration. Cell Discov 2024; 10:41. [PMID: 38594240 PMCID: PMC11004155 DOI: 10.1038/s41421-024-00666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
The etiology of various neurodegenerative disorders that mainly affect the central nervous system including (but not limited to) Alzheimer's disease, Parkinson's disease and Huntington's disease has classically been attributed to neuronal defects that culminate with the loss of specific neuronal populations. However, accumulating evidence suggests that numerous immune effector cells and the products thereof (including cytokines and other soluble mediators) have a major impact on the pathogenesis and/or severity of these and other neurodegenerative syndromes. These observations not only add to our understanding of neurodegenerative conditions but also imply that (at least in some cases) therapeutic strategies targeting immune cells or their products may mediate clinically relevant neuroprotective effects. Here, we critically discuss immunological mechanisms of central neurodegeneration and propose potential strategies to correct neurodegeneration-associated immunological dysfunction with therapeutic purposes.
Collapse
Affiliation(s)
- Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain.
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - José M Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Hou J, Chen Y, Cai Z, Heo GS, Yuede CM, Wang Z, Lin K, Saadi F, Trsan T, Nguyen AT, Constantopoulos E, Larsen RA, Zhu Y, Wagner ND, McLaughlin N, Kuang XC, Barrow AD, Li D, Zhou Y, Wang S, Gilfillan S, Gross ML, Brioschi S, Liu Y, Holtzman DM, Colonna M. Antibody-mediated targeting of human microglial leukocyte Ig-like receptor B4 attenuates amyloid pathology in a mouse model. Sci Transl Med 2024; 16:eadj9052. [PMID: 38569016 DOI: 10.1126/scitranslmed.adj9052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-β (Aβ) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aβ and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aβ plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aβ load, mitigated some Aβ-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zuoxu Wang
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kent Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Fareeha Saadi
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel A Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yiyang Zhu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nolan McLaughlin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xinyi Cynthia Kuang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alexander D Barrow
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shoutang Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Ferguson CM, Hildebrand S, Godinho BMDC, Buchwald J, Echeverria D, Coles A, Grigorenko A, Vangjeli L, Sousa J, McHugh N, Hassler M, Santarelli F, Heneka MT, Rogaev E, Khvorova A. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer's disease. Alzheimers Dement 2024; 20:2632-2652. [PMID: 38375983 PMCID: PMC11032532 DOI: 10.1002/alz.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.
Collapse
Affiliation(s)
- Chantal M. Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Bruno M. D. C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Andrew Coles
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Grigorenko
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Lorenc Vangjeli
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael T. Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB)Esch‐sur‐AlzetteLuxembourg
| | - Evgeny Rogaev
- Department of PsychiatryUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
35
|
Ahmed S, Ma N, Kawanokuchi J, Matsuoka K, Oikawa S, Kobayashi H, Hiraku Y, Murata M. Taurine reduces microglia activation in the brain of aged senescence-accelerated mice by increasing the level of TREM2. Sci Rep 2024; 14:7427. [PMID: 38548872 PMCID: PMC10978912 DOI: 10.1038/s41598-024-57973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/23/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disorder, is the leading cause of dementia. Over-activated microglia is related to amyloid-beta (Aβ) and phosphorylated tau (phospho-tau) accumulation in the AD brain. Taurine is an amino acid with multiple physiological functions including anti-inflammatory effects, and has been reported to be neuroprotective in AD. However, the role of taurine in microglia-mediated AD remains unclear. Here, we examined the effects of taurine on the brains of senescence-accelerated mouse prone 8 (SAMP8) mice by comparing those administered 1% taurine water with those administered distilled water (DW). We observed increased levels of taurine and taurine transporter (TAUT) in the brains of the taurine-treated mice compared with those of control mice. Immunohistochemical and Western blot analyses revealed that taurine significantly reduced the number of activated microglia, levels of phospho-tau and Aβ deposit in the hippocampus and cortex. Triggering receptors expressed on myeloid cells-2 (TREM2) are known to protect against AD pathogenesis. Taurine upregulated TREM2 expression in the hippocampus and cortex. In conclusion, the present study suggests that taurine treatment may upregulate TREM2 to protect against microglia over-activation by decreasing the accumulation of phospho-tau and Aβ; providing an insight into a novel preventive strategy in AD.
