1
|
Liu Y, Miao B, Li W, Hu X, Bai F, Abuduresule Y, Liu Y, Zheng Z, Wang W, Chen Z, Zhu S, Feng X, Cao P, Ping W, Yang R, Dai Q, Liu F, Tian C, Yang Y, Fu Q. Bronze Age cheese reveals human-Lactobacillus interactions over evolutionary history. Cell 2024; 187:5891-5900.e8. [PMID: 39326418 DOI: 10.1016/j.cell.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024]
Abstract
Despite the long history of consumption of fermented dairy, little is known about how the fermented microbes were utilized and evolved over human history. Here, by retrieving ancient DNA of Bronze Age kefir cheese (∼3,500 years ago) from the Xiaohe cemetery, we explored past human-microbial interactions. Although it was previously suggested that kefir was spread from the Northern Caucasus to Europe and other regions, we found an additional spreading route of kefir from Xinjiang to inland East Asia. Over evolutionary history, the East Asian strains gained multiple gene clusters with defensive roles against environmental stressors, which can be a result of the adaptation of Lactobacillus strains to various environmental niches and human selection. Overall, our results highlight the role of past human activities in shaping the evolution of human-related microbes, and such insights can, in turn, provide a better understanding of past human behaviors.
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wenying Li
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi 830000, China
| | - Xingjun Hu
- Research Center for Governance of China's Northwest Frontier in the Historical Periods, School of History, Xinjiang University, Ürümqi 830046, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zequan Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yimin Yang
- Department of Archaeology and Anthropology, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Xie W, Xue J, Chen R, Su H, Fang X, Wu Q, Yang W, Jia L. Extraction of Genomic DNA from Soil Samples by Polyethylene Glycol-Modified Magnetic Particles via Isopropanol Promotion and Ca 2+ Mediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20550-20558. [PMID: 39288013 DOI: 10.1021/acs.langmuir.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obtaining reliable and informative DNA data from soil samples is challenging due to the presence of interfering substances and typically low DNA yields. In this work, we prepared poly(ethylene glycol)-modified magnetic particles (PEG@Fe3O4) for DNA purification. The particles leverage the facilitative effect of calcium ions (Ca2+), which act as bridges between DNA and PEG@Fe3O4 by coordinating with the phosphate groups of DNA and the hydroxyl groups on the particles. The addition of 2-propanol further enhances this Ca2+-mediated DNA adsorption by inducing a conformational change from the B-form to the more compact A-form of DNA. PEG@Fe3O4 demonstrates a DNA adsorption capacity of 144.6 mg g-1. When applied to the extraction of genomic DNA from soil samples, PEG@Fe3O4 outperforms commercial kits and traditional phenol-chloroform extraction methods in terms of DNA yield and purity. Furthermore, we developed a 16-channel automated DNA extraction device to streamline the process and reduce the extraction time. The successful amplification of target bacterial and fungal amplicons underscores the potential of this automated, device-assisted method for studying soil microbial diversity.
Collapse
Affiliation(s)
- Wenting Xie
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jialiang Xue
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ruobo Chen
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huihui Su
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xun Fang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qingxi Wu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenjuan Yang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Gretzinger J, Gibbon VE, Penske SE, Sealy JC, Rohrlach AB, Salazar-García DC, Krause J, Schiffels S. 9,000 years of genetic continuity in southernmost Africa demonstrated at Oakhurst rockshelter. Nat Ecol Evol 2024:10.1038/s41559-024-02532-3. [PMID: 39300260 DOI: 10.1038/s41559-024-02532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Southern Africa has one of the longest records of fossil hominins and harbours the largest human genetic diversity in the world. Yet, despite its relevance for human origins and spread around the globe, the formation and processes of its gene pool in the past are still largely unknown. Here, we present a time transect of genome-wide sequences from nine individuals recovered from a single site in South Africa, Oakhurst Rockshelter. Spanning the whole Holocene, the ancient DNA of these individuals allows us to reconstruct the demographic trajectories of the indigenous San population and their ancestors during the last 10,000 years. We show that, in contrast to most regions around the world, the population history of southernmost Africa was not characterized by several waves of migration, replacement and admixture but by long-lasting genetic continuity from the early Holocene to the end of the Later Stone Age. Although the advent of pastoralism and farming substantially transformed the gene pool in most parts of southern Africa after 1,300 BP, we demonstrate using allele-frequency and identity-by-descent segment-based methods that the ‡Khomani San and Karretjiemense from South Africa still show direct signs of relatedness to the Oakhurst hunter-gatherers, a pattern obscured by recent, extensive non-Southern African admixture. Yet, some southern San in South Africa still preserve this ancient, Pleistocene-derived genetic signature, extending the period of genetic continuity until today.
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Victoria E Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Sandra E Penske
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Judith C Sealy
- Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Adam B Rohrlach
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Domingo C Salazar-García
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Department of Archaeogenetics, Leipzig, Germany.
| |
Collapse
|
4
|
Hou J, Guan X, Xia X, Lyu Y, Liu X, Mazei Y, Xie P, Chang F, Zhang X, Chen J, Li X, Zhang F, Jin L, Luo X, Sinding MHS, Sun X, Achilli A, Migliore NR, Zhang D, Lenstra JA, Han J, Fu Q, Liu X, Zhang X, Chen N, Lei C, Zhang H. Evolution and legacy of East Asian aurochs. Sci Bull (Beijing) 2024:S2095-9273(24)00650-9. [PMID: 39322456 DOI: 10.1016/j.scib.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Aurochs (Bos primigenius), once widely distributed in Afro-Eurasia, became extinct in the early 1600 s. However, their phylogeography and relative contributions to domestic cattle remain unknown. In this study, we analyzed 16 genomes of ancient aurochs and three mitogenomes of ancient bison (Bison priscus) excavated in East Asia, dating from 43,000 to 3,590 years ago. These newly generated data with previously published genomic information on aurochs as well as ancient/extant domestic cattle worldwide through genome analysis. Our findings revealed significant genetic divergence between East Asian aurochs and their European, Near Eastern, and African counterparts on the basis of both mitochondrial and nuclear genomic data. Furthermore, we identified evidence of gene flow from East Asian aurochs into ancient and present-day taurine cattle, suggesting their potential role in facilitating the environmental adaptation of domestic cattle.
Collapse
Affiliation(s)
- Jiawen Hou
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuri Mazei
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xinyi Li
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Fengwei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangliang Jin
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Xin Sun
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Alessandro Achilli
- Department of Biology and Biotechnology, L. Spallanzani University of Pavia, Pavia 27100, Italy
| | | | - Dongju Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xinyi Liu
- Anthropology Department, Washington University in St. Louis, Missouri, MO 63130, USA
| | - Xiaoming Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
5
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Du P, Zhu K, Wang M, Sun Z, Tan J, Sun B, Sun B, Wang P, He G, Xiong J, Huang Z, Meng H, Sun C, Xie S, Wang B, Ge D, Ma Y, Sheng P, Ren X, Tao Y, Xu Y, Qin X, Allen E, Zhang B, Chang X, Wang K, Bao H, Yu Y, Wang L, Ma X, Du Z, Guo J, Yang X, Wang R, Ma H, Li D, Pan Y, Li B, Zhang Y, Zheng X, Han S, Jin L, Chen G, Li H, Wang CC, Wen S. Genomic dynamics of the Lower Yellow River Valley since the Early Neolithic. Curr Biol 2024; 34:3996-4006.e11. [PMID: 39146937 DOI: 10.1016/j.cub.2024.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/05/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
The Yellow River Delta played a vital role in the development of the Neolithic civilization of China. However, the population history of this region from the Neolithic transitions to the present remains poorly understood due to the lack of ancient human genomes. This especially holds for key Neolithic transitions and tumultuous turnovers of dynastic history. Here, we report genome-wide data from 69 individuals dating to 5,410-1,345 years before present (BP) at 0.008 to 2.49× coverages, along with 325 present-day individuals collected from 16 cities across Shandong. During the Middle to Late Dawenkou period, we observed a significant influx of ancestry from Neolithic Yellow River farmers in central China and some southern Chinese ancestry that mixed with local hunter-gatherers in Shandong. The genetic heritage of the Shandong Longshan people was found to be most closely linked to the Dawenkou culture. During the Shang to Zhou Dynasties, there was evidence of genetic admixture of local Longshan populations with migrants from the Central Plain. After the Qin to Han Dynasties, the genetic composition of the region began to resemble that of modern Shandong populations. Our genetic findings suggest that the middle Yellow River Basin farmers played a role in shaping the genetic affinity of neighboring populations in northern China during the Middle to Late Neolithic period. Additionally, our findings indicate that the genetic diversity in the Shandong region during the Zhou Dynasty may be linked with their complex ethnicities.
Collapse
Affiliation(s)
- Panxin Du
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Minghui Wang
- Institute of Archaeology, Academy of Social Sciences, Beijing 100101, China
| | | | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Bo Sun
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan 250012, China
| | - Bo Sun
- Linyi Museum, Linyi 276000, China
| | | | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Zixiao Huang
- Department of History, Fudan University, Shanghai 200433, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Shouhua Xie
- Department of History, Fudan University, Shanghai 200433, China
| | - Bangyan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Dong Ge
- Shanghai Natural History Museum, Branch of the Shanghai Science & Technology Museum, Shanghai 200041, China
| | | | - Pengfei Sheng
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yichen Tao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoli Qin
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Baoshuai Zhang
- USTC Archaeometry Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Ke Wang
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Haoquan Bao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yao Yu
- Department of History, Fudan University, Shanghai 200433, China
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China
| | - Xiaolin Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhenyuan Du
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan 250012, China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Dapeng Li
- Yantai Municipal Museum, Yantai 264001, China
| | - Yiling Pan
- Shanghai Natural History Museum, Branch of the Shanghai Science & Technology Museum, Shanghai 200041, China
| | - Bicheng Li
- Shanghai Natural History Museum, Branch of the Shanghai Science & Technology Museum, Shanghai 200041, China
| | - Yunfei Zhang
- Shanghai Natural History Museum, Branch of the Shanghai Science & Technology Museum, Shanghai 200041, China
| | - Xiaoqu Zheng
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai 200444, China
| | - Sheng Han
- Department of History, Fudan University, Shanghai 200433, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Gang Chen
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China; Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China.
| |
Collapse
|
7
|
Gretzinger J, Schmitt F, Mötsch A, Carlhoff S, Lamnidis TC, Huang Y, Ringbauer H, Knipper C, Francken M, Mandt F, Hansen L, Freund C, Posth C, Rathmann H, Harvati K, Wieland G, Granehäll L, Maixner F, Zink A, Schier W, Krausse D, Krause J, Schiffels S. Evidence for dynastic succession among early Celtic elites in Central Europe. Nat Hum Behav 2024; 8:1467-1480. [PMID: 38831077 PMCID: PMC11343710 DOI: 10.1038/s41562-024-01888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
The early Iron Age (800 to 450 BCE) in France, Germany and Switzerland, known as the 'West-Hallstattkreis', stands out as featuring the earliest evidence for supra-regional organization north of the Alps. Often referred to as 'early Celtic', suggesting tentative connections to later cultural phenomena, its societal and population structure remain enigmatic. Here we present genomic and isotope data from 31 individuals from this context in southern Germany, dating between 616 and 200 BCE. We identify multiple biologically related groups spanning three elite burials as far as 100 km apart, supported by trans-regional individual mobility inferred from isotope data. These include a close biological relationship between two of the richest burial mounds of the Hallstatt culture. Bayesian modelling points to an avuncular relationship between the two individuals, which may suggest a practice of matrilineal dynastic succession in early Celtic elites. We show that their ancestry is shared on a broad geographic scale from Iberia throughout Central-Eastern Europe, undergoing a decline after the late Iron Age (450 BCE to ~50 CE).
Collapse
Affiliation(s)
- Joscha Gretzinger
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Felicitas Schmitt
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Angela Mötsch
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Selina Carlhoff
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Yilei Huang
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Corina Knipper
- Curt Engelhorn Zentrum Archäometrie gGmbH, Mannheim, Germany
| | - Michael Francken
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Franziska Mandt
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Leif Hansen
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Cäcilia Freund
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hannes Rathmann
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Katerina Harvati
- Institute for Archaeological Sciences, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Germany
- DFG Center for Advanced Studies in the Humanities 'Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Günther Wieland
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany
| | - Lena Granehäll
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Bolzano, Italy
| | - Wolfram Schier
- Institut für Prähistorische Archäologie, Freie Universität Berlin, Berlin, Germany
| | - Dirk Krausse
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Esslingen, Germany.
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
8
|
Seersholm FV, Sjögren KG, Koelman J, Blank M, Svensson EM, Staring J, Fraser M, Pinotti T, McColl H, Gaunitz C, Ruiz-Bedoya T, Granehäll L, Villegas-Ramirez B, Fischer A, Price TD, Allentoft ME, Iversen AKN, Axelsson T, Ahlström T, Götherström A, Storå J, Kristiansen K, Willerslev E, Jakobsson M, Malmström H, Sikora M. Repeated plague infections across six generations of Neolithic Farmers. Nature 2024; 632:114-121. [PMID: 38987589 PMCID: PMC11291285 DOI: 10.1038/s41586-024-07651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
In the period between 5,300 and 4,900 calibrated years before present (cal. BP), populations across large parts of Europe underwent a period of demographic decline1,2. However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3, others for the spread of an early form of plague4. Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline.
Collapse
Affiliation(s)
- Frederik Valeur Seersholm
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Karl-Göran Sjögren
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Julia Koelman
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Malou Blank
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Emma M Svensson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Magdalena Fraser
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thomaz Pinotti
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Charleen Gaunitz
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tatiana Ruiz-Bedoya
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Granehäll
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Institute for Mummy Studies Eurac Research, Bolzano, Italy
| | | | | | - T Douglas Price
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tony Axelsson
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Torbjörn Ahlström
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm University and the Swedish Museum of Natural History, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Eske Willerslev
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Gyuris B, Vyazov L, Türk A, Flegontov P, Szeifert B, Langó P, Mende BG, Csáky V, Chizhevskiy AA, Gazimzyanov IR, Khokhlov AA, Kolonskikh AG, Matveeva NP, Ruslanova RR, Rykun MP, Sitdikov A, Volkova EV, Botalov SG, Bugrov DG, Grudochko IV, Komar O, Krasnoperov AA, Poshekhonova OE, Chikunova I, Sungatov F, Stashenkov DA, Zubov S, Zelenkov AS, Ringbauer H, Cheronet O, Pinhasi R, Akbari A, Rohland N, Mallick S, Reich D, Szécsényi-Nagy A. Long shared haplotypes identify the Southern Urals as a primary source for the 10th century Hungarians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.599526. [PMID: 39091721 PMCID: PMC11291037 DOI: 10.1101/2024.07.21.599526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During the Hungarian Conquest in the 10th century CE, the early medieval Magyars, a group of mounted warriors from Eastern Europe, settled in the Carpathian Basin. They likely introduced the Hungarian language to this new settlement area, during an event documented by both written sources and archaeological evidence. Previous archaeogenetic research identified the newcomers as migrants from the Eurasian steppe. However, genome-wide ancient DNA from putative source populations has not been available to test alternative theories of their precise source. We generated genome-wide ancient DNA data for 131 individuals from candidate archaeological contexts in the Circum-Uralic region in present-day Russia. Our results tightly link the Magyars to people of the Early Medieval Karayakupovo archaeological horizon on both the European and Asian sides of the southern Urals. Our analyes show that ancestors of the people of the Karayakupovo archaeological horizon were established in the Southern Urals by the Iron Age and that their descendants persisted locally in the Volga-Kama region until at least the 14th century.
