1
|
Wang T, Huang W, Gao X, Deng Y, Huang J. Single extracellular vesicle research: From cell population to a single cell. Biochem Biophys Res Commun 2024; 734:150439. [PMID: 39083971 DOI: 10.1016/j.bbrc.2024.150439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Extracellular vesicles (EVs) are secreted by cells with a membrane structure and complex components such as DNA, RNA and proteins. These biomolecules play an important role in cell communication, cell proliferation, cell migration, vascularization, immune response and other physiological and pathological processes. Most current research on EVs focused on populations of EVs. Heterogeneity of EVs is neglected. Considering the heterogeneity of single EVs may offer critical molecular insights into cell-cell interactions, it is necessary to enhance our understanding about molecular characteristics from EVs derived from cell population to a single EV of derived from a single cell. This transformation is expected to provide a new insight into the understanding of cellular biology and the accurate description of the law of disease progress. In this article, we review the current research progress of single EV analysis technology for single EVs derived from cell population (SECP) and discuss its main applications in biological and clinical medicine research. After that, we propose the development direction, main difficulties and application prospect of single EV analysis technology for single EVs derived from single cells (SESC) according to our own research work, to provide new perspectives for the field of EV research.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqiu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Gao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Li M. Atomic force microscopy as a nanomechanical tool for cancer liquid biopsy. Biochem Biophys Res Commun 2024; 734:150637. [PMID: 39226737 DOI: 10.1016/j.bbrc.2024.150637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Liquid biopsies have been receiving tremendous attention for their potential to reshape cancer management. Though current studies of cancer liquid biopsy primarily focus on applying biochemical assays to characterize the genetic/molecular profiles of circulating tumor cells (CTCs) and their secondary products shed from tumor sites in bodily fluids, delineating the nanomechanical properties of tumor-associated materials in liquid biopsy specimens yields complementary insights into the biology of tumor dissemination and evolution. Particularly, atomic force microscopy (AFM) has become a standard and versatile toolbox for characterizing the mechanical properties of living biological systems at the micro/nanoscale, and AFM has been increasingly utilized to probe the nanomechanical properties of various tumor-derived analytes in liquid biopsies, including CTCs, tumor-associated cells, circulating tumor DNA (ctDNA) molecules, and extracellular vesicles (EVs), offering additional possibilities for understanding cancer pathogenesis from the perspective of mechanobiology. Herein, the applications of AFM in cancer liquid biopsy are summarized, and the challenges and future directions of AFM as a nanomechanical analysis tool in cancer liquid biopsy towards clinical utility are discussed and envisioned.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
3
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Di Santo R, Verdelli F, Niccolini B, Varca S, Gaudio AD, Di Giacinto F, De Spirito M, Pea M, Giovine E, Notargiacomo A, Ortolani M, Di Gaspare A, Baldi A, Pizzolante F, Ciasca G. Exploring novel circulating biomarkers for liver cancer through extracellular vesicle characterization with infrared spectroscopy and plasmonics. Anal Chim Acta 2024; 1319:342959. [PMID: 39122286 DOI: 10.1016/j.aca.2024.342959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with cirrhosis being a major risk factor. Traditional blood markers like alpha-fetoprotein (AFP) demonstrate limited efficacy in distinguishing between HCC and cirrhosis, underscoring the need for more effective diagnostic methodologies. In this context, extracellular vesicles (EVs) have emerged as promising candidates; however, their practical diagnostic application is restricted by the current lack of label-free methods to accurately profile their molecular content. To address this gap, our study explores the potential of mid-infrared (mid-IR) spectroscopy, both alone and in combination with plasmonic nanostructures, to detect and characterize circulating EVs. RESULTS EVs were extracted from HCC and cirrhotic patients. Mid-IR spectroscopy in the Attenuated Total Reflection (ATR) mode was utilized to identify potential signatures for patient classification, highlighting significant changes in the Amide I-II region (1475-1700 cm-1). This signature demonstrated diagnostic performance comparable to AFP and surpassed it when the two markers were combined. Further investigations utilized a plasmonic metasurface suitable for ultrasensitive spectroscopy within this spectral range. This device consists of two sets of parallel rod-shaped gold nanoantennas (NAs); the longer NAs produced an intense near-field amplification in the Amide I-II bands, while the shorter NAs were utilized to provide a sharp reflectivity edge at 1800-2200 cm-1 for EV mass-sensing. A clinically relevant subpopulation of EVs was targeted by conjugating NAs with an antibody specific to Epithelial Cell Adhesion Molecule (EpCAM). This methodology enabled the detection of variations in the quantity of EpCAM-presenting EVs and revealed changes in the Amide I-II lineshape. SIGNIFICANCE The presented results can positively impact the development of novel laboratory methods for the label-free characterization of EVs, based on the combination between mid-IR spectroscopy and plasmonics. Additionally, data obtained by using HCC and cirrhotic subjects as a model system, suggest that this approach could be adapted for monitoring these conditions.
Collapse
Affiliation(s)
- R Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy; Dipartimento di Scienze della Vita, della salute e delle Professioni sanitarie, Link Campus University, Rome, Italy
| | - F Verdelli
- Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven 5600 HH, The Netherlands
| | - B Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - S Varca
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Del Gaudio
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - F Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - M De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| | - M Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - E Giovine
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - A Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Via Del Fosso Del Cavaliere 100, 00133, Rome, Italy
| | - M Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185, Rome, Italy
| | - A Di Gaspare
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - A Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - F Pizzolante
- UOC of Gastroenterology, Department of Medical and Surgery Sciences, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore & Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Collado A, Gan L, Tengbom J, Kontidou E, Pernow J, Zhou Z. Extracellular vesicles and their non-coding RNA cargos: Emerging players in cardiovascular disease. J Physiol 2023; 601:4989-5009. [PMID: 36094621 DOI: 10.1113/jp283200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, have recently received attention as essential mechanisms for cell-to-cell communication in cardiovascular disease. EVs can be released from different types of cells, including endothelial cells, smooth muscle cells, cardiac cells, fibroblasts, platelets, adipocytes, immune cells and stem cells. Non-coding (nc)RNAs as EV cargos have recently been investigated in the cardiovascular system. Up- or downregulated ncRNAs in EVs have been shown to play a crucial role in various cardiovascular diseases. Communication via EV-derived ncRNAs can occur between cells of the same type and between different types of cells involved in the pathophysiology of cardiovascular disease. In the present review, we highlight the important aspects of diverse cell-derived EVs and their ncRNA cargos as disease mediators and potential therapeutic targets in atherosclerosis, coronary artery disease, ischaemic heart disease and cardiac fibrosis. In addition, we summarize the potential of EV-derived ncRNAs in the treatment of cardiovascular disease. Finally, we discuss the different methods for EV isolation and characterization. A better understanding of the specific role of EVs and their ncRNA cargos in the regulation of cardiovascular (dys)function will be of importance for the development of diagnostic and therapeutic tools for cardiovascular disease.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lu Gan
- Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
8
|
Amarasinghe I, Phillips W, Hill AF, Cheng L, Helbig KJ, Willms E, Monson EA. Cellular communication through extracellular vesicles and lipid droplets. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e77. [PMID: 38938415 PMCID: PMC11080893 DOI: 10.1002/jex2.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/29/2024]
Abstract
Cellular communication is essential for effective coordination of biological processes. One major form of intercellular communication occurs via the release of extracellular vesicles (EVs). These vesicles mediate intercellular communication through the transfer of their cargo and are actively explored for their role in various diseases and their potential therapeutic and diagnostic applications. Conversely, lipid droplets (LDs) are vesicles that transfer cargo within cells. Lipid droplets play roles in various diseases and evidence for their ability to transfer cargo between cells is emerging. To date, there has been little interdisciplinary research looking at the similarities and interactions between these two classes of small lipid vesicles. This review will compare the commonalities and differences between EVs and LDs including their biogenesis and secretion, isolation and characterisation methodologies, composition, and general heterogeneity and discuss challenges and opportunities in both fields.
