1
|
Osada T, Nakajima K, Shirokoshi T, Ogawa A, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. Multiple insular-prefrontal pathways underlie perception to execution during response inhibition in humans. Nat Commun 2024; 15:10380. [PMID: 39627197 PMCID: PMC11615282 DOI: 10.1038/s41467-024-54564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Inhibiting prepotent responses in the face of external stop signals requires complex information processing, from perceptual to control processing. However, the cerebral circuits underlying these processes remain elusive. In this study, we used neuroimaging and brain stimulation to investigate the interplay between human brain regions during response inhibition at the whole-brain level. Magnetic resonance imaging suggested a sequential four-step processing pathway: initiating from the primary visual cortex (V1), progressing to the dorsal anterior insula (daINS), then involving two essential regions in the inferior frontal cortex (IFC), namely the ventral posterior IFC (vpIFC) and anterior IFC (aIFC), and reaching the basal ganglia (BG)/primary motor cortex (M1). A combination of ultrasound stimulation and time-resolved magnetic stimulation elucidated the causal influence of daINS on vpIFC and the unidirectional dependence of aIFC on vpIFC. These results unveil asymmetric pathways in the insular-prefrontal cortex and outline the macroscopic cerebral circuits for response inhibition: V1→daINS→vpIFC/aIFC→BG/M1.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomohiko Shirokoshi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Sportology Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Atkinson-Clement C, Alkhawashki M, Gatica M, Ross J, Kaiser M. Dynamic changes in human brain connectivity following ultrasound neuromodulation. Sci Rep 2024; 14:30025. [PMID: 39627315 PMCID: PMC11614892 DOI: 10.1038/s41598-024-81102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Non-invasive neuromodulation represents a major opportunity for brain interventions, and transcranial focused ultrasound (FUS) is one of the most promising approaches. However, some challenges prevent the community from fully understanding its outcomes. We aimed to address one of them and unravel the temporal dynamics of FUS effects in humans. Twenty-two healthy volunteers participated in the study. Eleven received FUS in the right inferior frontal cortex while the other 11 were stimulated in the right thalamus. Using a temporal dynamic approach, we compared resting-state fMRI seed-based functional connectivity obtained before and after FUS. We also assessed behavioural changes as measured with a task of reactive motor inhibition. Our findings reveal that the effects of FUS are predominantly time-constrained and spatially distributed in brain regions functionally connected with the directly stimulated area. In addition, mediation analysis highlighted that FUS applied in the right inferior cortex was associated with behavioural alterations which was directly explained by the applied acoustic pressure and the brain functional connectivity change we observed. Our study underscored that the biological effects of FUS are indicative of behavioural changes observed more than an hour following stimulation and are directly related to the applied acoustic pressure.
Collapse
Affiliation(s)
- Cyril Atkinson-Clement
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK.
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| | | | - Marilyn Gatica
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- NPLab, Network Science Institute, Northeastern University London, London, UK
| | - James Ross
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marcus Kaiser
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Yu K, Schmitt S, Ni Y, Crane EC, Smith MA, He B. Transcranial focused ultrasound remotely modulates extrastriate visual cortex by stimulating frontal eye field with subregion specificity. J Neural Eng 2024; 21:066018. [PMID: 39556944 PMCID: PMC11602733 DOI: 10.1088/1741-2552/ad9406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
Objective.Low-intensity transcranial focused ultrasound (tFUS) has emerged as a powerful neuromodulation tool characterized by its deep penetration and precise spatial targeting to influence neural activity. Our study directed low-intensity tFUS stimulation onto a region of prefrontal cortex (the frontal eye field, or FEF) of a rhesus macaque to examine its impact on a remote site, the extrastriate visual cortex (area V4) through this top-down modulatory circuit that has been studied extensively with electrical microstimulation.Approach.To measure the impact of tFUS stimulation, we recorded local field potentials and multi-unit spiking activities from a multi-electrode array implanted in the visual cortex. To deliver tFUS stimulation, we leveraged a customized 128-element random array ultrasound transducer with precise spatial targeting.Main results.We observed that tFUS stimulation in FEF produced modulation of V4 neuronal activity, either through enhancement or suppression, dependent on the pulse repetition frequency of the tFUS stimulation. Electronically steering the transcranial ultrasound focus through the targeted FEF cortical region produced changes in the level of modulation, indicating that the tFUS stimulation was spatially targeted within FEF. Modulation of V4 activity was confined to specific frequency bands, and this modulation was dependent on the presence or absence of a visual stimulus during tFUS stimulation. A control study targeting the insula produced no effect, emphasizing the region-specific nature of tFUS neuromodulation.Significance.Our findings shed light on the capacity of tFUS to modulate specific neural pathways and provide a comprehensive understanding of its potential applications for neuromodulation within brain networks.
Collapse
Affiliation(s)
- Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Samantha Schmitt
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Yunruo Ni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Emily C Crane
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Matthew A Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
4
|
Ennasr A, Isaac G, Strohman A, Legon W. Examination of the interaction of parameters for low-intensity focused ultrasound of the human motor cortex. Brain Stimul 2024; 17:1293-1306. [PMID: 39577741 DOI: 10.1016/j.brs.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Low-intensity focused ultrasound (LIFU) is a promising form of non-invasive neuromodulation characterized by a rich parameter space that includes intensity, duration, duty cycle and pulsing strategy. The effect and interaction of these parameters to affect human brain activity is poorly understood. A better understanding of how parameters interact is critical to advance LIFU as a potential therapeutic. OBJECTIVE/HYPOTHESIS To determine how intensity, duration, and duty cycle interact to produce neuromodulation effects in the human motor cortex. Further, this study assesses the effect of pulsing versus continuous ultrasound. We hypothesize that higher duty cycles will confer excitation. Increasing intensity or duration will increase the magnitude of effect. Pulsing LIFU will not be more effective than continuous wave ultrasound. METHODS N = 18 healthy human volunteers underwent 20 different parameter combinations that included a fully parametrized set of two intensities (ISPPA: 6 & 24 W/cm2), five duty cycles (1, 10, 30, 50, 70 %) and two durations (100, 500 msec) with a constant pulse repetition frequency of 1 kHz delivered concurrently with transcranial magnetic stimulation (TMS) to the primary motor cortex (M1). Four of these parameter combinations were also delivered continuously, matched on the number of cycles. Motor-evoked potential (MEP) amplitude was the primary outcome measure. All parameter combinations were collected time-locked to MEP generation. RESULTS There was no evidence of excitation from any parameter combination. 3 of the 24 parameter sets resulted in significant inhibition. The parameter set that resulted in the greatest inhibition (∼30 %) was an intensity of 6W/cm2 with a duty cycle of 30 % and a duration of 500 msec. A three-way ANOVA revealed an interaction of intensity and duty cycle. The analysis of continuous versus pulsed ultrasound revealed a 3-way interaction of intensity, pulsing, and the number of cycles such that under the 6W/cm2 condition higher cycles of pulsed ultrasound resulted in inhibition whereas lower number of cycles using continuous LIFU resulted in inhibition. CONCLUSIONS LIFU to M1 in humans, in the range employed, either conferred inhibition or had no effect. Significant excitation was not observed. In general, lower intensity looks to be more efficacious for inhibition that depends on duration. In addition, pulsed ultrasound looks to be more effective for inhibition as compared to continuous wave after controlling for total energy delivered. Non-specific auditory effects may contribute to these results.
Collapse
Affiliation(s)
- Areej Ennasr
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Gabriel Isaac
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
5
|
Nandi T, Kop BR, Butts Pauly K, Stagg CJ, Verhagen L. The relationship between parameters and effects in transcranial ultrasonic stimulation. Brain Stimul 2024; 17:1216-1228. [PMID: 39447740 DOI: 10.1016/j.brs.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Transcranial ultrasonic stimulation (TUS) is rapidly gaining traction for non-invasive human neuromodulation, with a pressing need to establish protocols that maximise neuromodulatory efficacy. In this review, we aggregate and examine empirical evidence for the relationship between tunable TUS parameters and in vitro and in vivo outcomes. Based on this multiscale approach, TUS researchers can make better informed decisions about optimal parameter settings. Importantly, we also discuss the challenges involved in extrapolating results from prior empirical work to future interventions, including the translation of protocols between models and the complex interaction between TUS protocols and the brain. A synthesis of the empirical evidence suggests that larger effects will be observed at lower frequencies within the sub-MHz range, higher intensities and pressures than commonly administered thus far, and longer pulses and pulse train durations. Nevertheless, we emphasise the need for cautious interpretation of empirical data from different experimental paradigms when basing protocols on prior work as we advance towards refined TUS parameters for human neuromodulation.
Collapse
Affiliation(s)
- Tulika Nandi
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands.
| | - Benjamin R Kop
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands.
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, FMRIB Building, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK.
| | - Lennart Verhagen
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Murphy KR, Farrell JS, Bendig J, Mitra A, Luff C, Stelzer IA, Yamaguchi H, Angelakos CC, Choi M, Bian W, DiIanni T, Pujol EM, Matosevich N, Airan R, Gaudillière B, Konofagou EE, Butts-Pauly K, Soltesz I, de Lecea L. Optimized ultrasound neuromodulation for non-invasive control of behavior and physiology. Neuron 2024; 112:3252-3266.e5. [PMID: 39079529 DOI: 10.1016/j.neuron.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024]
Abstract
Focused ultrasound can non-invasively modulate neural activity, but whether effective stimulation parameters generalize across brain regions and cell types remains unknown. We used focused ultrasound coupled with fiber photometry to identify optimal neuromodulation parameters for four different arousal centers of the brain in an effort to yield overt changes in behavior. Applying coordinate descent, we found that optimal parameters for excitation or inhibition are highly distinct, the effects of which are generally conserved across brain regions and cell types. Optimized stimulations induced clear, target-specific behavioral effects, whereas non-optimized protocols of equivalent energy resulted in substantially less or no change in behavior. These outcomes were independent of auditory confounds and, contrary to expectation, accompanied by a cyclooxygenase-dependent and prolonged reduction in local blood flow and temperature with brain-region-specific scaling. These findings demonstrate that carefully tuned and targeted ultrasound can exhibit powerful effects on complex behavior and physiology.