Collapse
Affiliation(s)
- Balázs Gyuris
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University; Budapest, Hungary
| | - Leonid Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Attila Türk
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
- Hungarian Prehistory Research group, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Bea Szeifert
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Péter Langó
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Hungarian Research Network (HUN-REN); Budapest, Hungary
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Veronika Csáky
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Andrey A Chizhevskiy
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | | | | | - Aleksandr G Kolonskikh
- R.G. Kuzeev Institute of Ethnological Studies, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | | | - Rida R Ruslanova
- National Museum of the Republic of Bashkortostan; Ufa, Republic of Bashkortostan, Russia
| | | | - Ayrat Sitdikov
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
- Department of Archaeology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - Elizaveta V Volkova
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | - Sergei G Botalov
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Dmitriy G Bugrov
- National Museum of Tatarstan Republic; Kazan, Republic of Tatarstan, Russia
| | - Ivan V Grudochko
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Oleksii Komar
- Institute of Archaeology, National Academy of Sciences of Ukraine; Kyiv, Ukraine
| | - Alexander A Krasnoperov
- Udmurt Institute of History, Language and Literature, Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences; Izhevsk, Udmurt Republic, Russia
| | - Olga E Poshekhonova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Irina Chikunova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Flarit Sungatov
- Institute of History, Language and Literature, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | - Dmitrii A Stashenkov
- Samara Regional Museum of History and Local Lore named after P. V. Alabin; Samara, Russia
| | - Sergei Zubov
- Research Laboratory of Archeology, Samara National Research University; Samara, Russia
| | | | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology; Leipzig, Germany
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ali Akbari
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| |
Collapse
|
10
|
Srigyan M, Schubert BW, Bushell M, Santos SHD, Figueiró HV, Sacco S, Eizirik E, Shapiro B. Mitogenomic analysis of a late Pleistocene jaguar from North America. J Hered 2024; 115:424-431. [PMID: 38150503 PMCID: PMC11235123 DOI: 10.1093/jhered/esad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023] Open
Abstract
The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, United States, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species' current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.
Collapse
Affiliation(s)
- Megha Srigyan
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Blaine W Schubert
- Department of Geosciences, Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Bushell
- Department of Geosciences, Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States
| | - Sarah H D Santos
- Department of Biology, University of Western Ontario, London, ON, Canada
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Henrique Vieira Figueiró
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Environmental Genomics Group, Vale Institute of Technology, Belem, PA, Brazil
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
11
|
Michel M, Skourtanioti E, Pierini F, Guevara EK, Mötsch A, Kocher A, Barquera R, Bianco RA, Carlhoff S, Coppola Bove L, Freilich S, Giffin K, Hermes T, Hiß A, Knolle F, Nelson EA, Neumann GU, Papac L, Penske S, Rohrlach AB, Salem N, Semerau L, Villalba-Mouco V, Abadie I, Aldenderfer M, Beckett JF, Brown M, Campus FGR, Chenghwa T, Cruz Berrocal M, Damašek L, Duffett Carlson KS, Durand R, Ernée M, Fântăneanu C, Frenzel H, García Atiénzar G, Guillén S, Hsieh E, Karwowski M, Kelvin D, Kelvin N, Khokhlov A, Kinaston RL, Korolev A, Krettek KL, Küßner M, Lai L, Look C, Majander K, Mandl K, Mazzarello V, McCormick M, de Miguel Ibáñez P, Murphy R, Németh RE, Nordqvist K, Novotny F, Obenaus M, Olmo-Enciso L, Onkamo P, Orschiedt J, Patrushev V, Peltola S, Romero A, Rubino S, Sajantila A, Salazar-García DC, Serrano E, Shaydullaev S, Sias E, Šlaus M, Stančo L, Swanston T, Teschler-Nicola M, Valentin F, Van de Vijver K, Varney TL, Vigil-Escalera Guirado A, Waters CK, Weiss-Krejci E, Winter E, Lamnidis TC, Prüfer K, Nägele K, Spyrou M, Schiffels S, Stockhammer PW, Haak W, Posth C, Warinner C, Bos KI, Herbig A, Krause J. Ancient Plasmodium genomes shed light on the history of human malaria. Nature 2024; 631:125-133. [PMID: 38867050 PMCID: PMC11222158 DOI: 10.1038/s41586-024-07546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.
Collapse
MESH Headings
- Female
- Humans
- Male
- Altitude
- Americas/epidemiology
- Asia/epidemiology
- Biological Evolution
- Disease Resistance/genetics
- DNA, Ancient/analysis
- Europe/epidemiology
- Genome, Mitochondrial/genetics
- Genome, Protozoan/genetics
- History, Ancient
- Malaria/parasitology
- Malaria/history
- Malaria/transmission
- Malaria/epidemiology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/history
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/epidemiology
- Malaria, Vivax/history
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Plasmodium/genetics
- Plasmodium/classification
- Plasmodium falciparum/genetics
- Plasmodium falciparum/isolation & purification
- Plasmodium malariae/genetics
- Plasmodium malariae/isolation & purification
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
Collapse
Affiliation(s)
- Megan Michel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, .
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Federica Pierini
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Evelyn K Guevara
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Angela Mötsch
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Arthur Kocher
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Raffaela A Bianco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Selina Carlhoff
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lorenza Coppola Bove
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, Granada, Spain
| | - Suzanne Freilich
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Taylor Hermes
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Arkansas, Fayetteville, AR, USA
| | - Alina Hiß
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Florian Knolle
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Jena, Germany
| | - Elizabeth A Nelson
- Microbial Palaeogenomics Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
- Adelaide Data Science Centre, University of Adelaide, Adelaide, Australia
| | - Nada Salem
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Universitity of Zaragoza, Zaragoza, Spain
| | - Isabelle Abadie
- Inrap - Institut national de recherches archéologiques préventives, Paris, France
- Centre Michel de Boüard, Centre de recherches archéologiques et historiques anciennes et médiévales, Université de Caen Normandie, Caen, France
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, Merced, CA, USA
| | | | - Matthew Brown
- Sociology and Anthropology Department, Farmingdale State College, Farmingdale, NY, USA
| | - Franco G R Campus
- Department of History, Human Sciences, and Education, University of Sassari, Sassari, Italy
| | - Tsang Chenghwa
- Institute of Anthropology, National Tsing Hua University, Hsinchu, Taiwan
| | - María Cruz Berrocal
- Institute of Heritage Sciences (INCIPIT), Spanish National Research Council (CSIC), Santiago de Compostela, Spain
| | - Ladislav Damašek
- Institute of Classical Archaeology, Faculty of Arts, Charles University, Prague, Czech Republic
| | | | - Raphaël Durand
- Service d'archéologie préventive Bourges plus, Bourges, France
- UMR 5199 PACEA, Université de Bordeaux, Pessac Cedex, France
| | - Michal Ernée
- Department of Prehistoric Archaeology, Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Hannah Frenzel
- Anatomy Institute, University of Leipzig, Leipzig, Germany
| | - Gabriel García Atiénzar
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
| | | | - Ellen Hsieh
- Institute of Anthropology, National Tsing Hua University, Hsinchu, Taiwan
| | - Maciej Karwowski
- Institut für Urgeschichte und Historische Archäologie, University of Vienna, Vienna, Austria
| | - David Kelvin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nikki Kelvin
- Division of Ancient Pathogens, BioForge Canada Limited, Halifax, Nove Scotia, Canada
| | - Alexander Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Rebecca L Kinaston
- BioArch South, Waitati, New Zealand
- Griffith Centre for Social and Cultural Studies, Griffith University, Nathan, Queensland, Australia
| | - Arkadii Korolev
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Kim-Louise Krettek
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archaeology, Weimar, Germany
| | - Luca Lai
- Department of Anthropology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Cory Look
- Sociology and Anthropology Department, Farmingdale State College, Farmingdale, NY, USA
| | - Kerttu Majander
- Department of Environmental Science, Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Michael McCormick
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Initiative for the Science of the Human Past at Harvard, Department of History, Harvard University, Cambridge, MA, USA
| | - Patxuka de Miguel Ibáñez
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
- Servicio de Obstetricia, Hospital Virgen de los Lirios-Fisabio, Alcoi, Spain
- Sección de Antropología, Sociedad de Ciencias Aranzadi, Donostia - San Sebastián, Spain
| | - Reg Murphy
- University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Kerkko Nordqvist
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Friederike Novotny
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Martin Obenaus
- Silva Nortica Archäologische Dienstleistungen, Thunau am Kamp, Austria
| | - Lauro Olmo-Enciso
- Department of History, University of Alcalá, Alcalá de Henares, Spain
| | - Päivi Onkamo
- Department of Biology, University of Turku, Turku, Finland
| | - Jörg Orschiedt
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Halle, Germany
- Institut für Prähistorische Archäologie, Freie Universität Berlin, Berlin, Germany
| | - Valerii Patrushev
- Centre of Archaeological and Ethnographical Investigation, Mari State University, Yoshkar-Ola, Russia
| | - Sanni Peltola
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Romero
- Instituto Universitario de Investigación en Arqueología y Patrimonio Histórico, Universidad de Alicante, San Vicente del Raspeig (Alicante), Spain
- Departamento de Biotecnología, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Domingo C Salazar-García
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, Valencia, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Elena Serrano
- Instituto Internacional de Investigaciones Prehistóricas, Universidad de Cantabria, Santander, Spain
- TAR Arqueología, Madrid, Spain
| | | | - Emanuela Sias
- Centro Studi sulla Civiltà del Mare, Stintino, Italy
| | - Mario Šlaus
- Anthropological Center, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Ladislav Stančo
- Institute of Classical Archaeology, Faculty of Arts, Charles University, Prague, Czech Republic
| | - Treena Swanston
- Department of Anthropology, Economics and Political Science, MacEwan University, Edmonton, Alberta, Canada
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | | | - Katrien Van de Vijver
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Center for Archaeological Sciences, University of Leuven, Leuven, Belgium
- Dienst Archeologie - Stad Mechelen, Mechelen, Belgium
| | - Tamara L Varney
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
| | | | - Christopher K Waters
- Heritage Department, National Parks of Antigua and Barbuda, St. Paul's Parish, Antigua and Barbuda
| | - Estella Weiss-Krejci
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
- Institut für Ur- und Frühgeschichte, Heidelberg University, Heidelberg, Germany
- Department of Social and Cultural Anthropology, University of Vienna, Vienna, Austria
| | - Eduard Winter
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Thiseas C Lamnidis
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maria Spyrou
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean
- Department of Anthropology, Harvard University, Cambridge, MA, USA
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, .
| |
Collapse
|
12
|
Psonis N, Vassou D, Nafplioti A, Tabakaki E, Pavlidis P, Stamatakis A, Poulakakis N. Identification of the 18 World War II executed citizens of Adele, Rethymnon, Crete using an ancient DNA approach and low coverage genomes. Forensic Sci Int Genet 2024; 71:103060. [PMID: 38796876 DOI: 10.1016/j.fsigen.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
In the Battle of Crete during the World War II occupation of Greece, the German forces faced substantial civilian resistance. To retribute the numerous German losses, a series of mass executions took place in numerous places in Crete; a common practice reported from Greece and elsewhere. In Adele, a village in the regional unit of Rethymnon, 18 male civilians were executed and buried in a burial pit at the Sarakina site. In this study, the first one conducted for a conflict that occurred in Greece, we identified for humanitarian purposes the 18 skulls of the Sarakina victims, following a request from the local community of Adele. The molecular identification of historical human remains via ancient DNA approaches and low coverage whole genome sequencing has only recently been introduced. Here, we performed genome skimming on the living relatives of the victims, as well as high throughput historical DNA analysis on the skulls to infer the kinship degrees among the victims via genetic relatedness analyses. We also conducted targeted anthropological analysis to successfully complete the identification of all Sarakina victims. We demonstrate that our methodological approach constitutes a potentially highly informative forensic tool to identify war victims. It can hence be applied to analogous studies on degraded DNA, thus, paving the path for systematic war victim identification in Greece and beyond.
Collapse
Affiliation(s)
- Nikolaos Psonis
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece.
| | - Despoina Vassou
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece
| | - Argyro Nafplioti
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece
| | - Eugenia Tabakaki
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Irakleio 70013, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Irakleio 70013, Greece
| | - Alexandros Stamatakis
- Institute of Computer Science (ICS), Foundation for Research and Technology-Hellas (FORTH), Irakleio 70013, Greece; Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany; Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Nikos Poulakakis
- Ancient DNA Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Irakleio 70013, Greece; Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Irakleio 71409, Greece; Department of Biology, School of Sciences and Engineering, University of Crete, Irakleio 70013, Greece
| |
Collapse
|
13
|
Özdoğan KT, Gelabert P, Hammers N, Altınışık NE, de Groot A, Plets G. Archaeology meets environmental genomics: implementing sedaDNA in the study of the human past. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2024; 16:108. [PMID: 38948161 PMCID: PMC11213777 DOI: 10.1007/s12520-024-01999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Sedimentary ancient DNA (sedaDNA) has become one of the standard applications in the field of paleogenomics in recent years. It has been used for paleoenvironmental reconstructions, detecting the presence of prehistoric species in the absence of macro remains and even investigating the evolutionary history of a few species. However, its application in archaeology has been limited and primarily focused on humans. This article argues that sedaDNA holds significant potential in addressing key archaeological questions concerning the origins, lifestyles, and environments of past human populations. Our aim is to facilitate the integration of sedaDNA into the standard workflows in archaeology as a transformative tool, thereby unleashing its full potential for studying the human past. Ultimately, we not only underscore the challenges inherent in the sedaDNA field but also provide a research agenda for essential enhancements needed for implementing sedaDNA into the archaeological workflow.
Collapse
Affiliation(s)
- Kadir Toykan Özdoğan
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Pere Gelabert
- Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| | - Neeke Hammers
- Environmental Archaeology, ADC ArcheoProjecten, Nijverheidsweg-Noord 114, Amersfoort, Utrecht, 3812 PN Netherlands
| | - N. Ezgi Altınışık
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Ankara, 06800 Türkiye
| | - Arjen de Groot
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Gertjan Plets
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
| |
Collapse
|
14
|
Parasayan O, Laurelut C, Bôle C, Bonnabel L, Corona A, Domenech-Jaulneau C, Paresys C, Richard I, Grange T, Geigl EM. Late Neolithic collective burial reveals admixture dynamics during the third millennium BCE and the shaping of the European genome. SCIENCE ADVANCES 2024; 10:eadl2468. [PMID: 38896620 PMCID: PMC11186501 DOI: 10.1126/sciadv.adl2468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The third millennium BCE was a pivotal period of profound cultural and genomic transformations in Europe associated with migrations from the Pontic-Caspian steppe, which shaped the ancestry patterns in the present-day European genome. We performed a high-resolution whole-genome analysis including haplotype phasing of seven individuals of a collective burial from ~2500 cal BCE and of a Bell Beaker individual from ~2300 cal BCE in the Paris Basin in France. The collective burial revealed the arrival in real time of steppe ancestry in France. We reconstructed the genome of an unsampled individual through its relatives' genomes, enabling us to shed light on the early-stage admixture patterns, dynamics, and propagation of steppe ancestry in Late Neolithic Europe. We identified two major Neolithic/steppe-related ancestry admixture pulses around 3000/2900 BCE and 2600 BCE. These pulses suggest different population expansion dynamics with striking links to the Corded Ware and Bell Beaker cultural complexes.