Collapse
Affiliation(s)
- Irumi Amarasinghe
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
| | - William Phillips
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
- La Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneAustralia
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityFootscrayVictoriaAustralia
| | - Lesley Cheng
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
- La Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneAustralia
| | - Karla J. Helbig
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
| | - Eduard Willms
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
- La Trobe Institute for Molecular SciencesLa Trobe UniversityMelbourneAustralia
| | - Ebony A. Monson
- School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneAustralia
| |
Collapse
|
9
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
You B, Zhou C, Yang Y. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis. Ageing Res Rev 2023; 85:101864. [PMID: 36707035 DOI: 10.1016/j.arr.2023.101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Osteoarthritis (OA), a common cause of chronic articular cartilage degeneration, is the main cause of disability in older adults and severely affects quality of life. Multiple factors are involved in the pathogenesis of OA, resulting in imbalance in the homeostasis of the joint cavity microenvironment, which exacerbates the disease. Because of the deficiency of blood vessels and nerves in cartilage, existing therapies to promote cartilage healing are relatively ineffective. Mesenchymal stem cell (MSC)-related therapies have achieved positive outcomes for the treatment of OA, and these beneficial effects have been confirmed to be largely mediated by extracellular vesicles (EVs). MSC-derived EVs (MSC-EVs) have been demonstrated to participate in the regulation of chondrocyte function, to have anti-inflammatory and immunomodulatory effects, and to alleviate metabolic disorders of the extracellular matrix, thereby slowing the progression of OA. In addition, engineered MSC-EVs can enrich therapeutic molecules and optimize administration to enhance their therapeutic effects on OA. A thorough understanding of the endogenous properties of EVs and related engineering strategies could help researchers develop more precise control therapy for OA.
Collapse
Affiliation(s)
- Benshuai You
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| | - Yang Yang
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
11
|
Feng Y, Liu M, Li X, Li M, Xing X, Liu L. Nanomechanical Signatures of Extracellular Vesicles from Hematologic Cancer Patients Unraveled by Atomic Force Microscopy for Liquid Biopsy. NANO LETTERS 2023; 23:1591-1599. [PMID: 36723485 DOI: 10.1021/acs.nanolett.3c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cells release extracellular vesicles (EVs) as the carriers for intercellular communications to regulate life activities. Particularly, it is increasingly apparent that mechanical forces play an essential role in biological systems. The nanomechanical properties of EVs and their dynamics in cancer development are still not fully understood. Herein, with the use of atomic force microscopy (AFM), the nanomechanical signatures of EVs from the liquid biopsies of hematologic cancer patients were unraveled. Single native EVs were probed by AFM under aqueous conditions. The elastic and viscous properties of EVs were measured and visualized to correlate EV mechanics with EV geometry. Experimental results remarkably reveal the significant differences in EV mechanics among multiple myeloma patients, lymphoma patients, and healthy volunteers. The study unveils the unique nanomechanical signatures of EVs in hematologic cancers, which will benefit the studies of liquid biopsies for cancer diagnosis and prognosis with translational significance.
Collapse
Affiliation(s)
- Yaqi Feng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Meichen Liu
- Cancer Hospital of China Medical University, Shenyang 110042, People's Republic of China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Xinxin Li
- Cancer Hospital of China Medical University, Shenyang 110042, People's Republic of China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaojing Xing
- Cancer Hospital of China Medical University, Shenyang 110042, People's Republic of China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, People's Republic of China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
14
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
15
|
The Convergence of FTIR and EVs: Emergence Strategy for Non-Invasive Cancer Markers Discovery. Diagnostics (Basel) 2022; 13:diagnostics13010022. [PMID: 36611313 PMCID: PMC9818376 DOI: 10.3390/diagnostics13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In conjunction with imaging analysis, pathology-based assessments of biopsied tissue are the gold standard for diagnosing solid tumors. However, the disadvantages of tissue biopsies, such as being invasive, time-consuming, and labor-intensive, have urged the development of an alternate method, liquid biopsy, that involves sampling and clinical assessment of various bodily fluids for cancer diagnosis. Meanwhile, extracellular vesicles (EVs) are circulating biomarkers that carry molecular profiles of their cell or tissue origins and have emerged as one of the most promising biomarkers for cancer. Owing to the biological information that can be obtained through EVs' membrane surface markers and their cargo loaded with biomolecules such as nucleic acids, proteins, and lipids, EVs have become useful in cancer diagnosis and therapeutic applications. Fourier-transform infrared spectroscopy (FTIR) allows rapid, non-destructive, label-free molecular profiling of EVs with minimal sample preparation. Since the heterogeneity of EV subpopulations may result in complicated FTIR spectra that are highly diverse, computational-assisted FTIR spectroscopy is employed in many studies to provide fingerprint spectra of malignant and non-malignant samples, allowing classification with high accuracy, specificity, and sensitivity. In view of this, FTIR-EV approach carries a great potential in cancer detection. The progression of FTIR-based biomarker identification in EV research, the rationale of the integration of a computationally assisted approach, along with the challenges of clinical translation are the focus of this review.
Collapse
|
16
|
Infrared nanospectroscopic imaging of DNA molecules on mica surface. Sci Rep 2022; 12:18972. [PMID: 36348038 PMCID: PMC9643503 DOI: 10.1038/s41598-022-23637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Significant efforts have been done in last two decades to develop nanoscale spectroscopy techniques owning to their great potential for single-molecule structural detection and in addition, to resolve open questions in heterogeneous biological systems, such as protein-DNA complexes. Applying IR-AFM technique has become a powerful leverage for obtaining simultaneous absorption spectra with a nanoscale spatial resolution for studied proteins, however the AFM-IR investigation of DNA molecules on surface, as a benchmark for a nucleoprotein complexes nanocharacterization, has remained elusive. Herein, we demonstrate methodological approach for acquisition of AFM-IR mapping modalities with corresponding absorption spectra based on two different DNA deposition protocols on spermidine and Ni2+ pretreated mica surface. The nanoscale IR absorbance of distinctly formed DNA morphologies on mica are demonstrated through series of AFM-IR absorption maps with corresponding IR spectrum. Our results thus demonstrate the sensitivity of AFM-IR nanospectroscopy for a nucleic acid research with an open potential to be employed in further investigation of nucleoprotein complexes.