Collapse
Affiliation(s)
- Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Jun Kawanokuchi
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiya Matsuoka
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
36
|
Kim YS, Choi SH, Kim KY, Navia-Pelaez JM, Perkins GA, Choi S, Kim J, Nazarenkov N, Rissman RA, Ju WK, Ellisman MH, Miller YI. AIBP controls TLR4 inflammarafts and mitochondrial dysfunction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580751. [PMID: 38586011 PMCID: PMC10996524 DOI: 10.1101/2024.02.16.580751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease (AD). Microglia activation is accompanied by the formation and chronic maintenance of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aβ) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased ROS and the dilated ER. The size and number of Aβ plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/- APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in AD associated oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jungsu Kim
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicolaus Nazarenkov
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
37
|
Yu C, Lad EM, Mathew R, Shiraki N, Littleton S, Chen Y, Hou J, Schlepckow K, Degan S, Chew L, Amason J, Kalnitsky J, Bowes Rickman C, Proia AD, Colonna M, Haass C, Saban DR. Microglia at sites of atrophy restrict the progression of retinal degeneration via galectin-3 and Trem2. J Exp Med 2024; 221:e20231011. [PMID: 38289348 PMCID: PMC10826045 DOI: 10.1084/jem.20231011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Outer retinal degenerations, including age-related macular degeneration (AMD), are characterized by photoreceptor and retinal pigment epithelium (RPE) atrophy. In these blinding diseases, macrophages accumulate at atrophic sites, but their ontogeny and niche specialization remain poorly understood, especially in humans. We uncovered a unique profile of microglia, marked by galectin-3 upregulation, at atrophic sites in mouse models of retinal degeneration and human AMD. In disease models, conditional deletion of galectin-3 in microglia led to phagocytosis defects and consequent augmented photoreceptor death, RPE damage, and vision loss, indicating protective roles. Mechanistically, Trem2 signaling orchestrated microglial migration to atrophic sites and induced galectin-3 expression. Moreover, pharmacologic Trem2 agonization led to heightened protection but in a galectin-3-dependent manner. In elderly human subjects, we identified this highly conserved microglial population that expressed galectin-3 and Trem2. This population was significantly enriched in the macular RPE-choroid of AMD subjects. Collectively, our findings reveal a neuroprotective population of microglia and a potential therapeutic target for mitigating retinal degeneration.
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Eleonora M. Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Nobuhiko Shiraki
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
| | - Simone Degan
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Lindsey Chew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua Amason
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Alan D. Proia
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, NC, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Haass
- German Center for Neurodegenerative Diseases Munich, Munich, Germany
- Chair of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Daniel R. Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University, Durham, NC, USA
| |
Collapse
|
38
|
Davis GH, Zaya A, Pearce MMP. Impairment of the glial phagolysosomal system drives prion-like propagation in a Drosophila model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560952. [PMID: 38370619 PMCID: PMC10871239 DOI: 10.1101/2023.10.04.560952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative diseases pathogenesis. Phagocytic glia are responsible for regulating the load of pathogenic protein aggregates in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. Finally, a forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings reveal new mechanisms that enhance our understanding of the beneficial and potentially harmful effects of phagocytic glia in HD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H. Davis
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Aprem Zaya
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Margaret M. Panning Pearce
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| |
Collapse
|
39
|
Balak CD, Han CZ, Glass CK. Deciphering microglia phenotypes in health and disease. Curr Opin Genet Dev 2024; 84:102146. [PMID: 38171044 DOI: 10.1016/j.gde.2023.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Microglia are the major immune cells of the central nervous system (CNS) that perform numerous adaptive functions required for normal CNS development and homeostasis but are also linked to neurodegenerative and behavioral diseases. Microglia development and function are strongly influenced by brain environmental signals that are integrated at the level of transcriptional enhancers to drive specific programs of gene expression. Here, we describe a conceptual framework for how lineage-determining and signal-dependent transcription factors interact to select and regulate the ensembles of enhancers that determine microglia development and function. We then highlight recent findings that advance these concepts and conclude with a consideration of open questions that represent some of the major hurdles to be addressed in the future.