Collapse
Affiliation(s)
- Oğuzhan Parasayan
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Christophe Laurelut
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Christine Bôle
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Université Paris Cité, Paris, France
| | | | - Alois Corona
- Service archéologique interdépartemental, 78180 Montigny-le-Bretonneux, France
| | - Cynthia Domenech-Jaulneau
- Service Régional, Direction Régionale des Affaires culturelles d’Île-de-France, UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Cécile Paresys
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Isabelle Richard
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Thierry Grange
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eva-Maria Geigl
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
15
|
Elmonem MA, Soliman NA, Moustafa A, Gad YZ, Hassan WA, Taha T, El-Feky G, Sakr M, Amer K. The Egypt Genome Project. Nat Genet 2024; 56:1035-1037. [PMID: 38684896 DOI: 10.1038/s41588-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- Mohamed A Elmonem
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Neveen A Soliman
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
- Department of Pediatrics, Center for Pediatric Nephrology and Transplantation (CPNT), Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Ahmed Moustafa
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
- Departments of Biology and Bioinformatics and Integrative Genomics Laboratory, American University in Cairo, Cairo, Egypt
| | - Yehia Z Gad
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Center, Cairo, Egypt
- Ancient DNA laboratory, National Museum of Egyptian Civilization, Cairo, Egypt
| | - Wael A Hassan
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Tarek Taha
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Gina El-Feky
- Academy of Scientific Research and Technology, Cairo, Egypt
| | - Mahmoud Sakr
- Academy of Scientific Research and Technology, Cairo, Egypt
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
16
|
Yaka R, Maja Krzewińska, Lagerholm VK, Linderholm A, Özer F, Somel M, Götherström A. Comparison and optimization of protocols and whole-genome capture conditions for ancient DNA samples. Biotechniques 2024; 76:216-223. [PMID: 38530148 DOI: 10.2144/btn-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Ancient DNA (aDNA) obtained from human remains is typically fragmented and present in relatively low amounts. Here we investigate a set of optimal methods for producing aDNA data by comparing silica-based DNA extraction and aDNA library preparation protocols. We also test the efficiency of whole-genome enrichment (WGC) on ancient human samples by modifying a number of parameter combinations. We find that the Dabney extraction protocol performs significantly better than alternatives. We further observed a positive trend with the BEST library protocol indicating lower clonality. Notably, our results suggest that WGC is effective at retrieving endogenous DNA, particularly from poorly-preserved human samples, by increasing human endogenous proportions by 5x. Thus, aDNA studies will be most likely to benefit from our results.
Collapse
Affiliation(s)
- Reyhan Yaka
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology & Classical Studies, Stockholm University, Stockholm, Sweden
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| | - Maja Krzewińska
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology & Classical Studies, Stockholm University, Stockholm, Sweden
| | - Vendela Kempe Lagerholm
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology & Classical Studies, Stockholm University, Stockholm, Sweden
| | - Anna Linderholm
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology & Classical Studies, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Gnecchi-Ruscone GA, Rácz Z, Samu L, Szeniczey T, Faragó N, Knipper C, Friedrich R, Zlámalová D, Traverso L, Liccardo S, Wabnitz S, Popli D, Wang K, Radzeviciute R, Gulyás B, Koncz I, Balogh C, Lezsák GM, Mácsai V, Bunbury MME, Spekker O, le Roux P, Szécsényi-Nagy A, Mende BG, Colleran H, Hajdu T, Geary P, Pohl W, Vida T, Krause J, Hofmanová Z. Network of large pedigrees reveals social practices of Avar communities. Nature 2024; 629:376-383. [PMID: 38658749 PMCID: PMC11078744 DOI: 10.1038/s41586-024-07312-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.
Collapse
Affiliation(s)
| | - Zsófia Rácz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Levente Samu
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Norbert Faragó
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Corina Knipper
- Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
| | - Ronny Friedrich
- Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
| | - Denisa Zlámalová
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czechia
| | - Luca Traverso
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Salvatore Liccardo
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Sandra Wabnitz
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Divyaratan Popli
- Department of Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ke Wang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - István Koncz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Csilla Balogh
- Department of Art History, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gabriella M Lezsák
- Institute of History, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Viktor Mácsai
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Magdalena M E Bunbury
- ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, Queensland, Australia
| | - Olga Spekker
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Petrus le Roux
- Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Heidi Colleran
- BirthRites Lise Meitner Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tamás Hajdu
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Budapest, Hungary
| | | | - Walter Pohl
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary.
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czechia.
| |
Collapse
|
18
|
Lazaridis I, Patterson N, Anthony D, Vyazov L, Fournier R, Ringbauer H, Olalde I, Khokhlov AA, Kitov EP, Shishlina NI, Ailincăi SC, Agapov DS, Agapov SA, Batieva E, Bauyrzhan B, Bereczki Z, Buzhilova A, Changmai P, Chizhevsky AA, Ciobanu I, Constantinescu M, Csányi M, Dani J, Dashkovskiy PK, Évinger S, Faifert A, Flegontov PN, Frînculeasa A, Frînculeasa MN, Hajdu T, Higham T, Jarosz P, Jelínek P, Khartanovich VI, Kirginekov EN, Kiss V, Kitova A, Kiyashko AV, Koledin J, Korolev A, Kosintsev P, Kulcsár G, Kuznetsov P, Magomedov R, Malikovich MA, Melis E, Moiseyev V, Molnár E, Monge J, Negrea O, Nikolaeva NA, Novak M, Ochir-Goryaeva M, Pálfi G, Popovici S, Rykun MP, Savenkova TM, Semibratov VP, Seregin NN, Šefčáková A, Serikovna MR, Shingiray I, Shirokov VN, Simalcsik A, Sirak K, Solodovnikov KN, Tárnoki J, Tishkin AA, Trifonov V, Vasilyev S, Akbari A, Brielle ES, Callan K, Candilio F, Cheronet O, Curtis E, Flegontova O, Iliev L, Kearns A, Keating D, Lawson AM, Mah M, Micco A, Michel M, Oppenheimer J, Qiu L, Noah Workman J, Zalzala F, Szécsényi-Nagy A, Palamara PF, Mallick S, Rohland N, Pinhasi R, Reich D. The Genetic Origin of the Indo-Europeans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589597. [PMID: 38659893 PMCID: PMC11042377 DOI: 10.1101/2024.04.17.589597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The Yamnaya archaeological complex appeared around 3300BCE across the steppes north of the Black and Caspian Seas, and by 3000BCE reached its maximal extent from Hungary in the west to Kazakhstan in the east. To localize the ancestral and geographical origins of the Yamnaya among the diverse Eneolithic people that preceded them, we studied ancient DNA data from 428 individuals of which 299 are reported for the first time, demonstrating three previously unknown Eneolithic genetic clines. First, a "Caucasus-Lower Volga" (CLV) Cline suffused with Caucasus hunter-gatherer (CHG) ancestry extended between a Caucasus Neolithic southern end in Neolithic Armenia, and a steppe northern end in Berezhnovka in the Lower Volga. Bidirectional gene flow across the CLV cline created admixed intermediate populations in both the north Caucasus, such as the Maikop people, and on the steppe, such as those at the site of Remontnoye north of the Manych depression. CLV people also helped form two major riverine clines by admixing with distinct groups of European hunter-gatherers. A "Volga Cline" was formed as Lower Volga people mixed with upriver populations that had more Eastern hunter-gatherer (EHG) ancestry, creating genetically hyper-variable populations as at Khvalynsk in the Middle Volga. A "Dnipro Cline" was formed as CLV people bearing both Caucasus Neolithic and Lower Volga ancestry moved west and acquired Ukraine Neolithic hunter-gatherer (UNHG) ancestry to establish the population of the Serednii Stih culture from which the direct ancestors of the Yamnaya themselves were formed around 4000BCE. This population grew rapidly after 3750-3350BCE, precipitating the expansion of people of the Yamnaya culture who totally displaced previous groups on the Volga and further east, while admixing with more sedentary groups in the west. CLV cline people with Lower Volga ancestry contributed four fifths of the ancestry of the Yamnaya, but also, entering Anatolia from the east, contributed at least a tenth of the ancestry of Bronze Age Central Anatolians, where the Hittite language, related to the Indo-European languages spread by the Yamnaya, was spoken. We thus propose that the final unity of the speakers of the "Proto-Indo-Anatolian" ancestral language of both Anatolian and Indo-European languages can be traced to CLV cline people sometime between 4400-4000 BCE.
Collapse
Affiliation(s)
- Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David Anthony
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Hartwick College, Dept. of Anthropology, USA
| | - Leonid Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | | | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Iñigo Olalde
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU,Vitoria-Gasteiz, Spain
- Ikerbasque-Basque Foundation of Science, Bilbao, Spain
| | | | - Egor P. Kitov
- Center of Human Ecology, Institute of Ethnology and Anthropology, Russian Academy of Science, Moscow, Russia
| | | | | | - Danila S. Agapov
- Samara Regional Public Organization “Historical, ecological and cultural Association “Povolzje”
| | - Sergey A. Agapov
- Samara Regional Public Organization “Historical, ecological and cultural Association “Povolzje”
| | - Elena Batieva
- Azov History, Archaeology and Palaeontology Museum-Reserve, Azov, Russia
| | | | - Zsolt Bereczki
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | | | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Andrey A. Chizhevsky
- Institute of Archeology named after A. Kh. Khalikov Tatarstan Academy of Sciences, Kazan, Russia
| | - Ion Ciobanu
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
| | - Mihai Constantinescu
- Fr. I Rainer Institute of Anthropology, University of Bucharest, Bucharest, Romania
| | | | - János Dani
- Department of Archaeology, University of Szeged, Szeged, Hungary
- Déri Museum, 4026 Debrecen, Hungary
| | - Peter K. Dashkovskiy
- Department of Regional Studies of Russia, National and State-Confessional Relations, Altai State University, Barnaul, Russia
| | - Sándor Évinger
- Hungarian Natural History Museum, Department of Anthropology, Budapest, Hungary
| | - Anatoly Faifert
- Research Institute GAUK RO “Don Heritage”, Rostov-on-Don, Russia
| | - Pavel N. Flegontov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Alin Frînculeasa
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Mădălina N. Frînculeasa
- Department of Geography, Faculty of Humanities, University Valahia of Târgoviște, Târgovişte, Romania
| | - Tamás Hajdu
- Eötvös Loránd University (Department of Biological Anthropology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tom Higham
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Paweł Jarosz
- Department of Mountain and Highland Archaeology, Institute Archaeology and Ethnology Polish Academy of Science, Kraków, Poland
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Valeri I. Khartanovich
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Eduard N. Kirginekov
- State Autonomous Cultural Institution of the Republic of Khakassia “Khakassian National Museum of Local Lore named after L.R. Kyzlasova”, Republic of Khakassia, Abakan, Russia
| | - Viktória Kiss
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Alexandera Kitova
- Centre for Egyptological Studies of the Russian Academy of Sciences, Russian Academy of Sciences, Moscow, Russia
| | - Alexeiy V. Kiyashko
- Department of Archaeology and History of the Ancient World of the Southern Federal University, Rostov-on-Don, Russia
| | | | - Arkady Korolev
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Pavel Kosintsev
- Department of History of the Institute of Humanities, Ural Federal University, Ekaterinburg, Russia
- Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Gabriella Kulcsár
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pavel Kuznetsov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Rabadan Magomedov
- Institute of History, Archaeology and Ethnography, Dagestan branch of the Russian Academy of Science, Makhachkala. Dagestan, Russia
| | | | - Eszter Melis
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography, Department of Physical Anthropology, St. Petersburg, Russia
| | - Erika Molnár
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Janet Monge
- Independent Researcher, 106 Federal Street, Philadelphia PA, USA
| | - Octav Negrea
- Prahova County Museum of History and Archaeology, Ploiești, Romania
| | - Nadezhda A. Nikolaeva
- Department of General History, Historical and Literary Institute of the State University of Education, Ministry of Education Moscow, Moscow, Russia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - Maria Ochir-Goryaeva
- Kalmyk Scientific Centre of the Russian Academy of Sciences, Elista, Republic of Kalmykia, Russia
| | - György Pálfi
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
| | - Sergiu Popovici
- National Agency for Archaeology, Chișinău, Republic of Moldova
| | | | | | - Vladimir P. Semibratov
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Nikolai N. Seregin
- Laboratory of Ancient and Medieval Archaeology of Eurasia, Altai State University, Barnaul, Russia
| | - Alena Šefčáková
- Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | | | - Irina Shingiray
- University of Oxford, Faculty of History, Oxford, United Kingdom
| | - Vladimir N. Shirokov
- Center for Stone Age Archeology, Institute of History and Archaeology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Angela Simalcsik
- Orheiul Vechi Cultural-Natural Reserve, Institute of Bioarchaeological and Ethnocultural Research, Chișinău, Republic of Moldova
- Olga Necrasov Centre for Anthropological Research, Romanian Academy, Iași Branch, Iași, Romania
| | - Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Konstantin N. Solodovnikov
- Tyumen Scientific Center of the Siberian Branch of Russian Academy of Sciences, Institute of Problems of Northern Development, Tyumen, Russia
| | | | - Alexey A. Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russia
| | - Viktov Trifonov
- Institute for the History of Material Culture, Russian Academy of Sciences, St Petersburg, Russia
| | - Sergey Vasilyev
- Russian Academy of Sciences, Institute of Ethnology and Anthropology, Moscow, Russia
| | - Ali Akbari
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Esther S. Brielle
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Lora Iliev
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Denise Keating
- School of Archaeology, University College Dublin, Ireland
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Megan Michel
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J. Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Pier Francesco Palamara
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Du P, Zhu K, Qiao H, Zhang J, Meng H, Huang Z, Yu Y, Xie S, Allen E, Xiong J, Zhang B, Chang X, Ren X, Xu Y, Zhou Q, Han S, Jin L, Wei P, Wang CC, Wen S. Ancient genome of the Chinese Emperor Wu of Northern Zhou. Curr Biol 2024; 34:1587-1595.e5. [PMID: 38552628 DOI: 10.1016/j.cub.2024.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/23/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Emperor Wu (, Wudi) of the Xianbei-led Northern Zhou dynasty, named Yuwen Yong (, 543-578 CE), was a highly influential emperor who reformed the system of regional troops, pacified the Turks, and unified the northern part of the country. His genetic profile and physical characteristics, including his appearance and potential diseases, have garnered significant interest from the academic community and the public. In this study, we have successfully generated a 0.343×-coverage genome of Wudi with 1,011,419 single-nucleotide polymorphisms (SNPs) on the 1240k panel. By analyzing pigmentation-relevant SNPs and conducting cranial CT-based facial reconstruction, we have determined that Wudi possessed a typical East or Northeast Asian appearance. Furthermore, pathogenic SNPs suggest Wudi faced an increased susceptibility to certain diseases, such as stroke. Wudi shared the closest genetic relationship with ancient Khitan and Heishui Mohe samples and modern Daur and Mongolian populations but also showed additional affinity with Yellow River (YR) farmers. We estimated that Wudi derived 61% of his ancestry from ancient Northeast Asians (ANAs) and nearly one-third from YR farmer-related groups. This can likely be attributed to continuous intermarriage between Xianbei royal families, and local Han aristocrats.1,2 Furthermore, our study has revealed genetic diversities among available ancient Xianbei individuals from different regions, suggesting that the formation of the Xianbei was a dynamic process influenced by admixture with surrounding populations.