Collapse
|
17
|
Xue M, Ye S, Ma X, Ye F, Wang C, Zhu L, Yang Y, Chen J. Single-Vesicle Infrared Nanoscopy for Noninvasive Tumor Malignancy Diagnosis. J Am Chem Soc 2022; 144:20278-20287. [DOI: 10.1021/jacs.2c07393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaopeng Ma
- The First Affiliated Hospital University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230000, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
18
|
Extracellular vesicle isolation, purification and evaluation in cancer diagnosis. Expert Rev Mol Med 2022; 24:e41. [PMID: 36268744 DOI: 10.1017/erm.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Strategies for non-invasive biomarker discovery in early detection of cancer are an urgent need. Extracellular vesicles (EVs) have generated increasing attention from the scientific community and are under intensive investigations due to their unique biological profiles and their non-invasive nature. EVs are membrane-enclosed vesicles with variable sizes and function. Such vesicles are actively secreted from multiple cell types and are considered as key vehicles for inter-cellular communications and signalling. The stability and potential to easily cross biological barriers enable EVs for exerting durable effects on target cells. These along with easy access to such vesicles, the consistent secretion from tumour during all stages of tumorigenesis and their content providing a reservoir of molecules as well as mirroring the identity of the cell of origin are virtues that have made EVs appealing to be assessed in liquid biopsy approaches and for using as a promising resource of biomarkers in cancer diagnosis and therapy and monitoring targeted cancer therapy. Early detection of EVs will guide time-scheduled personalised therapy. Surveying reliable and sensitive methods for rapid isolation of EVs from biofluids, the purity of isolated vesicles and their molecular profiling and marker specification for clinical translation in patients with cancer are issues in the area and the hot topics of many recent studies. Here, the focus is over methods for EV isolation and stratification for digging more information about liquid biopsy-based diagnosis. Extending knowledge regarding EV-based strategies is a key to validate independent patient follow-up for cancer diagnosis at early stages and inspecting the efficacy of therapeutics.
Collapse
|
19
|
Clarke EJ, Lima C, Anderson JR, Castanheira C, Beckett A, James V, Hyett J, Goodacre R, Peffers MJ. Optical photothermal infrared spectroscopy can differentiate equine osteoarthritic plasma extracellular vesicles from healthy controls. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3661-3670. [PMID: 36066093 PMCID: PMC9521322 DOI: 10.1039/d2ay00779g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 05/26/2023]
Abstract
Equine osteoarthritis is a chronic degenerative disease of the articular joint, characterised by cartilage degradation resulting in pain and reduced mobility and thus is a prominent equine welfare concern. Diagnosis is usually at a late stage through clinical examination and radiographic imaging, whilst treatment is symptomatic not curative. Extracellular vesicles are nanoparticles that are involved in intercellular communication. The objective of this study was to investigate the feasibility of Raman and Optical Photothermal Infrared Spectroscopies to detect osteoarthritis using plasma-derived extracellular vesicles, specifically differentiating extracellular vesicles in diseased and healthy controls within the parameters of the techniques used. Plasma samples were derived from thoroughbred racehorses. A total of 14 samples were selected (control; n = 6 and diseased; n = 8). Extracellular vesicles were isolated using differential ultracentrifugation and characterised using nanoparticle tracking analysis, transmission electron microscopy, and human tetraspanin chips. Samples were then analysed using combined Raman and Optical Photothermal Infrared Spectroscopies. Infrared spectra were collected between 950-1800 cm-1. Raman spectra had bands between the wavelengths of 900-1800 cm-1 analysed. Spectral data for both Raman and Optical Photothermal Infrared Spectroscopy were used to generate clustering via principal components analysis and classification models were generated using partial least squared discriminant analysis in order to characterize the techniques' ability to distinguish diseased samples. Optical Photothermal Infrared Spectroscopy could differentiate osteoarthritic extracellular vesicles from healthy with good classification (93.4% correct classification rate) whereas Raman displayed poor classification (correct classification rate = -64.3%). Inspection of the infrared spectra indicated that plasma-derived extracellular vesicles from osteoarthritic horses contained increased signal for proteins, lipids and nucleic acids. For the first time we demonstrated the ability to use optical photothermal infrared spectroscopy combined with Raman spectroscopy to interrogate extracellular vesicles and osteoarthritis-related samples. Optical Photothermal Infrared Spectroscopy was superior to Raman in this study, and could distinguish osteoarthritis samples, suggestive of its potential use diagnostically to identify osteoarthritis in equine patients. This study demonstrates the potential of Raman and Optical Photothermal Infrared Spectroscopy to be used as a future diagnostic tool in clinical practice, with the capacity to detect changes in extracellular vesicles from clinically derived samples.
Collapse
Affiliation(s)
- Emily J Clarke
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - James R Anderson
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Catarina Castanheira
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Alison Beckett
- Biomedical Electron Microscopy Unit, University of Liverpool, UK
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Jacob Hyett
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| | - Royston Goodacre
- Centre for Metabolomics Research, Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7BE, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Biology and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 W Derby St, Liverpool L7 8TX, UK.
| |
Collapse
|
20
|
Liu C, Xiao K, Xie L. Advances in the use of exosomes for the treatment of ALI/ARDS. Front Immunol 2022; 13:971189. [PMID: 36016948 PMCID: PMC9396740 DOI: 10.3389/fimmu.2022.971189] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high morbidity and mortality. Currently, the primary treatment for ALI/ARDS is mainly symptomatic therapy such as mechanical ventilation and fluid management. Due to the lack of effective treatment strategies, most ALI/ARDS patients face a poor prognosis. The discovery of exosomes has created a promising prospect for the treatment of ALI/ARDS. Exosomes can exert anti-inflammatory effects, inhibit apoptosis, and promote cell regeneration. The microRNA contained in exosomes can participate in intercellular communication and play an immunomodulatory role in ALI/ARDS disease models. This review discusses the possible mechanisms of exosomes in ALI/ARDS to facilitate the development of innovative treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
21
|
Bauzá-Martinez J, Armony G, Pronker MF, Wu W. Characterization of protein complexes in extracellular vesicles by intact extracellular vesicle crosslinking mass spectrometry (iEVXL). J Extracell Vesicles 2022; 11:e12245. [PMID: 35918900 PMCID: PMC9346492 DOI: 10.1002/jev2.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Extracellular vesicles (EVs) are blood‐borne messengers that coordinate signalling between different tissues and organs in the body. The specificity of such crosstalk is determined by preferential EV docking to target sites, as mediated through protein‐protein interactions. As such, the need to structurally characterize the EV surface precedes further understanding of docking selectivity and recipient‐cell uptake mechanisms. Here, we describe an intact extracellular vesicle crosslinking mass spectrometry (iEVXL) method that can be applied for structural characterization of protein complexes in EVs. By using a partially membrane‐permeable disuccinimidyl suberate crosslinker, proteins on the EV outer‐surface and inside EVs can be immobilized together with their interacting partners. This not only provides covalent stabilization of protein complexes before extraction from the membrane‐enclosed environment, but also generates a set of crosslinking distance restraints that can be used for structural modelling and comparative screening of changes in EV protein assemblies. Here we demonstrate iEVXL as a powerful approach to reveal high‐resolution information, about protein determinants that govern EV docking and signalling, and as a crucial aid in modelling docking interactions.