Collapse
Affiliation(s)
- Christopher D Balak
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Biomedical Sciences Graduate Program, University of California, San Diego, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, USA; Department of Medicine, University of California, San Diego, USA.
| |
Collapse
|
40
|
Yamakawa M, Rexach JE. Cell States and Interactions of CD8 T Cells and Disease-Enriched Microglia in Human Brains with Alzheimer's Disease. Biomedicines 2024; 12:308. [PMID: 38397909 PMCID: PMC10886701 DOI: 10.3390/biomedicines12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a multi-stage neurodegenerative disorder characterized by beta-amyloid accumulation, hyperphosphorylated Tau deposits, neurodegeneration, neuroinflammation, and cognitive impairment. Recent studies implicate CD8 T cells as neuroimmune responders to the accumulation of AD pathology in the brain and potential contributors to toxic neuroinflammation. However, more evidence is needed to understand lymphocytes in disease, including their functional states, molecular mediators, and interacting cell types in diseased brain tissue. The scarcity of lymphocytes in brain tissue samples has limited the unbiased profiling of disease-associated cell types, cell states, drug targets, and relationships to common AD genetic risk variants based on transcriptomic analyses. However, using recent large-scale, high-quality single-nuclear sequencing datasets from over 84 Alzheimer's disease and control cases, we leverage single-nuclear RNAseq data from 800 lymphocytes collected from 70 individuals to complete unbiased molecular profiling. We demonstrate that effector memory CD8 T cells are the major lymphocyte subclass enriched in the brain tissues of individuals with AD dementia. We define disease-enriched interactions involving CD8 T cells and multiple brain cell subclasses including two distinct microglial disease states that correlate, respectively, to beta-amyloid and tau pathology. We find that beta-amyloid-associated microglia are a major hub of multicellular cross-talk gained in disease, including interactions involving both vulnerable neuronal subtypes and CD8 T cells. We reproduce prior reports that amyloid-response microglia are depleted in APOE4 carriers. Overall, these human-based studies provide additional support for the potential relevance of effector memory CD8 T cells as a lymphocyte population of interest in AD dementia and provide new candidate interacting partners and drug targets for further functional study.
Collapse
Affiliation(s)
| | - Jessica E. Rexach
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
41
|
Biechele G, Rauchmann BS, Janowitz D, Buerger K, Franzmeier N, Weidinger E, Guersel S, Schuster S, Finze A, Harris S, Lindner S, Albert NL, Wetzel C, Rupprecht R, Rominger A, Palleis C, Katzdobler S, Burow L, Kurz C, Zaganjori M, Trappmann LK, Goldhardt O, Grimmer T, Haeckert J, Keeser D, Stoecklein S, Morenas-Rodriguez E, Bartenstein P, Levin J, Höglinger GU, Simons M, Perneczky R, Brendel M. Associations between sex, body mass index and the individual microglial response in Alzheimer's disease. J Neuroinflammation 2024; 21:30. [PMID: 38263017 PMCID: PMC10804830 DOI: 10.1186/s12974-024-03020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES 18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between β-amyloid-accumulation and microglial activation in AD. METHODS 49 patients with AD (29 females, all Aβ-positive) and 15 Aβ-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and β-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional Aβ-PET on TSPO-PET was used to determine the Aβ-plaque-dependent microglial response (slope) and the Aβ-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI). RESULTS In AD, females showed higher mean cortical TSPO-PET z-scores (0.91 ± 0.49; males 0.30 ± 0.75; p = 0.002), while Aβ-PET z-scores were similar. The Aβ-plaque-independent microglial response was stronger in females with AD (+ 0.37 ± 0.38; males with AD - 0.33 ± 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the Aβ-plaque-dependent microglial response was not different between sexes. The Aβ-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the Aβ-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005). CONCLUSION While microglia response to fibrillar Aβ is similar between sexes, women with AD show a stronger Aβ-plaque-independent microglia response. This sex difference in Aβ-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the Aβ-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.