Collapse
Affiliation(s)
- Panxin Du
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Qiao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zixiao Huang
- Department of History, Fudan University, Shanghai 200433, China
| | - Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Shouhua Xie
- Department of History, Fudan University, Shanghai 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Baoshuai Zhang
- USTC Archaeometry Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Qi Zhou
- Shanghai Federation of Social Science Associations, Shanghai 200020, China
| | - Sheng Han
- Department of History, Fudan University, Shanghai 200433, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China.
| | - Pianpian Wei
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China.
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China; Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China.
| |
Collapse
|
20
|
Sirak K, Jansen Van Rensburg J, Brielle E, Chen B, Lazaridis I, Ringbauer H, Mah M, Mallick S, Micco A, Rohland N, Callan K, Curtis E, Kearns A, Lawson AM, Workman JN, Zalzala F, Ahmed Al-Orqbi AS, Ahmed Salem EM, Salem Hasan AM, Britton DC, Reich D. Medieval DNA from Soqotra points to Eurasian origins of an isolated population at the crossroads of Africa and Arabia. Nat Ecol Evol 2024; 8:817-829. [PMID: 38332026 PMCID: PMC11009077 DOI: 10.1038/s41559-024-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024]
Abstract
Soqotra, an island situated at the mouth of the Gulf of Aden in the northwest Indian Ocean between Africa and Arabia, is home to ~60,000 people subsisting through fishing and semi-nomadic pastoralism who speak a Modern South Arabian language. Most of what is known about Soqotri history derives from writings of foreign travellers who provided little detail about local people, and the geographic origins and genetic affinities of early Soqotri people has not yet been investigated directly. Here we report genome-wide data from 39 individuals who lived between ~650 and 1750 CE at six locations across the island and document strong genetic connections between Soqotra and the similarly isolated Hadramawt region of coastal South Arabia that likely reflects a source for the peopling of Soqotra. Medieval Soqotri can be modelled as deriving ~86% of their ancestry from a population such as that found in the Hadramawt today, with the remaining ~14% best proxied by an Iranian-related source with up to 2% ancestry from the Indian sub-continent, possibly reflecting genetic exchanges that occurred along with archaeologically documented trade from these regions. In contrast to all other genotyped populations of the Arabian Peninsula, genome-level analysis of the medieval Soqotri is consistent with no sub-Saharan African admixture dating to the Holocene. The deep ancestry of people from medieval Soqotra and the Hadramawt is also unique in deriving less from early Holocene Levantine farmers and more from groups such as Late Pleistocene hunter-gatherers from the Levant (Natufians) than other mainland Arabians. This attests to migrations by early farmers having less impact in southernmost Arabia and Soqotra and provides compelling evidence that there has not been complete population replacement between the Pleistocene and Holocene throughout the Arabian Peninsula. Medieval Soqotra harboured a small population that showed qualitatively different marriage practices from modern Soqotri, with first-cousin unions occurring significantly less frequently than today.
Collapse
Affiliation(s)
- Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | - Esther Brielle
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bowen Chen
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew Mah
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Swapan Mallick
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
21
|
Laine J, Mak SST, Martins NFG, Chen X, Gilbert MTP, Jones FC, Pedersen MW, Romundset A, Foote AD. Late Pleistocene stickleback environmental genomes reveal the chronology of freshwater adaptation. Curr Biol 2024; 34:1142-1147.e6. [PMID: 38350445 DOI: 10.1016/j.cub.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Directly observing the chronology and tempo of adaptation in response to ecological change is rarely possible in natural ecosystems. Sedimentary ancient DNA (sedaDNA) has been shown to be a tractable source of genome-scale data of long-dead organisms1,2,3 and to thereby potentially provide an understanding of the evolutionary histories of past populations.4,5 To date, time series of ecosystem biodiversity have been reconstructed from sedaDNA, typically using DNA metabarcoding or shotgun sequence data generated from less than 1 g of sediment.6,7 Here, we maximize sequence coverage by extracting DNA from ∼50× more sediment per sample than the majority of previous studies1,2,3 to achieve genotype resolution. From a time series of Late Pleistocene sediments spanning from a marine to freshwater ecosystem, we compare adaptive genotypes reconstructed from the environmental genomes of three-spined stickleback at key time points of this transition. We find a staggered temporal dynamic in which freshwater alleles at known loci of large effect in marine-freshwater divergence of three-spined stickleback (e.g., EDA)8 were already established during the brackish phase of the formation of the isolation basin. However, marine alleles were still detected across the majority of marine-freshwater divergence-associated loci, even after the complete isolation of the lake from marine ingression. Our retrospective approach to studying adaptation from environmental genomes of three-spined sticklebacks at the end of the last glacial period complements contemporary experimental approaches9,10,11 and highlights the untapped potential for retrospective "evolve and resequence" natural experiments using sedaDNA.
Collapse
Affiliation(s)
- Jan Laine
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Nuno F G Martins
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Xihan Chen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
22
|
Smith GM, Ruebens K, Zavala EI, Sinet-Mathiot V, Fewlass H, Pederzani S, Jaouen K, Mylopotamitaki D, Britton K, Rougier H, Stahlschmidt M, Meyer M, Meller H, Dietl H, Orschiedt J, Krause J, Schüler T, McPherron SP, Weiss M, Hublin JJ, Welker F. The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany. Nat Ecol Evol 2024; 8:564-577. [PMID: 38297138 PMCID: PMC10927544 DOI: 10.1038/s41559-023-02303-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Recent excavations at Ranis (Germany) identified an early dispersal of Homo sapiens into the higher latitudes of Europe by 45,000 years ago. Here we integrate results from zooarchaeology, palaeoproteomics, sediment DNA and stable isotopes to characterize the ecology, subsistence and diet of these early H. sapiens. We assessed all bone remains (n = 1,754) from the 2016-2022 excavations through morphology (n = 1,218) or palaeoproteomics (zooarchaeology by mass spectrometry (n = 536) and species by proteome investigation (n = 212)). Dominant taxa include reindeer, cave bear, woolly rhinoceros and horse, indicating cold climatic conditions. Numerous carnivore modifications, alongside sparse cut-marked and burnt bones, illustrate a predominant use of the site by hibernating cave bears and denning hyaenas, coupled with a fluctuating human presence. Faunal diversity and high carnivore input were further supported by ancient mammalian DNA recovered from 26 sediment samples. Bulk collagen carbon and nitrogen stable isotope data from 52 animal and 10 human remains confirm a cold steppe/tundra setting and indicate a homogenous human diet based on large terrestrial mammals. This lower-density archaeological signature matches other Lincombian-Ranisian-Jerzmanowician sites and is best explained by expedient visits of short duration by small, mobile groups of pioneer H. sapiens.
Collapse
Affiliation(s)
- Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- School of Anthropology and Conservation, University of Kent, Kent, UK.
| | - Karen Ruebens
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Elena Irene Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Pessac, France
| | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London, UK
| | - Sarah Pederzani
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeological Micromorphology and Biomarker Lab, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Klervia Jaouen
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Géosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées (OMP), Toulouse, France
| | - Dorothea Mylopotamitaki
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Kate Britton
- Department of Archaeology, School of Geosciences, University of Aberdeen, Aberdeen, Scotland
| | - Hélène Rougier
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | - Mareike Stahlschmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Holger Dietl
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Jörg Orschiedt
- State Office for Heritage Management and Archaeology Saxony-Anhalt-State Museum of Prehistory, Halle, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Shannon P McPherron
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marcel Weiss
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Mylopotamitaki D, Weiss M, Fewlass H, Zavala EI, Rougier H, Sümer AP, Hajdinjak M, Smith GM, Ruebens K, Sinet-Mathiot V, Pederzani S, Essel E, Harking FS, Xia H, Hansen J, Kirchner A, Lauer T, Stahlschmidt M, Hein M, Talamo S, Wacker L, Meller H, Dietl H, Orschiedt J, Olsen JV, Zeberg H, Prüfer K, Krause J, Meyer M, Welker F, McPherron SP, Schüler T, Hublin JJ. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature 2024; 626:341-346. [PMID: 38297117 PMCID: PMC10849966 DOI: 10.1038/s41586-023-06923-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
The Middle to Upper Palaeolithic transition in Europe is associated with the regional disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals persisted in western Europe several millennia after the occurrence of H. sapiens in eastern Europe1. Local hybridization between the two groups occurred2, but not on all occasions3. Archaeological evidence also indicates the presence of several technocomplexes during this transition, complicating our understanding and the association of behavioural adaptations with specific hominin groups4. One such technocomplex for which the makers are unknown is the Lincombian-Ranisian-Jerzmanowician (LRJ), which has been described in northwestern and central Europe5-8. Here we present the morphological and proteomic taxonomic identification, mitochondrial DNA analysis and direct radiocarbon dating of human remains directly associated with an LRJ assemblage at the site Ilsenhöhle in Ranis (Germany). These human remains are among the earliest directly dated Upper Palaeolithic H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ were present in central and northwestern Europe long before the extinction of late Neanderthals in southwestern Europe. Our results strengthen the notion of a patchwork of distinct human populations and technocomplexes present in Europe during this transitional period.
Collapse
Affiliation(s)
- Dorothea Mylopotamitaki
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marcel Weiss
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany.
| | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London, UK
| | - Elena Irene Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Hélène Rougier
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | - Arev Pelin Sümer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Karen Ruebens
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Univ. Bordeaux, CNRS, Ministère de la Culture, PACEA, UMR 5199, Bordeaux, France
| | - Sarah Pederzani
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeological Micromorphology and Biomarker Lab, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Florian S Harking
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Huan Xia
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Jakob Hansen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - André Kirchner
- Department of Soil Protection and Soil Survey, State Authority for Mining, Energy and Geology of Lower Saxony (LBEG), Hannover, Germany
| | - Tobias Lauer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Terrestrial Sedimentology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Mareike Stahlschmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology and Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Michael Hein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Ecology, Leuphana University, Lüneburg, Germany
- Historical Anthropospheres Working Group, Leipzig Lab, Leipzig University, Leipzig, Germany
| | - Sahra Talamo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Bologna University, Bologna, Italy
| | - Lukas Wacker
- Ion Beam Physics, ETH Zurich, Zurich, Switzerland
| | - Harald Meller
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt - Landesmuseum für Vorgeschichte, Halle, Germany
| | - Holger Dietl
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt - Landesmuseum für Vorgeschichte, Halle, Germany
| | - Jörg Orschiedt
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt - Landesmuseum für Vorgeschichte, Halle, Germany
| | - Jesper V Olsen
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Jean-Jacques Hublin
- Chair of Paleoanthropology, CIRB (UMR 7241-U1050), Collège de France, Paris, France.
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
24
|
Anastasiadou K, Silva M, Booth T, Speidel L, Audsley T, Barrington C, Buckberry J, Fernandes D, Ford B, Gibson M, Gilardet A, Glocke I, Keefe K, Kelly M, Masters M, McCabe J, McIntyre L, Ponce P, Rowland S, Ruiz Ventura J, Swali P, Tait F, Walker D, Webb H, Williams M, Witkin A, Holst M, Loe L, Armit I, Schulting R, Skoglund P. Detection of chromosomal aneuploidy in ancient genomes. Commun Biol 2024; 7:14. [PMID: 38212558 PMCID: PMC10784527 DOI: 10.1038/s42003-023-05642-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Ancient DNA is a valuable tool for investigating genetic and evolutionary history that can also provide detailed profiles of the lives of ancient individuals. In this study, we develop a generalised computational approach to detect aneuploidies (atypical autosomal and sex chromosome karyotypes) in the ancient genetic record and distinguish such karyotypes from contamination. We confirm that aneuploidies can be detected even in low-coverage genomes ( ~ 0.0001-fold), common in ancient DNA. We apply this method to ancient skeletal remains from Britain to document the first instance of mosaic Turner syndrome (45,X0/46,XX) in the ancient genetic record in an Iron Age individual sequenced to average 9-fold coverage, the earliest known incidence of an individual with a 47,XYY karyotype from the Early Medieval period, as well as individuals with Klinefelter (47,XXY) and Down syndrome (47,XY, + 21). Overall, our approach provides an accessible and automated framework allowing for the detection of individuals with aneuploidies, which extends previous binary approaches. This tool can facilitate the interpretation of burial context and living conditions, as well as elucidate past perceptions of biological sex and people with diverse biological traits.
Collapse
Affiliation(s)
- Kyriaki Anastasiadou
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Marina Silva
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Thomas Booth
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Leo Speidel
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
- Genetics Institute, University College London, London, United Kingdom
| | | | - Christopher Barrington
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Jo Buckberry
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, United Kingdom
| | | | - Ben Ford
- Oxford Archaeology, Oxford, United Kingdom
| | | | - Alexandre Gilardet
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Isabelle Glocke
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katie Keefe
- York Osteoarchaeology, York, United Kingdom
- On-Site Archaeology, York, United Kingdom
| | - Monica Kelly
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mackenzie Masters
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | - Jesse McCabe
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Paola Ponce
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | | | - Jordi Ruiz Ventura
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | - Pooja Swali
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frankie Tait
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Helen Webb
- Oxford Archaeology, Oxford, United Kingdom
| | - Mia Williams
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Malin Holst
- York Osteoarchaeology, York, United Kingdom
- Department of Archaeology, University of York, York, United Kingdom
| | - Louise Loe
- Oxford Archaeology, Oxford, United Kingdom
| | - Ian Armit
- Department of Archaeology, University of York, York, United Kingdom
| | - Rick Schulting
- School of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Pontus Skoglund
- Ancient genomics laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
25
|
Silva M, Booth T, Moore J, Anastasiadou K, Walker D, Gilardet A, Barrington C, Kelly M, Williams M, Henderson M, Smith A, Bowsher D, Montgomery J, Skoglund P. An individual with Sarmatian-related ancestry in Roman Britain. Curr Biol 2024; 34:204-212.e6. [PMID: 38118448 DOI: 10.1016/j.cub.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
In the second century CE the Roman Empire had increasing contact with Sarmatians, nomadic Iranian speakers occupying an area stretching from the Pontic-Caspian steppe to the Carpathian mountains, both in the Caucasus and in the Danubian borders of the empire.1,2,3 In 175 CE, following their defeat in the Marcomannic Wars, emperor Marcus Aurelius drafted Sarmatian cavalry into Roman legions and deployed 5,500 Sarmatian soldiers to Britain, as recorded by contemporary historian Cassius Dio.4,5 Little is known about where the Sarmatian cavalry were stationed, and no individuals connected with this historically attested event have been identified to date, leaving its impact on Britain largely unknown. Here we document Caucasus- and Sarmatian-related ancestry in the whole genome of a Roman-period individual (126-228 calibrated [cal.] CE)-an outlier without traceable ancestry related to local populations in Britain-recovered from a farmstead site in present-day Cambridgeshire, UK. Stable isotopes support a life history of mobility during childhood. Although several scenarios are possible, the historical deployment of Sarmatians to Britain provides a parsimonious explanation for this individual's extraordinary life history. Regardless of the factors behind his migrations, these results highlight how long-range mobility facilitated by the Roman Empire impacted provincial locations outside of urban centers.