Collapse
Affiliation(s)
- Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gad Armony
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
23
|
Soroczynska K, Zareba L, Dlugolecka M, Czystowska-Kuzmicz M. Immunosuppressive Extracellular Vesicles as a Linking Factor in the Development of Tumor and Endometriotic Lesions in the Gynecologic Tract. Cells 2022; 11:cells11091483. [PMID: 35563789 PMCID: PMC9105295 DOI: 10.3390/cells11091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Both gynecological tumors and endometriosis require for their development a favorable environment, termed in the case of tumors a "pre-metastatic niche" and in case of endometriosis a "pro-endometriotic niche". This is characterized by chronic inflammation and immunosuppression that support the further progression of initial lesions. This microenvironment is established and shaped in the course of a vivid cross-talk between the tumor or endometrial cells with other stromal, endothelial and immune cells. There is emerging evidence that extracellular vesicles (EVs) play a key role in this cellular communication, mediating both in tumors and endometriosis similar immunosuppressive and pro-inflammatory mechanisms. In this review, we discuss the latest findings about EVs as immunosuppressive factors, highlighting the parallels between gynecological tumors and endometriosis. Furthermore, we outline their role as potential diagnostic or prognostic biomarkers as well as their future in therapeutic applications.
Collapse
Affiliation(s)
- Karolina Soroczynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Lukasz Zareba
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Magdalena Dlugolecka
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Zwirki i Wigury 61 St., 02-091 Warsaw, Poland
| | - Malgorzata Czystowska-Kuzmicz
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland; (K.S.); (L.Z.); (M.D.)
- Correspondence:
| |
Collapse
|
24
|
Wang T, Xing Y, Cheng Z, Yu F. Analysis of Single Extracellular Vesicles for Biomedical Applications with Especial Emphasis on Cancer Investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Romanò S, Di Giacinto F, Primiano A, Gervasoni J, Mazzini A, Papi M, Urbani A, Serafino A, De Spirito M, Krasnowska EK, Ciasca G. Label-free spectroscopic characterization of exosomes reveals cancer cell differentiation. Anal Chim Acta 2022; 1192:339359. [DOI: 10.1016/j.aca.2021.339359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
|
26
|
You J, Fu Z, Zou L. Mechanism and Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells for the Treatment of Infectious Diseases. Front Microbiol 2021; 12:761338. [PMID: 34764947 PMCID: PMC8576143 DOI: 10.3389/fmicb.2021.761338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane vesicles secreted by cells. EVs serve as a mediator for cell-to-cell communication by regulating the exchange of genetic materials and proteins between the donor and surrounding cells. Current studies have explored the therapeutic value of mesenchymal stem cells-derived EVs (MSC-EVs) for the treatment of infectious diseases extensively. MSC-EVs can eliminate the pathogen, regulate immunity, and repair tissue injury in contagious diseases through the secretion of antimicrobial factors, inhibiting the replication of pathogens and activating the phagocytic function of macrophages. MSC-EVs can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and participating in the regulation of cellular biological behaviors. The purpose of this mini-review is to discuss in detail the various mechanisms of MSC-EV treatment for infectious diseases including respiratory infections, sepsis, and intestinal infections, as well as challenges for implementing MSC-EVs from bench to bedside.
Collapse
Affiliation(s)
- Jingyi You
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhou Fu
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Lin Zou
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Clinical Research Unit, Children's Hospital of Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Yu ZL, Zhao Y, Miao F, Wu M, Xia HF, Chen ZK, Liu HM, Zhao YF, Chen G. In Situ Membrane Biotinylation Enables the Direct Labeling and Accurate Kinetic Analysis of Small Extracellular Vesicles in Circulation. Anal Chem 2021; 93:10862-10870. [PMID: 34328732 DOI: 10.1021/acs.analchem.1c01176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Circulating small extracellular vesicles (sEVs) are naturally occurring nanosized membrane vesicles that convey bioactive molecules between cells. Conventionally, to evaluate their behaviors in vivo, circulating sEVs have to be isolated from the bloodstream, then labeled with imaging materials in vitro, and finally injected back into the circulation of animals for subsequent detection. The tedious isolation-labeling-reinfusion procedures might have an undesirable influence on the natural properties of circulating sEVs, thereby changing their behaviors and the detected kinetics in vivo. Herein, we proposed an in situ biotinylation strategy to directly label circulating sEVs with intravenously injected DSPE-PEG-Biotin, aiming to evaluate the in vivo kinetics of circulating sEVs more biofriendly and accurately. Such an analysis strategy is free of isolation-labeling-reinfusion procedures and has no unfavorable influence on the natural behaviors of sEVs. The results showed that the lifetime of generic circulating sEVs in mice was around 3 days. Furthermore, we, for the first time, revealed the distinct in vivo kinetics of circulating sEV subpopulations with different cell sources, among which erythrocyte-derived sEVs showed the longest lifespan. Moreover, compared with circulating sEVs in situ or used as autograft, circulating sEVs used as allograft had the shortest lifetime. In addition, the in situ biotinylation strategy also provides a way for the enrichment of biotinylated circulating sEVs. In summary, this study provides a novel strategy for in situ labeling of circulating sEVs, which would facilitate the accurate characterization of their kinetics in vivo, thereby accelerating their future application as biomarkers and theranositic vectors.
Collapse
Affiliation(s)
- Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fan Miao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhuo-Kun Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hai-Ming Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
28
|
Imanbekova M, Suarasan S, Rojalin T, Mizenko RR, Hilt S, Mathur M, Lepine P, Nicouleau M, Mohamed NV, Durcan TM, Carney RP, Voss JC, Wachsmann-Hogiu S. Identification of amyloid beta in small extracellular vesicles via Raman spectroscopy. NANOSCALE ADVANCES 2021; 3:4119-4132. [PMID: 34355118 PMCID: PMC8276787 DOI: 10.1039/d1na00330e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) pathogenesis is believed to be the production and deposition of amyloid-beta (Aβ) peptide into extracellular plaques. Existing research indicates that extracellular vesicles (EVs) can carry Aβ associated with AD. However, characterization of the EVs-associated Aβ and its conformational variants has yet to be realized. Raman spectroscopy is a label-free and non-destructive method that is able to assess the biochemical composition of EVs. This study reports for the first time the Raman spectroscopic fingerprint of the Aβ present in the molecular cargo of small extracellular vesicles (sEVs). Raman spectra were measured from sEVs isolated from Alzheimer's disease cell culture model, where secretion of Aβ is regulated by tetracycline promoter, and from midbrain organoids. The averaged spectra of each sEV group showed considerable variation as a reflection of the biochemical content of sEVs. Spectral analysis identified more intense Raman peaks at 1650 cm-1 and 2930 cm-1 attributable to the Aβ peptide incorporated in sEVs produced by the Alzheimer's cell culture model. Subsequent analysis of the spectra by principal component analysis differentiated the sEVs of the Alzheimer's disease cell culture model from the control groups of sEVs. Moreover, the results indicate that Aβ associated with secreted sEVs has a α-helical secondary structure and the size of a monomer or small oligomer. Furthermore, by analyzing the lipid content of sEVs we identified altered fatty acid chain lengths in sEVs that carry Aβ that may affect the fluidity of the EV membrane. Overall, our findings provide evidence supporting the use of Raman spectroscopy for the identification and characterization of sEVs associated with potential biomarkers of neurological disorders such as toxic proteins.