Collapse
Affiliation(s)
- Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, MA, USA
| | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Anish Mitra
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Charlotte Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesia, Stanford University, Stanford, CA, USA
| | - Hiroshi Yamaguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Neuroscience, Nagoya University, Nagoya, Japan
| | | | - Mihyun Choi
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Wenjie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tommaso DiIanni
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esther Martinez Pujol
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Noa Matosevich
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raag Airan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kim Butts-Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Murphy K, Fouragnan E. The future of transcranial ultrasound as a precision brain interface. PLoS Biol 2024; 22:e3002884. [PMID: 39471185 PMCID: PMC11521279 DOI: 10.1371/journal.pbio.3002884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Our understanding of brain circuit operations and disorders has rapidly outpaced our ability to intervene and restore them. Developing technologies that can precisely interface with any brain region and circuit may combine diagnostics with therapeutic intervention, expediting personalised brain medicine. Transcranial ultrasound stimulation (TUS) is a promising noninvasive solution to this challenge, offering focal precision and scalability. By exploiting the biomechanics of pressure waves on brain tissue, TUS enables multi-site targeted neuromodulation across distributed circuits in the cortex and deeper areas alike. In this Essay, we explore the emergent evidence that TUS can functionally test and modify dysfunctional regions, effectively serving as a search and rescue tool for the brain. We define the challenges and opportunities faced by TUS as it moves towards greater target precision and integration with advanced brain monitoring and interventional technology. Finally, we propose a roadmap for the evolution of TUS as it progresses from a research tool to a clinically validated therapeutic for brain disorders.
Collapse
Affiliation(s)
- Keith Murphy
- Department of Radiology, Stanford University, Stanford, California, United States of America
- Attune Neurosciences, San Francisco, California, United States of America
| | - Elsa Fouragnan
- Brain Research and Imaging Centre, University of Plymouth, Plymouth, United Kingdom
- School of psychology, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
8
|
Wong JJ, Bongioanni A, Rushworth MFS, Chau BKH. Distractor effects in decision making are related to the individual's style of integrating choice attributes. eLife 2024; 12:RP91102. [PMID: 39316515 PMCID: PMC11421849 DOI: 10.7554/elife.91102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Humans make irrational decisions in the presence of irrelevant distractor options. There is little consensus on whether decision making is facilitated or impaired by the presence of a highly rewarding distractor, or whether the distractor effect operates at the level of options' component attributes rather than at the level of their overall value. To reconcile different claims, we argue that it is important to consider the diversity of people's styles of decision making and whether choice attributes are combined in an additive or multiplicative way. Employing a multi-laboratory dataset investigating the same experimental paradigm, we demonstrated that people used a mix of both approaches and the extent to which approach was used varied across individuals. Critically, we identified that this variability was correlated with the distractor effect during decision making. Individuals who tended to use a multiplicative approach to compute value, showed a positive distractor effect. In contrast, a negative distractor effect (divisive normalisation) was prominent in individuals tending towards an additive approach. Findings suggest that the distractor effect is related to how value is constructed, which in turn may be influenced by task and subject specificities. This concurs with recent behavioural and neuroscience findings that multiple distractor effects co-exist.
Collapse
Affiliation(s)
- Jing Jun Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Alessandro Bongioanni
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin CenterGif-sur-YvetteFrance
| | | | - Bolton KH Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHung HomHong Kong
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic UniversityHung HomHong Kong
- Mental Health Research Centre, The Hong Kong Polytechnic UniversityHung HomHong Kong
| |
Collapse
|
9
|
Fujimoto A, Elorette C, Fujimoto SH, Fleysher L, Russ BE, Rudebeck PH. Ventrolateral prefrontal cortex in macaques guides decisions in different learning contexts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613767. [PMID: 39345480 PMCID: PMC11429923 DOI: 10.1101/2024.09.18.613767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Flexibly adjusting our behavioral strategies based on the environmental context is critical to maximize rewards. Ventrolateral prefrontal cortex (vlPFC) has been implicated in both learning and decision-making for probabilistic rewards, although how context influences these processes remains unclear. We collected functional neuroimaging data while rhesus macaques performed a probabilistic learning task in two contexts: one with novel and another with familiar visual stimuli. We found that activity in vlPFC encoded rewards irrespective of the context but encoded behavioral strategies that depend on reward outcome (win-stay/lose-shift) preferentially in novel contexts. Functional connectivity between vlPFC and anterior cingulate cortex varied with behavioral strategy in novel learning blocks. By contrast, connectivity between vlPFC and mediodorsal thalamus was highest when subjects repeated a prior choice. Furthermore, pharmacological D2-receptor blockade altered behavioral strategies during learning and resting-state vlPFC activity. Taken together, our results suggest that multiple vlPFC-linked circuits contribute to adaptive decision-making in different contexts.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029
| |
Collapse
|
10
|
Crawford JL, Brough RE, Eisenstein SA, Peelle JE, Braver TS. Generalized Encoding of the Relative Subjective Value of Cognitive Effort in the Dorsal ACC. J Neurosci 2024; 44:e0367242024. [PMID: 39122557 PMCID: PMC11411589 DOI: 10.1523/jneurosci.0367-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Making choices about whether and when to engage cognitive effort are a common feature of everyday experience, with important consequences for academic, career, and health outcomes. Yet, despite their hypothesized importance, very little is understood about the underlying mechanisms that support this form of human cost-benefit decision-making. To investigate these mechanisms, we used the Cognitive Effort Discounting Paradigm (Cog-ED) during fMRI scanning to precisely quantify the neural encoding of varying cognitive effort demands relative to reward outcomes, within two distinct cognitive domains (working memory, speech comprehension). The findings provide strong evidence that the dorsal anterior cingulate cortex (dACC) plays a central and selective role in this decision-making process. Trial-by-trial modulations in dACC activation tracked the relative subjective value of the low-effort, low-reward option, with the strongest activity occurring when this was of greater value than the high-effort, high-reward option. In contrast, dACC activity was not modulated by decision difficulty, though such effects were found in other frontoparietal regions. Critically, dACC activity was also strongly correlated across the two decision-making task domains and further predicted subsequent choice behavior in both. Together, the results suggest that dACC activity modulation reflects a domain-general valuation comparison mechanism, which acts to bias participants away from decisions to engage in cognitive effort, when the perceived subjective costs of such engagement outweigh the reward-related benefits. These findings complement work in other cost domains and species by pointing to a clear role of the dACC in representing subjective value differences between choice options during cost-benefit decision-making.
Collapse
Affiliation(s)
- Jennifer L Crawford
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Psychology, Brandeis University, Waltham, Massachusetts 02453
| | - Rachel E Brough
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Jonathan E Peelle
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
11
|
Jurewicz K, Sleezer BJ, Mehta PS, Hayden BY, Ebitz RB. Irrational choices via a curvilinear representational geometry for value. Nat Commun 2024; 15:6424. [PMID: 39080250 PMCID: PMC11289086 DOI: 10.1038/s41467-024-49568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
We make decisions by comparing values, but it is not yet clear how value is represented in the brain. Many models assume, if only implicitly, that the representational geometry of value is linear. However, in part due to a historical focus on noisy single neurons, rather than neuronal populations, this hypothesis has not been rigorously tested. Here, we examine the representational geometry of value in the ventromedial prefrontal cortex (vmPFC), a part of the brain linked to economic decision-making, in two male rhesus macaques. We find that values are encoded along a curved manifold in vmPFC. This curvilinear geometry predicts a specific pattern of irrational decision-making: that decision-makers will make worse choices when an irrelevant, decoy option is worse in value, compared to when it is better. We observe this type of irrational choices in behavior. Together, these results not only suggest that the representational geometry of value is nonlinear, but that this nonlinearity could impose bounds on rational decision-making.
Collapse
Affiliation(s)
- Katarzyna Jurewicz
- Department of Neurosciences, Faculté de médecine, and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Brianna J Sleezer
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
| | - Priyanka S Mehta
- Department of Neuroscience, Center for Magnetic Resonance Research, and Center for Neuroengineering, University of Minnesota, Minneapolis, MN, USA
- Psychology Program, Department of Human Behavior, Justice, and Diversity, University of Wisconsin, Superior, Superior, WI, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - R Becket Ebitz
- Department of Neurosciences, Faculté de médecine, and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
12
|
Nandi T, Kop BR, Butts Pauly K, Stagg CJ, Verhagen L. The relationship between parameters and effects in transcranial ultrasonic stimulation. ARXIV 2024:arXiv:2407.01232v2. [PMID: 39010874 PMCID: PMC11247914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Transcranial ultrasonic stimulation (TUS) is rapidly gaining traction for non-invasive human neuromodulation, with a pressing need to establish protocols that maximise neuromodulatory efficacy. In this review, we aggregate and examine empirical evidence for the relationship between tunable TUS parameters and in vitro and in vivo outcomes. Based on this multiscale approach, TUS researchers can make better informed decisions about optimal parameter settings. Importantly, we also discuss the challenges involved in extrapolating results from prior empirical work to future interventions, including the translation of protocols between models and the complex interaction between TUS protocols and the brain. A synthesis of the empirical evidence suggests that larger effects will be observed at lower frequencies within the sub-MHz range, higher intensities and pressures than commonly administered thus far, and longer pulses and pulse train durations. Nevertheless, we emphasise the need for cautious interpretation of empirical data from different experimental paradigms when basing protocols on prior work as we advance towards refined TUS parameters for human neuromodulation.
Collapse
Affiliation(s)
- Tulika Nandi
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Benjamin R Kop
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lennart Verhagen
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
14
|
Holton E, Grohn J, Ward H, Manohar SG, O'Reilly JX, Kolling N. Goal commitment is supported by vmPFC through selective attention. Nat Hum Behav 2024; 8:1351-1365. [PMID: 38632389 PMCID: PMC11272579 DOI: 10.1038/s41562-024-01844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/01/2024] [Indexed: 04/19/2024]
Abstract
When striking a balance between commitment to a goal and flexibility in the face of better options, people often demonstrate strong goal perseveration. Here, using functional MRI (n = 30) and lesion patient (n = 26) studies, we argue that the ventromedial prefrontal cortex (vmPFC) drives goal commitment linked to changes in goal-directed selective attention. Participants performed an incremental goal pursuit task involving sequential decisions between persisting with a goal versus abandoning progress for better alternative options. Individuals with stronger goal perseveration showed higher goal-directed attention in an interleaved attention task. Increasing goal-directed attention also affected abandonment decisions: while pursuing a goal, people lost their sensitivity to valuable alternative goals while remaining more sensitive to changes in the current goal. In a healthy population, individual differences in both commitment biases and goal-oriented attention were predicted by baseline goal-related activity in the vmPFC. Among lesion patients, vmPFC damage reduced goal commitment, leading to a performance benefit.