Collapse
Affiliation(s)
- Marina Silva
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Booth
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joanna Moore
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom
| | - Kyriaki Anastasiadou
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Don Walker
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alexandre Gilardet
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Kelly
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mia Williams
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Henderson
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alex Smith
- Headland Archaeology, 13 Jane Street, Edinburgh EH6 5HE, UK
| | - David Bowsher
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Janet Montgomery
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
26
|
Chen N, Zhang Z, Hou J, Chen J, Gao X, Tang L, Wangdue S, Zhang X, Sinding MHS, Liu X, Han J, Lü H, Lei C, Marshall F, Liu X. Evidence for early domestic yak, taurine cattle, and their hybrids on the Tibetan Plateau. SCIENCE ADVANCES 2023; 9:eadi6857. [PMID: 38091398 PMCID: PMC10848728 DOI: 10.1126/sciadv.adi6857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Domestic yak, cattle, and their hybrids are fundamental to herder survival at high altitudes on the Tibetan Plateau. However, little is known about their history. Bos remains are uncommon in this region, and ancient domestic yak have not been securely identified. To identify Bos taxa and investigate their initial management, we conducted zooarchaeological analyses of 193 Bos specimens and sequenced five nuclear genomes from recently excavated assemblages at Bangga. Morphological data indicated that more cattle than yak were present. Ancient mitochondrial DNA and nuclear genome sequences identified taurine cattle and provided evidence for domestic yak and yak-cattle hybridization ~2500 years ago. Reliance on diverse Bos species and their hybrid has increased cattle adaptation and herder resilience to plateau conditions. Ancient cattle and yak at Bangga were closely related to contemporary livestock, indicating early herder legacies and the continuity of cattle and yak husbandry on the Tibetan Plateau.
Collapse
Affiliation(s)
- Ningbo Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Zhengwei Zhang
- Center for Archaeological Science, Sichuan University, Chengdu 610065, P. R. China
| | - Jiawen Hou
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jialei Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Xuan Gao
- Center for Archaeological Science, Sichuan University, Chengdu 610065, P. R. China
| | - Li Tang
- Department of Archaeology, Max Planck Institute of Geoanthropology, Jena 07745, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena 07745, Germany
| | - Shargan Wangdue
- Institute for Conservation and Research of Cultural Relics of Tibet Autonomous Region, Lhasa 850000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming 650201, P. R. China
| | - Mikkel-Holger S. Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen DK-1350, Denmark
| | - Xuexue Liu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, Toulouse 31000, France
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, P. R. China
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P. R. China
| | - Hongliang Lü
- Center for Archaeological Science, Sichuan University, Chengdu 610065, P. R. China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Fiona Marshall
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xinyi Liu
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
27
|
Fewlass H, Zavala EI, Fagault Y, Tuna T, Bard E, Hublin JJ, Hajdinjak M, Wilczyński J. Chronological and genetic analysis of an Upper Palaeolithic female infant burial from Borsuka Cave, Poland. iScience 2023; 26:108283. [PMID: 38047066 PMCID: PMC10690573 DOI: 10.1016/j.isci.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Six infant human teeth and 112 animal tooth pendants from Borsuka Cave were identified as the oldest burial in Poland. However, uncertainties around the dating and the association of the teeth to the pendants have precluded their association with an Upper Palaeolithic archaeological industry. Using <67 mg per tooth, we combined dating and genetic analyses of two human teeth and six herbivore tooth pendants to address these questions. Our interdisciplinary approach yielded informative results despite limited sampling material, and high levels of degradation and contamination. Our results confirm the Palaeolithic origin of the human remains and herbivore pendants, and permit us to identify the infant as female and discuss the association of the assemblage with different Palaeolithic industries. This study exemplifies the progress that has been made toward minimally destructive methods and the benefits of integrating methods to maximize data retrieval from precious but highly degraded and contaminated prehistoric material.
Collapse
Affiliation(s)
- Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London NW1 1AT, UK
| | - Elena I. Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Cell and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Yoann Fagault
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Thibaut Tuna
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Edouard Bard
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241 – U1050), Collège de France, 75231 Paris, France
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Jarosław Wilczyński
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| |
Collapse
|
28
|
Boualam MA, Corbara AG, Aboudharam G, Istria D, Signoli M, Costedoat C, Drancourt M, Pradines B. The millennial dynamics of malaria in the mediterranean basin: documenting Plasmodium spp. on the medieval island of Corsica. Front Med (Lausanne) 2023; 10:1265964. [PMID: 38143446 PMCID: PMC10739463 DOI: 10.3389/fmed.2023.1265964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The lack of well-preserved material upon which to base the paleo-microbiological detection of Plasmodium parasites has prevented extensive documentation of past outbreaks of malaria in Europe. By trapping intact erythrocytes at the time of death, dental pulp has been shown to be a suitable tissue for documenting ancient intraerythrocytic pathogens such as Plasmodium parasites. Methods Total DNA and proteins extracted from 23 dental pulp specimens collected from individuals exhumed from the 9th to 13th century archaeological site in Mariana, Corsica, were analyzed using open-mind paleo-auto-immunohistochemistry and direct metagenomics, Plasmodium-targeting immunochromatography assays. All experiments incorporated appropriate negative controls. Results Paleo-auto-immunohistochemistry revealed the presence of parasites Plasmodium spp. in the dental pulp of nine teeth. A further immunochromatography assay identified the presence of at least one Plasmodium antigen in nine individuals. The nine teeth, for which the PfHRP-2 antigen specific of P. falciparum was detected, were also positive using paleo-autoimmunohistochemistry and metagenomics. Conclusion Dental pulp erythrocytes proved to be suitable for the direct paleomicrobiology documentation of malaria in nine individuals buried in medieval Corsica, in agreement with historical data. This provides additional information on the millennial dynamics of Plasmodium spp. in the Mediterranean basin.
Collapse
Affiliation(s)
- Mahmoud Abdelwadoud Boualam
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement , Microbes, Evolution, Phylogénie et Infection, IHU Méditerranée Infection, Marseille, France
| | - Anne-Gaëlle Corbara
- Aix-Marseille Univ, Centre national de la recherche scientifique, LA3M, Aix-en-Provence, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement , Microbes, Evolution, Phylogénie et Infection, IHU Méditerranée Infection, Marseille, France
| | - Daniel Istria
- Aix-Marseille Univ, Centre national de la recherche scientifique, LA3M, Aix-en-Provence, France
| | - Michel Signoli
- Aix-Marseille Université, Centre national de la recherche scientifique, Établissement français du sang, Anthropologie bio-culturelle, droit, éthique et santé, Marseille, France
| | - Caroline Costedoat
- Aix-Marseille Université, Centre national de la recherche scientifique, Établissement français du sang, Anthropologie bio-culturelle, droit, éthique et santé, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement , Microbes, Evolution, Phylogénie et Infection, IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- IHU Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement, Service de Santé des Armées, Assistance publique - Hôpitaux de Marseille, VITROME, Marseille, France
- Centre National de Référence du Paludisme, Marseille, France
| |
Collapse
|
29
|
Olalde I, Carrión P, Mikić I, Rohland N, Mallick S, Lazaridis I, Mah M, Korać M, Golubović S, Petković S, Miladinović-Radmilović N, Vulović D, Alihodžić T, Ash A, Baeta M, Bartík J, Bedić Ž, Bilić M, Bonsall C, Bunčić M, Bužanić D, Carić M, Čataj L, Cvetko M, Drnić I, Dugonjić A, Đukić A, Đukić K, Farkaš Z, Jelínek P, Jovanovic M, Kaić I, Kalafatić H, Krmpotić M, Krznar S, Leleković T, M de Pancorbo M, Matijević V, Milošević Zakić B, Osterholtz AJ, Paige JM, Tresić Pavičić D, Premužić Z, Rajić Šikanjić P, Rapan Papeša A, Paraman L, Sanader M, Radovanović I, Roksandic M, Šefčáková A, Stefanović S, Teschler-Nicola M, Tončinić D, Zagorc B, Callan K, Candilio F, Cheronet O, Fernandes D, Kearns A, Lawson AM, Mandl K, Wagner A, Zalzala F, Zettl A, Tomanović Ž, Keckarević D, Novak M, Harper K, McCormick M, Pinhasi R, Grbić M, Lalueza-Fox C, Reich D. A genetic history of the Balkans from Roman frontier to Slavic migrations. Cell 2023; 186:5472-5485.e9. [PMID: 38065079 PMCID: PMC10752003 DOI: 10.1016/j.cell.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
The rise and fall of the Roman Empire was a socio-political process with enormous ramifications for human history. The Middle Danube was a crucial frontier and a crossroads for population and cultural movement. Here, we present genome-wide data from 136 Balkan individuals dated to the 1st millennium CE. Despite extensive militarization and cultural influence, we find little ancestry contribution from peoples of Italic descent. However, we trace a large-scale influx of people of Anatolian ancestry during the Imperial period. Between ∼250 and 550 CE, we detect migrants with ancestry from Central/Northern Europe and the Steppe, confirming that "barbarian" migrations were propelled by ethnically diverse confederations. Following the end of Roman control, we detect the large-scale arrival of individuals who were genetically similar to modern Eastern European Slavic-speaking populations, who contributed 30%-60% of the ancestry of Balkan people, representing one of the largest permanent demographic changes anywhere in Europe during the Migration Period.
Collapse
Affiliation(s)
- Iñigo Olalde
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Ikerbasque-Basque Foundation of Science, Bilbao, Spain; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | - Abigail Ash
- Department of Archaeology, Durham University, Durham, UK
| | - Miriam Baeta
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juraj Bartík
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Željka Bedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | - Clive Bonsall
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Maja Bunčić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Domagoj Bužanić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Mario Carić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Lea Čataj
- Division for Archaeological Heritage, Croatian Conservation Institute, Zagreb, Croatia
| | - Mirna Cvetko
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Ivan Drnić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | | | - Ana Đukić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Ksenija Đukić
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zdeněk Farkaš
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | | | - Iva Kaić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Marijana Krmpotić
- Department for Archaeology, Croatian Conservation Institute, Zagreb, Croatia
| | | | - Tino Leleković
- Archaeology Division, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Vinka Matijević
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Anna J Osterholtz
- Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Starkville, MS, USA
| | - Julianne M Paige
- Department of Anthropology, University of Nevada, Las Vegas, NV, USA
| | | | | | - Petra Rajić Šikanjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | | | - Mirjana Sanader
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, MB, Canada
| | - Alena Šefčáková
- Department of Anthropology, Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | - Sofia Stefanović
- Laboratory for Bioarchaeology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Domagoj Tončinić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Željko Tomanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kyle Harper
- Department of Classics and Letters, University of Oklahoma, Norman, OK, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Michael McCormick
- Department of History, Harvard University, Cambridge, MA, USA; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Harvard University, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Miodrag Grbić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Department of Biology, University of Western Ontario, London, ON, Canada; Department of Agriculture and Food, Universidad de La Rioja, Logroño, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain; Museu de Ciències Naturals de Barcelona, Barcelona, Spain.
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
30
|
Childebayeva A, Zavala EI. Review: Computational analysis of human skeletal remains in ancient DNA and forensic genetics. iScience 2023; 26:108066. [PMID: 37927550 PMCID: PMC10622734 DOI: 10.1016/j.isci.2023.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Degraded DNA is used to answer questions in the fields of ancient DNA (aDNA) and forensic genetics. While aDNA studies typically center around human evolution and past history, and forensic genetics is often more concerned with identifying a specific individual, scientists in both fields face similar challenges. The overlap in source material has prompted periodic discussions and studies on the advantages of collaboration between fields toward mutually beneficial methodological advancements. However, most have been centered around wet laboratory methods (sampling, DNA extraction, library preparation, etc.). In this review, we focus on the computational side of the analytical workflow. We discuss limitations and considerations to consider when working with degraded DNA. We hope this review provides a framework to researchers new to computational workflows for how to think about analyzing highly degraded DNA and prompts an increase of collaboration between the forensic genetics and aDNA fields.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Elena I. Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
31
|
Reeves IM, Totterdell JA, Betty EL, Donnelly DM, George A, Holmes S, Moller L, Stockin KA, Wellard R, White C, Foote AD. Ancestry testing of "Old Tom," a killer whale central to mutualistic interactions with human whalers. J Hered 2023; 114:598-611. [PMID: 37821799 PMCID: PMC10650950 DOI: 10.1093/jhered/esad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cooperative hunting between humans and killer whales (Orcinus orca) targeting baleen whales was reported in Eden, New South Wales, Australia, for almost a century. By 1928, whaling operations had ceased, and local killer whale sightings became scarce. A killer whale from the group, known as "Old Tom," washed up dead in 1930 and his skeleton was preserved. How these killer whales from Eden relate to other populations globally and whether their genetic descendants persist today remains unknown. We extracted and sequenced DNA from Old Tom using ancient DNA techniques. Genomic sequences were then compared with a global dataset of mitochondrial and nuclear genomes. Old Tom shared a most recent common ancestor with killer whales from Australasia, the North Atlantic, and the North Pacific, having the highest genetic similarity with contemporary New Zealand killer whales. However, much of the variation found in Old Tom's genome was not shared with these widespread populations, suggesting ancestral rather than ongoing gene flow. Our genetic comparisons also failed to find any clear descendants of Tom, raising the possibility of local extinction of this group. We integrated Traditional Custodian knowledge to recapture the events in Eden and recognize that Indigenous Australians initiated the relationship with the killer whales before European colonization and the advent of commercial whaling locally. This study rectifies discrepancies in local records and provides new insight into the origins of the killer whales in Eden and the history of Australasian killer whales.