Collapse
Affiliation(s)
- Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Gothenburg, Sweden
| | - Endy Weidinger
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena-Katharina Trappmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University Munich, Klinikum Rechts Der Isar, Munich, Germany
| | - Jan Haeckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, TU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, University of Munich, Marchioninstraße 15, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
42
|
Wang T, Zhang X, Liu W, Ning F, Hu X, Qin L, Cui M, Yang J, Lv S, Wang Q. Identification of diagnostic molecules and potential traditional Chinese medicine components for Alzheimer's disease by single cell RNA sequencing combined with a systematic framework for network pharmacology. Front Med (Lausanne) 2024; 10:1335512. [PMID: 38249960 PMCID: PMC10799563 DOI: 10.3389/fmed.2023.1335512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background Single-cell RNA sequencing (scRNA-Seq) provides new perspectives and ideas to investigate the interactions between different cell types and organisms. By integrating scRNA-seq with new computational frameworks or specific technologies, better Alzheimer's disease (AD) treatments may be developed. Methods The single-cell sequencing dataset GSE158234 was obtained from the GEO database. Preprocessing, quality control, dimensionality-reducing clustering, and annotation to identify cell types were performed on it. RNA-seq profiling dataset GSE238013 was used to determine the components of specific cell subpopulations in diverse samples. A set of genes included in the OMIM, Genecards, CTD, and DisGeNET databases were selected as highly plausible AD-related genes. Then, ROC curves were created to predict the diagnostic value using the significantly expressed genes in the KO group as hub genes. The genes mentioned above were mapped to the Coremine Medical database to forecast prospective therapeutic Chinese medicines, and a "Chinese medicine-ingredient-target" network was constructed to screen for potential therapeutic targets. The last step was to undertake Mendelian randomization research to determine the causal link between the critical gene IL1B and AD in the genome-wide association study. Results Using the scRNA-seq dataset, five unique cell clusters were discovered. These clusters were further subdivided into four distinct cell types using marker genes. The KO group showed a more substantial differential subgroup of macrophages than the WT group. By using the available datasets and PPI network analysis, 54 common genes were discovered. Four clusters were identified using the MCODE approach, and correlation analysis showed that seven genes in those four clusters had a significantly negative correlation with macrophages. Six genes in four sets had a significantly positive correlation. Five genes had different levels of expression in the WT and KO groups. The String database was used to identify the regulatory relationships between the four genes (IL10, CX3CR1, IL1B, and IL6) that were finally selected as AD hub genes. Screening identified potential traditional Chinese medicine to intervene in the transformation process of AD, including Radix Salviae, ginseng, Ganoderma, licorice, Coptidis Rhizoma, and Scutellariae Radix, in addition to promising therapeutic targets, such as PTGS1, PTGS2, and RXRA. Finally, it was shown that IL1B directly correlated with immune cell infiltration in AD. In inverse variance weighting, we found that IL1B was associated with a higher risk of AD, with an OR of 1.003 (95% CI = 1.001-1.006, p = 0.038). Conclusion Our research combined network pharmacology and the scRNA-seq computational framework to uncover pertinent hub genes and prospective traditional Chinese medicine potential therapeutic targets for AD. These discoveries may aid in understanding the molecular processes behind AD genes and the development of novel medications to treat the condition.