Collapse
Affiliation(s)
| | - Sorina Suarasan
- Department of Bioengineering, McGill University Montreal QC H3A 0E9 Canada
| | - Tatu Rojalin
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California Davis CA 95616 USA
| | - Meghna Mathur
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Paula Lepine
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Michael Nicouleau
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Nguyen-Vi Mohamed
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Thomas M Durcan
- The Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University Montreal QC H3A 2B4 Canada
| | - Randy P Carney
- Department of Biomedical Engineering, University of California Davis CA 95616 USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis CA 95616 USA
| | | |
Collapse
|
29
|
Phillips W, Willms E, Hill AF. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics 2021; 21:e2000118. [PMID: 33857352 PMCID: PMC8365743 DOI: 10.1002/pmic.202000118] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed nanoparticles released by cells. They play a role in intercellular communication and are involved in numerous physiological and pathological processes. Cells release subpopulations of EVs with distinct composition and inherent biological function which overlap in size. Current size-based isolation methods are, therefore, not optimal to discriminate between functional EV subpopulations. In addition, EVs overlap in size with several other biological nanoparticles, such as lipoproteins and viruses. Proteomic analysis has allowed for more detailed study of EV composition, and EV isolation approaches based on this could provide a promising alternative for purification based on size. Elucidating EV heterogeneity and the characteristics and role of EV subpopulations will advance our understanding of EV biology and the role of EVs in health and disease. Here, we discuss current knowledge of EV composition, EV heterogeneity and advances in affinity based EV isolation tools.
Collapse
Affiliation(s)
- William Phillips
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Eduard Willms
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|
30
|
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Female Reproductive Diseases. Front Endocrinol (Lausanne) 2021; 12:665645. [PMID: 34248842 PMCID: PMC8261239 DOI: 10.3389/fendo.2021.665645] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female reproduction. Recently, mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have presented their potentials to cure these diseases, not only for the propensity ability they stemmed from the parent cells, but also for the higher biology stability and lower immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as mediators by transferring multiple molecules to recipient cells, such as proteins, microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have reached a consensus, several theories have been proposed, including promoting angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
| | - Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
32
|
Phan TH, Divakarla SK, Yeo JH, Lei Q, Tharkar P, Pansani TN, Leslie KG, Tong M, Coleman VA, Jämting Å, Du Plessis MD, New EJ, Kalionis B, Demokritou P, Woo HK, Cho YK, Chrzanowski W. New Multiscale Characterization Methodology for Effective Determination of Isolation-Structure-Function Relationship of Extracellular Vesicles. Front Bioeng Biotechnol 2021; 9:669537. [PMID: 34164385 PMCID: PMC8215393 DOI: 10.3389/fbioe.2021.669537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been lauded as next-generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass produce EVs, i.e., to isolate, purify, and characterize them effectively. Technical limitations in comprehensive characterization of EVs lead to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were likely to contribute to the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterization approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.
Collapse
Affiliation(s)
- Thanh Huyen Phan
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Shiva Kamini Divakarla
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Jia Hao Yeo
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Qingyu Lei
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Priyanka Tharkar
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, UNESP-Universidade Estadual Paulista, Araraquara, Brazil
| | - Kathryn G Leslie
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Maggie Tong
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Victoria A Coleman
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Åsa Jämting
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Mar-Dean Du Plessis
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, Faculty of Science, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Bill Kalionis
- Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, and Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Hyun-Kyung Woo
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Wojciech Chrzanowski
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
33
|
Di Santo R, Romanò S, Mazzini A, Jovanović S, Nocca G, Campi G, Papi M, De Spirito M, Di Giacinto F, Ciasca G. Recent Advances in the Label-Free Characterization of Exosomes for Cancer Liquid Biopsy: From Scattering and Spectroscopy to Nanoindentation and Nanodevices. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1476. [PMID: 34199576 PMCID: PMC8230295 DOI: 10.3390/nano11061476] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022]
Abstract
Exosomes (EXOs) are nano-sized vesicles secreted by most cell types. They are abundant in bio-fluids and harbor specific molecular constituents from their parental cells. Due to these characteristics, EXOs have a great potential in cancer diagnostics for liquid biopsy and personalized medicine. Despite this unique potential, EXOs are not yet widely applied in clinical settings, with two main factors hindering their translational process in diagnostics. Firstly, conventional extraction methods are time-consuming, require large sample volumes and expensive equipment, and often do not provide high-purity samples. Secondly, characterization methods have some limitations, because they are often qualitative, need extensive labeling or complex sampling procedures that can induce artifacts. In this context, novel label-free approaches are rapidly emerging, and are holding potential to revolutionize EXO diagnostics. These methods include the use of nanodevices for EXO purification, and vibrational spectroscopies, scattering, and nanoindentation for characterization. In this progress report, we summarize recent key advances in label-free techniques for EXO purification and characterization. We point out that these methods contribute to reducing costs and processing times, provide complementary information compared to the conventional characterization techniques, and enhance flexibility, thus favoring the discovery of novel and unexplored EXO-based biomarkers. In this process, the impact of nanotechnology is systematically highlighted, showing how the effectiveness of these techniques can be enhanced using nanomaterials, such as plasmonic nanoparticles and nanostructured surfaces, which enable the exploitation of advanced physical phenomena occurring at the nanoscale level.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
| | - Sabrina Romanò
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Alberto Mazzini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Svetlana Jovanović
- “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Giuseppina Nocca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gaetano Campi
- Rome International Centre Materials Science Superstripes RICMASS, via dei Sabelli 119A, 00185 Rome, Italy;
- Institute of Crystallography, CNR, via Salaria Km 29. 300, Monterotondo Stazione, 00016 Roma, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (R.D.S.); (S.R.); (A.M.); (G.N.); (M.P.); (F.D.G.)
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
34
|
Lukose J, M. SP, N. M, Barik AK, Pai KM, Unnikrishnan VK, George SD, Kartha VB, Chidangil S. Photonics of human saliva: potential optical methods for the screening of abnormal health conditions and infections. Biophys Rev 2021; 13:359-385. [PMID: 34093888 PMCID: PMC8170462 DOI: 10.1007/s12551-021-00807-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Human saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sanoop Pavithran M.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Mithun N.