Collapse
Affiliation(s)
- Isabella M Reeves
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - John A Totterdell
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - Emma L Betty
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | - David M Donnelly
- Killer Whales Australia, Mornington, Melbourne, Victoria, Australia
| | - Angela George
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Steven Holmes
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Luciana Moller
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Karen A Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Charlie White
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Harning DJ, Sacco S, Anamthawat-Jónsson K, Ardenghi N, Thordarson T, Raberg JH, Sepúlveda J, Geirsdóttir Á, Shapiro B, Miller GH. Delayed postglacial colonization of Betula in Iceland and the circum North Atlantic. eLife 2023; 12:RP87749. [PMID: 37955570 PMCID: PMC10642962 DOI: 10.7554/elife.87749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
As the Arctic continues to warm, woody shrubs are expected to expand northward. This process, known as 'shrubification,' has important implications for regional biodiversity, food web structure, and high-latitude temperature amplification. While the future rate of shrubification remains poorly constrained, past records of plant immigration to newly deglaciated landscapes in the Arctic may serve as useful analogs. We provide one new postglacial Holocene sedimentary ancient DNA (sedaDNA) record of vascular plants from Iceland and place a second Iceland postglacial sedaDNA record on an improved geochronology; both show Salicaceae present shortly after deglaciation, whereas Betulaceae first appears more than 1000 y later. We find a similar pattern of delayed Betulaceae colonization in eight previously published postglacial sedaDNA records from across the glaciated circum North Atlantic. In nearly all cases, we find that Salicaceae colonizes earlier than Betulaceae and that Betulaceae colonization is increasingly delayed for locations farther from glacial-age woody plant refugia. These trends in Salicaceae and Betulaceae colonization are consistent with the plant families' environmental tolerances, species diversity, reproductive strategies, seed sizes, and soil preferences. As these reconstructions capture the efficiency of postglacial vascular plant migration during a past period of high-latitude warming, a similarly slow response of some woody shrubs to current warming in glaciated regions, and possibly non-glaciated tundra, may delay Arctic shrubification and future changes in the structure of tundra ecosystems and temperature amplification.
Collapse
Affiliation(s)
- David J Harning
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California Santa CruzSanta CruzUnited States
| | | | - Nicolò Ardenghi
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
| | - Thor Thordarson
- Faculty of Earth Sciences, University of IcelandReykjavikIceland
| | - Jonathan H Raberg
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
| | - Julio Sepúlveda
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
- Department of Geological Sciences, University of Colorado BoulderBoulderUnited States
| | | | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa CruzSanta CruzUnited States
| | - Gifford H Miller
- Institute of Arctic and Alpine Research, University of Colorado BoulderBoulderUnited States
- Department of Geological Sciences, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
33
|
Menéndez LP, Barbieri C, López Cruz IG, Schmelzle T, Breidenstein A, Barquera R, Borzi G, Schuenemann VJ, Sánchez-Villagra MR. On Roth's "human fossil" from Baradero, Buenos Aires Province, Argentina: morphological and genetic analysis. SWISS JOURNAL OF PALAEONTOLOGY 2023; 142:26. [PMID: 37810206 PMCID: PMC10550872 DOI: 10.1186/s13358-023-00293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
The "human fossil" from Baradero, Buenos Aires Province, Argentina, is a collection of skeleton parts first recovered by the paleontologist Santiago Roth and further studied by the anthropologist Rudolf Martin. By the end of the nineteenth century and beginning of the twentieth century it was considered one of the oldest human skeletons from South America's southern cone. Here, we present the results of an interdisciplinary approach to study and contextualize the ancient individual remains. We discuss the context of the finding by first compiling the available evidence associated with the historical information and any previous scientific publications on this individual. Then, we conducted an osteobiographical assessment, by which we evaluated the sex, age, and overall preservation of the skeleton based on morphological features. To obtain a 3D virtual reconstruction of the skull, we performed high resolution CT-scans on selected skull fragments and the mandible. This was followed by the extraction of bone tissue and tooth samples for radiocarbon and genetic analyses, which brought only limited results due to poor preservation and possible contamination. We estimate that the individual from Baradero is a middle-aged adult male. We conclude that the revision of foundational collections with current methodological tools brings new insights and clarifies long held assumptions on the significance of samples that were recovered when archaeology was not yet professionalized.
Collapse
Affiliation(s)
- Lumila Paula Menéndez
- Department for the Anthropology of the Americas, University of Bonn, Bonn, Germany
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Chiara Barbieri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Thomas Schmelzle
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Abagail Breidenstein
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Department of Anthropology, Binghamton University, Binghamton, USA
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Guido Borzi
- Centro de Investigaciones Geológicas, La Plata, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
- Centro de Investigaciones Geológicas, CONICET-UNLP, La Plata, Argentina
| | | | | |
Collapse
|
34
|
Vyas DN, Koncz I, Modi A, Mende BG, Tian Y, Francalacci P, Lari M, Vai S, Straub P, Gallina Z, Szeniczey T, Hajdu T, Pejrani Baricco L, Giostra C, Radzevičiūtė R, Hofmanová Z, Évinger S, Bernert Z, Pohl W, Caramelli D, Vida T, Geary PJ, Veeramah KR. Fine-scale sampling uncovers the complexity of migrations in 5th-6th century Pannonia. Curr Biol 2023; 33:3951-3961.e11. [PMID: 37633281 DOI: 10.1016/j.cub.2023.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
As the collapse of the Western Roman Empire accelerated during the 4th and 5th centuries, arriving "barbarian" groups began to establish new communities in the border provinces of the declining (and eventually former) empire. This was a time of significant cultural and political change throughout not only these border regions but Europe as a whole.1,2 To better understand post-Roman community formation in one of these key frontier zones after the collapse of the Hunnic movement, we generated new paleogenomic data for a set of 38 burials from a time series of three 5th century cemeteries3,4,5 at Lake Balaton, Hungary. We utilized a comprehensive sampling approach to characterize these cemeteries along with data from 38 additional burials from a previously published mid-6th century site6 and analyzed them alongside data from over 550 penecontemporaneous individuals.7,8,9,10,11,12,13,14,15,16,17,18,19 The range of genetic diversity in all four of these local burial communities is extensive and wider ranging than penecontemporaneous Europeans sequenced to date. Despite many commonalities in burial customs and demography, we find that there were substantial differences in genetic ancestry between the sites. We detect evidence of northern European gene flow into the Lake Balaton region. Additionally, we observe a statistically significant association between dress artifacts and genetic ancestry among 5th century genetically female burials. Our analysis shows that the formation of early Medieval communities was a multifarious process even at a local level, consisting of genetically heterogeneous groups.
Collapse
Affiliation(s)
- Deven N Vyas
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - István Koncz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary
| | - Alessandra Modi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Tóth Kálmán utca 4, 1097 Budapest, Hungary
| | - Yijie Tian
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Via T. Fiorelli 1, 09126 Cagliari, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | | | | | - Tamás Szeniczey
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Tamás Hajdu
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Luisella Pejrani Baricco
- Soprintendenza Archeologia, Belle Arti e Paesaggio per la Città Metropolitana di Torino, piazza San Giovanni 2, 10122 Torino, Italy
| | - Caterina Giostra
- Dipartimento di Storia, Archeologia e Storia dell'Arte, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123 Milano, Italy
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Arna Nováka 1/1, Brno 60200, Czech Republic
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Walter Pohl
- Institute for Medieval Research, Austrian Academy of Sciences, Dr-Ignaz-Seipel-Platz 2, 1020 Vienna, Austria; Institute for Austrian Historical Research, University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - David Caramelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy.
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary.
| | - Patrick J Geary
- School of Historical Studies, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA.
| |
Collapse
|
35
|
Wang X, Fei W, Zhou Z, Zhu M, Chang Y, Guo Q, Guo J, Wang C. Immobilization of Multivalent Titanium Cations on Magnetic Composite Microspheres for Highly Efficient DNA Extraction and Amplification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42170-42181. [PMID: 37654059 DOI: 10.1021/acsami.3c05502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Magnetic-assisted DNA testing technology has attracted much attention in genetics, clinical diagnostics, environmental microbiology, and molecular biology. However, achieving satisfying DNA adsorption and desorption efficiency in real samples is still a big challenge. In this paper, a new kind of high-quality magnetic composite microsphere of MM@PGMA-PA-Ti4+ was designed and prepared for DNA extraction and detection based on the strong interaction of Ti4+ and phosphate groups. By taking the advantages of high magnetic susceptibility and high Ti4+ content, the MM@PGMA-PA-Ti4+ microspheres possessed remarkable extraction capacity for mimic biological samples (salmon sperm specimens) with saturated loadings up to 533.0 mg/g. When the DNA feeding amount was 100 μg and the MM@PGMA-PA-Ti4+ dosage was 1 mg, the adsorption and desorption efficiencies were 80 and 90%, respectively. The kinetic and equilibrium extraction data were found to fit well with the pseudo-second-order model and Freundlich isotherm model. Furthermore, the MM@PGMA-PA-Ti4+ microspheres were successfully employed for DNA extraction from mouse epithelial-like fibroblasts. The extraction ability (84 ± 4 μg/mg) and DNA purity were superior to the comparative commercial spin kits, as evaluated by electrophoresis assays and qPCR analysis. The experimental results suggest that the MM@PGMA-PA-Ti4+ microspheres possess great potential as an adsorbent for DNA purification from complex biological samples.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Weiwei Fei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhifan Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Mengjing Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Yinghao Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
36
|
Vinueza-Espinosa DC, Cuesta-Aguirre DR, Malgosa A, Santos C. Mitochondrial DNA control region typing from highly degraded skeletal remains by single-multiplex next-generation sequencing. Electrophoresis 2023; 44:1423-1434. [PMID: 37379235 DOI: 10.1002/elps.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Poor nuclear DNA preservation from highly degraded skeletal remains is the most limiting factor for the genetic identification of individuals. Mitochondrial DNA (mtDNA) typing, and especially of the control region (CR), using next-generation sequencing (NGS), enables retrieval of valuable genetic information in forensic contexts where highly degraded human skeletal remains are the only source of genetic material. Currently, NGS commercial kits can type all mtDNA-CR in fewer steps than the conventional Sanger technique. The PowerSeq CRM Nested System kit (Promega Corporation) employs a nested multiplex-polymerase chain reaction (PCR) strategy to amplify and index all mtDNA-CR in a single reaction. Our study analyzes the success of mtDNA-CR typing of highly degraded human skeletons using the PowerSeq CRM Nested System kit. We used samples from 41 individuals from different time periods to test three protocols (M1, M2, and M3) based on modifications of PCR conditions. To analyze the detected variants, two bioinformatic procedures were compared: an in-house pipeline and the GeneMarker HTS software. The results showed that many samples were not analyzed when the standard protocol (M1) was used. In contrast, the M3 protocol, which includes 35 PCR cycles and longer denaturation and extension steps, successfully recovered the mtDNA-CR from highly degraded skeletal samples. Mixed base profiles and the percentage of damaged reads were both indicators of possible contamination and can provide better results if used together. Furthermore, our freely available in-house pipeline can provide variants concordant with the forensic software.
Collapse
Affiliation(s)
- Diana C Vinueza-Espinosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Daniel R Cuesta-Aguirre
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpció Malgosa
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cristina Santos
- Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
37
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
38
|
Harney É, Micheletti S, Bruwelheide KS, Freyman WA, Bryc K, Akbari A, Jewett E, Comer E, Louis Gates H, Heywood L, Thornton J, Curry R, Ancona Esselmann S, Barca KG, Sedig J, Sirak K, Olalde I, Adamski N, Bernardos R, Broomandkhoshbacht N, Ferry M, Qiu L, Stewardson K, Workman JN, Zalzala F, Mallick S, Micco A, Mah M, Zhang Z, Rohland N, Mountain JL, Owsley DW, Reich D. The genetic legacy of African Americans from Catoctin Furnace. Science 2023; 381:eade4995. [PMID: 37535739 PMCID: PMC10958645 DOI: 10.1126/science.ade4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/20/2023] [Indexed: 08/05/2023]
Abstract
Few African Americans have been able to trace family lineages back to ancestors who died before the 1870 United States Census, the first in which all Black people were listed by name. We analyzed 27 individuals from Maryland's Catoctin Furnace African American Cemetery (1774-1850), identifying 41,799 genetic relatives among consenting research participants in 23andMe, Inc.'s genetic database. One of the highest concentrations of close relatives is in Maryland, suggesting that descendants of the Catoctin individuals remain in the area. We find that many of the Catoctin individuals derived African ancestry from the Wolof or Kongo groups and European ancestry from Great Britain and Ireland. This study demonstrates the power of joint analysis of historical DNA and large datasets generated through direct-to-consumer ancestry testing.
Collapse
Affiliation(s)
- Éadaoin Harney
- 23andMe, Inc.; Sunnyvale, CA 94043, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, 02138, USA
| | | | - Karin S. Bruwelheide
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution; Washington DC 20560, USA
| | | | | | - Ali Akbari
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
| | | | - Elizabeth Comer
- Catoctin Furnace Historical Society; Thurmont, MD, 21788, USA
| | - Henry Louis Gates
- Hutchins Center for African and African American Research, Harvard University; Cambridge, MA 02138, USA
| | - Linda Heywood
- Department of History/African American Studies, Boston University; Brookline, MA 02446, USA
| | - John Thornton
- Department of History/African American Studies, Boston University; Brookline, MA 02446, USA
| | - Roslyn Curry
- 23andMe, Inc.; Sunnyvale, CA 94043, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, 02138, USA
| | | | - Kathryn G. Barca
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution; Washington DC 20560, USA
| | - Jakob Sedig
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
| | - Kendra Sirak
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
| | - Iñigo Olalde
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, 02138, USA
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Ikerbasque—Basque Foundation of Science, Bilbao, Spain
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - Matthew Ferry
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - Lijun Qiu
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - J. Noah Workman
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
| | - Shop Mallick
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Adam Micco
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Zhao Zhang
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
| | | | - Douglas W. Owsley
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution; Washington DC 20560, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School; Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| |
Collapse
|
39
|
Zhur KV, Sharko FS, Sedov VV, Dobrovolskaya MV, Volkov VG, Maksimov NG, Seslavine AN, Makarov NA, Prokhortchouk EB. The Rurikids: The First Experience of Reconstructing the Genetic Portrait of the Ruling Family of Medieval Rus' Based on Paleogenomic Data. Acta Naturae 2023; 15:50-65. [PMID: 37908771 PMCID: PMC10615192 DOI: 10.32607/actanaturae.23425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 11/02/2023] Open
Abstract
The Rurikids were the reigning house of Rus', its principalities and, ultimately the Tsardom of Russia, for seven centuries: from the IX to the end of the XVI century. According to the Primary Chronicle (the Tale of Bygone Years), the main chronicle of Rus', the Rurik dynasty was founded by the Varangian prince Rurik, invited to reign in Novgorod in 862, but still there is no direct genetic evidence of the origin of the early Rurikids. This research, for the first time, provides a genome-wide paleogenetic analysis of bone remains belonging to one of the Rurikids, Prince Dmitry Alexandrovich (?-1294), the son of the Grand Prince of Vladimir Alexander Yaroslavich Nevsky (1221-1263). It has been established that his Y chromosome belongs to the N1a haplogroup. Most of the modern Rurikids, according to their genealogies, belonging to the N1a haplogroup, have the most similar variants of Y chromosomes to each other, as well as to the Y chromosome of Prince Dmitry Alexandrovich. Genome-wide data of the medieval and modern Rurikids unequivocally indicates that they belong to the N1a haplogroup of the Y chromosome, starting at least from the XI century (since the time of Prince Yaroslav the Wise). All the other alleged Rurikids, both ancient and modern, being carriers of other haplogroups (R1a, I2a), possess high heterogeneity of the sequence of Y chromosomes, meaning that we cannot confirm their common ancestry. The most probable ancestors of Prince Dmitry Alexandrovich in the male line were the men who left the burial ground Bolshoy Oleny Island on the coast of the Kola Peninsula about 3,600 years ago. The reconstruction of the genome of Prince Dmitry Alexandrovich indicates the contribution of three ancestral components to his origin: (1) the early medieval population of the east of Scandinavia from the island of Oland, (2) representatives of the steppe nomadic peoples of the Eurasian steppes of the Iron Age or the early medieval population of central Europe (steppe nomads from the territory of Hungary), and (3) the ancient East-Eurasian component. Reliable statistics were also obtained when the Scandinavians were replaced with the Medieval Russian Slavic populations of the XI century. Thus, for the first time, we have shown the complex nature of interethnic interactions in the formation of the nobility of medieval Rus' on the example of the ancient Rurikid.