Collapse
Affiliation(s)
- Eleanor Holton
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Jan Grohn
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| | - Harry Ward
- Centre for Experimental Medicine and Rheumatology, Queen Mary University London (QMUL), London, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jill X O'Reilly
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| | - Nils Kolling
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Stem Cell and Brain Research Institute U1208, Inserm, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
15
|
Li J, Liu Y, Nehl E, Tucker JD. A behavioral economics approach to enhancing HIV preexposure and postexposure prophylaxis implementation. Curr Opin HIV AIDS 2024; 19:212-220. [PMID: 38686773 DOI: 10.1097/coh.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The 'PrEP cliff' phenomenon poses a critical challenge in global HIV PrEP implementation, marked by significant dropouts across the entire PrEP care continuum. This article reviews new strategies to address 'PrEP cliff'. RECENT FINDINGS Canadian clinicians have developed a service delivery model that offers presumptive PEP to patients in need and transits eligible PEP users to PrEP. Early findings are promising. This service model not only establishes a safety net for those who were not protected by PrEP, but it also leverages the immediate salience and perceived benefits of PEP as a natural nudge towards PrEP use. Aligning with Behavioral Economics, specifically the Salience Theory, this strategy holds potential in tackling PrEP implementation challenges. SUMMARY A natural pathway between PEP and PrEP has been widely observed. The Canadian service model exemplifies an innovative strategy that leverages this organic pathway and enhances the utility of both PEP and PrEP services. We offer theoretical insights into the reasons behind these PEP-PrEP transitions and evolve the Canadian model into a cohesive framework for implementation.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Behavioral, Social and Health Education Sciences, Rollins School of Public Health
| | - Yaxin Liu
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Eric Nehl
- Department of Behavioral, Social and Health Education Sciences, Rollins School of Public Health
| | - Joseph D Tucker
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
16
|
Wilson MG, Riis TS, Kubanek J. Controlled ultrasonic interventions through the human skull. Front Hum Neurosci 2024; 18:1412921. [PMID: 38979100 PMCID: PMC11228146 DOI: 10.3389/fnhum.2024.1412921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Transcranial focused ultrasound enables precise and non-invasive manipulations of deep brain circuits in humans, promising to provide safe and effective treatments of various neurological and mental health conditions. Ultrasound focused to deep brain targets can be used to modulate neural activity directly or localize the release of psychoactive drugs. However, these applications have been impeded by a key barrier-the human skull, which attenuates ultrasound strongly and unpredictably. To address this issue, we have developed an ultrasound-based approach that directly measures and compensates for the ultrasound attenuation by the skull. No additional skull imaging, simulations, assumptions, or free parameters are necessary; the method measures the attenuation directly by emitting a pulse of ultrasound from an array on one side of the head and measuring with an array on the opposite side. Here, we apply this emerging method to two primary future uses-neuromodulation and local drug release. Specifically, we show that the correction enables effective stimulation of peripheral nerves and effective release of propofol from nanoparticle carriers through an ex vivo human skull. Neither application was effective without the correction. Moreover, the effects show the expected dose-response relationship and targeting specificity. This article highlights the need for precise control of ultrasound intensity within the skull and provides a direct and practical approach for addressing this lingering barrier.
Collapse
Affiliation(s)
- Matthew G Wilson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Thomas S Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Treuting RL, Boroujeni KB, Gerrity CG, Tiesinga P, Womelsdorf T. Anterior Cingulate Cortex Causally Supports Meta-Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598723. [PMID: 38915609 PMCID: PMC11195175 DOI: 10.1101/2024.06.12.598723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In dynamic environments with volatile rewards the anterior cingulate cortex (ACC) is believed to determine whether a visual object is relevant and should be chosen. The ACC may achieve this by integrating reward information over time to estimate which objects are worth to explore and which objects should be avoided. Such a higher-order meta-awareness about which objects should be explored predicts that the ACC causally contributes to choices when the reward values of objects are unknown and must be inferred from ongoing exploration. We tested this suggestion in nonhuman primates using a learning task that varied the number of object features that could be relevant, and by controlling the motivational value of choosing objects. During learning the ACC was transiently micro-stimulated when subjects foveated the to-be-chosen stimulus. We found that stimulation selectively impaired learning when feature uncertainty and motivational value of choices were high, which was linked to a deficit in using reward outcomes for feature-specific credit assignment. Application of an adaptive reinforcement learning model confirmed a primary deficit in weighting prediction errors that led to a meta-learning impairment to adaptively increase exploration during learning and to an impaired use of working memory to support learning. These findings provide causal evidence that the reward history traces in ACC are essential for meta-adjusting the exploration-exploitation balance and the strength of working memory of object values during adaptive behavior.
Collapse
Affiliation(s)
- Robert Louis Treuting
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 372404
| | - Kianoush Banaie Boroujeni
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540
| | - Charles Grimes Gerrity
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37240
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen 6525 EN, Netherlands
| | - Thilo Womelsdorf
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 372404
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
18
|
Kosnoff J, Yu K, Liu C, He B. Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention. Nat Commun 2024; 15:4382. [PMID: 38862476 PMCID: PMC11167030 DOI: 10.1038/s41467-024-48576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
A brain-computer interface (BCI) enables users to control devices with their minds. Despite advancements, non-invasive BCIs still exhibit high error rates, prompting investigation into the potential reduction through concurrent targeted neuromodulation. Transcranial focused ultrasound (tFUS) is an emerging non-invasive neuromodulation technology with high spatiotemporal precision. This study examines whether tFUS neuromodulation can improve BCI outcomes, and explores the underlying mechanism of action using high-density electroencephalography (EEG) source imaging (ESI). As a result, V5-targeted tFUS significantly reduced the error in a BCI speller task. Source analyses revealed a significantly increase in theta and alpha activities in the tFUS condition at both V5 and downstream in the dorsal visual processing pathway. Correlation analysis indicated that the connection within the dorsal processing pathway was preserved during tFUS stimulation, while the ventral connection was weakened. These findings suggest that V5-targeted tFUS enhances feature-based attention to visual motion.
Collapse
Affiliation(s)
- Joshua Kosnoff
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
| | - Kai Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
| | - Chang Liu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15237, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15237, USA.
| |
Collapse
|
19
|
Grohn J, Khalighinejad N, Jahn CI, Bongioanni A, Schüffelgen U, Sallet J, Rushworth MFS, Kolling N. General mechanisms of task engagement in the primate frontal cortex. Nat Commun 2024; 15:4802. [PMID: 38839745 PMCID: PMC11153620 DOI: 10.1038/s41467-024-49128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Staying engaged is necessary to maintain goal-directed behaviors. Despite this, engagement exhibits continuous, intrinsic fluctuations. Even in experimental settings, animals, unlike most humans, repeatedly and spontaneously move between periods of complete task engagement and disengagement. We, therefore, looked at behavior in male macaques (macaca mulatta) in four tasks while recording fMRI signals. We identified consistent autocorrelation in task disengagement. This made it possible to build models capturing task-independent engagement. We identified task general patterns of neural activity linked to impending sudden task disengagement in mid-cingulate gyrus. By contrast, activity centered in perigenual anterior cingulate cortex (pgACC) was associated with maintenance of performance across tasks. Importantly, we carefully controlled for task-specific factors such as the reward history and other motivational effects, such as response vigor, in our analyses. Moreover, we showed pgACC activity had a causal link to task engagement: transcranial ultrasound stimulation of pgACC changed task engagement patterns.
Collapse
Affiliation(s)
- Jan Grohn
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Caroline I Jahn
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
| | - Urs Schüffelgen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500, Bron, France
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nils Kolling
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500, Bron, France
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Psychiatry, University of Oxford, Oxford, UK
- Centre Hospitalier Le Vinatier, Pôle EST, Bron, France
| |
Collapse
|
20
|
Atkinson-Clement C, Alkhawashki M, Ross J, Gatica M, Zhang C, Sallet J, Kaiser M. Dynamical and individualised approach of transcranial ultrasound neuromodulation effects in non-human primates. Sci Rep 2024; 14:11916. [PMID: 38789473 PMCID: PMC11126417 DOI: 10.1038/s41598-024-62562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Low-frequency transcranial ultrasound stimulation (TUS) allows to alter brain functioning with a high spatial resolution and to reach deep targets. However, the time-course of TUS effects remains largely unknown. We applied TUS on three brain targets for three different monkeys: the anterior medial prefrontal cortex, the supplementary motor area and the perigenual anterior cingulate cortex. For each, one resting-state fMRI was acquired between 30 and 150 min after TUS as well as one without stimulation (control). We captured seed-based brain connectivity changes dynamically and on an individual basis. We also assessed between individuals and between targets homogeneity and brain features that predicted TUS changes. We found that TUS prompts heterogenous functional connectivity alterations yet retain certain consistent changes; we identified 6 time-courses of changes including transient and long duration alterations; with a notable degree of accuracy we found that brain alterations could partially be predicted. Altogether, our results highlight that TUS induces heterogeneous functional connectivity alterations. On a more technical point, we also emphasize the need to consider brain changes over-time rather than just observed during a snapshot; to consider inter-individual variability since changes could be highly different from one individual to another.
Collapse
Affiliation(s)
| | | | - James Ross
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marilyn Gatica
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Jerome Sallet
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon 1, Bron, France
| | - Marcus Kaiser
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Fouragnan EF, Hosking B, Cheung Y, Prakash B, Rushworth M, Sel A. Timing along the cardiac cycle modulates neural signals of reward-based learning. Nat Commun 2024; 15:2976. [PMID: 38582905 PMCID: PMC10998831 DOI: 10.1038/s41467-024-46921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Natural fluctuations in cardiac activity modulate brain activity associated with sensory stimuli, as well as perceptual decisions about low magnitude, near-threshold stimuli. However, little is known about the relationship between fluctuations in heart activity and other internal representations. Here we investigate whether the cardiac cycle relates to learning-related internal representations - absolute and signed prediction errors. We combined machine learning techniques with electroencephalography with both simple, direct indices of task performance and computational model-derived indices of learning. Our results demonstrate that just as people are more sensitive to low magnitude, near-threshold sensory stimuli in certain cardiac phases, so are they more sensitive to low magnitude absolute prediction errors in the same cycles. However, this occurs even when the low magnitude prediction errors are associated with clearly suprathreshold sensory events. In addition, participants exhibiting stronger differences in their prediction error representations between cardiac cycles exhibited higher learning rates and greater task accuracy.