Collapse
Affiliation(s)
- Tao Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Xinlei Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wenxin Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Fangli Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xingling Hu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Lei Qin
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Jinyue Yang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
43
|
Khaled M, Al-Jamal H, Tajer L, El-Mir R. Alzheimer's Disease in Lebanon: Exploring Genetic and Environmental Risk Factors-A Comprehensive Review. J Alzheimers Dis 2024; 99:21-40. [PMID: 38640157 DOI: 10.3233/jad-231432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that displays a high prevalence in Lebanon causing a local burden in healthcare and socio-economic sectors. Unfortunately, the lack of prevalence studies and clinical trials in Lebanon minimizes the improvement of AD patient health status. In this review, we include over 155 articles to cover the different aspects of AD ranging from mechanisms to possible treatment and management tools. We highlight some important modifiable and non-modifiable risk factors of the disease including genetics, age, cardiovascular diseases, smoking, etc. Finally, we propose a hypothetical genetic synergy model between APOE4 and TREM2 genes which constitutes a potential early diagnostic tool that helps in reducing the risk of AD based on preventative measures decades before cognitive decline. The studies on AD in Lebanon and the Middle East are scarce. This review points out the importance of genetic mapping in the understanding of disease pathology which is crucial for the emergence of novel diagnostic tools. Hence, we establish a rigid basis for further research to identify the most influential genetic and environmental risk factors for the purpose of using more specific diagnostic tools and possibly adopting a local management protocol.
Collapse
Affiliation(s)
| | - Hadi Al-Jamal
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Layla Tajer
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Reem El-Mir
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
44
|
Ling Y, Crotti A. Emerging Microglial Therapies and Targets in Clinical Trial. ADVANCES IN NEUROBIOLOGY 2024; 37:623-637. [PMID: 39207717 DOI: 10.1007/978-3-031-55529-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.
Collapse
Affiliation(s)
- Yan Ling
- Neuroscience Translational Medicine, Takeda Pharmaceutical Co. Ltd., Tokyo, Japan
| | | |
Collapse
|
45
|
Chiang YK, Lin YS, Chen CY, Lirng JF, Yang YH, Lee WJ, Fuh JL. Different Splice Isoforms of Peripheral Triggering Receptor Expressed on Myeloid Cells 2 mRNA Expressions are Associated With Cognitive Decline in Mild Dementia Due to Alzheimer's Disease and Reflect Central Neuroinflammation. Am J Alzheimers Dis Other Demen 2024; 39:15333175241243183. [PMID: 38592304 PMCID: PMC11005501 DOI: 10.1177/15333175241243183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is upregulated in activated microglia and may be related to cognitive decline in patients with Alzheimer's disease (AD). There is conflicting evidence regarding the association of peripheral TREM2 mRNA expression/soluble TREM2 (the extracellular domain of TREM2) with cognitive function/neuroinflammation in patients with AD. Herein, we studied the TREM2 and TREM2alt mRNA expression and their association with the cognitive performance in subjects with mild dementia due to AD and healthy controls. In a subgroup of patients with AD, magnetic resonance spectroscopy was used to measure the myo-inositol level in the posterior cingulate cortex, a surrogate marker for neuroinflammation. The results showed that increased TREM2 and TREM2alt mRNA expression is associated with AD pathogenesis at the mild dementia stage, thereby serving as a potential biomarker for early symptomatic stage of AD. TREM2 may exert protective effects on both cognition and central neuroinflammation.