Collapse
Affiliation(s)
- K V Zhur
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| | - F S Sharko
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| | - Vl V Sedov
- Institute of Archeology, Russian Academy of Sciences, Moscow, 117292 Russian Federation
| | - M V Dobrovolskaya
- Institute of Archeology, Russian Academy of Sciences, Moscow, 117292 Russian Federation
| | - V G Volkov
- Regional State Autonomous Institution "Center of Tatar Culture", Tomsk, 634050 Russian Federation
| | - N G Maksimov
- ANO "Runiverse", Moscow, 119071 Russian Federation
| | - A N Seslavine
- Russian Public Organisation "RDS", Moscow, 109028 Russian Federation
| | - N A Makarov
- Institute of Archeology, Russian Academy of Sciences, Moscow, 117292 Russian Federation
| | - E B Prokhortchouk
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| |
Collapse
|
40
|
Nikitin AG, Videiko M, Patterson N, Renson V, Reich D. Interactions between Trypillian farmers and North Pontic forager-pastoralists in Eneolithic central Ukraine. PLoS One 2023; 18:e0285449. [PMID: 37314969 PMCID: PMC10266615 DOI: 10.1371/journal.pone.0285449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
The establishment of agrarian economy in Eneolithic East Europe is associated with the Pre-Cucuteni-Cucuteni-Trypillia complex (PCCTC). PCCTC farmers interacted with Eneolithic forager-pastoralist groups of the North Pontic steppe as PCCTC extended from the Carpathian foothills to the Dnipro Valley beginning in the late 5th millennium BCE. While the cultural interaction between the two groups is evident through the Cucuteni C pottery style that carries steppe influence, the extent of biological interactions between Trypillian farmers and the steppe remains unclear. Here we report the analysis of artefacts from the late 5th millennium Trypillian settlement at the Kolomiytsiv Yar Tract (KYT) archaeological complex in central Ukraine, focusing on a human bone fragment found in the Trypillian context at KYT. Diet stable isotope ratios obtained from the bone fragment suggest the diet of the KYT individual to be within the range of forager-pastoralists of the North Pontic area. Strontium isotope ratios of the KYT individual are consistent with having originated from contexts of the Serednii Stih (Sredny Stog) culture sites of the Middle Dnipro Valley. Genetic analysis of the KYT individual indicates ancestry derived from a proto-Yamna population such as Serednii Stih. Overall, the KYT archaeological site presents evidence of interactions between Trypillians and Eneolithic Pontic steppe inhabitants of the Serednii Stih horizon and suggests a potential for gene flow between the two groups as early as the beginning of the 4th millennium BCE.
Collapse
Affiliation(s)
- Alexey G. Nikitin
- Department of Biology, Grand Valley State University, Allendale, Michigan, United States of America
| | - Mykhailo Videiko
- Scientific Research Laboratory of Archaeology, Borys Grinchenko Kyiv University, Kyiv, Ukraine
| | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Virginie Renson
- University of Missouri Research Reactor, Columbia, Missouri, United States of America
| | - David Reich
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
Swali P, Schulting R, Gilardet A, Kelly M, Anastasiadou K, Glocke I, McCabe J, Williams M, Audsley T, Loe L, Fernández-Crespo T, Ordoño J, Walker D, Clare T, Cook G, Hodkinson I, Simpson M, Read S, Davy T, Silva M, Hajdinjak M, Bergström A, Booth T, Skoglund P. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat Commun 2023; 14:2930. [PMID: 37253742 DOI: 10.1038/s41467-023-38393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Extinct lineages of Yersinia pestis, the causative agent of the plague, have been identified in several individuals from Eurasia between 5000 and 2500 years before present (BP). One of these, termed the 'LNBA lineage' (Late Neolithic and Bronze Age), has been suggested to have spread into Europe with human groups expanding from the Eurasian steppe. Here, we show that the LNBA plague was spread to Europe's northwestern periphery by sequencing three Yersinia pestis genomes from Britain, all dating to ~4000 cal BP. Two individuals were from an unusual mass burial context in Charterhouse Warren, Somerset, and one individual was from a single burial under a ring cairn monument in Levens, Cumbria. To our knowledge, this represents the earliest evidence of LNBA plague in Britain documented to date. All three British Yersinia pestis genomes belong to a sublineage previously observed in Bronze Age individuals from Central Europe that had lost the putative virulence factor yapC. This sublineage is later found in Eastern Asia ~3200 cal BP. While the severity of the disease is currently unclear, the wide geographic distribution within a few centuries suggests substantial transmissibility.
Collapse
Affiliation(s)
- Pooja Swali
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | | | | | - Monica Kelly
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | | | - Isabelle Glocke
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Jesse McCabe
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Mia Williams
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | | | - Louise Loe
- Oxford Archaeology, Osney Mead, Oxford, UK
| | - Teresa Fernández-Crespo
- School of Archaeology, University of Oxford, Oxford, UK
- Laboratoire Méditerranéen de Préhistoire Europe Afrique-UMR 7269, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
- Departamento de Prehistoria, Arqueología, Antropología Social y Ciencias y Técnicas Historiográficas, Universidad de Valladolid, Valladolid, Spain
| | - Javier Ordoño
- Department of Archaeology and New Technologies, Arkikus, Spain
| | | | - Tom Clare
- Levens Local History Group, Levens, Cumbria, UK
| | - Geoff Cook
- Levens Local History Group, Levens, Cumbria, UK
| | - Ian Hodkinson
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | | - Tom Davy
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Marina Silva
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
- Department of Evolutionary Genetics and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Thomas Booth
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
42
|
Essel E, Zavala EI, Schulz-Kornas E, Kozlikin MB, Fewlass H, Vernot B, Shunkov MV, Derevianko AP, Douka K, Barnes I, Soulier MC, Schmidt A, Szymanski M, Tsanova T, Sirakov N, Endarova E, McPherron SP, Hublin JJ, Kelso J, Pääbo S, Hajdinjak M, Soressi M, Meyer M. Ancient human DNA recovered from a Palaeolithic pendant. Nature 2023:10.1038/s41586-023-06035-2. [PMID: 37138083 DOI: 10.1038/s41586-023-06035-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.
Collapse
Affiliation(s)
- Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Elena I Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, San Francisco State University, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ellen Schulz-Kornas
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoly P Derevianko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Katerina Douka
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS) Research Network, University of Vienna, Vienna, Austria
| | - Ian Barnes
- Earth Sciences Department, Natural History Museum, London, UK
| | - Marie-Cécile Soulier
- Maison de la Recherche, Université de Toulouse-Jean Jaurès, CNRS UMR 5608 TRACES, Toulouse, France
| | - Anna Schmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Merlin Szymanski
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tsenka Tsanova
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nikolay Sirakov
- National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, Collège de France, Paris, France
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marie Soressi
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands.
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
43
|
Thomas JT, Cavagnino C, Kjelland K, Anderson E, Sturk-Andreaggi K, Daniels-Higginbotham J, Amory C, Spatola B, Moran K, Parson W, Marshall C. Evaluating the Usefulness of Human DNA Quantification to Predict DNA Profiling Success of Historical Bone Samples. Genes (Basel) 2023; 14:genes14050994. [PMID: 37239354 DOI: 10.3390/genes14050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
This study assessed the usefulness of DNA quantification to predict the success of historical samples when analyzing SNPs, mtDNA, and STR targets. Thirty burials from six historical contexts were utilized, ranging in age from 80 to 800 years postmortem. Samples underwent library preparation and hybridization capture with two bait panels (FORCE and mitogenome), and STR typing (autosomal STR and Y-STR). All 30 samples generated small (~80 bp) autosomal DNA target qPCR results, despite mean mappable fragments ranging from 55-125 bp. The qPCR results were positively correlated with DNA profiling success. Samples with human DNA inputs as low as 100 pg resulted in ≥80% FORCE SNPs at 10X coverage. All 30 samples resulted in mitogenome coverage ≥100X despite low human DNA input (as low as 1 pg). With PowerPlex Fusion, ≥30 pg human DNA input resulted in >40% of auSTR loci. At least 59% of Y-STR loci were recovered with Y-target qPCR-based inputs of ≥24 pg. The results also indicate that human DNA quantity is a better predictor of success than the ratio of human to exogenous DNA. Accurate quantification with qPCR is feasible for historical bone samples, allowing for the screening of extracts to predict the success of DNA profiling.
Collapse
Affiliation(s)
- Jacqueline Tyler Thomas
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Courtney Cavagnino
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Katelyn Kjelland
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- Amentum Services Inc. (Contractor Supporting the AFMES-AFDIL), Germantown, MD 20876, USA
| | - Elise Anderson
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- Amentum Services Inc. (Contractor Supporting the AFMES-AFDIL), Germantown, MD 20876, USA
| | - Kimberly Sturk-Andreaggi
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Jennifer Daniels-Higginbotham
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
| | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Brian Spatola
- National Museum of Health and Medicine, Anatomical Division, Defense Health Agency, Silver Spring, MD 20910, USA
| | - Kimberlee Moran
- Forensic Science Program, Department of Chemistry, Rutgers University-Camden, Camden, NJ 08102, USA
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Charla Marshall
- Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- SNA International, LLC (Contractor Supporting the AFMES-AFDIL), Alexandria, VA 22314, USA
- Forensic Science Program, The Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
44
|
Fernandes DM, Sirak KA, Cheronet O, Novak M, Brück F, Zelger E, Llanos-Lizcano A, Wagner A, Zettl A, Mandl K, Duffet Carlson KS, Oberreiter V, Özdoğan KT, Sawyer S, La Pastina F, Borgia E, Coppa A, Dobeš M, Velemínský P, Reich D, Bell LS, Pinhasi R. Density separation of petrous bone powders for optimized ancient DNA yields. Genome Res 2023; 33:622-631. [PMID: 37072186 PMCID: PMC10234301 DOI: 10.1101/gr.277714.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Density separation is a process routinely used to segregate minerals, organic matter, and even microplastics, from soils and sediments. Here we apply density separation to archaeological bone powders before DNA extraction to increase endogenous DNA recovery relative to a standard control extraction of the same powders. Using nontoxic heavy liquid solutions, we separated powders from the petrous bones of 10 individuals of similar archaeological preservation into eight density intervals (2.15 to 2.45 g/cm3, in 0.05 increments). We found that the 2.30 to 2.35 g/cm3 and 2.35 to 2.40 g/cm3 intervals yielded up to 5.28-fold more endogenous unique DNA than the corresponding standard extraction (and up to 8.53-fold before duplicate read removal), while maintaining signals of ancient DNA authenticity and not reducing library complexity. Although small 0.05 g/cm3 intervals may maximally optimize yields, a single separation to remove materials with a density above 2.40 g/cm3 yielded up to 2.57-fold more endogenous DNA on average, which enables the simultaneous separation of samples that vary in preservation or in the type of material analyzed. While requiring no new ancient DNA laboratory equipment and fewer than 30 min of extra laboratory work, the implementation of density separation before DNA extraction can substantially boost endogenous DNA yields without decreasing library complexity. Although subsequent studies are required, we present theoretical and practical foundations that may prove useful when applied to other ancient DNA substrates such as teeth, other bones, and sediments.
Collapse
Affiliation(s)
- Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Florian Brück
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | | | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Kellie Sara Duffet Carlson
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Department of History and Art History, Utrecht University, 3512 BS Utrecht, The Netherlands
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Francesco La Pastina
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, United Kingdom
| | - Emanuela Borgia
- Dipartimento di Scienze dell'Antichità, Sapienza Università di Roma, Rome 00185, Italy
| | - Alfredo Coppa
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome 00185, Italy
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague 118 00, Czech Republic
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115 79, Czech Republic
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lynne S Bell
- Centre for Forensic Research, School of Criminology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria;
- Human Evolution and Archaeological Sciences Forschungsverbund, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
45
|
Motti JMB, Pauro M, Scabuzzo C, García A, Aldazábal V, Vecchi R, Bayón C, Pastor N, Demarchi DA, Bravi CM, Reich D, Cabana GS, Nores R. Ancient mitogenomes from the Southern Pampas of Argentina reflect local differentiation and limited extra-regional linkages after rapid initial colonization. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:216-230. [PMID: 36919783 DOI: 10.1002/ajpa.24727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE This study aims to contribute to the recovery of Indigenous evolutionary history in the Southern Pampas region of Argentina through an analysis of ancient complete mitochondrial genomes. MATERIALS AND METHODS We generated DNA data for nine complete mitogenomes from the Southern Pampas, dated to between 2531 and 723 cal BP. In combination with previously published ancient mitogenomes from the region and from throughout South America, we documented instances of extra-regional lineage-sharing, and estimated coalescent ages for local lineages using a Bayesian method with tip calibrations in a phylogenetic analysis. RESULTS We identified a novel mitochondrial haplogroup, B2b16, and two recently defined haplogroups, A2ay and B2ak1, as well as three local haplotypes within founder haplogroups C1b and C1d. We detected lineage-sharing with ancient and contemporary individuals from Central Argentina, but not with ancient or contemporary samples from North Patagonian or Littoral regions of Argentina, despite archeological evidence of cultural interactions with the latter regions. The estimated coalescent age of these shared lineages is ~10,000 years BP. DISCUSSION The history of the human populations in the Southern Pampas is temporally deep, exhibiting long-term continuity of mitogenome lineages. Additionally, the identification of highly localized mtDNA clades accords with a model of relatively rapid initial colonization of South America by Indigenous communities, followed by more local patterns of limited gene flow and genetic drift in various South American regions, including the Pampas.