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Keerthilatha M. Pai
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. K. Unnikrishnan
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sajan D. George
- Centre for Applied Nanoscience, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - V. B. Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
35
|
Price J, Gardiner C, Harrison P. Platelet-enhanced plasma: Characterization of a novel candidate resuscitation fluid's extracellular vesicle content, clotting parameters, and thrombin generation capacity. Transfusion 2021; 61:2179-2194. [PMID: 33948950 DOI: 10.1111/trf.16423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Platelet transfusion is challenging in emergency medicine because of short platelet shelf life and stringent storage conditions. Platelet-derived extracellular vesicles (PEV) exhibit platelet-like properties. A plasma generated from expired platelet units rich in procoagulant PEV may be able to combine the benefits of plasma and platelets for resuscitation while increasing shelf life and utilizing an otherwise wasted resource. STUDY DESIGN AND METHODS Freeze-thaw cycling of platelet-rich plasma (PRP) followed by centrifugation to remove platelet remnants was utilized to generate platelet-enhanced plasma (PEP). An in vitro model of dilutional coagulopathy was also designed and used to test PEP. Rotational thromboelastometry and calibrated automated thrombography were used to assess clotting and extracellular vesicles (EV) procoagulant activity. Capture arrays were used to specifically measure EV subpopulations of interest (ExoView™, NanoView Biosciences). Captured vesicles were quantified and labeled with Annexin-V-FITC, CD41-PE, and CD63-AF647. Platelet alpha granule content (platelet-derived growth factor AB, soluble P-selectin, vascular endothelial growth factor A, and neutrophil activating peptide 2-chemokine (C-X-C motif) ligand 7) was measured. Commercially available platelet lysates were also characterized. RESULTS PEP is highly procoagulant, rich in growth factors, exhibits enhanced thrombin generation, and restores hemostasis within an in vitro model of dilutional coagulopathy. The predominant vesicle population were PEV with 7.0 × 109 CD41+PS+ EV/ml compared to 4.7 × 107 CD41+PS+ EV/ml in platelet-free plasma (p = .0079). Commercial lysates show impaired but rescuable clotting. DISCUSSION PEP is a unique candidate resuscitation fluid containing high PEV concentration with preliminary evidence, indicating a potential for upscaling the approach using platelet concentrates. Commercial lysate manufacturer workflows may be suitable for this, but further optimization and characterization of PEP is required.
Collapse
Affiliation(s)
- Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Chris Gardiner
- Haemostasis Research, University College London, London, UK
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Liang Y, Lehrich BM, Zheng S, Lu M. Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles 2021; 10:e12090. [PMID: 34012517 PMCID: PMC8114032 DOI: 10.1002/jev2.12090] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are released by many cell types and distributed within various biofluids. EVs have a lipid membrane-confined structure that allows for carrying unique molecular information originating from their parent cells. The species and quantity of EV cargo molecules, including nucleic acids, proteins, lipids, and metabolites, may vary largely owing to their parent cell types and the pathophysiologic status. Such heterogeneity in EV populations provides immense challenges to researchers, yet allows for the possibility to prognosticate the pathogenesis of a particular tissue from unique molecular signatures of dispersing EVs within biofluids. However, the inherent nature of EV's small size requires advanced methods for EV purification and evaluation from the complex biofluid. Recently, the interdisciplinary significance of EV research has attracted growing interests, and the EV analytical platforms for their diagnostic prospect have markedly progressed. This review summarizes the recent advances in these EV detection techniques and methods with the intention of translating an EV-based liquid biopsy into clinical practice. This article aims to present an overview of current EV assessment techniques, with a focus on their progress and limitations, as well as an outlook on the clinical translation of an EV-based liquid biopsy that may augment current paradigms for the diagnosis, prognosis, and monitoring the response to therapy in a variety of disease settings.
Collapse
Affiliation(s)
- Yaxuan Liang
- Center for Biological Science and Technology, Advanced Institute of Natural SciencesBeijing Normal University at ZhuhaiZhuhaiChina
| | - Brandon M. Lehrich
- Medical Scientist Training ProgramUniversity of Pittsburgh School of Medicine and Carnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Siyang Zheng
- Department Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Department of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Mengrou Lu
- Department Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
37
|
Zhang F, Ge W, Wang C, Zheng X, Wang D, Zhang X, Wang X, Xue X, Qing G. Highly Strong and Solvent-Resistant Cellulose Nanocrystal Photonic Films for Optical Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17118-17128. [PMID: 33793208 DOI: 10.1021/acsami.1c02753] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose nanocrystals (CNCs) are powerful photonic building blocks for the fabrication of biosourced colored films. A combination of the advantages of self-assembled CNCs and multiple templating agents offers access to the development of novel physicochemical sensors, structural coatings, and optic devices. However, due to the inherent brittleness and water instability of CNC-derived materials, their further applications are widely questionable and restrictive. Here, a soft polymer of poly(vinyl alcohol) (PVA) was introduced into the rigid CNC system to balance molecular interactions, whereafter two hard/soft nanocomposites were fastened through a cross-linking reaction of glutaraldehyde (GA), resulting in a highly flexible, water-stable, and chiral nematic CNC composite film through an evaporation-induced self-assembly technique. For a 1.5 wt % GA-cross-linked 70 wt % CNC loading film, its treatment with harsh hydrophilic exposure (soaking in a strong acid, strong base, and seawater) and various organic solvents show exceptional solvent-resistant abilities. Furthermore, the film can even withstand a weight of 167 g cm-2 without failure, which is a highly stiff and durable character. Importantly, the film remains a highly ordered chiral nematic organization, being able to act as a highly transparent substrate for selective reflection of left-handed circularly polarized light, preparing fully covered and patterned full-color coatings on various substrates. Our work paves the way for applications in low-cost, durable, and photonic cellulosic coatings.
Collapse
Affiliation(s)
- Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenna Ge
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xintong Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xingya Xue
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
38
|
Liu Z, Zeng H, Xu K, Zhao K, Liu Z, Yao J, You Y, Wang D. AFM-IR probing the influence of polarization on the expression of proteins within single macrophages. J Mater Chem B 2021; 9:2909-2917. [PMID: 33885646 DOI: 10.1039/d0tb02584d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macrophages are essential in innate immunity and are involved in a variety of biological functions. Due to high plasticity, macrophages are polarized in different phenotypes depending on different microenvironments to perform specific functions. Although many studies have focused on macrophage polarization, few have explored the polarization characteristics of macrophages at the subcellular level, even at nanoscale resolution. Here, we utilize AFM-based infrared spectroscopy (AFM-IR) to investigate the influence of an inducer on the expressed proteins of M1/M2 macrophages (induced by LPS and IL-13, respectively). The results from AFM-IR combined with principal component analysis revealed that the characteristic proteins within M1 contain about 35% antiparallel β-sheets (due to the high expression of TNF-α), while the proteins within M2 are made up of approximately 38.8% α-helices. The corresponding nanoscale chemical mapping demonstrates a remarkably heterogeneous distribution of expressed proteins inside single macrophages. Beside the biochemical properties, the biomechanical properties of macrophages were found to be softened in response to the polarization process.