Collapse
Affiliation(s)
- Yi-Kuan Chiang
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Shuan Lin
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Chen
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Hsiu Yang
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ju Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jong-Ling Fuh
- Division of General Neurology, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
46
|
Ayyubova G. APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:342-352. [PMID: 36872358 DOI: 10.2174/1871527322666230303114425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, the main pathological hallmark of which is the loss of neurons, resulting in cognitive and memory impairments. Sporadic late-onset AD is a prevalent form of the disease and the apolipoprotein E4 (APOE4) genotype is the strongest predictor of the disease development. The structural variations of APOE isoforms affect their roles in synaptic maintenance, lipid trafficking, energy metabolism, inflammatory response, and BBB integrity. In the context of AD, APOE isoforms variously control the key pathological elements of the disease, including Aβ plaque formation, tau aggregation, and neuroinflammation. Taking into consideration the limited number of therapy choices that can alleviate symptoms and have little impact on the AD etiology and progression to date, the precise research strategies guided by apolipoprotein E (APOE) polymorphisms are required to assess the potential risk of age-related cognitive decline in people carrying APOE4 genotype. In this review, we summarize the evidence implicating the significance of APOE isoforms on brain functions in health and pathology with the aim to identify the possible targets that should be addressed to prevent AD manifestation in individuals with the APOE4 genotype and to explore proper treatment strategies.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
47
|
Xu Y, Gao W, Sun Y, Wu M. New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 2023; 17:1308345. [PMID: 38188026 PMCID: PMC10770846 DOI: 10.3389/fnins.2023.1308345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Microglia are immune cells within the central nervous system (CNS) closely linked to brain health and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In response to changes in the surrounding environment, microglia activate and change their state and function. Several factors, example for circadian rhythm disruption and the development of neurodegenerative diseases, influence microglia activation. In this review, we explore microglia's function and the associated neural mechanisms. We elucidate that circadian rhythms are essential factors influencing microglia activation and function. Circadian rhythm disruption affects microglia activation and, consequently, neurodegenerative diseases. In addition, we found that abnormal microglia activation is a common feature of neurodegenerative diseases and an essential factor of disease development. Here we highlight the importance of microglia activation in neurodegenerative diseases. Targeting microglia for neurodegenerative disease treatment is a promising direction. We introduce the progress of methods targeting microglia for the treatment of neurodegenerative diseases and summarize the progress of drugs developed with microglia as targets, hoping to provide new ideas for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yucong Xu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
He Y, Liu T, He Q, Ke W, Li X, Du J, Deng S, Shu Z, Wu J, Yang B, Wang Y, Mao Y, Rao Y, Shu Y, Peng B. Microglia facilitate and stabilize the response to general anesthesia via modulating the neuronal network in a brain region-specific manner. eLife 2023; 12:RP92252. [PMID: 38131301 PMCID: PMC10746144 DOI: 10.7554/elife.92252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
General anesthesia leads to a loss of consciousness and an unrousable state in patients. Although general anesthetics are widely used in clinical practice, their underlying mechanisms remain elusive. The potential involvement of nonneuronal cells is unknown. Microglia are important immune cells in the central nervous system (CNS) that play critical roles in CNS function and dysfunction. We unintentionally observed delayed anesthesia induction and early anesthesia emergence in microglia-depleted mice. We found that microglial depletion differentially regulates neuronal activities by suppressing the neuronal network of anesthesia-activated brain regions and activating emergence-activated brain regions. Thus, microglia facilitate and stabilize the anesthesia status. This influence is not mediated by dendritic spine plasticity. Instead, it relies on the activation of microglial P2Y12 and subsequent calcium influx, which facilitates the general anesthesia response. Together, we elucidate the regulatory role of microglia in general anesthesia, extending our knowledge of how nonneuronal cells modulate neuronal activities.
Collapse
Affiliation(s)
- Yang He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Taohui Liu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Quansheng He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Wei Ke
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Xiaoyu Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jinjin Du
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Suixin Deng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Zhenfeng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jialin Wu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Baozhi Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Yuqing Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Yousheng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- Co-Innovation Center of Neurodegeneration, Nantong UniversityNantongChina
| |
Collapse
|
49
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
50
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|