Collapse
Affiliation(s)
- Josefina M B Motti
- Laboratorio de Ecología Evolutiva Humana, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Quequén, Buenos Aires, Argentina
| | - Maia Pauro
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina
| | - Clara Scabuzzo
- Centro de Investigación Científica y de Transferencia a la Producción (CICyTTP)-CONICET, Provincia de Entre Ríos-Universidad Autónoma de Entre Ríos (UADER)-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Diamante, Entre Ríos, Argentina
| | - Angelina García
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Aldazábal
- Instituto Multidisciplinario de Historia y Ciencias Humanas, CONICET, Buenos Aires, Argentina
| | - Rodrigo Vecchi
- Departamento de Humanidades, Universidad Nacional del Sur, CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Cristina Bayón
- Departamento de Humanidades, Universidad Nacional del Sur, CONICET, Bahía Blanca, Buenos Aires, Argentina
| | - Nicolás Pastor
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina
| | - Darío A Demarchi
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular, Centro Científico Tecnológica (CCT) La Plata CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Broad Institute, Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Graciela S Cabana
- Molecular Anthropology Laboratories, Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Rodrigo Nores
- Instituto de Antropología de Córdoba, CONICET, Córdoba, Argentina.,Facultad de Filosofía y Humanidades, Museo de Antropología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
46
|
Posth C, Yu H, Ghalichi A, Rougier H, Crevecoeur I, Huang Y, Ringbauer H, Rohrlach AB, Nägele K, Villalba-Mouco V, Radzeviciute R, Ferraz T, Stoessel A, Tukhbatova R, Drucker DG, Lari M, Modi A, Vai S, Saupe T, Scheib CL, Catalano G, Pagani L, Talamo S, Fewlass H, Klaric L, Morala A, Rué M, Madelaine S, Crépin L, Caverne JB, Bocaege E, Ricci S, Boschin F, Bayle P, Maureille B, Le Brun-Ricalens F, Bordes JG, Oxilia G, Bortolini E, Bignon-Lau O, Debout G, Orliac M, Zazzo A, Sparacello V, Starnini E, Sineo L, van der Plicht J, Pecqueur L, Merceron G, Garcia G, Leuvrey JM, Garcia CB, Gómez-Olivencia A, Połtowicz-Bobak M, Bobak D, Le Luyer M, Storm P, Hoffmann C, Kabaciński J, Filimonova T, Shnaider S, Berezina N, González-Rabanal B, González Morales MR, Marín-Arroyo AB, López B, Alonso-Llamazares C, Ronchitelli A, Polet C, Jadin I, Cauwe N, Soler J, Coromina N, Rufí I, Cottiaux R, Clark G, Straus LG, Julien MA, Renhart S, Talaa D, Benazzi S, Romandini M, Amkreutz L, Bocherens H, Wißing C, Villotte S, de Pablo JFL, Gómez-Puche M, Esquembre-Bebia MA, Bodu P, Smits L, Souffi B, Jankauskas R, Kozakaitė J, Cupillard C, Benthien H, Wehrberger K, Schmitz RW, Feine SC, Schüler T, Thevenet C, Grigorescu D, Lüth F, Kotula A, Piezonka H, Schopper F, Svoboda J, Sázelová S, Chizhevsky A, Khokhlov A, Conard NJ, Valentin F, Harvati K, Semal P, Jungklaus B, Suvorov A, Schulting R, Moiseyev V, Mannermaa K, Buzhilova A, Terberger T, Caramelli D, Altena E, Haak W, Krause J. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 2023; 615:117-126. [PMID: 36859578 PMCID: PMC9977688 DOI: 10.1038/s41586-023-05726-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/12/2023] [Indexed: 03/03/2023]
Abstract
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
Collapse
Affiliation(s)
- Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hélène Rougier
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | | | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Tiago Ferraz
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Stoessel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Zoology and Evolutionary Research, University of Jena, Jena, Germany
| | - Rezeda Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center of Excellence 'Archaeometry', Kazan Federal University, Kazan, Russia
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John's College, University of Cambridge, Cambridge, UK
| | - Giulio Catalano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Laurent Klaric
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - André Morala
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Mathieu Rué
- Paléotime, Villard-de-Lans, France
- UMR 5140 CNRS, Archéologie des Sociétés Méditerranéennes, Université Paul-Valéry, Montpellier, France
| | - Stéphane Madelaine
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Laurent Crépin
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
| | - Jean-Baptiste Caverne
- Association APRAGE (Approches pluridisciplinaires de recherche archéologique du Grand-Est), Besançon, France
- Inrap GE, Metz, France
| | - Emmy Bocaege
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
| | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
- Centro Studi sul Quaternario ODV, Sansepolcro, Italy
| | - Priscilla Bayle
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | - Bruno Maureille
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | | | | | - Gregorio Oxilia
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Human Ecology and Archaeology (HUMANE), Department of Archaeology and Anthropology, Institució Milà i Fontanals de Investigación en Humanidades, Consejo Superior de Investigaciones Científicas (IMF - CSIC), Barcelona, Spain
| | - Olivier Bignon-Lau
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Grégory Debout
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Michel Orliac
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Antoine Zazzo
- UMR 7209-Archéozoologie et Archéobotanique-Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris, France
| | - Vitale Sparacello
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Sezione di Neuroscienze e Antropologia, Università Degli Studi di Cagliari, Cittadella Monserrato, Cagliari, Italy
| | | | - Luca Sineo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | - Laure Pecqueur
- Inrap CIF, Croissy-Beaubourg, France
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
| | - Gildas Merceron
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
| | - Géraldine Garcia
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
- Centre de Valorisation des Collections Scientifiques, Université de Poitiers, Mignaloux Beauvoir, France
| | | | | | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- Sociedad de Ciencias Aranzadi, Donostia-San Sebastian, Spain
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | | | - Dariusz Bobak
- Foundation for Rzeszów Archaeological Centre, Rzeszów, Poland
| | - Mona Le Luyer
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paul Storm
- Groninger Instituut voor Archeologie, Groningen University, Groningen, The Netherlands
| | | | - Jacek Kabaciński
- Institute of Archaeology and Ethnology, Polish Academy of Science, Poznań, Poland
| | | | - Svetlana Shnaider
- ArchaeoZOOlogy in Siberia and Central Asia-ZooSCAn, CNRS-IAET SB RAS International Research Laboratory, IRL 2013, Institute of Archaeology SB RAS, Novosibirsk, Russia
| | - Natalia Berezina
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Borja González-Rabanal
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Manuel R González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), Universidad de Cantabria-Gobierno de Cantabria-Banco Santander, Santander, Spain
| | - Ana B Marín-Arroyo
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Belén López
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
| | - Caroline Polet
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Ivan Jadin
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Nicolas Cauwe
- Musées Royaux d'Art et d'Histoire, Bruxelles, Belgium
| | - Joaquim Soler
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Neus Coromina
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Isaac Rufí
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | | | - Geoffrey Clark
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lawrence G Straus
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Marie-Anne Julien
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
- GéoArchPal-GéoArchÉon, Viéville sous-les-Cotes, France
| | - Silvia Renhart
- Archäologie & Münzkabinett, Universalmuseum Joanneum, Graz, Austria
| | - Dorothea Talaa
- Museum 'Das Dorf des Welan', Wöllersdorf-Steinabrückl, Austria
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Pradis Cave Museum, Clauzetto, Italy
- Department of Humanities, University of Ferrara, Ferrara, Italy
| | - Luc Amkreutz
- National Museum of Antiquities, Leiden, The Netherlands
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Christoph Wißing
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Sébastien Villotte
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Unité de Recherches Art, Archéologie Patrimoine, Université de Liège, Liège, Belgium
| | - Javier Fernández-López de Pablo
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | - Magdalena Gómez-Puche
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | | | - Pierre Bodu
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Liesbeth Smits
- Amsterdam Centre of Ancient Studies and Archaeology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bénédicte Souffi
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
- Inrap CIF, Croissy-Beaubourg, France
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Justina Kozakaitė
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Christophe Cupillard
- Service Régional de l'Archéologie de Bourgogne-Franche-Comté, Besançon Cedex, France
- Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, Besançon Cedex, France
| | | | | | | | - Susanne C Feine
- LVR-LandesMuseum Bonn, Bonn, Germany
- Institute of Pre- and Protohistory, University of Tübingen, Tübingen, Germany
| | - Tim Schüler
- Department of Archeological Sciences, Thuringian State Office for Monuments Preservation and Archeology, Weimar, Germany
| | | | - Dan Grigorescu
- University of Bucharest, Faculty of Geology and Geophysics, Department of Geology, Bucharest, Romania
- Institute for Advanced Studies in Levant Culture and Civilization, Bucharest, Romania
| | | | - Andreas Kotula
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Henny Piezonka
- Institute for Pre- and Protohistory, Kiel University, Kiel, Germany
| | - Franz Schopper
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Jiří Svoboda
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Sandra Sázelová
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Andrey Chizhevsky
- Institute of Archaeology, Academy of Sciences of the Republic of Tatarstan, Kazan, Russia
| | - Aleksandr Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Nicholas J Conard
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Frédérique Valentin
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Katerina Harvati
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Paleoanthropology, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', University of Tübingen, Tübingen, Germany
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | | | - Alexander Suvorov
- Institute of Archaeology Russian, Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Thomas Terberger
- Seminar for Pre- and Protohistory, Göttingen University, Göttingen, Germany
- Lower Saxony State Service for Cultural Heritage, Hannover, Germany
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| | - Eveline Altena
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
47
|
Snedeker J, Hughes S, Houston R. Optimization of InnoXtract™ extraction and purification system for DNA extraction from skeletal samples. Int J Legal Med 2023:10.1007/s00414-023-02980-9. [PMID: 36847841 DOI: 10.1007/s00414-023-02980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
The InnoXtract™ extraction and purification system is a purification method designed for DNA extraction from low-template samples, specifically rootless hair shafts. Its ability to successfully capture highly fragmented DNA suggests its suitability for use with other challenging sample types, including skeletal remains. However, the lysis and digestion parameters required modifications to successfully optimize the method for this sample type. A two-part digestion was developed utilizing a homebrew digestion buffer (0.5 M EDTA, 0.05% Tween 20, and 100 mM NaCl) and a supplemental lysis with the Hair Digestion Buffer included in the InnoXtract™ kit. Additionally, the magnetic bead volume was modified to improve DNA recovery from these challenging samples. With the altered protocol, the quality and quantity of DNA recovered from InnoXtract™ extracts were comparable to another commercial skeletal extraction method (PrepFiler™ BTA). This modified extraction method successfully purified sufficient amounts of quality DNA from a variety of skeletal samples to produce complete STR profiles. Successful STR typing from surface decomposition, burned, cremated, buried, and embalmed remains indicates the potential of this new method for challenging human identification and missing-person cases.
Collapse
Affiliation(s)
- Jennifer Snedeker
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., TX, 77341, Huntsville, USA.
| | - Sheree Hughes
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., TX, 77341, Huntsville, USA
| | - Rachel Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., TX, 77341, Huntsville, USA
| |
Collapse
|
48
|
Baca M, Popović D, Agadzhanyan AK, Baca K, Conard NJ, Fewlass H, Filek T, Golubiński M, Horáček I, Knul MV, Krajcarz M, Krokhaleva M, Lebreton L, Lemanik A, Maul LC, Nagel D, Noiret P, Primault J, Rekovets L, Rhodes SE, Royer A, Serdyuk NV, Soressi M, Stewart JR, Strukova T, Talamo S, Wilczyński J, Nadachowski A. Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals. Proc Biol Sci 2023; 290:20222238. [PMID: 36787794 PMCID: PMC9928523 DOI: 10.1098/rspb.2022.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The narrow-headed vole, collared lemming and common vole were the most abundant small mammal species across the Eurasian Late Pleistocene steppe-tundra environment. Previous ancient DNA studies of the collared lemming and common vole have revealed dynamic population histories shaped by climatic fluctuations. To investigate the extent to which species with similar adaptations share common evolutionary histories, we generated a dataset comprised the mitochondrial genomes of 139 ancient and 6 modern narrow-headed voles from several sites across Europe and northwestern Asia covering approximately the last 100 thousand years (kyr). We inferred Bayesian time-aware phylogenies using 11 radiocarbon-dated samples to calibrate the molecular clock. Divergence of the main mtDNA lineages across the three species occurred during marine isotope stages (MIS) 7 and MIS 5, suggesting a common response of species adapted to open habitat during interglacials. We identified several time-structured mtDNA lineages in European narrow-headed vole, suggesting lineage turnover. The timing of some of these turnovers was synchronous across the three species, allowing us to identify the main drivers of the Late Pleistocene dynamics of steppe- and cold-adapted species.
Collapse
Affiliation(s)
- Mateusz Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Baca
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Nicholas J Conard
- Department of Early Prehistory and Quaternary Ecology and.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Thomas Filek
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | | | - Ivan Horáček
- Department of Zoology, Charles University, Prague, Czechia
| | - Monika V Knul
- Department of Archaeology, Anthropology and Geography, University of Winchester, Winchester, UK
| | - Magdalena Krajcarz
- Institute of Archaeology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maria Krokhaleva
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Loïc Lebreton
- Department of Human and Environment, (HNHP) UMR 7194MNHN-CNRS-UPVD, National Museum of Natural History, Paris, France.,Catalan Institute of Human Paleoecology and Social Evolution (IPHES-CERCA), Tarragona, Spain.,Department of History and Art History, Rovira i Virgili University, Tarragona, Spain
| | - Anna Lemanik
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Cracow, Poland
| | - Lutz C Maul
- Senckenberg Research Station of Quaternary Palaeontology, Weimar, Germany
| | - Doris Nagel
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Pierre Noiret
- Research Group Prehistory, University of Liège, Liège, Belgium
| | - Jérome Primault
- DRAC/SRA Poitou-Charentes, Ministry of Culture and Communications, Poitiers, France
| | - Leonid Rekovets
- Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Sara E Rhodes
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior, University of Algavre, Faro, Portugal
| | - Aurélien Royer
- Biogéosciences, UMR 6282 CNRS, University of Burgundy, Dijon, France
| | - Natalia V Serdyuk
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Marie Soressi
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - John R Stewart
- Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Tatiana Strukova
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Jarosław Wilczyński
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Cracow, Poland
| | - Adam Nadachowski
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Cracow, Poland
| |
Collapse
|
49
|
Middle Holocene Siberian genomes reveal highly connected gene pools throughout North Asia. Curr Biol 2023; 33:423-433.e5. [PMID: 36638796 DOI: 10.1016/j.cub.2022.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.
Collapse
|
50
|
Liu Z, Simayijiang H, Wang Q, Yang J, Sun H, Wu R, Yan J. DNA and protein analyses of hair in forensic genetics. Int J Legal Med 2023; 137:613-633. [PMID: 36732435 DOI: 10.1007/s00414-023-02955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Hair is one of the most common pieces of biological evidence found at a crime scene and plays an essential role in forensic investigation. Hairs, especially non-follicular hairs, are usually found at various crime scenes, either by natural shedding or by forcible shedding. However, the genetic material in hairs is usually highly degraded, which makes forensic analysis difficult. As a result, the value of hair has not been fully exploited in forensic investigations and trials. In recent years, with advances in molecular biology, forensic analysis of hair has achieved remarkable strides and provided crucial clues in numerous cases. This article reviews recent developments in DNA and protein analysis of hair and attempts to provide a comprehensive solution to improve forensic hair analysis.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|