Collapse
Affiliation(s)
- Elsa F Fouragnan
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK.
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Billy Hosking
- Brain Research Imaging Centre (BRIC), Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Yin Cheung
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Brooke Prakash
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Matthew Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Alejandra Sel
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
22
|
Riis TS, Losser AJ, Kassavetis P, Moretti P, Kubanek J. Noninvasive modulation of essential tremor with focused ultrasonic waves. J Neural Eng 2024; 21:016033. [PMID: 38335553 DOI: 10.1088/1741-2552/ad27ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Objective: Transcranial focused low-intensity ultrasound has the potential to noninvasively modulate confined regions deep inside the human brain, which could provide a new tool for causal interrogation of circuit function in humans. However, it has been unclear whether the approach is potent enough to modulate behavior.Approach: To test this, we applied low-intensity ultrasound to a deep brain thalamic target, the ventral intermediate nucleus, in three patients with essential tremor.Main results: Brief, 15 s stimulations of the target at 10% duty cycle with low-intensity ultrasound, repeated less than 30 times over a period of 90 min, nearly abolished tremor (98% and 97% tremor amplitude reduction) in 2 out of 3 patients. The effect was observed within seconds of the stimulation onset and increased with ultrasound exposure time. The effect gradually vanished following the stimulation, suggesting that the stimulation was safe with no harmful long-term consequences detected.Significance: This result demonstrates that low-intensity focused ultrasound can robustly modulate deep brain regions in humans with notable effects on overt motor behavior.
Collapse
Affiliation(s)
- Thomas S Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Adam J Losser
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Panagiotis Kassavetis
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, United States of America
| | - Paolo Moretti
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, United States of America
- George E. Wahlen, VA, Salt Lake City Health Care System, Salt Lake City, UT 84148, United States of America
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| |
Collapse
|
23
|
Ha LJ, Kim M, Yeo HG, Baek I, Kim K, Lee M, Lee Y, Choi HJ. Development of an assessment method for freely moving nonhuman primates' eating behavior using manual and deep learning analysis. Heliyon 2024; 10:e25561. [PMID: 38356587 PMCID: PMC10865331 DOI: 10.1016/j.heliyon.2024.e25561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Purpose Although eating is imperative for survival, few comprehensive methods have been developed to assess freely moving nonhuman primates' eating behavior. In the current study, we distinguished eating behavior into appetitive and consummatory phases and developed nine indices to study them using manual and deep learning-based (DeepLabCut) techniques. Method The indices were utilized to three rhesus macaques by different palatability and hunger levels to validate their utility. To execute the experiment, we designed the eating behavior cage and manufactured the artificial food. The total number of trials was 3, with 1 trial conducted using natural food and 2 trials using artificial food. Result As a result, the indices of highest utility for hunger effect were approach frequency and consummatory duration. Appetitive composite score and consummatory duration showed the highest utility for palatability effect. To elucidate the effects of hunger and palatability, we developed 2D visualization plots based on manual indices. These 2D visualization methods could intuitively depict the palatability perception and hunger internal state. Furthermore, the developed deep learning-based analysis proved accurate and comparable with manual analysis. When comparing the time required for analysis, deep learning-based analysis was 24-times faster than manual analysis. Moreover, temporal and spatial dynamics were visualized via manual and deep learning-based analysis. Based on temporal dynamics analysis, the patterns were classified into four categories: early decline, steady decline, mid-peak with early incline, and late decline. Heatmap of spatial dynamics and trajectory-related visualization could elucidate a consumption posture and a higher spatial occupancy of food zone in hunger and with palatable food. Discussion Collectively, this study describes a newly developed and validated multi-phase method for assessing freely moving nonhuman primate eating behavior using manual and deep learning-based analyses. These effective tools will prove valuable in food reward (palatability effect) and homeostasis (hunger effect) research.
Collapse
Affiliation(s)
- Leslie Jaesun Ha
- Department of Biomedical Sciences, Wide River Institute of Immunology, Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea
| | - Meelim Kim
- Department of Biomedical Sciences, Wide River Institute of Immunology, Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Wireless and Population Health Systems (CWPHS), University of California, San Diego, La Jolla, CA, 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA, United States
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
- KRIBB School of Bioscience, Korea National University of Science and Technology, Republic of Korea
| | - Inhyeok Baek
- Department of Biomedical Sciences, Wide River Institute of Immunology, Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Republic of Korea
| | - Miwoo Lee
- Department of Biomedical Sciences, Wide River Institute of Immunology, Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Republic of Korea
- KRIBB School of Bioscience, Korea National University of Science and Technology, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Wide River Institute of Immunology, Neuroscience Research Institute, Seoul National University College of Medicine, Republic of Korea
| |
Collapse
|
24
|
Yu K, Schmitt S, Ni Y, Crane EC, Smith MA, He B. Transcranial Focused Ultrasound Remotely Modulates Extrastriate Visual Cortex with Subregion Specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576476. [PMID: 38328120 PMCID: PMC10849517 DOI: 10.1101/2024.01.20.576476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Low-intensity transcranial focused ultrasound (tFUS) has emerged as a powerful neuromodulation tool characterized by its deep penetration and precise spatial targeting to influence neural activity. Our study directed low-intensity tFUS stimulation onto a region of prefrontal cortex (the frontal eye field, or FEF) of a rhesus macaque to examine its impact on a remote site, the extrastriate visual cortex (area V4). This pair of cortical regions form a top-down modulatory circuit that has been studied extensively with electrical microstimulation. To measure the impact of tFUS stimulation, we recorded local field potentials (LFPs) and multi-unit spiking activities from a multi-electrode array implanted in the visual cortex. To deliver tFUS stimulation, we leveraged a customized 128-element random array ultrasound transducer with improved spatial targeting. We observed that tFUS stimulation in FEF produced modulation of V4 neuronal activity, either through enhancement or suppression, dependent on the pulse repetition frequency of the tFUS stimulation. Electronically steering the transcranial ultrasound focus through the targeted FEF cortical region produced changes in the level of modulation, indicating that the tFUS stimulation was spatially targeted within FEF. Modulation of V4 activity was confined to specific frequency bands, and this modulation was dependent on the presence or absence of a visual stimulus during tFUS stimulation. A control study targeting the insula produced no effect, emphasizing the region-specific nature of tFUS neuromodulation. Our findings shed light on the capacity of tFUS to modulate specific neural pathways and provide a comprehensive understanding of its potential applications for neuromodulation within brain networks.
Collapse
|
25
|
Meng W, Lin Z, Bian T, Chen X, Meng L, Yuan T, Niu L, Zheng H. Ultrasound Deep Brain Stimulation Regulates Food Intake and Body Weight in Mice. IEEE Trans Neural Syst Rehabil Eng 2024; 32:366-377. [PMID: 38194393 DOI: 10.1109/tnsre.2024.3351312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Given the widespread occurrence of obesity, new strategies are urgently needed to prevent, halt and reverse this condition. We proposed a noninvasive neurostimulation tool, ultrasound deep brain stimulation (UDBS), which can specifically modulate the hypothalamus and effectively regulate food intake and body weight in mice. Fifteen-min UDBS of hypothalamus decreased 41.4% food intake within 2 hours. Prolonged 1-hour UDBS significantly decreased daily food intake lasting 4 days. UDBS also effectively restrained body weight gain in leptin-receptor knockout mice (Sham: 96.19%, UDBS: 58.61%). High-fat diet (HFD) mice treated with 4-week UDBS (15 min / 2 days) reduced 28.70% of the body weight compared to the Sham group. Meanwhile, UDBS significantly modulated glucose-lipid metabolism and decreased the body fat. The potential mechanism is that ultrasound actives pro-opiomelanocortin (POMC) neurons in the hypothalamus for reduction of food intake and body weight. These results provide a noninvasive tool for controlling food intake, enabling systematic treatment of obesity.
Collapse
|
26
|
Algermissen J, Swart JC, Scheeringa R, Cools R, den Ouden HEM. Prefrontal signals precede striatal signals for biased credit assignment in motivational learning biases. Nat Commun 2024; 15:19. [PMID: 38168089 PMCID: PMC10762147 DOI: 10.1038/s41467-023-44632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Actions are biased by the outcomes they can produce: Humans are more likely to show action under reward prospect, but hold back under punishment prospect. Such motivational biases derive not only from biased response selection, but also from biased learning: humans tend to attribute rewards to their own actions, but are reluctant to attribute punishments to having held back. The neural origin of these biases is unclear. Specifically, it remains open whether motivational biases arise primarily from the architecture of subcortical regions or also reflect cortical influences, the latter being typically associated with increased behavioral flexibility and control beyond stereotyped behaviors. Simultaneous EEG-fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased prediction errors occurred in cortical regions (dorsal anterior and posterior cingulate cortices) before subcortical regions (striatum). These results highlight that biased learning is not a mere feature of the basal ganglia, but arises through prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated mechanism.
Collapse
Affiliation(s)
- Johannes Algermissen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Jennifer C Swart
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - René Scheeringa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Roshan Cools
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hanneke E M den Ouden
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Klein-Flügge MC, Fouragnan EF, Martin E. The importance of acoustic output measurement and monitoring for the replicability of transcranial ultrasonic stimulation studies. Brain Stimul 2024; 17:32-34. [PMID: 38092243 DOI: 10.1016/j.brs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB) and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
| | - Elsa F Fouragnan
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK; Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, UK.
| | - Eleanor Martin
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, WC1E 6BT, UK; Department of Medical Physics Biomedical Engineering, University College London, London, WC1E 6BT, UK
| |
Collapse
|
28
|
Thomas SA, Ryan SK, Gilman J. Resting state network connectivity is associated with cognitive flexibility performance in youth in the Adolescent Brain Cognitive Development Study. Neuropsychologia 2023; 191:108708. [PMID: 37898357 PMCID: PMC10842068 DOI: 10.1016/j.neuropsychologia.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Cognitive flexibility is an executive functioning skill that develops in childhood, and when impaired, has transdiagnostic implications for psychiatric disorders. To identify how intrinsic neural architecture at rest is linked to cognitive flexibility performance, we used the data-driven method of independent component analysis (ICA) to investigate resting state networks (RSNs) and their whole-brain connectivity associated with levels of cognitive flexibility performance in children. We hypothesized differences by cognitive flexibility performance in RSN connectivity strength in cortico-striatal circuitry, which would manifest via the executive control network, right and left frontoparietal networks (FPN), salience network, default mode network (DMN), and basal ganglia network. We selected participants from the Adolescent Brain Cognitive Development (ABCD) Study who scored at the 25th, ("CF-Low"), 50th ("CF-Average"), or 75th percentiles ("CF-High") on a cognitive flexibility task, were early to middle puberty, and did not exhibit significant psychopathology (n = 967, 47.9% female; ages 9-10). We conducted whole-brain ICA, identifying 14 well-characterized RSNs. Groups differed in connectivity strength in the right FPN, anterior DMN, and posterior DMN. Planned comparisons indicated CF-High had stronger connectivity between right FPN and supplementary motor/anterior cingulate than CF-Low. CF-High had more anti-correlated connectivity between anterior DMN and precuneus than CF-Average. CF-Low had stronger connectivity between posterior DMN and supplementary motor/anterior cingulate than CF-Average. Post-hoc correlations with reaction time by trial type demonstrated significant associations with connectivity. In sum, our results suggest childhood cognitive flexibility performance is associated with DMN and FPN connectivity strength at rest, and that there may be optimal levels of connectivity associated with task performance that vary by network.