Collapse
Affiliation(s)
- Zhibin Liu
- CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Li MI, Xu X, Xi N, Wang W, Xing X, Liu L. Multiparametric atomic force microscopy imaging of single native exosomes. Acta Biochim Biophys Sin (Shanghai) 2021; 53:385-388. [PMID: 33399205 DOI: 10.1093/abbs/gmaa172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M i Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinning Xu
- Cancer Hospital of China Medical University, Shenyang 110042, China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Xing
- Cancer Hospital of China Medical University, Shenyang 110042, China
- Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Infrared Nanospectroscopy of Individual Extracellular Microvesicles. Molecules 2021; 26:molecules26040887. [PMID: 33567597 PMCID: PMC7915346 DOI: 10.3390/molecules26040887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles are membrane-delimited structures, involved in several inter-cellular communication processes, both physiological and pathological, since they deliver complex biological cargo. Extracellular vesicles have been identified as possible biomarkers of several pathological diseases; thus, their characterization is fundamental in order to gain a deep understanding of their function and of the related processes. Traditional approaches for the characterization of the molecular content of the vesicles require a large quantity of sample, thereby providing an average molecular profile, while their heterogeneity is typically probed by non-optical microscopies that, however, lack the chemical sensitivity to provide information of the molecular cargo. Here, we perform a study of individual microvesicles, a subclass of extracellular vesicles generated by the outward budding of the plasma membrane, released by two cultures of glial cells under different stimuli, by applying a state-of-the-art infrared nanospectroscopy technique based on the coupling of an atomic force microscope and a pulsed laser, which combines the label-free chemical sensitivity of infrared spectroscopy with the nanometric resolution of atomic force microscopy. By correlating topographic, mechanical and spectroscopic information of individual microvesicles, we identified two main populations in both families of vesicles released by the two cell cultures. Subtle differences in terms of nucleic acid content among the two families of vesicles have been found by performing a fitting procedure of the main nucleic acid vibrational peaks in the 1000–1250 cm−1 frequency range.
Collapse
|
42
|
Potter M, Hanson C, Anderson AJ, Vargis E, Britt DW. Abiotic stressors impact outer membrane vesicle composition in a beneficial rhizobacterium: Raman spectroscopy characterization. Sci Rep 2020; 10:21289. [PMID: 33277560 PMCID: PMC7719170 DOI: 10.1038/s41598-020-78357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have roles in cell-to-cell signaling, biofilm formation, and stress responses. Here, the effects of abiotic stressors on OMV contents and composition from biofilm cells of the plant health-promoting bacterium Pseudomonas chlororaphis O6 (PcO6) are examined. Two stressors relevant to this root-colonizing bacterium were examined: CuO nanoparticles (NPs)-a potential fertilizer and fungicide- and H2O2-released from roots during plant stress responses. Atomic force microscopy revealed 40-300 nm diameter OMVs from control and stressed biofilm cells. Raman spectroscopy with linear discriminant analysis (LDA) was used to identify changes in chemical profiles of PcO6 cells and resultant OMVs according to the cellular stressor with 84.7% and 83.3% accuracies, respectively. All OMVs had higher relative concentrations of proteins, lipids, and nucleic acids than PcO6 cells. The nucleic acid concentration in OMVs exhibited a cellular stressor-dependent increase: CuO NP-induced OMVs > H2O2-induced OMVs > control OMVs. Biochemical assays confirmed the presence of lipopolysaccharides, nucleic acids, and protein in OMVs; however, these assays did not discriminate OMV composition according to the cellular stressor. These results demonstrate the sensitivity of Raman spectroscopy using LDA to characterize and distinguish cellular stress effects on OMVs composition and contents.
Collapse
Affiliation(s)
- Matthew Potter
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Cynthia Hanson
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Anne J Anderson
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA.
| | - David W Britt
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
43
|
Xing Y, Cheng Z, Wang R, Lv C, James TD, Yu F. Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Peterson LS, Stelzer IA, Tsai AS, Ghaemi MS, Han X, Ando K, Winn VD, Martinez NR, Contrepois K, Moufarrej MN, Quake S, Relman DA, Snyder MP, Shaw GM, Stevenson DK, Wong RJ, Arck P, Angst MS, Aghaeepour N, Gaudilliere B. Multiomic immune clockworks of pregnancy. Semin Immunopathol 2020; 42:397-412. [PMID: 32020337 PMCID: PMC7508753 DOI: 10.1007/s00281-019-00772-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022]
Abstract
Preterm birth is the leading cause of mortality in children under the age of five worldwide. Despite major efforts, we still lack the ability to accurately predict and effectively prevent preterm birth. While multiple factors contribute to preterm labor, dysregulations of immunological adaptations required for the maintenance of a healthy pregnancy is at its pathophysiological core. Consequently, a precise understanding of these chronologically paced immune adaptations and of the biological pacemakers that synchronize the pregnancy "immune clock" is a critical first step towards identifying deviations that are hallmarks of peterm birth. Here, we will review key elements of the fetal, placental, and maternal pacemakers that program the immune clock of pregnancy. We will then emphasize multiomic studies that enable a more integrated view of pregnancy-related immune adaptations. Such multiomic assessments can strengthen the biological plausibility of immunological findings and increase the power of biological signatures predictive of preterm birth.
Collapse
Affiliation(s)
- Laura S Peterson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S Tsai
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad S Ghaemi
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazuo Ando
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nadine R Martinez
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Contrepois
- Stanford Metabolic Health Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mira N Moufarrej
- Department of Bioengineering, Stanford University School of Engineering, Stanford, CA, USA
| | - Stephen Quake
- Department of Bioengineering, Stanford University School of Engineering, Stanford, CA, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Petra Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin S Angst
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
45
|
Khanal D, Khatib I, Ruan J, Cipolla D, Dayton F, Blanchard JD, Chan HK, Chrzanowski W. Nanoscale Probing of Liposome Encapsulating Drug Nanocrystal Using Atomic Force Microscopy-Infrared Spectroscopy. Anal Chem 2020; 92:9922-9931. [DOI: 10.1021/acs.analchem.0c01465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Isra Khatib
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Juanfang Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, The University of New South Wales, New South Wales 2062, Australia
| | - David Cipolla
- Insmed Corporation, Bridgewater, New Jersey 08807, United States
| | - Francis Dayton
- Aradigm Corporation, Hayward, California 94545, United States
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| |
Collapse
|
46
|
Horgan CC, Nagelkerke A, Whittaker TE, Nele V, Massi L, Kauscher U, Penders J, Bergholt MS, Hood SR, Stevens MM. Molecular imaging of extracellular vesicles in vitro via Raman metabolic labelling. J Mater Chem B 2020; 8:4447-4459. [PMID: 32373878 PMCID: PMC7610785 DOI: 10.1039/d0tb00620c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are biologically-derived nanovectors important for intercellular communication and trafficking. As such, EVs show great promise as disease biomarkers and therapeutic drug delivery vehicles. However, despite the rapidly growing interest in EVs, understanding of the biological mechanisms that govern their biogenesis, secretion, and uptake remains poor. Advances in this field have been hampered by both the complex biological origins of EVs, which make them difficult to isolate and identify, and a lack of suitable imaging techniques to properly study their diverse biological roles. Here, we present a new strategy for simultaneous quantitative in vitro imaging and molecular characterisation of EVs in 2D and 3D based on Raman spectroscopy and metabolic labelling. Deuterium, in the form of deuterium oxide (D2O), deuterated choline chloride (d-Chol), or deuterated d-glucose (d-Gluc), is metabolically incorporated into EVs through the growth of parent cells on medium containing one of these compounds. Isolated EVs are thus labelled with deuterium, which acts as a bio-orthogonal Raman-active tag for direct Raman identification of EVs when introduced to unlabelled cell cultures. Metabolic deuterium incorporation demonstrates no apparent adverse effects on EV secretion, marker expression, morphology, or global composition, indicating its capacity for minimally obstructive EV labelling. As such, our metabolic labelling strategy could provide integral insights into EV biocomposition and trafficking. This approach has the potential to enable a deeper understanding of many of the biological mechanisms underpinning EVs, with profound implications for the design of EVs as therapeutic delivery vectors and applications as disease biomarkers.