Collapse
Affiliation(s)
- Sarah A Thomas
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Box 1901, 164 Angell St., 4th Floor, Providence, RI, 02912, USA.
| | - Sarah K Ryan
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA.
| | - Jodi Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Clairis N, Lopez-Persem A. Debates on the dorsomedial prefrontal/dorsal anterior cingulate cortex: insights for future research. Brain 2023; 146:4826-4844. [PMID: 37530487 PMCID: PMC10690029 DOI: 10.1093/brain/awad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) is a brain area subject to many theories and debates over its function(s). Even its precise anatomical borders are subject to much controversy. In the past decades, the dmPFC/dACC has been associated with more than 15 different cognitive processes, which sometimes appear quite unrelated (e.g. body perception, cognitive conflict). As a result, understanding what the dmPFC/dACC does has become a real challenge for many neuroscientists. Several theories of this brain area's function(s) have been developed, leading to successive and competitive publications bearing different models, which sometimes contradict each other. During the last two decades, the lively scientific exchanges around the dmPFC/dACC have promoted fruitful research in cognitive neuroscience. In this review, we provide an overview of the anatomy of the dmPFC/dACC, summarize the state of the art of functions that have been associated with this brain area and present the main theories aiming at explaining the dmPFC/dACC function(s). We explore the commonalities and the arguments between the different theories. Finally, we explain what can be learned from these debates for future investigations of the dmPFC/dACC and other brain regions' functions.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics (LGC)- Brain Mind Institute (BMI)- Sciences de la Vie (SV), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alizée Lopez-Persem
- FrontLab, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne University, AP HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
30
|
Proskurin M, Manakov M, Karpova A. ACC neural ensemble dynamics are structured by strategy prevalence. eLife 2023; 12:e84897. [PMID: 37991007 DOI: 10.7554/elife.84897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Medial frontal cortical areas are thought to play a critical role in the brain's ability to flexibly deploy strategies that are effective in complex settings, yet the underlying circuit computations remain unclear. Here, by examining neural ensemble activity in male rats that sample different strategies in a self-guided search for latent task structure, we observe robust tracking during strategy execution of a summary statistic for that strategy in recent behavioral history by the anterior cingulate cortex (ACC), especially by an area homologous to primate area 32D. Using the simplest summary statistic - strategy prevalence in the last 20 choices - we find that its encoding in the ACC during strategy execution is wide-scale, independent of reward delivery, and persists through a substantial ensemble reorganization that accompanies changes in global context. We further demonstrate that the tracking of reward by the ACC ensemble is also strategy-specific, but that reward prevalence is insufficient to explain the observed activity modulation during strategy execution. Our findings argue that ACC ensemble dynamics is structured by a summary statistic of recent behavioral choices, raising the possibility that ACC plays a role in estimating - through statistical learning - which actions promote the occurrence of events in the environment.
Collapse
Affiliation(s)
- Mikhail Proskurin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, United States
| | - Maxim Manakov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, United States
| | - Alla Karpova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
31
|
Di Ianni T, Morrison KP, Yu B, Murphy KR, de Lecea L, Airan RD. High-throughput ultrasound neuromodulation in awake and freely behaving rats. Brain Stimul 2023; 16:1743-1752. [PMID: 38052373 PMCID: PMC10795522 DOI: 10.1016/j.brs.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Transcranial ultrasound neuromodulation is a promising potential therapeutic tool for the noninvasive treatment of neuropsychiatric disorders. However, the expansive parameter space and difficulties in controlling for peripheral auditory effects make it challenging to identify ultrasound sequences and brain targets that may provide therapeutic efficacy. Careful preclinical investigations in clinically relevant behavioral models are critically needed to identify suitable brain targets and acoustic parameters. However, there is a lack of ultrasound devices allowing for multi-target experimental investigations in awake and unrestrained rodents. We developed a miniaturized 64-element ultrasound array that enables neurointerventional investigations with within-trial active control targets in freely behaving rats. We first characterized the acoustic field with measurements in free water and with transcranial propagation. We then confirmed in vivo that the array can target multiple brain regions via electronic steering, and verified that wearing the device does not cause significant impairments to animal motility. Finally, we demonstrated the performance of our system in a high-throughput neuromodulation experiment, where we found that ultrasound stimulation of the rat central medial thalamus, but not an active control target, promotes arousal and increases locomotor activity.
Collapse
Affiliation(s)
- Tommaso Di Ianni
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, 94158, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, 94158, CA, USA.
| | | | - Brenda Yu
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Raag D Airan
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA; Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, USA.
| |
Collapse
|
32
|
Ben-Artzi I, Kessler Y, Nicenboim B, Shahar N. Computational mechanisms underlying latent value updating of unchosen actions. SCIENCE ADVANCES 2023; 9:eadi2704. [PMID: 37862419 PMCID: PMC10588947 DOI: 10.1126/sciadv.adi2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Current studies suggest that individuals estimate the value of their choices based on observed feedback. Here, we ask whether individuals also update the value of their unchosen actions, even when the associated feedback remains unknown. One hundred seventy-eight individuals completed a multi-armed bandit task, making choices to gain rewards. We found robust evidence suggesting latent value updating of unchosen actions based on the chosen action's outcome. Computational modeling results suggested that this effect is mainly explained by a value updating mechanism whereby individuals integrate the outcome history for choosing an option with that of rejecting the alternative. Properties of the deliberation (i.e., duration/difficulty) did not moderate the latent value updating of unchosen actions, suggesting that memory traces generated during deliberation might take a smaller role in this specific phenomenon than previously thought. We discuss the mechanisms facilitating credit assignment to unchosen actions and their implications for human decision-making.
Collapse
Affiliation(s)
- Ido Ben-Artzi
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Minducate Science of Learning Research and Innovation Center of the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Kessler
- Department of Psychology and School of Brain Sciences and Cognition, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Bruno Nicenboim
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | - Nitzan Shahar
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Sigona MK, Manuel TJ, Anthony Phipps M, Boroujeni KB, Treuting RL, Womelsdorf T, Caskey CF. Generating Patient-Specific Acoustic Simulations for Transcranial Focused Ultrasound Procedures Based on Optical Tracking Information. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 3:146-156. [PMID: 38222464 PMCID: PMC10785958 DOI: 10.1109/ojuffc.2023.3318560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Optical tracking is a real-time transducer positioning method for transcranial focused ultrasound (tFUS) procedures, but the predicted focus from optical tracking typically does not incorporate subject-specific skull information. Acoustic simulations can estimate the pressure field when propagating through the cranium but rely on accurately replicating the positioning of the transducer and skull in a simulated space. Here, we develop and characterize the accuracy of a workflow that creates simulation grids based on optical tracking information in a neuronavigated phantom with and without transmission through an ex vivo skull cap. The software pipeline could replicate the geometry of the tFUS procedure within the limits of the optical tracking system (transcranial target registration error (TRE): 3.9 ± 0.7 mm). The simulated focus and the free-field focus predicted by optical tracking had low Euclidean distance errors of 0.5±0.1 and 1.2±0.4 mm for phantom and skull cap, respectively, and some skull-specific effects were captured by the simulation. However, the TRE of simulation informed by optical tracking was 4.6±0.2, which is as large or greater than the focal spot size used by many tFUS systems. By updating the position of the transducer using the original TRE offset, we reduced the simulated TRE to 1.1 ± 0.4 mm. Our study describes a software pipeline for treatment planning, evaluates its accuracy, and demonstrates an approach using MR-acoustic radiation force imaging as a method to improve dosimetry. Overall, our software pipeline helps estimate acoustic exposure, and our study highlights the need for image feedback to increase the accuracy of tFUS dosimetry.
Collapse
Affiliation(s)
- Michelle K Sigona
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
| | - Thomas J Manuel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | - Robert Louie Treuting
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Thilo Womelsdorf
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Charles F Caskey
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
34
|
Mahoney JJ, Haut MW, Carpenter J, Ranjan M, Thompson-Lake DGY, Marton JL, Zheng W, Berry JH, Tirumalai P, Mears A, D’Haese P, Finomore VS, Hodder SL, Rezai AR. Low-intensity focused ultrasound targeting the nucleus accumbens as a potential treatment for substance use disorder: safety and feasibility clinical trial. Front Psychiatry 2023; 14:1211566. [PMID: 37779628 PMCID: PMC10540197 DOI: 10.3389/fpsyt.2023.1211566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction While current treatments for substance use disorder (SUD) are beneficial, success rates remain low and treatment outcomes are complicated by co-occurring SUDs, many of which are without available medication treatments. Research involving neuromodulation for SUD has recently gained momentum. This study evaluated two doses (60 and 90 W) of Low Intensity Focused Ultrasound (LIFU), targeting the bilateral nucleus accumbens (NAc), in individuals with SUD. Methods Four participants (three male), who were receiving comprehensive outpatient treatment for opioid use disorder at the time of enrollment and who also had a history of excessive non-opioid substance use, completed this pilot study. After confirming eligibility, these participants received 10 min sham LIFU followed by 20 min active LIFU (10 min to left then right NAc). Outcomes were the safety, tolerability, and feasibility during the LIFU procedure and throughout the 90-day follow-up. Outcomes also included the impact of LIFU on cue-induced substance craving, assessed via Visual Analog Scale (VAS), both acutely (pre-, during and post-procedure) and during the 90-day follow-up. Daily craving ratings (without cues) were also obtained for one-week prior to and one-week following LIFU. Results Both LIFU doses were safe and well-tolerated based on reported adverse events and MRI scans revealed no structural changes (0 min, 24 h, and 1-week post-procedure). For the two participants receiving "enhanced" (90 W) LIFU, VAS craving ratings revealed active LIFU attenuated craving for participants' primary substances of choice relative to sham sonication. For these participants, reductions were also noted in daily VAS craving ratings (0 = no craving; 10 = most craving ever) across the week following LIFU relative to pre-LIFU; Participant #3 pre- vs. post-LIFU: opioids (3.6 ± 0.6 vs. 1.9 ± 0.4), heroin (4.2 ± 0.8 vs. 1.9 ± 0.4), methamphetamine (3.2 ± 0.4 vs. 0.0 ± 0.0), cocaine (2.4 ± 0.6 vs. 0.0 ± 0.0), benzodiazepines (2.8 ± 0.5 vs. 0.0 ± 0.0), alcohol (6.0 ± 0.7 vs. 2.7 ± 0.8), and nicotine (5.6 ± 1.5 vs. 3.1 ± 0.7); Participant #4: alcohol (3.5 ± 1.3 vs. 0.0 ± 0.0) and nicotine (5.0 ± 1.8 vs. 1.2 ± 0.8) (all p's < 0.05). Furthermore, relative to screening, longitudinal reductions in cue-induced craving for several substances persisted during the 90-day post-LIFU follow-up evaluation for all participants. Discussion In conclusion, LIFU targeting the NAc was safe and acutely reduced substance craving during the LIFU procedure, and potentially had longer-term impact on craving reductions. While early observations are promising, NAc LIFU requires further investigation in a controlled trial to assess the impact on substance craving and ultimately substance use and relapse.
Collapse
Affiliation(s)
- James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Marc W. Haut
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neurology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Jeffrey Carpenter
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Manish Ranjan
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Daisy G. Y. Thompson-Lake
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Jennifer L. Marton
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Wanhong Zheng
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - James H. Berry
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Padma Tirumalai
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Ashley Mears
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Pierre D’Haese
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Victor S. Finomore
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Sally L. Hodder
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Ali R. Rezai
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| |
Collapse
|
35
|
Ulloa Severino FP, Lawal OO, Sakers K, Wang S, Kim N, Friedman AD, Johnson SA, Sriworarat C, Hughes RH, Soderling SH, Kim IH, Yin HH, Eroglu C. Training-induced circuit-specific excitatory synaptogenesis in mice is required for effort control. Nat Commun 2023; 14:5522. [PMID: 37684234 PMCID: PMC10491649 DOI: 10.1038/s41467-023-41078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Synaptogenesis is essential for circuit development; however, it is unknown whether it is critical for the establishment and performance of goal-directed voluntary behaviors. Here, we show that operant conditioning via lever-press for food reward training in mice induces excitatory synapse formation onto a subset of anterior cingulate cortex neurons projecting to the dorsomedial striatum (ACC→DMS). Training-induced synaptogenesis is controlled by the Gabapentin/Thrombospondin receptor α2δ-1, which is an essential neuronal protein for proper intracortical excitatory synaptogenesis. Using germline and conditional knockout mice, we found that deletion of α2δ-1 in the adult ACC→DMS circuit diminishes training-induced excitatory synaptogenesis. Surprisingly, this manipulation does not impact learning but results in a significant increase in effort exertion without affecting sensitivity to reward value or changing contingencies. Bidirectional optogenetic manipulation of ACC→DMS neurons rescues or phenocopies the behaviors of the α2δ-1 cKO mice, highlighting the importance of synaptogenesis within this cortico-striatal circuit in regulating effort exertion.
Collapse
Affiliation(s)
- Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA.
- Cajal Institute (CSIC), Madrid, 28001, Spain.
| | | | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Sarah Anne Johnson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Ryan H Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA
| | - Il Hwan Kim
- Department of Anatomy & Neurobiology, University of Tennessee Health and Science Center, Memphis, TN, 38103, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA.
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences (DIBS), Durham, NC, 27710, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
36
|
Ziebell P, Rodrigues J, Forster A, Sanguinetti JL, Allen JJ, Hewig J. Inhibition of midfrontal theta with transcranial ultrasound explains greater approach versus withdrawal behavior in humans. Brain Stimul 2023; 16:1278-1288. [PMID: 37611659 DOI: 10.1016/j.brs.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Recent reviews highlighted low-intensity transcranial focused ultrasound (TUS) as a promising new tool for non-invasive neuromodulation in basic and applied sciences. Our preregistered double-blind within-subjects study (N = 152) utilized TUS targeting the right prefrontal cortex, which, in earlier work, was found to positively enhance self-reported global mood, decrease negative states of self-reported emotional conflict (anxiety/worrying), and modulate related midfrontal functional magnetic resonance imaging activity in affect regulation brain networks. To further explore TUS effects on objective physiological and behavioral variables, we used a virtual T-maze task that has been established in prior studies to measure motivational conflicts regarding whether participants execute approach versus withdrawal behavior (with free-choice responses via continuous joystick movements) while allowing to record related electroencephalographic data such as midfrontal theta activity (MFT). MFT, a reliable marker of conflict representation on a neuronal level, was of particular interest to us since it has repeatedly been shown to explain related behavior, with relatively low MFT typically preceding approach-like risky behavior and relatively high MFT typically preceding withdrawal-like risk aversion. Our central hypothesis is that TUS decreases MFT in T-maze conflict situations and thereby increases approach and reduces withdrawal. Results indicate that TUS led to significant MFT decreases, which significantly explained increases in approach behavior and decreases in withdrawal behavior. This study expands TUS evidence on a physiological and behavioral level with a large sample size of human subjects, suggesting the promise of further research based on this distinct TUS-MFT-behavior link to influence conflict monitoring and its behavioral consequences. Ultimately, this can serve as a foundation for future clinical work to establish TUS interventions for emotional and motivational mental health.
Collapse
Affiliation(s)
- Philipp Ziebell
- University of Würzburg, Department of Psychology I, Marcusstr. 9-11, 97070 Würzburg, Germany.
| | - Johannes Rodrigues
- University of Würzburg, Department of Psychology I, Marcusstr. 9-11, 97070 Würzburg, Germany.
| | - André Forster
- University of Würzburg, Department of Psychology I, Marcusstr. 9-11, 97070 Würzburg, Germany.
| | - Joseph L Sanguinetti
- University of Arizona, Department of Psychology, 1503 E. University Blvd. (Building 68), Tucson (AZ) 85721, USA.
| | - John Jb Allen
- University of Arizona, Department of Psychology, 1503 E. University Blvd. (Building 68), Tucson (AZ) 85721, USA.
| | - Johannes Hewig
- University of Würzburg, Department of Psychology I, Marcusstr. 9-11, 97070 Würzburg, Germany.
| |
Collapse
|
37
|
Choi MH, Li N, Popelka G, Butts Pauly K. Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimul 2023; 16:1362-1370. [PMID: 37690602 DOI: 10.1016/j.brs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) is a promising noninvasive neuromodulation modality. The inadvertent and unpredictable activation of the auditory system in response to TUS obfuscates the interpretation of non-auditory neuromodulatory responses. OBJECTIVE The objective was to develop and validate a computational metric to quantify the susceptibility to unintended auditory brainstem response (ABR) in mice premised on time frequency analyses of TUS signals and auditory sensitivity. METHODS Ultrasound pulses with varying amplitudes, pulse repetition frequencies (PRFs), envelope smoothing profiles, and sinusoidal modulation frequencies were selected. Each pulse's time-varying frequency spectrum was differentiated across time, weighted by the mouse hearing sensitivity, then summed across frequencies. The resulting time-varying function, computationally predicting the ABR, was validated against experimental ABR in mice during TUS with the corresponding pulse. RESULTS There was a significant correlation between experimental ABRs and the computational predictions for 19 TUS signals (R2 = 0.97). CONCLUSIONS To reduce ABR in mice during in vivo TUS studies, 1) reduce the amplitude of a rectangular continuous wave envelope, 2) increase the rise/fall times of a smoothed continuous wave envelope, and/or 3) change the PRF and/or duty cycle of a rectangular or sinusoidal pulsed wave to reduce the gap between pulses and increase the rise/fall time of the overall envelope. This metric can aid researchers performing in vivo mouse studies in selecting TUS signal parameters that minimize unintended ABR. The methods for developing this metric can be adapted to other animal models.
Collapse
Affiliation(s)
- Mi Hyun Choi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald Popelka
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Kim Butts Pauly
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
Yaakub SN, White TA, Roberts J, Martin E, Verhagen L, Stagg CJ, Hall S, Fouragnan EF. Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans. Nat Commun 2023; 14:5318. [PMID: 37658076 PMCID: PMC10474159 DOI: 10.1038/s41467-023-40998-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is an emerging non-invasive technique for focally modulating human brain function. The mechanisms and neurochemical substrates underlying TUS neuromodulation in humans and how these relate to excitation and inhibition are still poorly understood. In 24 healthy controls, we separately stimulated two deep cortical regions and investigated the effects of theta-burst TUS, a protocol shown to increase corticospinal excitability, on the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and functional connectivity. We show that theta-burst TUS in humans selectively reduces GABA levels in the posterior cingulate, but not the dorsal anterior cingulate cortex. Functional connectivity increased following TUS in both regions. Our findings suggest that TUS changes overall excitability by reducing GABAergic inhibition and that changes in TUS-mediated neuroplasticity last at least 50 mins after stimulation. The difference in TUS effects on the posterior and anterior cingulate could suggest state- or location-dependency of the TUS effect-both mechanisms increasingly recognized to influence the brain's response to neuromodulation.
Collapse
Affiliation(s)
- Siti N Yaakub
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Tristan A White
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Jamie Roberts
- Department of Clinical Measurement and Innovation, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Lennart Verhagen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Stephen Hall
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Elsa F Fouragnan
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK.