Collapse
Affiliation(s)
- Conor C Horgan
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Anika Nagelkerke
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Valeria Nele
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Lucia Massi
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ulrike Kauscher
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Jelle Penders
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mads S Bergholt
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Steve R Hood
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK. and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
47
|
Khanal D, Zhang J, Ke WR, Banaszak Holl MM, Chan HK. Bulk to Nanometer-Scale Infrared Spectroscopy of Pharmaceutical Dry Powder Aerosols. Anal Chem 2020; 92:8323-8332. [PMID: 32406232 DOI: 10.1021/acs.analchem.0c00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid state chemical analysis of pharmaceutical inhalation aerosols at the individual particle level has been an analytical challenge. These particles can range from a few nanometers to micrometers and are a complex mixture of drugs and excipients. Conventional analytical techniques cannot resolve the distribution of excipients and drugs at the submicrometer scale. Understanding the nanochemical composition of individual particles can be critical for pharmaceutical scientists to evaluate drug and excipient stability as well as the drug-drug or drug-excipient interactions that affect the aerosol performance of powders. Herein, we show the novel application of a combination of optical photothermal infrared (O-PTIR) spectroscopy and atomic force microscopy infrared (AFM-IR) spectroscopy to probe nanochemical domains of powders containing the inhaled corticosteroid fluticasone propionate and long-acting β2-agonist salmeterol xinafoate, which are widely used to treat asthma and chronic obstructive pulmonary disease. Three types of powder formulation were analyzed, including the commercial product Seretide, which is a physical mixture of the drugs with crystalline lactose, and two spray-dried powders containing the drugs along with either amorphous or crystalline lactose. We obtained spatially resolved O-PTIR and AFM-IR spectra confirming the presence of peaks related to fluticasone propionate at 1743, 1661, and 1700 cm-1, salmeterol xinafoate at 1580 cm-1, and lactose at 1030 and 1160 cm-1. The location of the drugs and lactose among the particles varied significantly, depending on the formulation type. For the first time, it was possible to map the drug distribution in individual aerosol particles. This is significant as such information has been lacking, and it will open an exciting research direction on how drug distribution affects the aerosol performance of powders and the consistency of dose uniformity. Further, these advanced spectroscopic techniques can be applied to study a wide range of pharmaceutical formulations.
Collapse
Affiliation(s)
- Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.,The University of Sydney, Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Jing Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wei-Ren Ke
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Mark M Banaszak Holl
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
48
|
Paolini L, Federici S, Consoli G, Arceri D, Radeghieri A, Alessandri I, Bergese P. Fourier-transform Infrared (FT-IR) spectroscopy fingerprints subpopulations of extracellular vesicles of different sizes and cellular origin. J Extracell Vesicles 2020; 9:1741174. [PMID: 32341767 PMCID: PMC7170381 DOI: 10.1080/20013078.2020.1741174] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Identification of extracellular vesicle (EV) subpopulations remains an open challenge. To date, the common strategy is based on searching and probing set of molecular components and physical properties intended to be univocally characteristics of the target subpopulation. Pitfalls include the risk to opt for an unsuitable marker set - which may either not represent the subpopulation or also cover other unintended subpopulations - and the need to use different characterization techniques and equipment. This approach focused on specific markers may result inadequate to routinely deal with EV subpopulations that have an intrinsic high level of heterogeneity. In this paper, we show that Fourier-transform Infrared (FT-IR) spectroscopy can provide a collective fingerprint of EV subpopulations in one single experiment. FT-IR measurements were performed on large (LEVs, ~600 nm), medium (MEVs, ~200 nm) and small (SEVs ~60 nm) EVs enriched from two different cell lines medium: murine prostate cancer (TRAMP-C2) and skin melanoma (B16). Spectral regions between 3100-2800 cm-1 and 1880-900 cm-1, corresponding to functional groups mainly ascribed to lipid and protein contributions, were acquired and processed by Principal Component Analysis (PCA). LEVs, MEVs and SEVs were separately grouped for both the considered cell lines. Moreover, subpopulations of the same size but from different sources were assigned (with different degrees of accuracy) to two different groups. These findings demonstrate that FT-IR has the potential to quickly fingerprint EV subpopulations as a whole, suggesting an appealing complement/alternative for their characterization and grading, extendable to healthy and pathological EVs and fully artificial nanovesicles.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Consorzio Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Giovanni Consoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Diletta Arceri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Consorzio Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Ivano Alessandri
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Florence, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
- National Institute of Optics, National Research Council of Italy (CNR-INO), Unit of Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Consorzio Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Florence, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
49
|
Wang K, Wei Y, Zhang P, Wang J, Hu J, Wang L, Li B. [Progress in extracellular vesicle imaging methods]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:279-286. [PMID: 32376541 DOI: 10.12122/j.issn.1673-4254.2020.02.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are lipid bilayer-enclosed nanovesicles secreted by cells. These EVs are important mediators of intercellular communication by serving as vehicles for transfer of proteins, mRNA, miRNA and lipids between cells. Various visualization methods have been established to explore the characteristics of EVs and their role in physiological and pathological processes. The nanoscale size and high heterogeneity of EVs hamper the identification of their biological characteristics and functions. This review presents a comprehensive overview of EV imaging methods in light of the origin, separation and dynamic tracking of EVs, and the advantages and disadvantages of different imaging strategies are discussed. We believe that studies at the levels of single vesicles and single cells will become the frontier of future researches of EVs.
Collapse
Affiliation(s)
- Kaizhe Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Wei
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ping Zhang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Wang
- School of Physics Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jun Hu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bin Li
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
50
|
Wang S, Khan A, Huang R, Ye S, Di K, Xiong T, Li Z. Recent advances in single extracellular vesicle detection methods. Biosens Bioelectron 2020; 154:112056. [PMID: 32093894 DOI: 10.1016/j.bios.2020.112056] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
Extracellular vesicles (EVs) are secreted by a variety of cells. They are known for their pertinent role in intercellular communication, and participation in different pathological processes, making them ideal candidate for utilization as a biomarker for diagnosis and treatment of diseases. In contemporary years, the concept of a well-established liquid biopsy technology, and detection and utilization of EVs as a biomarkers have received unprecedented attention. Many rapid and precise EVs detection methods have been proposed, however, majority of them detect EVs in a bulk. As the prevalent heterogeneity of single extracellular vesicle (SEV) plays an important role in the analysis of disease progression, therefore, to prevent information loss, increased attention has been paid to SEV detection with remarkable successes. Technologies like fluorescence labeling, micro imaging and microfluidic chip were successfully employed for EVs detection at SEV level. This review summarizes the recent advances in SEV detection methods, their potential targets, applications as well as concludes future prospects for developing new SEV detection strategies.
Collapse
Affiliation(s)
- Su Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing 210096, PR China
| | - Rongrong Huang
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Shiyi Ye
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kaili Di
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China; Department of Clinical Laboratory, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, PR China.
| |
Collapse
|