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
39
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
40
|
Yun M, Nejime M, Kawai T, Kunimatsu J, Yamada H, Kim HR, Matsumoto M. Distinct roles of the orbitofrontal cortex, ventral striatum, and dopamine neurons in counterfactual thinking of decision outcomes. SCIENCE ADVANCES 2023; 9:eadh2831. [PMID: 37556536 PMCID: PMC10411892 DOI: 10.1126/sciadv.adh2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Individuals often assess past decisions by comparing what was gained with what would have been gained had they acted differently. Thoughts of past alternatives that counter what actually happened are called "counterfactuals." Recent theories emphasize the role of the prefrontal cortex in processing counterfactual outcomes in decision-making, although how subcortical regions contribute to this process remains to be elucidated. Here we report a clear distinction among the roles of the orbitofrontal cortex, ventral striatum and midbrain dopamine neurons in processing counterfactual outcomes in monkeys. Our findings suggest that actually gained and counterfactual outcome signals are both processed in the cortico-subcortical network constituted by these regions but in distinct manners and integrated only in the orbitofrontal cortex in a way to compare these outcomes. This study extends the prefrontal theory of counterfactual thinking and provides key insights regarding how the prefrontal cortex cooperates with subcortical regions to make decisions using counterfactual information.
Collapse
Affiliation(s)
- Mengxi Yun
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Masafumi Nejime
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Kawai
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Jun Kunimatsu
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroshi Yamada
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - HyungGoo R. Kim
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea
| | - Masayuki Matsumoto
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
41
|
Kubanek J, Wilson M, Rabbitt RD, Armstrong CJ, Farley AJ, Ullah HMA, Shcheglovitov A. Stem cell-derived brain organoids for controlled studies of transcranial neuromodulation. Heliyon 2023; 9:e18482. [PMID: 37576248 PMCID: PMC10412769 DOI: 10.1016/j.heliyon.2023.e18482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Transcranial neuromodulation methods have the potential to diagnose and treat brain disorders at their neural source in a personalized manner. However, it has been difficult to investigate the direct effects of transcranial neuromodulation on neurons in human brain tissue. Here, we show that human brain organoids provide a detailed and artifact-free window into neuromodulation-evoked electrophysiological effects. We derived human cortical organoids from induced pluripotent stem cells and implanted 32-channel electrode arrays. Each organoid was positioned in the center of the human skull and subjected to low-intensity transcranial focused ultrasound. We found that ultrasonic stimuli modulated network activity in the gamma and delta ranges of the frequency spectrum. The effects on the neural networks were a function of the ultrasound stimulation frequency. High gamma activity remained elevated for at least 20 minutes following stimulation offset. This approach is expected to provide controlled studies of the effects of ultrasound and other transcranial neuromodulation modalities on human brain tissue.
Collapse
Affiliation(s)
- Jan Kubanek
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - Matthew Wilson
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - Richard D. Rabbitt
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - Celeste J. Armstrong
- University of Utah, Department of Neurobiology, 20 South 2030 East, Salt Lake City, UT 84112, United States of America
| | - Alexander J. Farley
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| | - H. M. Arif Ullah
- University of Utah, Department of Neurobiology, 20 South 2030 East, Salt Lake City, UT 84112, United States of America
| | - Alex Shcheglovitov
- University of Utah, Department of Neurobiology, 20 South 2030 East, Salt Lake City, UT 84112, United States of America
- University of Utah, Department of Biomedical Engineering, 36 South Wasatch Dr, Salt Lake City, UT 84112, United States of America
| |
Collapse
|
42
|
Liu D, Munoz F, Sanatkhani S, Pouliopoulos AN, Konofagou EE, Grinband J, Ferrera VP. Alteration of functional connectivity in the cortex and major brain networks of non-human primates following focused ultrasound exposure in the dorsal striatum. Brain Stimul 2023; 16:1196-1204. [PMID: 37558125 PMCID: PMC10530553 DOI: 10.1016/j.brs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Focused ultrasound (FUS) is a non-invasive neuromodulation technology that is being investigated for potential treatment of neurological and psychiatric disorders. FUS combined with microbubbles can temporarily open the intact blood-brain barrier (BBB) of animals and humans, and facilitate drug delivery. FUS exposure, either with or without microbubbles, has been demonstrated to alter the behavior of non-human primates (NHP), and previous studies have demonstrated the transient and long-term effects of FUS neuromodulation on functional connectivity using resting state functional MRI. The behavioral effects of FUS vary depending on whether or not it is applied in conjunction with microbubbles to open the BBB, but it is unknown whether opening the BBB affects functional connectivity differently than FUS alone. OBJECTIVE To compare the effects of applying FUS alone (FUS neuromodulation) and FUS with microbubbles (FUS-BBB opening) on changes of resting state functional connectivity in NHP. METHODS We applied 2 min FUS exposure without (neuromodulation) and with microbubbles (BBB opening) in the dorsal striatum of lightly anesthetized non-human primates, and acquired resting state functional MRI 40 min respectively after FUS exposure. The functional connectivity (FC) in the cortex and major brain networks between the two approaches were measured and compared. RESULTS When applying FUS exposure to the caudate nucleus of NHP, we found that both FUS neuromodulation can activate FC between caudate and insular cortex, while inhibiting the FC between caudate and motor cortex. FUS-BBB opening can activate FC between the caudate and medial prefrontal cortex, and within the frontotemporal network (FTN). We also found both FUS and FUS-BBB opening can significantly activate FC within the default mode network (DMN). CONCLUSION The results suggest applying FUS to a deep brain structure can alter functional connectivity in the DMN and FTN, and that FUS neuromodulation and FUS-mediated BBB opening can have different effects on patterns of functional connectivity.
Collapse
Affiliation(s)
- Dong Liu
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA.
| | - Fabian Munoz
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - Soroosh Sanatkhani
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - Antonios N Pouliopoulos
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering & Imaging Science, King's College London, UK
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, USA; Department of Radiology, Columbia University, USA
| | - Jack Grinband
- Department of Radiology, Columbia University, USA; Department of Psychiatry, Columbia University, USA
| | - Vincent P Ferrera
- Department of Neuroscience, Columbia University, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, USA; Department of Psychiatry, Columbia University, USA
| |
Collapse
|
43
|
Law CK, Kolling N, Chan CCH, Chau BKH. Frontopolar cortex represents complex features and decision value during choice between environments. Cell Rep 2023; 42:112555. [PMID: 37224014 PMCID: PMC10320831 DOI: 10.1016/j.celrep.2023.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/23/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Important decisions often involve choosing between complex environments that define future item encounters. Despite its importance for adaptive behavior and distinct computational challenges, decision-making research primarily focuses on item choice, ignoring environment choice altogether. Here we contrast previously studied item choice in ventromedial prefrontal cortex with lateral frontopolar cortex (FPl) linked to environment choice. Furthermore, we propose a mechanism for how FPl decomposes and represents complex environments during decision making. Specifically, we trained a choice-optimized, brain-naive convolutional neural network (CNN) and compared predicted CNN activation with actual FPl activity. We showed that the high-dimensional FPl activity decomposes environment features to represent the complexity of an environment to make such choice possible. Moreover, FPl functionally connects with posterior cingulate cortex for guiding environment choice. Further probing FPl's computation revealed a parallel processing mechanism in extracting multiple environment features.
Collapse
Affiliation(s)
- Chun-Kit Law
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
| | - Nils Kolling
- Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500 Bron, France; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, Hong Kong
| | - Bolton K H Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
44
|
Kook G, Jo Y, Oh C, Liang X, Kim J, Lee SM, Kim S, Choi JW, Lee HJ. Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography. MICROSYSTEMS & NANOENGINEERING 2023; 9:45. [PMID: 37056421 PMCID: PMC10085992 DOI: 10.1038/s41378-023-00513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 06/05/2023]
Abstract
Transcranial focused ultrasound stimulation is a promising therapeutic modality for human brain disorders because of its noninvasiveness, long penetration depth, and versatile spatial control capability through beamforming and beam steering. However, the skull presents a major hurdle for successful applications of ultrasound stimulation. Specifically, skull-induced focal aberration limits the capability for accurate and versatile targeting of brain subregions. In addition, there lacks a fully functional preclinical neuromodulation system suitable to conduct behavioral studies. Here, we report a miniature ultrasound system for neuromodulation applications that is capable of highly accurate multiregion targeting based on acoustic holography. Our work includes the design and implementation of an acoustic lens for targeting brain regions with compensation for skull aberration through time-reversal recording and a phase conjugation mirror. Moreover, we utilize MEMS and 3D-printing technology to implement a 0.75-g lightweight neuromodulation system and present in vivo characterization of the packaged system in freely moving mice. This preclinical system is capable of accurately targeting the desired individual or multitude of brain regions, which will enable versatile and explorative behavior studies using ultrasound neuromodulation to facilitate widespread clinical adoption.
Collapse
Affiliation(s)
- Geon Kook
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Chaerin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Xiaojia Liang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Jaewon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Sang-Mok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Subeen Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Jung-Woo Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Hyunjoo Jenny Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- KAIST Institute for NanoCentury (KINC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
45
|
Kohl C, Wong MXM, Wong JJ, Rushworth MFS, Chau BKH. Intraparietal stimulation disrupts negative distractor effects in human multi-alternative decision-making. eLife 2023; 12:e75007. [PMID: 36811348 PMCID: PMC9946441 DOI: 10.7554/elife.75007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2022] [Indexed: 02/24/2023] Open
Abstract
There has been debate about whether addition of an irrelevant distractor option to an otherwise binary decision influences which of the two choices is taken. We show that disparate views on this question are reconciled if distractors exert two opposing but not mutually exclusive effects. Each effect predominates in a different part of decision space: (1) a positive distractor effect predicts high-value distractors improve decision-making; (2) a negative distractor effect, of the type associated with divisive normalisation models, entails decreased accuracy with increased distractor values. Here, we demonstrate both distractor effects coexist in human decision making but in different parts of a decision space defined by the choice values. We show disruption of the medial intraparietal area (MIP) by transcranial magnetic stimulation (TMS) increases positive distractor effects at the expense of negative distractor effects. Furthermore, individuals with larger MIP volumes are also less susceptible to the disruption induced by TMS. These findings also demonstrate a causal link between MIP and the impact of distractors on decision-making via divisive normalisation.
Collapse
Affiliation(s)
- Carmen Kohl
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
- Department Neuroscience, Carney Institute for Brain Sciences, Brown UniversityProvidenceUnited States
| | - Michelle XM Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
| | - Jing Jun Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
| | | | - Bolton KH Chau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic UniversityHong KongChina
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic UniversityHong KongChina
| |
Collapse
|
46
|
Miyamoto K, Rushworth MFS, Shea N. Imagining the future self through thought experiments. Trends Cogn Sci 2023; 27:446-455. [PMID: 36801162 DOI: 10.1016/j.tics.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
The ability of the mind to conceptualize what is not present is essential. It allows us to reason counterfactually about what might have happened had events unfolded differently or had another course of action been taken. It allows us to think about what might happen - to perform 'Gedankenexperimente' (thought experiments) - before we act. However, the cognitive and neural mechanisms mediating this ability are poorly understood. We suggest that the frontopolar cortex (FPC) keeps track of and evaluates alternative choices (what we might have done), whereas the anterior lateral prefrontal cortex (alPFC) compares simulations of possible future scenarios (what we might do) and evaluates their reward values. Together, these brain regions support the construction of suppositional scenarios.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan.
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicholas Shea
- Institute of Philosophy, School of Advanced Study, University of London, London, UK; Faculty of Philosophy, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Liu D, Munoz F, Sanatkhani S, Pouliopoulos AN, Konofagou E, Grinband J, VP F. Alteration of functional connectivity in the cortex and major brain networks of non-human primates following focused ultrasound exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528741. [PMID: 36824864 PMCID: PMC9949083 DOI: 10.1101/2023.02.16.528741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Focused ultrasound (FUS) is a non-invasive neuromodulation technology that is being investigated for potential treatment of neurological and psychiatric disorders. Focused ultrasound combined with microbubbles can temporarily open the intact blood-brain barrier (BBB) of animals and humans, and facilitate drug delivery. FUS exposure, either with or without microbubbles, has been demonstrated to alter the behavior of non-human primates, and previous work has demonstrated transient and long-term effects of FUS neuromodulation on functional connectivity using resting state functional MRI. However, it is unknown whether opening the BBB affects functional connectivity differently than FUS alone. Thus we applied FUS alone (neuromodulation) and FUS with microbubbles (BBB opening) in the dorsal striatum of lightly anesthetized non-human primates, and compared changes in functional connectivity in major brain networks. We found different alteration patterns between FUS neuromodulation and FUS-mediated BBB opening in several cortical areas, and we also found that applying FUS to a deep brain structure can alter functional connectivity in the default mode network and frontotemporal network.
Collapse
Affiliation(s)
- D Liu
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - F Munoz
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - S Sanatkhani
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
| | - A N Pouliopoulos
- Dept. of Surgical & Interventional Engineering, School of Biomedical Engineering & Imaging Science, King’s College London, UK
| | - E Konofagou
- Dept. of Biomedical Engineering, Columbia University, USA
- Dept. of Radiology, Columbia University, USA
| | - J Grinband
- Dept. of Radiology, Columbia University, USA
- Dept. of Psychiatry, Columbia University, USA
| | - Ferrera VP
- Dept. of Neuroscience, Columbia University, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, USA
- Dept. of Psychiatry, Columbia University, USA
| |
Collapse
|
48
|
Ren L, Zhai Z, Xiang Q, Zhuo K, Zhang S, Zhang Y, Jiao X, Tong S, Liu D, Sun J. Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex. J Neural Eng 2023; 20. [PMID: 36669203 DOI: 10.1088/1741-2552/acb50d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Background. Low-intensity transcranial ultrasound stimulation (TUS) could induce both immediate and long-lasting neuromodulatory effects in human brains. Interhemispheric imbalance at prefrontal or motor cortices generally associates with various cognitive decline in aging and mental disorders. However, whether TUS could modulate the interhemispheric balance of excitability in human brain remains unknown.Objective. This study aims to explore whether repetitive TUS (rTUS) intervention can modulate the interhemispheric balance of excitability between bilateral motor cortex (M1) in healthy subjects.Approach. Motor evoked potentials (MEPs) at bilateral M1 were measured at 15 min and 0 min before a 15 min active or sham rTUS intervention on left M1 and at 0 min, 15 min and 30 min after the intervention, and the Chinese version of brief neurocognitive test battery (C-BCT) was conducted before and after the intervention respectively. Cortical excitability was quantified by MEPs, and the long-lasting changes of MEP amplitude was used as an index of plasticity.Results. In the active rTUS group (n= 20), the ipsilateral MEP amplitude increased significantly compared with baselines and lasted for up to 30 min after intervention, while the contralateral MEP amplitude decreased lasting for 15 min, yielding increased laterality between bilateral MEPs. Furthermore, rTUS intervention induced changes in some C-BCT scores, and the changes of scores correlated with the changes of MEP amplitudes induced by rTUS intervention. The sham rTUS group (n= 20) showed no significant changes in MEPs and C-BCT scores. In addition, no participants reported any adverse effects during and after the rTUS intervention, and no obvious temperature increase appeared in skull or brain tissues in simulation.Significance. rTUS intervention modulated the plasticity of ipsilateral M1 and the interhemispheric balance of M1 excitability in human brain, and improved cognitive performance, suggesting a considerable potential of rTUS in clinical interventions.
Collapse
Affiliation(s)
- Liyuan Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Zhaolin Zhai
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Suzhen Zhang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Institute of Mental Health, Fudan University, Shanghai 200030, People's Republic of China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| |
Collapse
|
49
|
Jahn CI, Grohn J, Cuell S, Emberton A, Bouret S, Walton ME, Kolling N, Sallet J. Neural responses in macaque prefrontal cortex are linked to strategic exploration. PLoS Biol 2023; 21:e3001985. [PMID: 36716348 PMCID: PMC9910800 DOI: 10.1371/journal.pbio.3001985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/09/2023] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Humans have been shown to strategically explore. They can identify situations in which gathering information about distant and uncertain options is beneficial for the future. Because primates rely on scarce resources when they forage, they are also thought to strategically explore, but whether they use the same strategies as humans and the neural bases of strategic exploration in monkeys are largely unknown. We designed a sequential choice task to investigate whether monkeys mobilize strategic exploration based on whether information can improve subsequent choice, but also to ask the novel question about whether monkeys adjust their exploratory choices based on the contingency between choice and information, by sometimes providing the counterfactual feedback about the unchosen option. We show that monkeys decreased their reliance on expected value when exploration could be beneficial, but this was not mediated by changes in the effect of uncertainty on choices. We found strategic exploratory signals in anterior and mid-cingulate cortex (ACC/MCC) and dorsolateral prefrontal cortex (dlPFC). This network was most active when a low value option was chosen, which suggests a role in counteracting expected value signals, when exploration away from value should to be considered. Such strategic exploration was abolished when the counterfactual feedback was available. Learning from counterfactual outcome was associated with the recruitment of a different circuit centered on the medial orbitofrontal cortex (OFC), where we showed that monkeys represent chosen and unchosen reward prediction errors. Overall, our study shows how ACC/MCC-dlPFC and OFC circuits together could support exploitation of available information to the fullest and drive behavior towards finding more information through exploration when it is beneficial.
Collapse
Affiliation(s)
- Caroline I. Jahn
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Epinière, Paris, France
- Sorbonne Paris Cité universités, Université Paris Descartes, Frontières du Vivant, Paris, France
- * E-mail: (CIJ); (JG); (NK); (JS)
| | - Jan Grohn
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- * E-mail: (CIJ); (JG); (NK); (JS)
| | - Steven Cuell
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Andrew Emberton
- Biomedical Science Services, University of Oxford, Oxford, United Kingdom
| | - Sebastien Bouret
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Mark E. Walton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nils Kolling
- Wellcome Centre for Integrative Neuroimaging, OBHA, University of Oxford, Headington, United Kingdom
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- * E-mail: (CIJ); (JG); (NK); (JS)
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- * E-mail: (CIJ); (JG); (NK); (JS)
| |
Collapse
|
50
|
Attali D, Tiennot T, Schafer M, Fouragnan E, Sallet J, Caskey CF, Chen R, Darmani G, Bubrick EJ, Butler C, Stagg CJ, Klein-Flügge M, Verhagen L, Yoo SS, Pauly KB, Aubry JF. Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation. Brain Stimul 2023; 16:48-55. [PMID: 36549480 DOI: 10.1016/j.brs.2022.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Transcranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires estimating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines for estimating the impact of the skull bone. A tissue independent, arbitrary derating was developed by the U.S. Food and Drug Administration to take into account tissue absorption (0.3 dB/cm-MHz) for diagnostic ultrasound. However, for the case of transcranial ultrasound imaging, the FDA model does not take into account the insertion loss induced by the skull bone, nor the absorption by brain tissue. Therefore, the estimated absorption is overly conservative which could potentially limit TUS applications if the same guidelines were to be adopted. Here we propose a three-layer model including bone absorption to calculate the maximum pressure transmission through the human skull for frequencies ranging between 100 kHz and 1.5 MHz. The calculated pressure transmission decreases with the frequency and the thickness of the bone, with peaks for each thickness corresponding to a multiple of half the wavelength. The 95th percentile maximum transmission was calculated over the accessible surface of 20 human skulls for 12 typical diameters of the ultrasound beam on the skull surface, and varies between 40% and 78%. To facilitate the safe adjustment of the acoustic pressure for short ultrasound pulses, such as transcranial imaging or transcranial ultrasound stimulation, a table summarizes the maximum pressure transmission for each ultrasound beam diameter and each frequency.
Collapse
Affiliation(s)
- David Attali
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8063, PSL University, Paris, France; Pôle Paris 16 (Secteurs 17-18) et Pôle Neuro Sainte-Anne, Centre Hospitalier Sainte-Anne, GHU Paris Psychiatrie & Neurosciences, Université Paris Cité, Paris, France
| | - Thomas Tiennot
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8063, PSL University, Paris, France
| | - Mark Schafer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Elsa Fouragnan
- Brain Research Imaging Center and School of Psychology, University of Plymouth, Plymouth, UK; School of Psychology, Portland Square, Plymouth PL4 8AA, UK
| | - Jérôme Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Sciences, VU Medical Center, Nashville, TN, United States
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ellen J Bubrick
- Brigham and Women's Hospital, Harvard Medical School, Department of Neurology, 75 Francis St., Boston, MA, USA
| | - Christopher Butler
- Department of Brain Sciences, Imperial College London, 9th Floor, Sir Michael Uren Hub, 86 Wood Lane, London, W12 0BZ, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Miriam Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Lennart Verhagen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, the Netherlands
| | - Seung-Schik Yoo
- Brigham and Women's Hospital, Harvard Medical School, Department of Radiology, 75 Francis St., Boston, MA, USA
| | - Kim Butts Pauly
- Stanford University, Department of Radiology, Stanford CA, 94305, USA
| | - Jean-Francois Aubry
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8063, PSL University, Paris, France.
| |
Collapse
|